
Representation and Analysis of Reactive Behaviors:

A Synchronous Approach

Charles ANDR�E
Laboratoire Informatique, Signaux, Syst�emes (I3S)

Universit�e de Nice-Sophia Antipolis / CNRS
41, bd Napol�eon III | F { 06041 Nice Cedex

e-mail: andre@unice.fr

ABSTRACT

Reactive systems involve communication, concur-
rency and preemption. Few models support these
three concepts, even less can correctly deal with their
coexistence. The synchronous paradigm allows a
rigourous approach to this problem, crucial to reac-
tive systems.
This paper analyzes the underlying hypotheses of

the synchronous approach. Reactive behaviors are
characterized. A new visual model (SyncCharts)
is then proposed. This graphical model is fully com-
patible with the imperative synchronous language Es-
terel and is specially convenient to express complex
reactive behaviors.

1 INTRODUCTION

A reactive system maintains permanent interactions
with its environment. Usually, reactive systems are
concurrent systems. Their global behavior results from
the cooperation of their components (subsystems). In
order to carry out an expected behavior, the evolu-
tions of subsystems must be coordinated. Communi-
cation (information exchange) plays a central role in
this coordination, and consequently, reactive systems
are often viewed as communicating processes. This ap-
proach relegates preemption to a position of secondary
importance, which is prejudicial to many reactive ap-
plications. Real-time operating systems, interrupt-
driven systems, and more generally, control-oriented
systems heavily rely on preemption. The speci�cation
of such systems needs preemption as a �rst class con-
cept; their programming requires preemption primi-
tives. Few models can deal with preemption. Lan-
guages that support preemption, to some extent, do
not o�er primitives tailored to reactive applications.
A reason for this lack, is that most semantics dealing
with both concurrency and preemption are complex or
vague.
Since often involved in safety critical applications,

reactive systems should be predictable. The most crit-
ical parts must be reactive (i.e., they can always re-

act to stimuli) and deterministic (the reaction must
be unique). To ensure reactivity and determinism in
the presence of communication, concurrency and pre-
emption is the challenging problem addressed by the
synchronous approach [1, 2]. The \perfect synchrony
hypothesis" assumes on the one hand that cause (stim-
uli) and e�ect (reaction) are simultaneous, and on the
other hand that information is instantaneously broad-
cast. These assumptions lead to an abstract view of
temporal behaviors, in which communication, concur-
rency and preemption can be considered as orthogonal
concepts. Within the framework of synchronous pro-
gramming, clear mathematical semantics can be given
to several forms of preemption. This point of view is
advocated in a G. Berry's paper entitled \Preemption
in Concurrent Systems" [3].

Engineers in the �eld of control and manufacturing
systems are somewhat reluctant to synchronous lan-
guages. As a rule, they prefer graphical approaches.
The Grafcet [4] (Sequential Function Charts) is
widely used for industrial logic control. State-

Charts [5], a hierarchical visual model which is part
of the Statemate environment, allows design of com-
plex reactive systems and it takes advantages from its
industrial support. StateCharts are convenient but,
as stated in a review of the various extensions of Stat-
eCharts [6], their semantics has to be clari�ed. Ar-
gos [7] is another synchronous and graphical model.
It is based on a clear semantics, but it has not been
widely distributed.

In a previous paper [8] we have presented some po-
tential applications of the synchronous languages to
industrial process control. The aims of the present
contribution are twofold:

� First, we shall have a closer look at the basis of
the synchronous approach,

� Second, we shall introduce SyncCharts (an
acronym for Synchronous Charts) which inherit
from StateCharts and Argos.

TR 96{28 2

Plan

The paper is organized as follows:

� In a �rst part, we propose an example of reactive
system: A Cruising Speed Controller.

� We then study the underlying hypotheses of the
synchronous approach. We characterize reactive
behaviors. The causality problem induced by the
synchronous approach is also analyzed.

� The third part is devoted to an informal presen-
tation of SyncCharts.

� The last part deals with the semantics of this new
model.

2 A REACTIVE SYSTEM

A Cruising Speed Controller is an instance of a
control-dominated reactive and real-time system. We
propose a simpli�ed version that will be used through-
out this paper for illustrative purpose. We adopt
\Cruise Controller" as a short form of \Cruising Speed
Controller".

2.1 The Cruise Control

Fig.1 is a blackbox view of the controller. The
driver, the engine, the car, the road, . . . compose the
environment in which this controller is embedded.

TVC:
integer

RC

BPP

APP

SET

OFF

RES

SPD:
integer

ACC:
integer

CSC

Figure 1: The Cruise Controller: Blackbox

Interface

List of sensors:

RC : Regulation Clock
BPP: Brake Pedal Pressed
APP: Accelerator Pedal Pressed
SET: SET button
OFF: OFF button
RES: RESume button
SPD: actual SPeeD
ACC: ACCelerator pedal position

Actuator: TVC: Throttle Valve Command
SPD, ACC, TVC convey integer values.

Expected Behavior

When the Cruise Control is \o�", the throttle valve
is controlled by the accelerator pedal through a func-
tion A : integer�!integer, where the argument is the
accelerator pedal position and the result is the throttle
valve command. When the Cruise Control is opera-
tional, the throttle is controlled either by the acceler-
ator pedal through A or by the regulator through the
function R : integer � integer�!integer, where the
two arguments are the actual speed and the desired
speed.

