
A Synchronous Approach to Reactive System Design1

Charles André
I3S Laboratory – UNSA/CNRS

BP 121, F-06903 Sophia Antipolis cédex
T.(33) 492 942 740; F.(33) 492 942 896; E. andre@unice.fr.

1 This paper was presented at the 12th EAEEIE Annual Conf., 14-16 May 2001, Nancy (France).

Abstract

Reactive systems are systems that

maintain permanent interactions with their
environment. In this paper, we present our
experience teaching discrete-event reactive
systems to Electrical Engineering students.
The course ranges from logic circuits to
software components, and covers models,
analysis, design of various systems (from
logical systems to embedded systems).
Since our students are not especially
proficient in software engineering, we have
preferred synchronous languages to general
purpose languages for reactive system pro-
gramming. In the paper, we discuss the ra-
tionale for choosing the synchronous para-
digm.

1. Introduction

Embedded computer systems are more

and more present in everyday life. Many of
them perform control or monitoring, often
under severe constraints, and their failure
may have dramatic consequences. Another
feature of these systems is their increasing
complexity.

Students in Electrical Engineering must
be taught how to model, design, implement,
and test such systems. This paper presents
our educational experience in this field, and
a solution we propose to cope with realistic,
and therefore often complex, modern reac-

tive systems. We restrict our teaching to
control-dominated systems, that is discrete-
event systems with little data processing, but
with complex behavior. Of course, there ex-
ist other controllers involving heavy real-time
data processing like telecommunication or
image processing applications. They are
beyond the scope of our teaching. In what
follows, a “controller” will refer to a control-
dominated system.

Since controllers must react to all stimuli

in a predictable and timely way, their analy-
sis and their design must be rigorous and
based on well-founded methods. So, our
teaching has to address the following points:
• Demand for precise and powerful mod-

els. The models should capture both se-
quential and concurrent evolutions. To
cope with complex systems, they should
support hierarchical descriptions. More-
over, since “exception” is often the rule in
reactive systems, they should offer facili-
ties for exception handling specification.

• Mathematical foundation that makes it
possible to formally analyze the models
and guarantee critical properties.

• Efficient and safe techniques for imple-
mentation.

• Reusability (notions of components and
architecture).

The paper is organized as follows: We

first set forth our educational objectives. We

12th EAEEIE conference, Nancy, 2001 2

then give the outline of our course. The
fourth section presents the rationale for in-
troducing synchronous languages. Finally,
we mention what software engineering and
especially the UML can bring to our teach-
ing.

2. Educational objectives

Through the teaching of reactive sys-

tems, we aim at three goals for students: 1)
to enrich their theoretical background, 2) to
bring out new skills, 3) to open them to inno-
vation.

Theoretical background

We teach fundamentals like Boolean
Algebra, Finite State Machines, Concur-
rency (Petri nets), …

Skills

We encourage students to experiment
with labs, in order to develop their skill in
design, programming, and testing.

Innovations

Innovations are introductions to new
concepts and methods, beyond the classical
knowledge in E.E.: synchrony, modern de-
sign, objects, model-checking.

3. Contents of the course

The course starts with logical circuits and
evolves to software solutions. Below, we
mention the main chapters and their con-
tents.

3.1. Classical design

We first study the logical design of com-
binational and sequential circuits. Expected
behaviors are expressed either by state
graphs or by Boolean recurrence equations.

We then tackle complex synchronous
systems. Instead of a state-based model, we
adopt an activity-oriented specification of the
behavior. The system is seen has a se-

quencer (control part) that controls func-
tional units (operative part).

Finally, we consider programmable con-
trollers (PLCs, DSPs, micro-controllers, mi-
croprocessors). They generalize the previ-
ous class, making programming a central
activity.

3.2. From circuits to programs

Thus, due to the increasing complexity of
the systems to be controlled, and the tech-
nological evolution, we observe a shift in
models, methods, and techniques. Electrical
Engineering students of today might think
that designing a controller is only a special
application of programming, and that logic
design is outdated.

Clearly, modern design, including soft-
ware/hardware co-design, heavily relies on
software environments. Unfortunately, most
Electrical Engineering students lack the
knowledge and the skills in software engi-
neering that are now necessary.

To address these deficiencies, we have
introduced the synchronous languages. The
rationale for this choice is developed in the
next section.

4. Rationale for teaching the syn-
chronous approach

Synchronous languages [7] are dedi-

cated to control, they are specialized lan-
guages. This section analyzes why we have
preferred these languages to general pur-
pose languages (GPL).

4.1. Simple languages

Being dedicated to specific applications,
specialized languages are usually simpler
than GPLs. A synchronous language has a
restricted set of constructs and operations.
For instance, Lustre [5], a declarative syn-
chronous language, has only 4 specific
primitive operators dealing with flows. The

12th EAEEIE conference, Nancy, 2001 3

syntax of the Esterel language [4] can be
kept in one A4 sheet of paper.

