
Using Active Networks Technology for

Dynamic QoS

T. Tansupasiri a,∗ , K. Kanchanasut a , C. Barakat b ,
P. Jacquet c

aAsian Institute of Technology, Computer Science and Information Management
Program, P.O. Box 4, Pathumthani, 12120, Thailand

bINRIA, PLANETE research group, 2004, route des Lucioles, 06902 Sophia
Antipolis, France

cINRIA, HIPERCOM research group, B.P. 105, Rocquencourt, 78153 Le Chesnay
Cedex, France

Abstract

We propose a dynamic QoS, or D-QoS, model where QoS settings can be automat-
ically reconfigured based upon requests from authorized users. Different levels of
privilege can be assigned to users enabling higher privileged users to interrupt the
network flows belonging to those of lower privileged levels. To request for a special
QoS treatment, a user can issue an active packet to interrupt any active node along
its flow path which is D-QoS enabled. The request for a specific interruption level
is approved by a D-QoS enabled node which allows for multi-level interruptions to
be handled. After an interrupting flow has completed transmitting all its packets,
D-QoS enabled node can resume its services for those pending flows which are of
lower privilege levels. In this paper, we describe the overall concept of D-QoS and
demonstrate how it can be implemented by a small prototype. Using simulation, we
show that the proposed system can provide assurance for privileged flows with an
improved network utilization where bandwidth is shared among the flows accord-
ing to the levels of privilege. D-QoS should be deployed on those bottleneck hops
with limited bandwidth on the edge network to ensure the best service is given to
privileged users.

Key words: QoS, Active Network, Bandwidth Management

∗ Corresponding author. Tel./Fax +66-2524-6619
Email addresses: fon@cs.ait.ac.th (T. Tansupasiri), kk@cs.ait.ac.th (K.

Kanchanasut), Chadi.Barakat@sophia.inria.fr (C. Barakat),
Philippe.Jacquet@inria.fr (P. Jacquet).

Preprint submitted to Elsevier Science 5 May 2005

1 Introduction

The concept of active networks was introduced in 1994 by Defense Advanced
Research Projects (DARPA) research community, as a future direction of net-
working system [1]. In addition to packet forwarding mechanism in traditional
IP network, active networks allow the network nodes to perform user or ap-
plication specific computations on user data passing through them. In active
networks, normal packets are replaced with active packets containing small
programs and possibly data. Network nodes are substituted by active nodes
capable of performing computations on packets as requested by the applica-
tions. Thus, the role of the network is changed from a passive carrier of data
into a general computation engine. New network services can, therefore, be
faster innovated and deployed. These network services are, for example, IP
multicast, mobile IP and web caching, as they can be effectively provided in
the network layer.

One of the services that could also be offered based on active network is the
quality of services, QoS. As Internet traffic can be generated possibly from
anywhere and at any time, it is desirable that QoS be dynamically adaptable
to user requirements thus tailoring to the demand of the Internet users. Active
network technology can be used as a useful tool for providing dynamic or
on demand QoS where active nodes can adjust their QoS configuration as
instructed by the programs in active packets.

Integrated Service (IntServ) model described in RFC 1633 [2] provides re-
source sharing mechanism which could be requested dynamically per-flow. The
model deploys resource reservation mechanism in which network resources are
reserved along each communication path. However, this model suffers from its
scalability problem due to the overhead on maintaining the path state infor-
mation at each node or router. Several attempts to provide scalable dynamic
QoS have been made as in [3–6]. They combine IntServ with another QoS
model, Differentiated Service (DiffServ) [7] which is known to be scalable.
Rather than providing per flow QoS, DiffServ provides coarse grained QoS for
traffic aggregates or classes and applies different per-hop services to different
classes. These works share the idea on deploying IntServ at the edge and Diff-
Serv at the core networks. They introduce the use of a signaling mechanism in
IntServ to communicate the QoS requirements to DiffServ. An additional net-
work element called bandwidth broker, is introduced to monitor the resources
usage within the domain and determines the admission control dynamically.
Although this idea allows dynamic admission control, but flows are assign
to a static preconfiguration in [3–5]. An extended idea for dynamic resource
allocation is explained in [6]. The bandwidth broker, in this case, is also re-
sponsible for monitoring the bandwidth usage of the client and the state of
the network. As the actual traffic rarely approaches the reserved bandwidth

