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Abstract

Network coding is a new transmission paradigm
that proved its strength in optimizing the usage of net-
work resources. In this paper, we evaluate the gain
from using network coding for file sharing applica-
tions running on top of wireless mesh networks. With
extensive simulations carried out on a simulator we
developed specifically for this study, we confirm that
network coding can improve the performance of the
file sharing application, but not as in wired networks.
The main reason is that nodes over wireless cannot
listen to different neighbors simultaneously. Never-
theless, one can get more from network coding if the
information transmission is made more diverse inside
the network. We support this argument by varying the
loss rate over wireless links and adding more sources.

1 Introduction

A few years ago, an elegant transmission paradigm,
called network coding, has been proposed by
Ahlswede et al. [2]. The key idea is that, one can ap-
proach the broadcast capacity of the network by allow-
ing intermediate nodes inside the network to code and
decode the information carried by the different flows.
Since then, network coding’s popularity is increasing
and many research papers have appeared on the sub-
ject [12, 3, 7, 8, 4]. Most of these papers focus on the
multicast case where all receivers are interested in the
same information. As a consequence, only the coding
task has to be done inside the network while the decod-
ing process is done at the receivers in order to recon-
struct the original information. This is relatively sim-

ple to implement compared to the unicast case which
requires an intelligent decoding inside the network to
be profitable [6, 9].

Two main scenarios have profited from the power of
network coding: file sharing applications [5] and wire-
less mesh networks [8, 4]. File sharing is the applica-
tion allowing a certain number of users to collaborate
together in order to share a certain content. A wireless
mesh network is a one where any two hosts can com-
municate directly over wireless, if their transmission
powers allow, otherwise indirectly via the other hosts.
Network coding has proved its capacity to improve the
resource utilization in both scenarios, separately. In
this work we try to answer the question of how net-
work coding performs when these two scenarios are
combined together. We believe that file sharing over
wireless mesh networks is an emerging domain with
lot of potential applications. Exchanging files, updat-
ing databases and pushing new software releases are
typical examples of applications.

1.1 Data Encoding in Network Coding

We describe briefly a practical approach for net-
work coding that we borrow from the work in [5].
This approach splits the file into multiple pieces called
chunks. Denote by |C| the number of chunks. When
a node has chunks that are of interest to another node,
it generates and sends a linear combination of all the
chunks in its possession (similarly to XORing multiple
chunks). Let us start with a node A that holds the entire
file, i.e., the |C| chunks. When A decides to transmit
some information to neighbor B, it first picks up at ran-
dom |C| coefficients k1, . . . , k|C|. Then, it multiplies
chunk Ci with Ki and finally adds all resulting chunks



together, i.e., C ′ = C1 . . .K1⊕. . .⊕C|C| ·K|C|. In this
case, node A should send to node B not only the com-
bination C ′, but also the set of coefficients k1, . . . , k|C|.
The source encoding process is repeated at intermedi-
ate nodes on the chunks received coded by upstream
nodes. After a node receives enough linearly inde-
pendent combinations of chunks, exactly |C| combi-
nations, it can reconstruct the original file. Note that,
nodes need not wait to retrieve the whole file to en-
code the data. Suppose that node B receives another
combinations C” from node C. Node B can then en-
code C ′ and C” and send the resulting combination
C ′ · K ′

1 ⊕ C” · K ′
2 to interested nodes.

One would wonder why node A does need to gener-
ate random coefficients: Why does n’t node A simply
transmit a XOR of all chunks, i.e., C ′ = C1⊕. . .⊕C|C|.
Actually, a simple XOR combination is a very bad
choice for the following reason. If node A holds |C|
chunks, it should be able to generate |C| disjoint com-
binations, which can not be done through a simple
XOR. At the same time, generating only random co-
efficients is not enough to obtain disjoint combina-
tions. Instead, the set of coefficients selected for each
transmission should be new. To ensure so, the field
from which we select the random coefficients must be
large enough. If we choose a field size of 216 (i.e.,
0 < Ki < 216), we can ensure that the probability that
two nodes generate two identical sets of coefficients is
extremely low.
What we have not yet mentioned is that, upon receiv-
ing an announcement for a combination, a node checks
out whether it is a useful one or not. We say that the
combination is useful only if it is linearly independent
of the other combinations held at the node. One way to
check dependency is by performing the Gaussian algo-
rithm [1]. If the combination is new, then the node asks
for it; otherwise, the combination’s announcement is
discarded.