The Cruise Control is switched on by pressing the
SET button. The value of the current speed is assigned
to the reference speed variable. It is switchted o� by
pressing the OFF button.

When the Cruise Control is operational:

� applying the brakes suspends the speed regulation
which can be re-activated by pressing the RES but-
ton.

� each acceleration (APP = 1) suspends the speed
regulation which is automatically re-activated
when the accelerator pedal is released.

� at any time, the reference speed can be set to the
current speed by pressing the SET button.

Of course, this informal speci�cation does not con-
stitute a complete speci�cation.

2.2 Reactive System Modeling

Even if the Cruise Controller is ultimately to be im-
plemented on a single processor, it is convenient to
describe it as a set of cooperating processes.

From this example, we draw the main needs for re-
active system modeling.

Hierarchy

Obviously, there are two functioning modes:

� The Throttle control when the Cruise Control is
not operational,

� The Throttle control when the Cruise Control is
operational.

The latter can be further decomposed into the
\Brake Watching" and the \CSC Active" processes. In
turn, \CSC Active" can be re�ned into sub-processes.

TR 96{28 3

Communication

Communication with the environment is performed
with the help of the sensors (incoming information)
and the actuators (outgoing information). Commu-
nication between processes is also necessary, e.g., the
Brake Watching process must inform the CSC Active
process that the brake pedal has been pressed.

Concurrency

The two processes Brake Watching and CSC Active
perform almost independently: they are concurrent.

Preemption

Coordination is most important for reactive systems.
Processes may coordinate with each other by informa-
tion exchange (communication, synchronization). Pre-
emption is another way to ensure coordination. \Pro-
cess preemption . . . consists in denying the right to
work to a process, either permanently (abortion) or
temporarily (suspension)" (G. Berry [3]).
In our controller, the CSC Active process is sus-

pended by action on the brake. As for abortion, it is
applied when switching from a mode to the other.

A model for reactive system must support hierarchy,
communication, concurrency and preemption. More-
over, the behavior must be reactive and deterministic.
Combining communication, concurrency and preemp-
tion in a deterministic way is challenging. The syn-
chronous approach, studied below, proposes a solution
to this issue.

3 THE SYNCHRONOUS
PARADIGM

3.1 Hypotheses

The synchronous approach adopts an abstract, in-
deed even ideal, view of real systems. In this section,
we have a closer look at the hypotheses underlying the
synchronous approach. Esterel is the oldest syn-
chronous language. Quoting N. Halbwachs [2] it is
\the best language to highlight the speci�city of the
synchronous approach". In what follows, we liberally
borrow from Esterel.

Signals

Interactions between a reactive system and its envi-
ronment take on the most varied forms [9]: sensors or
actuators, discrete or continuous information, collec-
tion by polling or by interruption,
A �rst simpli�cation is to consider a unique way of

exchanging information. A reactive system and its en-
vironment maintain permanent interactions by means

of signals: the system receives input signals and emits
output signals.
A signal conveys two pieces of information: its pres-

ence status (a signal is either present or absent) and
its values of a given type (e.g., TVC is an output signal,
its value is an integer).
The presence status is transient (pulsed), whereas

the value is persistent. The value of a signal may
change only when the signal is present. Pure signals
and sensors are special cases. A pure signal has no
value, it is used to signal that some condition has
become true (e.g., APP is a pure signal whose pres-
ence indicates that the accelerator pedal has just been
pressed). A sensor has no presence status; it is set
by the environment, the reactive system can only read
the value of a sensor (e.g., SPD is a sensor bearing an
integer value imposed by physical laws).

Global Perception

Inputs to a reactive system are numerous and may
change sporadically. The synchronous approach as-
sumes that all input signals can be perceived simul-
taneously and that this perception is objective. The
same assumption is made for output signals. So, the
synchronous model deals with tuples of signals. We
call this hypothesis \the perfect sampling hypothesis".

The Logical Time

A reactive system is idle most of the time, excepted
when prompted by a stimulus to which it must react
instantly.
The synchronous approach to reactive system con-

siders that the system is kept aware of \time passing"
by the ow of inputs, more precisely, by the pulsed
presence status of input signals. So, the synchronous
model does not rely on the physical time, it uses a log-
ical time instead. This allows to capture the notion of
multiform time: any input signal may be taken as a
time reference, be it linked to a physical clock or to
any other physical phenomenon.
The model proceeds in successive reactions, one at

each logical instant. At each instant, the reaction is
computed using the current (tuple of) input signals
(and some internal information).

The Zero-Delay Hypothesis

A drastic simpli�cation is braught by the Zero-Delay
hypothesis: Internal operations are supposed to be
done in zero-delay with respect to all external time
units. A consequence is that the outputs are syn-
chronous with the inputs that cause them.

Broadcasting

Up to now signals are involved in communication be-
tween the reactive system and its environment. Local
signals can be used as well. They allow communication

TR 96{28 4

among subsystems: they are hidden from the external
observation but they participate to the behavior of the
system.
The synchronous approach assumes that signals are

instantaneously broadcast. A consequence is that all
the signals (including the output signals) have to be
taken into account in order to determine the output
signals to be emitted. This may induce surprising be-
haviors (see Section 3.3).

