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Abstract 
 
Reactive systems are systems that 

maintain permanent interactions with their 
environment. In this paper, we present our 
experience teaching discrete-event reactive 
systems to Electrical Engineering students. 
The course ranges from logic circuits to 
software components, and covers models, 
analysis, design of various systems (from 
logical systems to embedded systems).  
Since our students are not especially 
proficient in software engineering, we have 
preferred synchronous languages to general 
purpose languages for reactive system pro-
gramming. In the paper, we discuss the ra-
tionale for choosing the synchronous para-
digm. 

 
1. Introduction 

 
Embedded computer systems are more 

and more present in everyday life. Many of 
them perform control or monitoring, often 
under severe constraints, and their failure 
may have dramatic consequences. Another 
feature of these systems is their increasing 
complexity.  

Students in Electrical Engineering must 
be taught how to model, design, implement, 
and test such systems. This paper presents 
our educational experience in this field, and 
a solution we propose to cope with realistic, 
and therefore often complex, modern reac-

tive systems. We restrict our teaching to 
control-dominated systems, that is discrete-
event systems with little data processing, but 
with complex behavior. Of course, there ex-
ist other controllers involving heavy real-time 
data processing  like telecommunication or 
image processing applications. They are 
beyond the scope of our teaching. In what 
follows, a “controller” will refer to a control-
dominated system.  

 
Since controllers must react to all stimuli 

in a predictable and timely way, their analy-
sis and their design must be rigorous and 
based on well-founded methods. So, our 
teaching has to address the following points: 
• Demand for precise and powerful mod-

els. The models should capture both se-
quential and concurrent evolutions. To 
cope with complex systems, they should 
support hierarchical descriptions. More-
over, since “exception” is often the rule in 
reactive systems, they should offer facili-
ties for exception handling specification. 

• Mathematical foundation that makes it 
possible to formally analyze the models 
and guarantee critical properties. 

• Efficient and safe techniques for imple-
mentation. 

• Reusability (notions of components and 
architecture). 
 
The paper is organized as follows: We 

first set forth our educational objectives. We 
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then give the outline of our course. The 
fourth section presents the rationale for in-
troducing synchronous languages. Finally, 
we mention what software engineering and 
especially the UML can bring to our teach-
ing. 

 
2. Educational objectives 

 
Through the teaching of reactive sys-

tems, we aim at three goals for students: 1) 
to enrich their theoretical background, 2) to 
bring out new skills, 3) to open them to inno-
vation. 

 
Theoretical background 

We teach fundamentals like Boolean 
Algebra, Finite State Machines, Concur-
rency (Petri nets), … 

 
Skills 

We encourage students to experiment 
with labs, in order to develop their skill in 
design, programming, and testing. 

 
Innovations 

Innovations are introductions to new 
concepts and methods, beyond the classical 
knowledge in E.E.: synchrony, modern de-
sign, objects, model-checking. 

 
3. Contents of the course 

The course starts with logical circuits and 
evolves to software solutions. Below, we 
mention the main chapters and their con-
tents. 

3.1. Classical design 

We first study the logical design of com-
binational and sequential circuits. Expected 
behaviors are expressed either by state 
graphs or by Boolean recurrence equations. 

We then tackle complex synchronous 
systems. Instead of a state-based model, we 
adopt an activity-oriented specification of the 
behavior. The system is seen has a se-

quencer (control part) that controls func-
tional units (operative part). 

Finally, we consider programmable con-
trollers (PLCs, DSPs, micro-controllers, mi-
croprocessors). They generalize the previ-
ous class, making programming a central 
activity. 

3.2. From circuits to programs 

Thus, due to the increasing complexity of 
the systems to be controlled, and the tech-
nological evolution, we observe a shift in 
models, methods, and techniques. Electrical 
Engineering students of today might think 
that designing a controller is only a special 
application of programming, and that logic 
design is outdated. 

Clearly, modern design, including soft-
ware/hardware co-design, heavily relies on 
software environments. Unfortunately, most 
Electrical Engineering students lack the 
knowledge and the skills in software engi-
neering that are now necessary. 

To address these deficiencies, we have 
introduced the synchronous languages. The 
rationale for this choice is developed in the 
next section. 

 
4. Rationale for teaching the syn-
chronous approach 

 
Synchronous languages [7] are dedi-

cated to control, they are specialized lan-
guages. This section analyzes why we have 
preferred these languages to general pur-
pose languages (GPL). 

