On reliable data collection in large networks

Chadi BARAKAT

INRIA Sophia Antipolis, France Planète research group

Email: Chadi.Barakat@sophia.inria.fr WEB: http://planete.inria.fr/chadi

Problem statement

- Many situations in which one is interested in collecting information from a large number of sources spread over the Internet.
 - Measurements collected by hosts, routers, sensors or traffic capture devices.
 - Data generated by the different sites of an enterprise.
 - etc.
- □ Challenge: This collection, if done simultaneously, would congest the network and cause implosion at the collector.
- □ A transport solution is needed ...

Framework for the study

□ We look for end-to-end solution

- No intermediate nodes are deployed to aggregate the information (as in ConCast for example).
- □ A priori, information to be entirely collected.
 - Need for reliability (sampling-based solutions don't work).
 - But one can lessen this requirement if needed.

Congestion control

- Avoids congestion of the network and the collector access link.
- Do it as much friendly with TCP as possible.
- □ Mainly focus on small volume of data per source
 - Using TCP is no longer optimal due to three-way handshake overhead and slow start.

TICP: TCP-friendly Information Collection Protocol

- Initiated within a collaboration with Hitachi Sophia Antipolis, then continued with the help of: Karim Sbai (ENSI)
 Amaury Decreme (EPU)
 Mohammad Malli (PhD Planète)
- □ More information on http://planete.inria.fr/chadi/ticp
- □ Basic idea:
 - A central collector knows about all sources.
 - It probes them, they answer directly with their report packets containing their information.
 - The collector controls the probing rate. Retransmits probes in case of losses. Verifies reliability.

Protocol in brief: Congestion control

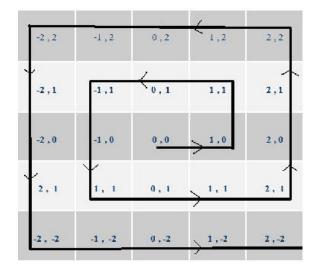
- □ A window-based flow control:
 - cwnd: maximum number of sources the collector can probe before receiving any information.
- □ The collector increases cwnd and monitors at the same time the loss ratio of reports (during a time window in the past).
 - The protocol has two modes: slow start and congestion avoidance.
- □ Congestion of the network is inferred when the loss ratio of reports exceeds some threshold.
- □ Upon congestion, divide cwnd by 2, and restart its increase.

Protocol in brief: Error Control

- □ The protocol is reliable in the sense that it ensures that all sources have sent their reports.
- □ To reduce the duration of the session:
 - In the first round, the protocol probes all sources
 - Order to be defined later.
 - In the second round, the protocol probes sources whose reports were lost in the first round.
 - In the third round, the protocol probes sources whose reports were lost in the first two rounds.
 - Continues in rounds until all reports are received.

Measuring the loss ratio

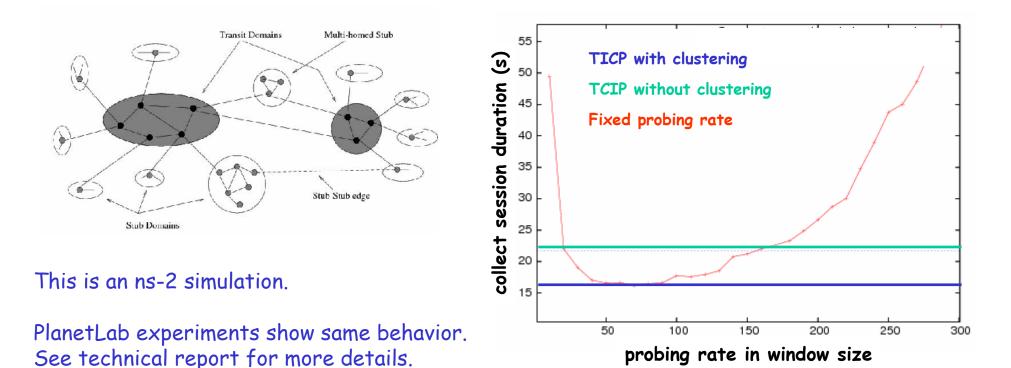
□ The source disposes of a timer, called TO:


- The timer is set to SRTT + 4 RTTVAR, where SRTT is the average round-trip time, and RTTVAR its mean deviation.
- RTT is calculated over all sources (time and space dimensions).
- The timer is rescheduled every time it expires.
- The value of the timer can be seen as an upper bound on RTT.
- \Box The timer serves to measure the loss rate.
 - All reports sent during one cycle of the timer have to arrive during the next cycle at the latest, otherwise they are supposed lost.

Ordering of sources

Random, topology independent

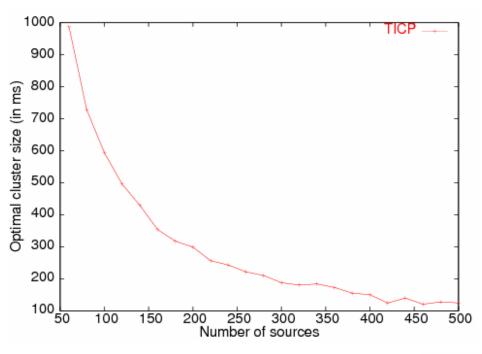
- Inefficient.
- Hard to handle multiple bottlenecks at once.
- RTT hard to predict (bad setting of the timer).
- Topology dependent
 - Cluster sources and rank clusters from closest to the collector to the farthest.
 - Use this ordering to probe sources.
 - Sources inside a cluster probed randomly.
 - We use Internet coordinates for clustering.



Performance of TICP: sample of results

 \Box 500 sources of information generating a packet each.

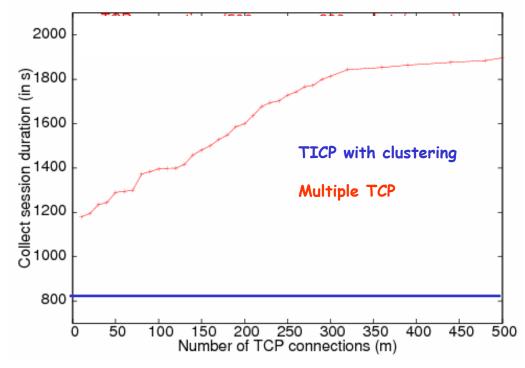
□ Cluster size equal to 50 ms, its optimal value over this topology.



Cluster size

- Important parameter of the protocol to set.
- Open issue ...
- Our observation: As the number of sources increases, it converges to some constant value function of the underlying topology.

100 ms is a good choice ...



Compared to parallel TCP

What if parallel TCP connections are used to collect ?
TICP behaves better due to its multiplexing capability.

• See it as multiple TCP connections with one congestion window.

□ Simulation results ...

Ongoing work

□ We also studied the delegation issue where the central collector can ask other sources to collect on its behalf.

- A kind of two level collection.
- Major observation: one level is enough until some threshold, beyond it delegate to as many proxy collectors as the threshold.
- We also started to use TICP for network probing architectures.
 - Probing can be seen as information collection !
 - We have nice results ...

 \Box ns code exists.

 \Box C++ code exists. Only delegation still to be implemented.