Another cause of simplicity is that syn-
chronous languages deal with static struc-
tures and control: there is neither dynamic
allocation, nor arbitrary recursion.

4.2. Languages tailored to control

Patching a classical language with miss-
ing constructs leads to unsatisfactory solu-
tions (e.g., dealing with concurrency, com-
munication and synchronization in C pro-
grams, with the help of a RTOS). Esterel
has a sequence and a parallel operator, and
special constructs for pre-emption. Key
words like await or abort … when … are
well-suited to express event-driven behav-
iors. Declarative languages like Signal [10]
and Lustre offer facilities for sampling, over-
sampling, down-sampling.

4.3. Execution: Reactions

The way a synchronous program reacts is
familiar to E.E. students because it is close
to the clocked sequential circuit running
mode. A synchronous program is executed
as a sequence of reactions. Each reaction is
associated with an instant. A reaction is
atomic: it runs to its completion, and the in-
coming information is kept invariant during
the whole reaction (one instant). Moreover,
a reaction is usually “fast”, more precisely,
sufficiently fast with respect to the time con-
stants of the system to be controlled. This is
an essential assumption to use synchronous
controllers (be it hardware or software) in
real-time control.

Note that, contrary to E.E. students, Soft-
ware Engineering students are often dis-
turbed by this mode of execution.

4.4. Mathematical semantics

Synchronous languages rely on
mathematical semantics: the semantics can
be “computed”. Underlying models are sim-
ple and powerful mathematic models: finite

state machines, systems of Boolean equa-
tions, recurrence equations …, all concepts
studied in classical E.E. courses.

The semantics of the Esterel language is
an especially interesting example. Each
Esterel construct can be translated into an
equivalent “circuit” representation. A circuit
is composed of gates, registers, and wires.
What an Esterel program does is easily in-
terpreted in terms of what the associated
circuit does. For details, refer to papers of G.
Berry on the semantics of the language ([3],
for instance). Subtle issues, like causality
cycles, are closely related to propagation
delays and electrical stability of circuits.
These arguments are, by far, more easily
understood by E.E. students than rewriting
rules and fix-point theory.

4.5. Formal verification

Thanks to their formal foundation, syn-
chronous programs can be formally ana-
lysed. This gives us a great opportunity to
introduce or to revisit reachability, safety,
liveness … properties and the associated
analysis methods.

4.6. Software development environ-
ment

There exist software environments free
of charge for educational uses [9]. Besides
compilers, a synchronous platform provides
simulation facilities and verification tools.

A synchronous program has a fully de-
terministic behavior. As a consequence, bug
finding and testing are easier with synchro-
nous programs than with classical asyn-
chronous programs. The interactive simula-
tion allows the student to test typical sce-
narios with source code debugging. This is
an invaluable tool for understanding concur-
rent evolutions, instantaneous communica-
tion, and exception handling. Reachability
and safety properties are established by
(symbolic) model checking: a model-checker
makes an exhaustive simulation of the pro-
gram. The idea is to write an “observer”, a

12th EAEEIE conference, Nancy, 2001 4

small reactive module, that is run in parallel
with the controller to be tested. An observer
is dedicated to a property; It emits a violation
signal whenever the propriety is violated.
The property holds if during the symbolic
execution the violation signal is never emit-
ted. If this signal can be emitted, the model-
checker generates a sequence leading to
the violating situation. This sequence is then
replayed with the interactive simulator.

Synchronous languages are textual, but
they also have graphical interfaces. Lustre
and Signal allow control-block diagram de-
scriptions. Esterel has now a graphical nota-
tion, known as SyncCharts [1].

4.7. Labs

For labs, students use 2 synchronous
languages: Lustre and Esterel.

Lustre adopts a declarative style, con-

venient for data-flow processing. A Lustre
program is a network of operators driven by
data-flow. The behavior of a node (i.e., a
user-defined operator) is defined by equa-
tions. This is similar to using recurrence
equations, but with additional facilities.

Esterel is an imperative synchronous

language, dedicated to control-dominated
discrete systems. Esterel statements are
very convenient for expressing reactions
triggered by event occurrences.

Students use also synchronous graphical

models in their design. Sequential Function
Charts (Grafcet) are widely-spread in indus-
trial applications, but they have limited pro-
gramming capabilities, and semantic weak-
ness. Statecharts [8] are more interesting.
They are a state-based representation of
behavior supporting sequencing, concur-
rency and hierarchy. Students have to be
familiar with this model that tends to become
a standard, through the UML. Finally, stu-
dents use SyncCharts, the Esterel graphical
companion model. This model is similar to
statecharts but with additional capabilities

and a full semantic compatibility with the
Esterel language, so that all methods and
tools available in the Esterel environment,
apply to SyncCharts, as well.

In order to test their controllers, students

use a series of software simulators we have
developed [2]. A controller, not necessarily
written in a synchronous language, is con-
nected to the software simulator via a
socket. Simulators cover various applica-
tions: electronic interfaces, washing ma-
chine …, (simplified) flexible manufacturing
system. Of course, these animations are
good for checking interactive behaviors, not
for hard real-time constraints.