2

for the peak rate, a portion of the unused bandwidth can be reclaimed to the
pool of available bandwidth and reallocated to other flows. However, these
works require that some elements in DiffServ network are IntServ-aware for
such interoperation and restrict the resource allocation with DiffServ precon-
figuration. Hence, they cannot really provide QoS on demand which could be
requested directly by authorized users.

In [8,9], dynamic QoS has been proposed where active network technology is
deployed. A QoS scheme particularly for MPEG video transmission is proposed
in [8] with an active buffer management and active packet scheduling mecha-
nisms. Packets are classified into queues according to their contents. Packets
containing self-contained video frames receive better service at network nodes
while less important packets are preferably dropped. In [9], an integration of
DiffServ, active network and policy based management has been proposed to
automate the configuration at DiffServ nodes. The proposed model, namely
DiffServ Active Control Architecture (DACA), consists of DiffServ active com-
ponents that allow flexible control over the classifier, meter, dropper and sched-
uler algorithms through policies. It provides a repository of the active codes
for those mechanisms that could be loaded on active nodes on demand and a
Dynamic Management Information Base (DMIB) where the managed objects
and information can be changed or added dynamically. However, this work
focuses on dynamic QoS within the DiffServ framework only.

In [10], Tansupasiri and Kanchanasut proposed another concept of using ac-
tive networks to provide dynamic QoS. The proposed system, namely Dynamic
Quality of Service (D-QoS), allows the QoS requirements to be reconfigured
dynamically on network nodes upon receiving the requests within the active
packets from authorized users. An authorized user can request for an interrup-
tion of a privileged flow transmission, in the same manner as the interruption
of a super user process in the operating system where system resources are
first given to the super user. An example of the privileged flows is the time
sensitive flow that requires high precision of data transmission like telesurgery
flow.

Each D-QoS node is triggered and the normal operation mode is automatically
changed to the interruption mode upon receiving a request from an authorized
user. In the interruption mode, the privileged flow is then transmitted with
the privilege over other existing flows. Even though QoS can be characterized
by throughput, delay, jitter and/or loss, the model relies on a narrow QoS
concept based on the bandwidth sharing among flows. The system also allows
multi-level interruptions where privileged flows with different priority levels
can coexist.

Dynamic QoS can be applied regardless of existing network settings provided
that some nodes on the network are D-QoS enabled. The existing network

3

could be a best-effort network without any QoS or it can be a network which
deploys some other QoS models, such as DiffServ. In this particular study,
we have chosen to assume that existing network is employing DiffServ since
DiffServ is a widely used and accepted QoS model.

In [10], the D-QoS model has been successfully implemented and tested through
the prototype and experiments, where the model has operated satisfactorily
in both normal operation mode with DiffServ and interruption mode. In the
normal operation mode where DiffServ is the only QoS model, D-QoS follows
the service level agreement (SLA) of DiffServ, but once in the interruption
mode, the SLA no longer applies.

D-QoS nodes are designed such that they could co-exist with other QoS mod-
els, thus the scheme could be deployed incrementally. We can start by deploy-
ing the scheme in congested routers and then extend it to other routers where
D-QoS nodes may substitute non-active nodes afterwards to ensure the quality
of the privileged flow transmissions. A network administrator may place D-
QoS nodes only on bottleneck hops of the edge network with tight bandwidth.
The system can be deployed without tunneling effort as needed for the Active
Network Backbone (ABone) [11], a dynamic virtual network or Internet over-
lay system, where isolated active nodes are connected through tunnels with IP
encapsulation. We mainly consider deploying D-QoS within an edge network
under same administrator such as within the same autonomous system (AS).
Hence, the security issue for user authentication is not as prominent as in a
large scale network and is outside the scope of this paper.