Summary of the Synchronous Hypotheses

Synchronous Hypotheses
1-Signal (support of communication)
2-Perfect sampling (tuples of signals)
3-Logical time (instant)
4-Zero-delay (instantaneous internal operations)
5-Instantaneous broadcasting

These hypotheses, even if not stated in the same
terms, are shared with other models. Abstract Ma-
chines are one of them, especially combinational and
sequential machines which are not restricted to binary
variables (e.g., see J. Zahnd's book, entitled \Machines
s�equentielles" [10]). In Sec.3.3, we shall use Mealy ma-
chines to express the behavior of some Esterel pro-
grams.

3.2 Reactive Behaviors

In Sec.2.2, we saw that communication, concurrency
and preemption were three major concepts in reactive
systems. According to G. Berry [3], they have to be
orthogonal. Esterel reects this choice and so will
do SyncCharts (Sec.4).

Only the presence of a signal may trigger a reaction,
so, presence and absence of signals play a central role
in reactive behaviors. In what follows we restrict our
attention to reactive systems with pure signals only.
This entails no loss of reactive properties and makes
explainations easier. Pure Esterel is a \kernel" Es-
terel with pure signals only.
In this part, we recall how the Pure Esterel lan-

guage expresses these concepts; its primitives are given
enclosed in []. Preemption which is typical of reactive
behaviors deserves a special attention.

Communication

Communication is done by signal broadcasting. Re-
call that a signal must be either present or absent at
an instant. A signal must be declared as an input sig-
nal [input Ident], an output signal [output Ident], or
a local signal with a scope [signal Ident in stat end].
An output or local signal can be emitted by a reac-

tion [emit Ident]. Any signal can be tested. [present
Ident then stat1 else stat2 end]. The emission and
the test of a signal take no time.

Concurrency and other control structures

Two processes may execute in an orderly way, in-
dependently or exclusively. Esterel, as an impera-
tive language, provides control structures for the se-
quence [stat1 ; stat2], the conditional [present Ident
then stat1 else stat2 end], and the in�nite iteration
[loop stat end]. The parallel execution is also sup-
ported [stat1 || stat2]. For all structures, the control
passing management takes no time, in accordance with
the Zero-Delay hypothesis. For instance, for \stat1 ;
stat2", at the very instant when stat1 terminates, stat2
begins its execution. Note that parallel statements
start at the same instant, and the parallel terminates
when both components terminate.

Preemption

Preemption either kills the process or suspends it
temporarily. Suspension is forced as long as a given
signal is present [suspend stat when Ident]. Abortion
has two forms: a weak and a strong one. The strong
abortion kills the process as soon as a given signal is
present; the killed process is not even allowed to ex-
ecute its \last wishes" when the abortion occurs [do
stat watching Ident]. The weak abortion di�ers from
the previous one in the fact that the killed process ex-
ecutes its reaction at the current instant, before get-
ting killed. There is no dedicated primitive for the
weak abortion in the current version of the Esterel
language. Instead, one has to use an escape mecha-
nism [exit Ident] and concurrency within a trap [trap
. . .in . . .end].

A preemption is always triggered by the presence of
a signal. The default option is to wait for the �rst
strict future instant when the signal becomes present.
Immediate preemption takes account of the possible
presence of the triggering signal at the current instant
[immediate Ident].

There exists a special process that does nothing for
ever [halt]. Of course, this process takes time! Wait-
ing for the next future presence of a signal [await
Ident] is nothing else that preempting the halt pro-
cess by this signal [do halt watching Ident].

3.3 Causality

Reactive Systems and Circuits

Given an Esterel program, it is possible to derive
a circuit which exhibits the same input/output behav-
ior [11]. And besides, the Esterel's compiler version
4 relies on this fact [12]. Other synchronous languages
like Lustre, have straight translation into hardware
implementation (see [13] for Boolean Lustre).

Fig.2 represents a circuit associated with the follow-
ing Esterel program:

TR 96{28 5

0

a

b

d

c

γ2γ1

Logical
Time await a

present b then
emit c

else
emit d

end present

;

Figure 2: Circuit Representation

module example:

input a, b;

output c, d;

await a;

present b then emit c else emit d end

end module

A `1' (a `0') on a wire is interpreted as the pres-
ence (the absence) of the associated signal. Zero-Delay
statements are represented by combinational circuits
(e.g., the rightmost sub-circuit stands for the present
. . . end statement). Waiting for a signal presence in-
volves registers, i.e., sequential circuits. The two reg-
isters are initially reset. Note that the succession of
instants is imposed by a control line, external to the
program.
Statements with concurrency and preemption imply

more complex circuits, but they are still made of gates
and registers.