4.1. Simple languages 

Being dedicated to specific applications, 
specialized languages are usually simpler 
than GPLs. A synchronous language has a 
restricted set of constructs and operations. 
For instance, Lustre [5], a declarative syn-
chronous language, has only 4 specific 
primitive operators dealing with flows. The 
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syntax of the Esterel language [4] can be 
kept in one A4 sheet of paper.  

Another cause of simplicity is that syn-
chronous languages deal with static struc-
tures and control: there is neither dynamic 
allocation, nor arbitrary recursion. 

4.2. Languages tailored to control 

Patching a classical language with miss-
ing constructs leads to unsatisfactory solu-
tions (e.g., dealing with concurrency, com-
munication and synchronization in C pro-
grams, with the help of a RTOS). Esterel 
has a sequence and a parallel operator, and 
special constructs for pre-emption. Key 
words like await or abort … when … are 
well-suited to express event-driven behav-
iors. Declarative languages like Signal [10] 
and Lustre offer facilities for sampling, over-
sampling, down-sampling. 

4.3. Execution: Reactions 

The way a synchronous program reacts is 
familiar to E.E. students because it is close 
to the clocked sequential circuit running 
mode. A synchronous program is executed 
as a sequence of reactions. Each reaction is 
associated with an instant. A reaction is 
atomic: it runs to its completion, and the in-
coming information is kept invariant during 
the whole reaction (one instant). Moreover, 
a reaction is usually “fast”, more precisely, 
sufficiently fast with respect to the time con-
stants of the system to be controlled. This is 
an essential assumption to use synchronous 
controllers (be it hardware or software) in 
real-time control.  

Note that, contrary to E.E. students, Soft-
ware Engineering students are often dis-
turbed by this mode of execution. 

4.4. Mathematical semantics 

Synchronous languages rely on 
mathematical semantics: the semantics can 
be “computed”. Underlying models are sim-
ple and powerful mathematic models: finite 

state machines, systems of Boolean equa-
tions, recurrence equations …, all concepts 
studied in classical E.E. courses. 

The semantics of the Esterel language is 
an especially interesting example. Each 
Esterel construct can be translated into an 
equivalent “circuit” representation. A circuit 
is composed of gates, registers, and wires. 
What an Esterel program does is easily in-
terpreted in terms of what the associated 
circuit does. For details, refer to papers of G. 
Berry on the semantics of the language ([3], 
for instance). Subtle issues, like causality 
cycles, are closely related to propagation 
delays and electrical stability of circuits. 
These arguments are, by far, more easily 
understood by E.E. students than rewriting 
rules and fix-point theory. 

4.5. Formal verification 

Thanks to their formal foundation, syn-
chronous programs can be formally ana-
lysed. This gives us a great opportunity to 
introduce or to revisit reachability, safety, 
liveness … properties and the associated 
analysis methods. 

4.6. Software development environ-
ment 

There exist software environments free 
of charge for educational uses [9]. Besides 
compilers, a synchronous platform provides 
simulation facilities and verification tools. 

A synchronous program has a fully de-
terministic behavior. As a consequence, bug 
finding and testing are easier with synchro-
nous programs than with classical asyn-
chronous programs. The interactive simula-
tion allows the student to test typical sce-
narios with source code debugging. This is 
an invaluable tool for understanding concur-
rent evolutions, instantaneous communica-
tion, and exception handling.  Reachability 
and safety properties are established by 
(symbolic) model checking: a model-checker 
makes an exhaustive simulation of the pro-
gram. The idea is to write an “observer”, a 
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small reactive module, that is run in parallel 
with the controller to be tested. An observer 
is dedicated to a property; It emits a violation 
signal whenever the propriety is violated. 
The property holds if during the symbolic 
execution the violation signal is never emit-
ted. If this signal can be emitted, the model-
checker generates a sequence leading to 
the violating situation. This sequence is then 
replayed with the interactive simulator. 

Synchronous languages are textual, but 
they also have graphical interfaces. Lustre 
and Signal allow control-block diagram de-
scriptions. Esterel has now a graphical nota-
tion, known as SyncCharts [1]. 

4.7. Labs 

For labs, students use 2 synchronous 
languages: Lustre and Esterel. 