This paper describes how D-QoS system automatically adjusts its QoS set-
tings according to user requests. The prototype of the D-QoS model is ex-
plained together with the experiments to demonstrate the realization of the
model. An extensive work to that reported in [10], is presented to study the
behavior of the proposed conceptual model through simulation with Internet
traffic patterns and provide analytical study of the model. The paper is or-
ganized as follows. Details of the D-QoS system is presented in Section 2. A
summary of the prototype implementation and the experiments is provided
in Section 3. In Section 4, we present the study of the system performance
where the simulations with ns-2 [12] are reported in Section 4.1. We provide
an analytical investigation on delays using delay probability generating func-
tion in Section 4.2. The security and scalability characteristics are discussed
in Section 4.3. Section 5 investigate other works related to dynamic QoS and,
finally, we conclude the paper in Section 6.

4

2 Dynamic Quality of Service (D-QoS) System

Our proposed model allows bandwidth allocation be dynamically adjusted
based on the concept of active network. An authorized user can send an active
packet requesting for a QoS reconfiguration on D-QoS nodes whenever it has a
need for a prioritized flow to get through. D-QoS system allows the authorized
users to perform interruptions on the nodes such that their privileged flows
can be transmitted through the network with the priority on the expense of
other existing flows. The interruption mechanism of the D-QoS model follows
the concept used in the interruption of a super user process in the operating
system, where the resources are first given to the super user process while
other processes are suspended. In D-QoS, a number of interruption levels are
provided allowing a set of privileged flows to be transmitted according to their
levels of privilege.

The model relies on the concept of active IP network presented in [13,14]
where active IP nodes can coexist and interoperate with normal IP nodes.
Each active packet, called capsule, carries both the program fragment and data
parts. The program part is stored within packet options that are recognized
only on those active nodes and triggers the interruption to be performed on
the nodes. Normal IP nodes ignore the program part and treat these capsules
as normal IP packets.

A flow is a sequence of packets and can be uniquely identified by the informa-
tion placed in packet headers, which are source and destination IP addresses,
source and destination port number and protocol. We refer to flows belonging
to those authorized users as privileged flows. A privileged flow transmission
can be sent as a stream of capsules containing the same program part request-
ing for an interruption. These capsules are forwarded according to any routing
mechanism in used. When a D-QoS node receives a capsule, an interruption is
generated for the flow it belongs to. When an alternate path has been chosen
by dynamic routing mechanism, the interruption generated on D-QoS nodes
on the previous path are removed on timeout where the nodes turn to normal
state. This allows D-QoS to co-operate with any routing mechanisms, both
static and dynamic, where the flow is guaranteed to be transmitted with the
privilege over any D-QoS nodes along its flow path.

D-QoS can be applied regardless of existing network settings. The network
could be a best-effort network without any QoS or it can be a network which
deploys some other QoS models, such as DiffServ. In our demonstration, we
assume that the network is running with DiffServ since it is widely adopted
on IP networks due to its simplicity and scalability. Hence it is expected that
in the practical environment, we would be likely to operate in an environment
with DiffServ is present.

5

In the normal operation mode in our prototypical implementation of D-QoS,
the system offers two main classes in DiffServ, Expedited Forwarding (EF) and
Assured Forwarding (AF) classes following the specification in RFC 3246 [15]
and RFC 2597 [16] respectively.

The bandwidth sharing between classes is predefined and preconfigured where
EF is designed for traffic with low loss, low delay and low jitter requirements,
and AF offers relative bandwidth sharing and drop characteristics among the
aggregates. However, the choice of the QoS model for the normal operation
mode is not limited to DiffServ, any other models can also be provided, even
the best effort service.

To transmit a privileged flow, an authorized user can send active packets or
capsules, each of which contains the interruption request in its program part
and flow payload in its data part. When a D-QoS node receives any of these
capsules, it is triggered to change its operation mode into the interruption
mode where its QoS setting is reconfigured according to the request. The
capsule is then forwarded towards the destination of the flow to generate the
interruption on any D-QoS nodes along the communication path.