1.2 Network Coding and File Sharing

The semantics of network coding and its appealing
features make it a good candidate for improving the
performance of file sharing applications. Indeed, in-
stead of forwarding a piece of the file, a node forwards
a coded version of all the pieces it has seen so far. This
combined version can serve to all downstream nodes

missing some of the individual pieces. Without net-
work coding and in the absence of information on the
status of all downstream nodes, the node is unable to
forward the piece that satisfies everyone. The use of
network coding should transform into a shorter time
to share the file and a better utilization of network re-
sources.

The idea of network coding for file sharing has been
recently introduced by Gkantsidis et al. [5]. In their
work, the authors propose to use network coding for
the distribution of large content in P2P (Peer-to-Peer)
networks. The authors show that, in some scenarios,
network coding can reduce the distribution time of the
content by up to three times as compared to no cod-
ing at all. The explanation is simple. In P2P net-
works, a node needs to decide what chunks to retrieve
from each neighbor. Clearly, retrieving globally rarest
chunks is more efficient. Like this, the node can signif-
icantly contribute to the distribution process as a lot of
nodes will be interested in these rarest chunks. How-
ever, to know what chunks are globally rarest, nodes
need to be synchronized, which is practically infeasi-
ble in large networks. In this context, network coding
removes the need for such a synchronization. A node
retrieves a coded version of all the data maintained by
its neighbor. As a result, the notion of rarest chunks
is completely eliminated and the content distribution
process is greatly improved.

1.3 Network Coding and Wireless Mesh
Networks

The broadcast feature of wireless networks makes
them good candidates for the application of network
coding. When a node transmits a piece of information
to one of its neighbors, this information is heard by the
other neighbors as well. Thus, a node whose neigh-
bors are interested in different pieces can transmit a
coded version of all these pieces it possesses, which
will profit to all the neighbors and save the wireless
resources.

In this work, we want to check the gain from using
network coding in file sharing applications over wire-
less mesh networks. The study in [5] only applies to
wired networks. Its extension to wireless networks is
not straightforward for many reasons. In P2P wired
networks, connections between peers are unicast and a



node can communicate with any other node in the sys-
tem by just knowing its IP address. Moreover, a node
can retrieve (respectively upload) different parts of the
file from (respectively to) different nodes at the same
time.

In wireless mesh networks, the situation is differ-
ent. First, when a node transmits a piece of the file
to a neighbor, the piece is heard by the other nodes
in its range, which can avoid further transmissions.
This is one positive point in favor of wireless net-
works. The negative points are diverse, however. A
wireless node with one single antenna (which is com-
monly the case) is not able to receive from more than
one neighbor at the same time. Also, wireless nodes
in some neighborhood contend to the medium inde-
pendently of the piece of data they have. This may
prevent the most relevant pieces to be transmitted first.
In addition, nodes are not free in their choice of neigh-
bors. Instead, neighbors are imposed by the physical
layer, which poses a tight constraint on the cooperation
among nodes in the network.

When we thought about network coding for file
sharing over wireless mesh networks, we had the fol-
lowing scenario in mind. Assume three nodes, A, B,
and C, where node A holds chunks {C1, C2}, node B
holds chunk C1, and node C holds chunk C2. If net-
work coding is not used, node A needs first to transmit
chunk C2 to node B and then, chunk C1 to node C. In
contrast, if network coding is used, node A transmits
one single combination C1 · K ′

1 ⊕ C2 · K ′
2, and both

nodes B and C can retrieve the chunk they miss.
Despite its simplicity, we can learn two lessons from
this example. The first one is that, network coding
reduces both the number of chunks transmitted and
the number of useless chunks received by the different
nodes. Reducing the number of transmitted chunks not
only saves bandwidth but it also speeds up the distri-
bution process. In addition, by reducing the number
of useless chunks received, we reduce the battery con-
sumption at the different nodes. The second lesson is
that, to be efficient, network coding requires neighbors
to have disjoint set of chunks. We can easily verify
that, if nodes B and C have both the same chunk, say
C1, network coding will not bring any benefit to the
system.