Paradoxal Behaviors

M2

M1

M1X1 Z1 X2 Z2M2

X’1

X’2

X1

X2

X Z

Figure 3: Circuit with loops

Since signals are instantaneously broadcast they
may cause \feedback" wires in circuits. Let M1 and
M2 be two circuits associated with two reactive mod-
ules m1 and m2. If we compose m1 and m2 in par-
allel and if they have common signals, then we get
a circuit with loops (Fig.3). An input connected to
an output cannot be driven by the environment any

longer. Therefore, the new set of inputs X is a sub-
set of X1 [X2, whereas Z = Z1 [Z2. The leftmost
sub-circuit is an interconnection network.
Assume thatM1 andM2 are (deterministic) combi-

national circuits de�ned by the Boolean functions F1

and F2. Connections are expressed by two Boolean
functions C1 and C2. The new input to M1 (M2) is
X1

0 = C1(X;Z1; Z2) (X2
0 = C2(X;Z1; Z2), respec-

tively); thus:

Z1 = F1(X1
0) = F1 �C1(X;Z1; Z2)

Z2 = F2(X2
0) = F2 �C2(X;Z1; Z2)

i.e, Z = F (X;Z). For an input x, the output z must
be a solution of z =M (x; z), i.e., z must be a �xpoint
of �y:F (x; y). Because F is not always monotonic,
there may be zero, one or several minimal solutions.
A more formal presentation of this statement, includ-
ing sequential circuits, can be found in [14]. This is
not a new result: It is known that interconnections of
combinational circuits may lead to non combinational
circuits [10].
We use this result to introduce \causality cycles".

b

c

a

γ

(A)

c

(a)

γ

(B)
γ

(b)
c

(a)

(C)

Figure 4: Causality cycles

Circuit Fig.4.A corresponds to the Esterel state-
ment: present a then emit c else emit b end. is
a control line. Obviously, b = :a and c = :a
Consider now, the statement:

signal a in

present a then emit c else emit a end

end signal

The associated circuit (Fig.4.B) is cyclic. a is hid-
den from the outside (local signal). We have a system
of two equations: a = :a and c = :a. If = 0 then,
a = c = 0 is a solution. If = 1 then there is no solu-
tion since a should be equal to a. The program is not
reactive, and by the way, rejected by the Esterel's
compiler.
Fig.4.C is the translation of the following program:

signal a, b in

present a then emit b else emit c end

||

present b then emit a end

end signal

TR 96{28 6

It is easy to see that this circuit is non deterministic.
There exist two di�erent solutions when = 1: either
a = b = 0 and c = 1, or a = b = 1 and c = 0. I.e., the
program may emit c or not. This non deterministic
behavior is also rejected by the compiler.

Non determinism and/or non reactivity due to feed-
back loops are often referred to as \causality cycles"
because an e�ect (an output) may a�ect its cause
(an input). We have found the same problems in
another synchronous model: the Sequential Function
Charts [15]. Causality problems are somewhat dis-
concerting for programmers especially since some cor-
rect programs may be rejected by the compiler (For-
tunately, incorrect ones are always rejected).
Some avoid the problem by imposing restrictions:

e.g., the synchronous language SL [16] adds a delay
before any negative test (i.e., conditionned by the ab-
sence of a signal). Others adapt the semantics in or-
der to accept any syntaxically correct programs (see
the many semantics of StateCharts [6]). The forth-
coming version 5 of the Esterel's compiler is about
to bring a natural and practical solution to this prob-
lem [17].

4 SYNCCHARTS

SyncCharts1 are a new graphical model dedicated
to Reactive System Modeling. Many features are in-
herited from StateCharts. A special care is taken
in the representation of preemption.

4.1 A Simple Example

Fig.5 is a watchdog system. set activates the
Counter which counts up the occurrences of T from
0. If Counter reaches 5 then Alarm is emitted. At any
time, reset disables the counting or the alarm.
The example is used to illustrate the de�nitions of

SyncCharts components. References to this example
are given enclosed in [].

4.2 Elements of Syntax

Fig.6 gathers the graphical elements of SyncCha-
rts. SyncCharts are a state-based description of
reactive behaviors. They support states, hierarchy of
states, concurrency, transitions of several types and
even textual annotations. Roughly, a macrostate is
either an Esterel module or a parallel composition
of state-graphs. Each state graph is a collection of
one or several interconnected states, with initial, and
possibly, �nal states. In turn, a macrostate can be sub-
stituted for a state. Instead of this top-down approach
to SyncCharts, we adopt a bottom-up presentation
of the various components.

1A comprehensive presentation of this model (syntax and
semantics) is available as a technical report [18].

TT/c1
c1

c1/c2c2c2

c1, c2

Counter

Alarm

set

reset

isON

Watchdog

Figure 5: SyncCharts of a Watchdog

strong abortion

weak abortion

Ident

L

C1 Cn

(A) Firmament

1

2

3
normal termination

priority

@body

s/e

w/f

i

/h

trigger
effect

(B) Star

2

3

1

initial stars

final star

b

a/s1 /s2

c

c d

a

star1

star4

star2 star3

c/s0

(C) Constellation

1 2

local signals

name

constellations

suspension

Figure 6: SyncCharts: Elements of Syntax

Star (Fig.6.B)

The graphical basic block is the state. In fact, this
block is not only the expression of some local invari-
ant behavior (its body) but also a full description of the
ways to leave this state (preemptions). So, the basic
block is both a classical state and its outgoing arcs.
We would rather call it a star (with outgoing arcs seen
as beams). A star is drawn as a rounded rectangle
with its \beams". Arcs are numbered according to a
priority ordering (the less, the highest priority). The
weak abortion is expressed by a plain arrow (�!). The
normal termination, i.e., leaving the star because its
body terminates, is drawn as an arrow with a lead-
ing triangle (�!) [leaving Counter when the count is
reached]. The suspension is denoted by a special dan-
gling incoming arc with a circle head ((). The strong
abortion which is a combination of weak abortion and
suspension, is speci�ed by an hybrid arrow (�!) [leav-
ing isON triggered by reset]. A star with n outgoing
arcs (n beams) is said to be a n-star. There exists

TR 96{28 7

a special kind of star with no beam. It is a 0-star.
There is no way to leave a 0-star but by a higher level
abortion.