 
Lustre adopts a declarative style, con-

venient for data-flow processing. A Lustre 
program is a network of operators driven by 
data-flow. The behavior of a node (i.e., a 
user-defined operator) is defined by equa-
tions. This is similar to using recurrence 
equations, but with additional facilities. 

 
Esterel is an imperative synchronous 

language, dedicated to control-dominated 
discrete systems. Esterel statements are 
very convenient for expressing reactions 
triggered by event occurrences.  

 
Students use also synchronous graphical 

models in their design. Sequential Function 
Charts (Grafcet) are widely-spread in indus-
trial applications, but they have limited pro-
gramming capabilities, and semantic weak-
ness.  Statecharts [8] are more interesting. 
They are a state-based representation of 
behavior supporting sequencing, concur-
rency and hierarchy.  Students have to be 
familiar with this model that tends to become 
a standard, through the UML. Finally, stu-
dents use SyncCharts, the Esterel graphical 
companion model. This model is similar to 
statecharts but with additional capabilities 

and a full semantic compatibility with the 
Esterel language, so that all methods and 
tools available in the Esterel environment, 
apply to SyncCharts, as well. 

 
In order to test their controllers, students 

use a series of software simulators we have 
developed [2]. A controller, not necessarily 
written in a synchronous language, is con-
nected to the software simulator via a 
socket. Simulators cover various applica-
tions: electronic interfaces, washing ma-
chine …, (simplified) flexible manufacturing 
system. Of course, these animations are 
good for checking interactive behaviors, not 
for hard real-time constraints.  

 
5. Borrowing from Software Engi-
neering 

 
For long, Embedded System program-

ming had not benefited from the best prac-
tices of software engineering. Many applica-
tions had been written in assembling lan-
guages. Most of today’s implementations 
are still C programs, calling services of 
some real-time operating system. Fortu-
nately, object-oriented modeling is now en-
tering the world of embedded and real-time 
system (see, for example, “Doing Hard 
Time” of B.P Douglass [6]).  

Even if we are reluctant to adopt an ob-
ject-oriented language for E.E. students2, we 
believe that the Unified Modeling Language 
(UML) is worth being introduced. The UML 
is general enough to be used even though 
the implementation language is not an ob-
ject-based language. UML is about model-
ing, not about programming. Recently, the 
Object Management Group (OMG) has 
shown its interest in Embedded and Real-
Time systems by issuing a “Request For 
Proposal” related to real-time systems [11]. 

                                            
2 We are not at all opposed to OO Languages, 

but we think that in an E.E. curriculum, we do not 
have enough time to teach an O.O language in a 
correct and efficient way. 
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We use some of the various points of 
view offered by the UML. We especially fo-
cus on: 
• Use case modeling (functional view), 
• Dynamic modeling (statecharts, scenar-

ios), 
• Object and Class modeling (static struc-

ture), 
• Collaboration, 
• Deployment. 

 
Since controllers are our main concern, 

“active objects” (i.e., objects having inde-
pendent processing resources) are espe-
cially interesting. The present UML definition 
of an active object is not sufficiently precise. 
Forthcoming real-time UML profiles should 
make this concept more consistent. For the 
time being, components (be it hardware or 
software) such as those used in some Ar-
chitectural Description Languages may be 
candidate to cope with the complexity of 
modern control applications. After all, archi-
tecture and components are concepts fa-
miliar to E.E. students. 

 
5. Conclusion 

 
In this paper, we have presented our ex-

perience teaching discrete-event reactive 
systems to Electrical Engineering students. 

The course still contains fundamentals 
on logic circuits, binary algebra, finite state 
machines, Petri nets, … 

With the emergence of more and more 
complex systems, including Embedded and 
Real-Time applications, our teaching has 
evolved from circuits to programs. 

General-Purpose languages are not well-
adapted to control-dominated system pro-
gramming. To overcome this inadequacy, 
we have chosen to introduce synchronous 
languages and formalisms in our Electrical 
Engineering course. We have presented the 
rational for this choice. Briefly, it appears 
that these specialized languages are ex-
pressive, efficient, and easier to learn than 

general-purpose languages for E.E. stu-
dents. 

Besides these new programming lan-
guages, we have also introduced the Unified 
Modeling Language. The UML contains 
several  concepts useful to deal with com-
plex applications and tends to become a 
standard, even in Embedded and Real-Time 
systems. 
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