Diversity of information in the network is then very
helpful for network coding. When coding is done

at the packet level independently of the application,
the diversity improves if a large number of flows and
routes are multiplexed together [8]. In our context
where coding is done intra-flow, diversity can be en-
sured by other means. For example, one can introduce
diversity by multiplying the number of sources. We
evaluate this suggestion later. The topology of the net-
work decides on diversity and determines the speed at
which the information spreads. For example, a ring
or a cascade of rings leads to more diversity than a
line or a strip. Chunk losses over wireless and the
fact that some nodes can sleep from time to time to
save resources, also increase the diversity of content in
the network and create situations in favor of network
coding. We control diversity in our simulations by the
means of losses that can model both the bad conditions
of the wireless and the intermittent sleep of nodes.

1.4 Methodology

We assume the existence of N fixed wireless nodes
having a well defined transmission radius that want
to share a file of size |C| chunks. At the beginning,
few nodes possess the entire file, which we call the
sources. In this context, our goal in this paper is to
derive the conditions under which network coding is
beneficial. To this end, we develop a simulator that
calculates the time required to share the file as well
as the number of chunks transmitted and those unnec-
essarily received. We conduct extensive simulations
where we identify the system parameters that influence
the performance of network coding. These parame-
ters include the cooperation strategy between nodes,
the number and placement of the sources of the file,
the loss rate in the network, the number of nodes, and
the number of chunks. We believe that our results and
discussions form a step towards the design of efficient
content distribution approaches in wireless networks.

1.5 Organization of this Paper

The rest of this paper is organized as follows. Sec-
tion 2 introduces the cooperation strategies between
nodes that we evaluate. In Section 3, we give a short
description of our simulator. Section 4 provides simu-
lation results and we conclude the paper with a discus-
sion in Section 5.



2 Cooperation Strategies between Nodes

We consider two extreme and opposite classes of
cooperation strategies between nodes. In the first one,
which is the worst indeed, we assume a very primitive
cooperation based on flooding. This class includes two
strategies namely, BF and BF-NC, which account for
the cases with and without network coding.

• BF (Blind-Forwarding).

When a node receives a new chunk and after get-
ting access to the medium, it blindly forwards
the chunk to its neighbors even if none is inter-
ested. Given that neighbors share the same wire-
less medium, a node may receive multiple chunks
before it could perform one single transmission.
In this case, and whenever the medium is free, the
node schedules the chunks that have not yet been
transmitted in the same order of receiption, i.e.,
first received first transmitted. Under this strat-
egy, every node transmits as many chunks as it
receives.

• BF-NC (Blind-Forwarding with network coding).
In this strategy, when a node receives a new com-
bination, it competes to get access to the medium.
When it succeeds, it generates and transmits a
combination of all information in its possession
and forwards the result to its neighbors. Each
receiption of a new combination leads to a new
transmission and therefore, every node transmits
as many chunks as it receives.

The second class that we consider is completely the
opposite, but it also includes two strategies, SF and
SF-NC. In this class, we assume that every node main-
tains a table that offers a complete knowledge about
the list of chunks at each of its neighbors. In prac-
tice, building and maintaining these tables can be
done through update messages exchanged regularly
between neighbors. How to build and maintain these
tables is however out of the scope of this paper.

• SF (Selective-Forwarding). Every node checks
continually its table. If it finds a chunk that is
of interest to at least one of its neighbors, the
node tries to transmit that chunk. In case there are
many chunks, the rarest one is selected. Finally,

if there are many chunks with the same priority,
one is chosen at random.

• SF-NC (Selective-Forwarding with network cod-
ing). As before, every node checks continually its
table looking for neighbors interested in the infor-
mation it holds. If at least one is found, the node
generates and transmits a combination of all what
it posses. Notice that the problem of identifying
rarest chunks does not exist in this case.