Constellation (Fig.6.C)

Stars are interconnected to make a constellation.
Fig.6.C shows an instance of a constellation with two
initial stars and one �nal star. There may be 0, 1
or several �nal stars. Final stars are distinguished by
double-line rounded rectangles. There must be at least
one initial star. Initial stars are identi�ed by a dan-
gling incoming arrow A constellation need not be a
connected graph. A constellation can be made of a
single 0-star which is implicitly an initial star.

Macrostate (Fig.6.A)

A parallel composition of constellations is a �rma-
ment or a macrostate. The components are delimited
by dashed lines. [Counter is composed of 3 constel-
lations]. There may be a single constellation in a
macrostate. In this case, dashed lines are omitted. A
macrostate may have local signals [c1 and c2 are lo-
cal to Counter]. A macrostate is drawn as a rounded
rectangle with a header in which the optional name is
written.

Note that a macrostate terminates when each of its
components is in a steady �nal star [For Counter when
the binary code is 101, i.e., 5].

4.3 Communication

Signals

Three sets of signals (the input set Ip, the out-
put set Op, the local set Lp) are associated with
each star, constellation, macrostate p [ICounter =
fTg;LCounter = fc1, c2g;OCounter = ;]. Of
course, signals may appear inEsterelmodules. They
are also present in labels (see Arc labeling) and in some
states (see Terminal stars).

Let SS be a set of signals. Signals may be combined
into compound signals, we use disjunction `+', con-
junction `�' and negation ` ' (Refer to [18] for details).

Terminal stars

In a Moore machine, outputs are associated with
states. In our synchronous approach we have to emit
these signals at each instant. Moore-like states are
special stars whose body is a simple process that emits
all the signals in S at each instant, where S � SS. For
convenience, we introduce a short hand notation: an
oval with the set of the signals to be emitted written
inside [Alarm].

Arc labeling

An arc is labeled by a pair composed of a compound
signal and a subset of signals. The �rst component is
the trigger, the second component is the e�ect. They
are separated by a \/". One or both components can
be omitted. Note that normal termination (�! arcs)
has not explicit trigger.

The label can be pre�xed by the symbol \#". In this
case, we use immediate preemption, instead of delayed
preemption which is the default option.

The signals in \e�ect" can be output or local sig-
nals. Local signals are often used for synchronization
[in Counter, c1 is emitted every other occurrence of
T. c1 triggers a preemption of the middle constellation
in Counter].

4.4 Speed Controller

Fig.7 is a SyncChart for the Cruise Controller. It is
self explanatory. We add only a few comments. The
constellation, in CSC Active, in charge of accelera-
tions, has two initial stars because, when activating
the automatic control, the accelerator pedal can be
either pressed, or not. The former is the normal situa-
tion. Note the conciseness of the expression of the pe-
riodic computation of the regulation algorithm (when
allowed to execute): It is a terminal star strongly
aborted and immediatly restarted at each occurrence
of RC (Regulation Clock). The body of the star is
the halt process. Each preemption triggered by RC,
causes the evaluation of R(?SPD,?REF) and the emis-
sion of the result conveyed by the signal TVC. Recall
that, in Esterel, the question mark applied to a sig-
nal, returns its current value.

Cruising Speed Controller

CSC Operational

Sleep

RES

CSC Active

Sleep
RC / TVC(R(?SPD,?REF))

/REF(?SPD)

#R_susp

APP
1

APP
2

APP

APP

R_susp

APP

Sleep

#BPP

R_susp, REF: integer

SET OFF
1

SET

2

Regulation

TVC(A(?ACC))

TVC(A(?ACC))

Figure 7: SyncCharts of the Cruise Controller

5 SEMANTICS OF SYNCCHARTS

In this section we introduce a process algebraic char-
acterization of reactive behaviors. This approach takes

TR 96{28 8

root in Robin Milner's works about \synchronous pro-
cess algebras" [19]. G. Berry has integrated the pre-
emption in the calculus [3]. We choose the terse alge-
braic presentation because it allows precise and con-
cise expression of complex behaviors. Note that, like
in Pure Esterel, we restrict SyncCharts to pure
signals.

5.1 Events and Processes

Let I be a set of (pure) input signals i1; i2; � � �, and
O a set of (pure) output signals o1; o2; � � � An input
event is a subset I of I and an output event is a
subset O of O. All the signals in an event are si-
multaneously present. The sequence of input events
I1; I2; � � � ; In; � � � at logical instants 1; 2; � � �; n; � � � is
called an input history. The sequence of output events
O1; O2; � � � ; On; � � � at the same instants is an output
history.
A synchronous model of sort fI;Og maps an input

history into an output history:

B : I��!O�

Let SS be a set of signals and ? be a distinguished
element of SS ; ? stands for a signal which is never
present (the never occurring signal).