In this interruption mode, the D-QoS node no longer supports DiffServ, but al-
lows the privileged flow to be transmitted with the highest possible bandwidth
at the expense of other lower priority traffic. Whenever the node receives a
packet belonging to the privileged flow, the packet is always transmitted be-
fore packets of non-privileged flows. However, the suspended flows can also be
serviced in the absence of the privileged flow.

The queueing mechanism used within this interruption mode aims to give
higher priority to the privileged flow. Other flows previously classified into
DiffServ’s EF and AF classes are transmitted with the lowest priority. To
provide different services for time-sensitive (EF) flows and non-time sensitive
(AF) flows, the two lowest priority levels are reserved for each one of these
two flow types. The time-sensitive flows previously classified into DiffServ’s EF
class are placed in the second lowest priority level, while other flows previously
belonging to DiffServ’s AF classes are given the lowest priority level. Thus,
EF traffic receives lower-loss, lower-delay and lower-jitter comparing to AF
traffic.

D-QoS system provides a fixed range of interruption levels, each of which can
be assigned to a particular privileged flow. These levels determine the priorities
among the privileged flows. The queueing structure in the interruption mode is
illustrated in Fig. 1, with the two lowest priority queues reserved as mentioned
above. Thus, the first interruption request received would change a D-QoS
node operating in its normal operation mode to the interruption mode with
three output queues of different priorities where the highest priority is for the

6

DiffServ AF Classes

Privileged Flow (level n)

Highest Priority

Lowest Priority

DiffServ EF Class

Privileged Flow (level 3)

Priority Level

n

3

1

2

DiffServ AF Classes

Privileged Flow (level n)

Highest Priority

Lowest Priority

DiffServ EF Class

Privileged Flow (level 3)

Priority Level

n

3

1

2

Fig. 1. Queueing Architecture for Interruption Mode on D-QoS Node

privileged flow.

An authorized user may request for a specific interruption level according to
the flow requirement. The requested level is examined by each D-QoS enabled
node for its availability. If the privileged flow is requesting for an interruption
level which is occupied by another privileged flow, an interruption with a lower
level is generated instead. An interruption request results in an insertion of a
new queue with the requested priority level into the output queueing structure.
At the end of the privileged flow transmission, the queue is removed from the
system. Thus, the number of queues shown in Fig. 1 may vary according to the
number of active privileged flows. Once all the privileged flows have completed
their transmissions, the system resumes its normal operation on DiffServ.

3 D-QoS Prototype and Experiments

A prototype implementation of D-QoS has been constructed to demonstrate
the concept with three D-QoS nodes, as shown in Fig. 2, where each D-QoS
node is a PC router running FreeBSD. Each D-QoS node is implemented as
an active node by emulating an active IP node that provides restricted prim-
itives related to the interruption handling. The program code transmission is
separated from the data transmission in this particular implementation. Pro-
gram code for interruption request or removal is sent to D-QoS nodes through
an opened UDP socket, while flow payload is transmitted as normal IP pack-
ets. Prior to the flow transmission, the request is sent to all D-QoS nodes,
one by one. A request contains the information used to identify a particular
flow and the required interruption level as the parameters for the primitive.
A specific flow is identified by the source and destination addresses, source
and destination port numbers and protocol identification. Upon receiving an
active packet, its program part is examined and the appropriate action is per-
formed on the D-QoS node, as instructed by the program. Once the D-QoS

7

A BEthernet
1 0 0 M b p s CEthernet

1 0 M b p s

T r a f f i c D i r e c t i o n

S o u r c e S i n k

A BEthernet
1 0 0 M b p s CEthernet

1 0 M b p s

T r a f f i c D i r e c t i o n

S o u r c e S i n k

Fig. 2. The D-QoS Prototype

node is triggered to reconfigure its settings for the interruption, the flow pay-
load can be transmitted. At the end of the transmission, another program
packet is sent to mark the end of the interrupting flow which in effect re-
moves the interruption of the flow and reconfigures the queueing structure on
a D-QoS node accordingly. Even though the program and data transmission is
separated in our implementation, the mechanism of combining both program
and data parts within an active IP packet can be accomplished as presented
in [13,14]. To achieve interoperability between normal and active IP nodes,
program part is placed in packet options which is unknown and ignored by
normal IP nodes, while data part is carried within packet payloads.