It is clear that SF and SF-NC achieve a more efficient
bandwidth and energy utilization as compared to BF
and BF-NC, but, at the expense of a more complex im-
plementation. Our goal in this paper is not to prove this
obvious conclusion. Instead, we aim at understanding
how network coding performs under different coopera-
tion strategies and these four ones are good candidates.
They are intuitive, simple and thus, permit to get new
insights while keeping clear the analysis. Moreover,
these are extreme strategies and pave the way to derive
many others by combining them.

3 Simulation Methodology

To evaluate our four strategies, we developed a C++
simulator1 that allows us to observe step-by-step the
distribution of the file among all nodes in the system.
Before going into the implementation details, we first
define the parameters that we will use in our analysis.

3.1 Notations

|C| is the number of chunks in the file to distribute.
b represents the rate at which nodes transmit their
chunks over the wireless medium. We take as one unit
of time, the time needed to download the entire file at
rate b. One round is the time needed to download one
single chunk at rate b. It follows that, for a file of |C|
chunks of equal size, one round is equivalent to 1

|C| unit
of time.
N stands for the number of nodes while R represents
their transmission radius. We denote by S the area
where the N nodes are deployed. Sn refers to the num-
ber of sources in the system while Sp refers to their
placements. For instance, (Sn = 1, Sp = Random)

1The simulator is available for public access at the following
address: http://www-sop.inria.fr/planete/Software/NCWM/



means that there is one single source that is placed at
random within the area S. Finally, the parameter `
stands for the loss rate in the network. ` = 20 means
that a node receives the chunks from its neighbors with
a probability of 20%. Notice that the chunk loss rate
is a function of many factors such as, the packet loss
rate, the sleep mode of nodes, and the way lost packets
are treated by the MAC layer.

3.2 Implementation Details

Our simulator makes an abstraction of the MAC
layer by assuming an ideal MAC protocol without col-
lisions and that gives contending nodes the same prob-
ability to access the medium. We are of course aware
that this assumption does not hold true in practice.
One can see our work as a proof-of-concept about the
benefit of network coding for wireless mesh networks.
In addition, this assumption allows us to draw broad
conclusions and to provide new insights without being
limited to a specific MAC protocol. As a next step, we
intend to implement network coding on top of a vari-
ety of MAC protocols including 802.11.
Our simulator splits the time space into rounds each of
1
|C| unit of time. A node can transmit only at the be-
ginning of a round. During each round, we go through
the following four steps. In the first step, we iden-
tify the candidate transmitters, i.e., nodes that have in-
formation to send. These candidate transmitters are
then placed in a list, called the Candidates-List. Given
that we assume an ideal MAC protocol without colli-
sions, only a part of these candidate transmitters can
perform a transmission. The selection of the trans-
mitters is done during the second step as follows. We
pick up at random one candidate transmitter, let us say
node A, and move it from the Candidates-List to a
new list that we call Transmitters-List. Then, to en-
sure that there are no collisions, we prohibit all A’s
neighbors from transmitting during the current round.
As a consequence, A’s neighbors are deleted from the
Candidates-List (if there is any). We also delete from
Candidates-List the neighbors of A’s neighbors. The
purpose is to avoid the situation where a node re-
ceives from more than one neighbor at once (i.e., the
hidden terminal situation). Then, the Candidates-List
is accessed again and a new node is moved to the
Transmitters-List and so on. This process continues

until the Candidates-List becomes empty. This selec-
tion algorithm of the transmitters is simple and fair at
once. We can easily verify that, the probability of se-
lecting a transmitter takes into account the neighbors
and neighbors of neighbors that are willing to transmit
and give them the same chance to access the medium.
In the third step, we scan the Transmitters-List and
all selected transmitters send one chunk each. In the
fourth and final step, we update the list of chunks at
all nodes. These four steps are performed recursively
until all nodes receive the entire file.

4 Performance Evaluation

The goal of this section is to highlight the param-
eters that guide the benefit of network coding for file
sharing in wireless mesh networks. We aim at deriving
the scenarios under which network coding improves
the system performance. We are also curious of ex-
ploring the conditions that limit the gain from network
coding.