De�nition 1 (Process) Let p; n; q be processes on
SS; s; t 2 SS, and s0 2 (SS � f?g). Then

1. 0 is a process on SS (null)

2. s0 is a process on SS (emission)

3. p j q is a process on SS (parallel)

4. p� is a process on SS (loop)

5. p n s0 is a process on SS (restriction)

6. p [t=s0] is a process on SS (renaming)

7. s�� p is a process on SS (suspension)

8. s% p � n; q is a process on SS (abortion)

The �rst process is useful to build derived construc-
tors. The next four constructors are classical imper-
ative constructors. The sixth constructor is usual in
process calculus. Note that ? cannot be renamed, but
any signal can be renamed into ?. The last two con-
structors are typically reactive.
With each process p, we associate three disjoint sub-

sets of SS : Ip;Op;Lp respectively called the input, the
output, the local sorts of p. See Annex.A for details.

De�nition 2 (Event) An event E is a subset of SS
without the never occurring signal: E � SS � f?g.
Given a process p on SS , I � Ip is an input event,
O � Op is an output event.

5.2 Semantics

The semantics is expressed by a behavioral seman-
tics. The behavior of a process is a deterministic map-
ping from input sequences to output sequences. A re-
action is interpreted as a process rewriting. Given a
process p and an input sequence I1; I2; � � � ; In; � � �, the
output sequence O1; O2; � � � ; On; � � � is computed as a
chain of individual reactions:

p = p1
I17�!
O1

p2
I27�!
O2

� � �pn
In7�!
On

pn+1 � � �

A transition pn
In7�!
On

pn+1 represents a single reac-

tion. The p
I
7�!
O

p0 relation is de�ned using an auxiliary

relation p
Ep; b

���!
E

p0 de�ned by structural induction over

p. E is the set of signals that p sees as being present,
Ep is the set of signals that p emits when receiving E,
and b is a Boolean (termination bit) such that b = tt

if p terminates and b = ff otherwise (p is said to wait).
The broadcasting invariant Ep � E must be main-

tained during all the derivations.
Given a process p, an input event I:

p
O
7�!
I

p0 i� p
O; b
���!
I[O

p0 for some b

Rewriting rules associated with the basic processes
are given in Annex.B.

Remark: Our set of operators is not minimal. For
instance, \0" could have been de�ned as \(sns)". How-
ever, taking 0 as a primitive is simpler than deriving
it from the somewhat complex restriction.

5.3 Derived Constructors

For convenience and for compatibility with Es-

terel, new constructors are derived from the previous
ones:

Derived Imperative Constructors

1 (pause)
p; q (sequence)
s?p; q (conditional)

They can be de�ned as:

1 � (s j (s�� 0)) n s

p; q � ?% p � q; 0

s?p; q � s% (s�� 0) � q; p

1 waits for the next instant. p; q executes p and then
q, in sequence. The conditional s?p; q executes either
p or q according to the presence or the absence of s.

TR 96{28 9

Derived Reactive Constructors

They stand for speci�c preemptions.

p : s�> q � s% p � 0; q (weak abortion)
p : s�� q � (s�� p) : s�> q (strong abortion)
s)� p � (1�) : s�> p (trigger)

Comments: The strong abortion is derived from
both suspension (��) and weak abortion (�>). That
is the reason why, in SyncCharts, we have chosen
the symbol (�!) for strong abortion; it is an hybrid of
((suspension) and �! (weak abortion). Because of
the suspension of p by s, the strong abortion prevents
p from executing at the instant when it is preempted.

Delayed operators

Up to now, we have considered immediate and fu-
ture occurrences of signals, often only strict future oc-
currences are desired. Suspension and abortion oper-
ators have their \delayed" counterparts:

�ds �
�
1; (s?d; 0)

�
�

s) p � 1; (s)� p)

s � p �

���
((d�� p) ; t) j �ds

�
n d
�
: t�> 0

�
n t

p : s > q �

���
(s) d) : d�> 0

�
j (p : d)

�
: d�> q

�
n d

p : s� q � (s � p) : s > q

Starting with the above mentioned operators, it is
possible to derive new ones, easier to use and with a
strictly de�ned semantics. For example, we have intro-
duced the generalized termination [18]: A process can
be aborted in several ways, leading to di�erent pro-
cesses. In order to preserve a deterministic behavior,
triggering conditions are evaluated according to a pri-
ority ordering. We denote the generalized termination
of p by: \p : �1 �1 q1; � � � ; �n �n qn" where p; q1; � � � ; qn
are processes, �1; � � � ; �n are compound signals, and
�1; � � � ; �n 2 f�>;>; ��;�g. For at most one j, �j �j qj
may be replaced by � qj, standing for the normal
termination. The priority is decreasing from left to
right.
The behavior of every component of SyncCharts

has been expressed with the above algebra. For in-
stance, the generalized termination has been used to
formally characterize the way of leaving a star. Inter-
ested readers are urged to refer to the technical report
devoted to SyncCharts [18].