5. Borrowing from Software Engi-
neering

For long, Embedded System program-

ming had not benefited from the best prac-
tices of software engineering. Many applica-
tions had been written in assembling lan-
guages. Most of today’s implementations
are still C programs, calling services of
some real-time operating system. Fortu-
nately, object-oriented modeling is now en-
tering the world of embedded and real-time
system (see, for example, “Doing Hard
Time” of B.P Douglass [6]).

Even if we are reluctant to adopt an ob-
ject-oriented language for E.E. students2, we
believe that the Unified Modeling Language
(UML) is worth being introduced. The UML
is general enough to be used even though
the implementation language is not an ob-
ject-based language. UML is about model-
ing, not about programming. Recently, the
Object Management Group (OMG) has
shown its interest in Embedded and Real-
Time systems by issuing a “Request For
Proposal” related to real-time systems [11].

2 We are not at all opposed to OO Languages,

but we think that in an E.E. curriculum, we do not
have enough time to teach an O.O language in a
correct and efficient way.

12th EAEEIE conference, Nancy, 2001 5

We use some of the various points of
view offered by the UML. We especially fo-
cus on:
• Use case modeling (functional view),
• Dynamic modeling (statecharts, scenar-

ios),
• Object and Class modeling (static struc-

ture),
• Collaboration,
• Deployment.

Since controllers are our main concern,

“active objects” (i.e., objects having inde-
pendent processing resources) are espe-
cially interesting. The present UML definition
of an active object is not sufficiently precise.
Forthcoming real-time UML profiles should
make this concept more consistent. For the
time being, components (be it hardware or
software) such as those used in some Ar-
chitectural Description Languages may be
candidate to cope with the complexity of
modern control applications. After all, archi-
tecture and components are concepts fa-
miliar to E.E. students.

5. Conclusion

In this paper, we have presented our ex-

perience teaching discrete-event reactive
systems to Electrical Engineering students.

The course still contains fundamentals
on logic circuits, binary algebra, finite state
machines, Petri nets, …

With the emergence of more and more
complex systems, including Embedded and
Real-Time applications, our teaching has
evolved from circuits to programs.

General-Purpose languages are not well-
adapted to control-dominated system pro-
gramming. To overcome this inadequacy,
we have chosen to introduce synchronous
languages and formalisms in our Electrical
Engineering course. We have presented the
rational for this choice. Briefly, it appears
that these specialized languages are ex-
pressive, efficient, and easier to learn than

general-purpose languages for E.E. stu-
dents.

Besides these new programming lan-
guages, we have also introduced the Unified
Modeling Language. The UML contains
several concepts useful to deal with com-
plex applications and tends to become a
standard, even in Embedded and Real-Time
systems.

References
[1] C. André, "Representation and Analysis of Reac-
tive Behaviors: A Synchronous Approach”, IEEE-
SMC, Computational Engineering in Systems Appli-
cations (CESA), 1996, pp 19-29.

[2] C. André, M-A. Peraldi-Frati, D. Gaffé, "Plate-
forme pour l’étude et la conception de systèmes au-
tomatisés", Communication dans les Enseigne-ments
d’ingénieurs et dans l’industrie (TICE’2000), 18-20
Octobre, 2000, Troyes (F), pp 121-126.

[3] G. Berry, “The Foundations of Esterel”, in “Proof,
Language, and Interaction: Essay in Honor of Robin
Milner”, Editors: G Plotkin, C. Stirling, and M. Tofte,
MIT Press, 2000.

[4] F. Boussinot, R. De Simone, " The Esterel Lan-
guage”, Proceeding of the IEEE, 79(9), 1991, pp
1293-1304.

[5] P. Caspi, N. Halbwachs; D. Pilaud, P. Raymond,
"The Synchronous Data Flow Programming Lan-
guage Lustre”, Proceeding of the IEEE, 79(9), 1991,
pp 1305-1320.

[6] B.P Douglass, “Doing Hard Time: Developing
Real-Time Systems with UML, Objects, Frameworks,
and Patterns”, Addison-Wesley, 1999.

[7] N. Halbwachs, “Synchronous Programming of
Reactive Systems”, Kluwer Academic Publishers,
Amsterdam, 1993.

[8] D. Harel, "Statecharts: A visual formalism for
complex systems”, Science of computer program-
ming, 8, 1987, pp 231-274.

[9] http://www.esterel.org

[10] P. Le Guernic, T. Gautier, M. Le Borgne, C. Le
Maire, “Programming Real-Time Applications with
Signal”, Proceeding of the IEEE, 79(9), 1991, pp
1321-1336.

[11] OMG, “UML profile for Scheduling Performance
and Time. Request for proposal (ADTF RFP-9)”,
OMG document number : ad/99-03-13, April 1999.