4.1 Parameters Used in the Simulations

Our system has a quite few parameters, but we
present results for a limited subset of parameter
values that can provide new insights. For the
rest of the results, we will vary the number of
chunks |C| = {10, 50, 100}, the number of nodes
N = {10, 25, 50, 75, 100}, the placement of the
source, and the loss rate (in percent) in the network
` = {0, 20, 50, 80}.
Other parameters are kept unchanged and chosen
as follows. The transmission radius of all nodes is
set to R = 2 units. However, our work and results
can be easily extended to the case of dynamic and
adaptive radius. The N nodes are randomly deployed
within a square of area S. As a consequence, the
values of S, N , and R have to be chosen carefully
so that the density of nodes is high enough to ensure
total connectivity. These values must satisfy the
following inequality as showed in a previous study
by Philips et al. [10]: N ≥ 10·S

π·R2 . In this paper, we
choose N = 10·S

π·R2 . For instance, when R = 2 and
S = 112 = 121, the number of nodes should be
N = 96. As a result, when changing N , we change
the area of deployment in accordance while keeping



the radius constant, i.e., the nodes density remains
constant.

4.2 Metrics

In our evaluation, we consider several performance
metrics including:

• Service time. The time needed to distribute the
whole file to all nodes in the system. We compute
this metric in terms of units of time. In general, a
short service time is desirable.

• Emitted chunks. The number of transmitted
chunks by all nodes during the entire simulation.

• Useless chunks. The number of useless chunks
received by all nodes and during the whole simu-
lation.

Achieving a low number of emitted/useless chunks is
essential to save energy and bandwidth resources. Yet,
these two metrics are meaningful only under SF and
SF-NC. Actually, in BF and BF-NC, these metrics pro-
vide no new insights at all and their values are known
in advance. For instance, under the scenario where
there is no loss, every node transmits |C| chunks. In
addition, every node receives |C| chunks from each
neighbor.
Note that, we also evaluated the evolution of chunks in
the system, how many new chunks (or combinations)
are received each 1

|C| unit of time. Yet, these metrics
are ignored because they present no new insights as
compared to the above three ones. Our results are av-
eraged over multiple runs. We keep running simula-
tions until the 90% confidence interval is within 3% of
the average values.

4.3 Preliminary Hints and Observations

We start our performance evaluation with a simple
scenario where we assume one single source that is
placed at random within the area S. We also assume
that there is no loss at all. Under this scenario, Figure 1
plots the service time against the number of nodes and
for a variety of number of chunks. From this figure,
we can make many interesting observations. Mainly:
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is placed at random within the deployment
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a) Network coding speeds up the distribution of the
content. Under some conditions, the service time can
be reduced by 25%.

b) Network coding requires a moderate to large
number of nodes to be profitable to the system. This
is a logic result since network coding becomes more
efficient when many neighbors benefit from the same
transmission. When the number of nodes in the system
gets larger, nodes would probably have more neigh-
bors from which to get the chunks and the information
in the network would be diversified. Consequently, the
potential gain from each transmission would also in-
crease.

c) Increasing the number of chunks improves the
performance of all schemes. Indeed, when we divide
the file into multiple chunks, a node can start serving
a chunk as soon as it finishes downloading it instead
of waiting to download the whole file. As a result, the
larger the number of chunks, the faster the nodes are
engaged into the distribution process and the better the
system performance.

d) The benefit of network coding depends dramat-
ically on the cooperation strategy between nodes. As
we can easily observe in Figure 1, BF-NC performs
much better than BF while SF and SF-NC show simi-
lar behavior.
To better understand this last point, let us revisit the
design principles of our cooperation strategies. With
BF, a node forwards the chunks it holds even if none
of its neighbors is interested. The main drawback is
that a lot of useless chunks are transmitted and nodes
progress slowly in the download process. In contrast,
under SF, a node only sends chunks that are of inter-
est to its neighbors. As a result, there are no useless
transmissions and nodes progress faster as compared
to BF.

When network coding is employed under BF, it
helps reducing the number of useless chunks trans-
mitted. On the other hand, with SF, network coding
helps increasing the number of neighbors interested in
each transmission. We can conclude that the reason
that makes network coding beneficial is not the same
in both, BF and SF.