6 CONCLUSION

In this paper, we have addressed the problem of
Reactive System Modeling. We have focused on the
control-dominated systems, and we have advocated
the use of the Synchronous Approach.

The Synchronous Approach

The synchronous paradigm leads to an elegant,
rigourous and powerful abstraction of reactive behav-
iors. The Zero-Delay hypothesis is the cornerstone of
this approach. Augmented with other hypotheses, like
the instantaneous broadcasting of signals, synchrony is
very convenient to deal with (logical) time. The notion
of preemption, often ignored or, at best, poorly treated
by the classical approaches, is raised to the rank of a
�rst-class concept, orthogonal to communication and
concurrency. Thanks to the synchronous hypotheses,
reactive models compose very well in a deterministic
way. Instantaneity of reactions may induce some sur-
prising behaviors. We have explained them by analogy
with logical circuits.

A synchronous description may be textual or graph-
ical. The second goal of our contribution was to in-
troduce a new synchronous graphical model: Sync-

Charts. This model adopts many features of State-
Charts. SyncCharts have been especially tailored
to support the various forms of preemption in an un-
ambiguous way, what StateCharts cannot easily do.
The semantics of SyncCharts relies on a process al-
gebra, fully compatible with that of Esterel. Thus,
SyncCharts allow insertion of Esterel code as an-
notations, and can be automatically translated into
Esterel programs.

Applications of SyncCharts

We have used SyncCharts in speci�cation and in
e�ective programming of small applications. Our ap-
plications are mostly control-dominated systems. For
instance, we have speci�ed the behavior of a part of
a f.m.s [20]: A SyncChart expresses the changes in
functioning modes (a fully operational pipe-lined op-
erating mode, and a degraded sequential mode). Mod-
echart [21] and augmented StateCharts introduced
in [22] would have been used, as well. The former
is a speci�cation language for real-time systems that
emphasizes the speci�cation of absolute properties of
systems. The latter addresses the requirements spec-
i�cation for process-control systems. Both are ambi-
tious projects, applied to large scale systems. Both
rely on enhanced StateCharts, but none deals with
preemptions in a so precise way as SyncCharts do.

Another potential use of SyncCharts is in object-
oriented systems. Harel and Gery [23] specify the be-
havior of a class in an O-chart (a hierarchical omt-like
representation) by a controlling statechart. We have
used SyncCharts in the same purpose [24].

Perpectives

SyncCharts are at the prototype stage: if their
semantics is well-founded, their environment is still to

TR 96{28 10

be implemented. Many research groups in Europe par-
ticipate to the Synchron project which aims at devel-
oping the \synchronous platform". This platform sup-
ports synchronous languages and models, interfaces to
model checkers, simulator generators, and code gen-
erators. Our team \sports" (Synchronous Program-
ming Of Real Time Systems) has already contributed
to this objective by providing tools dedicated to Se-
quential Function Charts [25]. SyncCharts should
be our next contribution.

References

[1] A. Benveniste and G. Berry. The synchronous ap-
proach to reactive and real-time systems. Proceeding
of the IEEE, 79(9):1270{1282, September 1991.

[2] N. Halbwachs. Synchronous Programming of Reactive
Systems. Kluwer Academic Publishers, Amsterdam,
1993.

[3] G. Berry. Preemption in concurrent systems. Proc
FSTTCS, Lecture notes in Computer Science, 761:72{
93, 1992.

[4] IEC, Gen�eve (CH). Preparation of Function Charts
for control systems, december 1988. International
standard IEC 848.

[5] D. Harel. Statecharts: A visual formalism for
complex systems. Science of computer programming,
8:231{274, 1987.

[6] M. von der Beeck. A comparison of statecharts vari-
ants. In Proc. of Formal Techniques in Real Time and
Fault Tolerant Systems, volume 863 of Lecture Notes
in Computer Science, pages 128{148. FTRTFT'94,
Springer-Verlag, 1994.

[7] F. Maraninchi. Argos: un langage graphique pour
la conception, la description et la validation des sys-
t�emes r�eactifs. PhD thesis, Universit�e Joseph Fourier,
Grenoble I, Janvier 1990.

[8] C. Andr�e and M-A. P�eraldi. Synchronous program-
ming: Introduction and application to industrial pro-
cess control. In 7th Annual European Computer Con-
ference, pages 461{470, Evry (France), May 1993.
IEEE.

[9] W.A. Halang and K.M. Sacha. Real-Time Systems:
Implementation of Industrial Computerised Process
Automation. World Scienti�c, Singapore, 1992.

[10] J. Zahnd. Machines S�equentielles, volume XI of Trait�e
d'Electricit�e. Editions Georgi, Suisse, 1980.

[11] G. Berry. A hardware implementation of pure es-

terel. Miami, January 1991. ACM Workshop on
Formal Methods in VLSI Design.

[12] F-X. Fornari. Optimisation du contrôle et implanta-
tion en circuits de programmes Esterel. PhD thesis,
Universit�e de Nice-Sophia Antipolis, Mars 1995.

[13] F. Rocheteau and N. Halbwachs. Implementing re-
active programs on circuits, a hardware implemen-
tation of lustre. volume 600 of Lecture Notes in
Computer Science, pages 195{208, DePlasmolen (NL),
June 1991. REX Workshop on real-Time: Theory and
Practice, Springer-Verlag.