Two queueing mechanisms used in our D-QoS system are Class-Based Queue-
ing (CBQ) [17] and Priority Queue(PQ). They are implemented using the
Alternate Queueing (ALTQ) package [18]. In our DiffServ implementation,
CBQ is used to represent the bandwidth partitioning and sharing among Diff-
Serv classes. In this prototype, the system provides one EF class for real-time
flow and four AF classes for background flows where each class has its own
queue with a predefined portion of bandwidth. The structure of the CBQ used
in the system is shown in Fig. 3. As EF class was designed for traffic that re-
quires low loss, low delay and low jitter, it has been configured with higher
priority comparing to AF classes. We give preference to time sensitive traffic
where a limited 75% of the total bandwidth is given to the EF class which
means that even if there is no other traffic, the EF class can only occupy 75%
of the total available bandwidth.

Each of the four AF classes applies an extended version of Random Early
Detection with In and Out (RIO) that provides three drop precedence levels.
In contrast to the limitation in the bandwidth consumption of EF class, an
AF class may receive excess bandwidth, in the absence of any real-time flows
in EF class, up to 100% of the total link bandwidth. Unknown and best effort
traffic flows are classified into one of the four AF classes, AF class 3 or AF3
as shown in Fig. 3.

In the interruption mode, this CBQ structure is automatically substituted
by priority queue (PQ) allowing 16 priority levels maximum. Our prototype
is intended to present a realization of our active node concept rather than
to study the system performance. The PQ used in our prototype puts both
DiffServ EF and AF classes on the same level, priority level 1, hence differs
slightly from the queueing structure shown in Fig. 1. Whenever a D-QoS node

8

��� � ����� � 	 	

����� � 	 	

��������� � 	 	

������ � 	 	�� � � � � � ���

��������� � 	 	 ��������� � 	 	

� � � ��� � � � ��� � � ! " �

����#���� � 	 	

� $ $ %

& ' % ��' %

Fig. 3. Class-Based Queuing (CBQ) Structure for DiffServ Implementation

t = 40t = 0

Real-Time Flow

Telesurgery Flow

Background Flow

t = 10 t = 30 t = 40t = 0

Real-Time Flow

Telesurgery Flow

Background Flow

t = 10 t = 30

Fig. 4. Traffic Generation Pattern in the Experiments

receives an interruption request, the node reconstructs its queueing structure
where a new queue with the requested level is inserted to the PQ allowing
a number of privileged flows with different priories to coexist. A queue can
be removed once an active packet marking the end of the transmission of a
privileged flow is received. Thus, the number of queues and their priorities
in this PQ is dynamically adjusted over time according to the active packets
received. When there is no more privileged flows in the system, the D-QoS node
resumes its normal operation mode with DiffServ. Note that, each queueing
reconstruction results in empty queues where the previous queue content has
been flushed.

The two Ethernet links in the prototype have been configured with different
speeds, 100 Mbps and 10 Mbps, in order to create a bottleneck. The aims of
the experiments are to demonstrate how interruption can be realized using a
network with D-QoS nodes. We set up an experiment whereby a telesurgery
flow which needs high precision of data transmission and also has high band-
width is authorized to interrupt any existing flows. The interruption request
is assumed to be the one at level 16. Similar to the transmission of other time
sensitive flows where the transmission rate is preferred over reliability, the flow
is transmitted over UDP rather than TCP. In our experiments, three flows rep-
resenting the telesurgery flow, the real-time flow and the background Internet
flow are generated by the generator program, Iperf [19], as uni-directional
UDP flows from node A to C. Each of the three flows is a constant rate UDP
flow of size 6 Mbps, which consumes 60% of the 10 Mbps link. The flow gener-
ation pattern is shown in Fig. 4. The two flows, real-time flow and background
Internet flow, are transmitted at the beginning of the experiments and last for
40 seconds. After the first 10 seconds, the telesurgery flow is generated and
lasts for 20 seconds.