4.4 Getting More from Network Coding

The low benefit of network coding that we observed
under SF is mainly because, it is not very common
for a node to have its neighbors interested in differ-
ent chunks. This result was somehow expected be-
cause of the shared nature property of wireless that we
mentioned in the introduction. This property does not
help creating diversity of information in the network,
which is essential for network coding under cooper-
ation strategies like SF. By diversity, we mean that
neighbors should have different sets of chunks. Many
conditions can lead to this diversity including, having
multiple sources and having non zero loss rates. In this
section, we will consider these two scenarios and dis-
cuss how they significantly influence the performance
of network coding.

4.4.1 Allowing Multiple Sources

In Figure 2, we graph the service time for all
schemes as a function of the number of nodes and
for |C| = 100. This figure confirms our intuition.
Having multiple sources makes the information in the
network more diverse, which greatly benefits network
coding. In contrast to the case with one single source,
the outperformance of network coding is not limited
to BF, but is also clear under the SF strategy. Figure 2
shows that, when adding a second source, the perfor-
mance of BF doubles while that of SF-NC becomes
up to three times better. For instance, when N = 100,
and compared to SF, SF-NC reduces the service time
by about 6% when there is one source while this
reduction is about 15% when there are two sources.
Moreover, the benefit of network coding appears at
many levels including the number of useless chunks
received and those emitted by the different nodes in
the system (see Figures 3 and 4). For more clarity, in
figure 4 we give the ratio of the number of emitted
chunks in SF-NC to SF vs. the number of nodes.
The result in Figures 3 and 4 is very important as
achieveing a lower number of emitted/received chunks
turns out to less battery consumption, which is critical
for some devices such as wireless sensors. Note that,
we also studied the scenario with three sources and
network coding showed even a better performance.
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Figure 2. Service time against number of
nodes for BF, BF-NC, SF, and SF-NC, and
for a number of chunks |C| = 100. We con-
sider two values for the number of sources
Sn = {1, 2} while the loss rate is set to ` = 0.
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Interaction Between Network Coding and Place-
ment of the Sources: Figures 2, 3, and 4, assume that
nodes are placed at random within the area S. We ar-
gue that one could get more from network coding by
carefully placing the sources in the network. To sup-
port this claim, we plot in Figure 5 the service time
vs. number of nodes for SF-NC. In this figure, we take
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of nodes with two sources at two different
placements Sp = {Random,Extreme}. We
choose a number of chunks |C| = 100 and a
loss rate ` = 0.

|C| = 100 and two sources that are either placed at
random or at the extremities. By extremities we mean
the two opposite corners of S. More precisely, the first
source has coordinates (0, 0) while the second one has
(X, Y ), where X and Y are the length and the width
of S.

Figure 5 shows clearly that the placement of the
sources is a critical factor that dramatically impacts the
performance of network coding. Compared to Figure
2, we can observe that this particular placement of the
sources improves significantly the gain. This result is
extremely interesting as it paves the way for a mathe-
matical work to derive the optimal placement as well
as the optimal number of sources in the network.

4.4.2 Network Coding Performs better in Lossy
Environments

In addition to having multiple sources, chunks’ losses
can also create diversity of information at the different
nodes, which makes network coding more efficient.
Loosing chunks can be due to bad wireless conditions
or a consequence of intermittent sleep of nodes. Sleep
mode is often used in scenarios where battery energy
is a scares resource.

In this paper, we use a very simplified model for
losses. Every node receives the chunks from its neigh-
bors with a probability 1 − `

100 . We consider three
values of loss rate ` = {20, 50, 80}. Under this sce-
nario, we evaluate the service time and the number of
emitted chunks for SF and SF-NC as shown in Figure
6. Our conclusions also apply to BF and BF-NC. As
we can point out from the figure, network coding is ef-
ficient under relatively high loss rates, i.e., ` ≥ 50%.
When the loss rate is equal to ` = 20, SF and SF-
NC perform almost equally. The explanation is sim-
ple. The network that we consider here is quite dense
and each node has, on average, about 8 neighbors. A
loss rate of ` = 20 means that, each chunk is on aver-
age delivered to 80% of neighbors, which gives 6 out
of 8. As a result, even if a node looses a chunk, there
are other neighbors that receive it and would not take
long to forward it during the next rounds. Thus, the
node can rapidly retrieve what it missed from common
neighbors and thus, the content at the different nodes
remains homogeneous.