[14] N. Halbwachs, F. Lagnier, and P. Raymond. Syn-
chronous observers and the veri�cation of reactive sys-
tems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo,
editors, Third Int. Conf. on Algebraic Methodology
and Software Technology, AMAST'93, Twente, June
1993. Workshops in Computing, Springer Verlag.

[15] Charles Andr�e and Daniel Ga��e. Sequential function
charts: a synchronous point of view. Technical Re-
port RR 95{08, I3S, Sophia-Antipolis, France, febru-
ary 1995.

[16] F. Boussinot and R. de Simone. The sl synchronous
language. Technical Report RR 2510, INRIA, March
1995.

[17] G. Berry. The constructive semantics of pure es-

terel. Technical Report Not yet published, INRIA,
December 1995.

[18] Charles Andr�e. Synccharts: a visual representation of
reactive behaviors. Technical Report RR 95{52, I3S,
Sophia-Antipolis, France, October 1995.

[19] R. Milner. Calculi for synchrony and asynchrony. The-
oretical Computer Science, 25(3), July 1983.

[20] C. Andr�e, J.C. Gentina, and L. Kermad. Approche
synchrone des modes de marche et d'exploitation. In
Mod�elisation des Syst�emes R�eactifs, pages 259{266,
Brest, Mars 1996. Afcet.

[21] F. Jahanian and A.K. Mok. Modechart: A speci�ca-
tion language for real-time systems. IEEE transaction
on Software Engineering, 20(12):933{947, December
1994.

[22] N.G. Levenson, M.P.E. Heimdahl, H. Hildreth, and
J.D. Reese. Requirements speci�cation for process-
control systems. IEEE transaction on Software Engi-
neering, 20(9):684{707, September 1994.

[23] D. Harel and E. Gery. Executable objects mod-
eling with statecharts. Technical Report CS94{20,
(Rev. August 1995), Weizmann Institute of Science,
September 1994.

[24] C. Andr�e, F. Boulanger, M.A. P�eraldi, J.P. Rigault,
and G. Vidal-Naquet. Objets et programmation syn-
chrone. In Mod�elisation des Syst�emes R�eactifs, pages
55{62, Brest, Mars 1996. Afcet.

[25] C. Andr�e, H Boufa��ed, D. Ga��e, and J.P. Marmorat.
Environnement pour la programmation synchrone des
syst�emes r�eactifs. In Real-Time & Embedded Systems
(RTS&ES'96), pages 27{41, Paris (France), Janvier
1996. teknea.

A Sort Transformations

Let p be a process on SS. Let Ip;Op;Lp be its in-
put, output, and local sorts. Two auxiliary sets are
introduced:

Xp = Ip [Op and Sp = Ip [Op [Lp

Xp is the interface set of p, Sp is the sort of p. These
sets are de�ned inductively as follows:
For each operation:

TR 96{28 11

Lpp = if pp = p n s then Lp [fsg else ;

Ipp = Xpp �Opp and Spp = Xpp [Lpp

pp Xpp Opp

0 ; ;
s fsg fsg
p j q Xp [Xq Op [Oq

p� Xp Op

p n s Xp � fsg Op � fsg
p [t=s] (s 2 Xp) Xp [t=s] Op [t=s]
s�� p Xp [fsg Op

s% p � n; q Xp [Xq [Xn [fsg Op [Oq [On

Note that our renaming is restrictive: only an input
or output signal of a process can be renamed, not a
local signal.

B Rewriting Rules

0
;;tt
���!

E
0 (null)

s
fsg;tt
����!

E
0 (emission)

p
Ep; bp
����!

E
p0 q

Eq ; bq
���!

E
q0

p j q
Ep[Eq; bp^bq
���������!

E
p0 j q0

(parallel)

p
Ep;ff
����!

E
p0

p �
Ep;ff
����!

E
?% p0 � (p�); 0

(loop)

p
Ep; b

����!
E[fsg

p0 s 2 Ep

p n s
Ep�fsg; b

������!
E

p0 n s

(restr1)

p
Ep; b

����!
E�fsg

p0 s 62 Ep

p n s
Ep; b

���!
E

p0 n s

(restr2)

p
Ep; b

���!
E

p0 s 2 Xp

p [t=s]
Ep [t=s]; b

������!
E [t=s]

p0 [t=s]

(renam)

s 2 E

s�� p
;;ff
���!

E
s�� p

(susp1)

s 62 E p
Ep;tt
����!

E
p0

s�� p
Ep ;tt
����!

E
0

(susp2)

s 62 E p
Ep ;ff
����!

E
p0

s�� p
Ep;ff
����!

E
s�� p0

(susp3)

p
Ep ;tt
����!

E
p0 n

En ; b
���!

E
n0

s% p � n; q
Ep[En; b

������!
E

n0
(abort1)

s 2 E p
Ep;ff
����!

E
p0 q

Eq; b

���!
E

q0

s% p � n; q
Ep[Eq ; b

������!
E

q0
(abort2)

s 62 E p
Ep ;ff
����!

E
p0

s% p � n; q
Ep;ff
����!

E
s% p0 � n; q

(abort3)