What is also encouraging in the result of Figure 6
is that, network coding can be employed as an effi-
cient solution for content distribution under very bad
environment conditions. These bad conditions can be
caused by the wireless physical layer or also by a poor
MAC protocol that produces a lot of collisions.

5 Discussions and Conclusions

In this paper we studied the use of network coding
for file sharing over wireless mesh networks. Through
extensive simulations, we investigated how this trans-
mission paradigm behaves under a variety of scenar-
ios. The importance of our study is that we identified
the main parameters that influence the performance of
network coding in wireless environment. These pa-
rameters include the number of nodes, the number of
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Figure 6. Service time and number of emitted
chunks against number of nodes for SF and
SF-NC. We set the number of chunks |C| =
100 and the number of sources Sn = 1. We
consider several values of the loss rate ` =
{20, 50, 80}.

chunks, the number and placement of the sources, the
cooperation strategy between nodes, and also the loss
rate in the network. We showed how these parameters
interact with each other and influence the behavior of
network coding.

A key result of our work is that, employing network
coding should take into account several environment
conditions. For instance, when using a cooperation
strategy such as SF and under good wireless conditions
with no losses, there is no need for network coding. In
contrast, if the cooperation strategies between nodes is
somehow primitive (e.g., to simplify implementation
issues), or if the wireless connections experience high
loss rates, network coding can be a very good candi-
date to significantly improve the system performance.
Finally, the existence of multiple sources for the con-
tent is in favor of the deployment of network coding.

5.1 Overhead of Network Coding

The benefit that one can achieve with network cod-
ing comes at the expense of more battery and CPU
time consumption for encoding and decoding the in-
formation. In our case, the encoding process is very
easy because it is only about generating a linear com-
bination of all information together available at each
node. In contrast, the decoding task is more complex
because it requires to run a test to check independency.
The complexity of this test is a function of the number
of chunks O(|C|). Nevertheless, the tendency nowa-
days is to design devices that consume much less en-
ergy battery for computation tasks. However, the ef-
fort spent by nodes for transmitting and receiving the
chunks will remain a primary source of energy con-
sumption. A comparison of the cost of computation to
communication in future platforms by Pottie et al. [11]
reveals that 3000 instructions can be executed for the
same cost as the transmission of one bit over 100m. In
this context, and under some scenarios, network cod-
ing is a suitable solution as it can significantly reduce
the number of useless chunks received as well as the
number of transmissions performed by the different
nodes.

In addition to the computing overhead, network
coding requires nodes to transmit not only the coded
chunk, but also the list of the coefficients that have
been used in the encoding process. Yet, this bandwidth



overhead is negligible as compared to the size of the
chunk in transmission. It can be computed as Ks · |C|
Bytes, where Ks is the size of each coefficient. For
instance, Cs = 2 Bytes when the coefficients are se-
lected from a field of size 216. Hence, if we consider
a file that includes 50 chunks with each of 10 KBytes,
the bandwidth overhead is less than 1%.

5.2 Open Research Issues

In our work, we made several assumptions to sim-
plify the analysis. On the one hand, we assumed
an ideal MAC protocol without collisions. On the
other hand, we split the time space into rounds and
nodes were able to transmit only at the beginning of
each round, i.e., using global synchronization. We
are aware that these assumptions do not hold true in
practice. Yet, the goal of this study was to provide
new hints and observations about the power of network
coding for file sharing in wireless environments. The
above assumptions allowed us to give new insights and
draw broad conclusions without being limited to a spe-
cific MAC protocol. We believe that this work sheds a
new light on new solutions for content distribution in
the area of wireless mesh networks.

Future work can progress along many avenues. We
are planning to implement and evaluate network cod-
ing on top of a variety of MAC protocols including
802.11. Within the cross-layer optimization philoso-
phy, we could think of designing a MAC protocol that
contributes in creating information diversity in the net-
work and thus, making network coding more powerful.
What would also be interesting is to derive the optimal
number of sources as well as their optimal placement
for a given deployment of nodes.
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