9

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

time (second)

B
an

d
w

id
th

 (
M

b
p

s)

Telesurgery Real-Time Background

Fig. 5. Experimental Results in Normal Mode with DiffServ

Fig. 5 shows the bandwidth consumed by the three flows in normal operation
mode with DiffServ. In this case, both real-time flow and telesurgery flow are
classified into EF class and share the available bandwidth of 7.5 Mbps during
the middle 20 seconds of the experiment. The rest of the link bandwidth of 2.3
Mbps is given to the background Internet flow placed into AF class 3 (AF3).
The packet loss percentages for each flow during the middle 20 seconds are 42%
for the telesurgery traffic flow, 44% for the real-time traffic flow and 63% for
the background Internet traffic flow. In the last 10 seconds of the experiment,
there is a period where the real-time traffic flow obtains about 7.2 Mbps, which
is higher than the generated rate and nearly reaches the maximum bandwidth
limitation for EF class. The reason is because there are some packets left in
the buffer queue during the congestion time and they are forwarded out when
more bandwidth becomes available.

The experimental results in the case of an interruption of the telesurgery flow
is shown in Fig. 6. The traffic flows are generated with the same pattern as
the previous experiment, as shown in Fig. 4. Prior to the transmission of the
telesurgery flow at time t=10 seconds, an interruption request is generated and
DiffServ based on CBQ is dynamically substituted by PQ for the interruption
mode. The results of the first 10 seconds are based on DiffServ and yield the
same results as those in the first 10 seconds of Fig. 5. In the middle 20 seconds
where the system operates in the interruption mode, the telesurgery flow ac-
quired 6.3 Mbps with no packet losses. Since all DiffServ flows are placed into a
single queue with the lowest priority or level 1 in our prototype, the rest of the
available bandwidth is shared between the real-time and the background In-
ternet flows with 62.3% and 59.8% packet loss percentages respectively. After
the completion of the telesurgery flow transmission, the system then resumes
back to its normal mode in the last 10 seconds. As the queue content is dis-
carded, the experiment in this period gives the same results as those at the
beginning 10 seconds. Comparing to the result in the normal mode, the in-
terruption mechanism provided in D-QoS allows the telesurgery flow to be
delivered with less packet loss.

For the case of multi-level interruption, we assume two interruption requests
on an existing flow X (as a background Internet flow). First, an interruption

10

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

Time (second)

B
an

d
w

id
th

 (
M

b
p

s)

Telesurgery Real-Time Background

Fig. 6. Experimental Results in Interruption Mode

t = 60t = 0

Flow X

Flow Z

Flow Y

t = 10 t = 40 t = 50t = 20 t = 60t = 0

Flow X

Flow Z

Flow Y

t = 10 t = 40 t = 50t = 20

Fig. 7. Traffic Generation Pattern in the Experiments for Multi-Level Interruption

0

2

4

6

8

10

0 10 20 30 40 50 60

Time (second)

B
an

d
w

id
th

 (
M

b
p

s)

Flow Z Flow Y Flow X

Fig. 8. Experimental Results with Multi-level Interruptions

by privileged flow Y at level 10. Then, another interruption by privileged flow
Z at level 16. All flows are of 6 Mbps each. The traffic generation pattern is
illustrated in Fig. 7 and the experimental results are shown in Fig. 8. CBQ
used in the first 10 seconds is substituted by a PQ with 2 levels when flow Y
begins its transmission. PQ with 3 levels is used when the request from flow
Z is received. After the completion of flow Z, the queue for flow Z is removed
and the system is based on PQ with 2 levels, where DiffServ is resumed at
the end. Throughout the experimental period, the results have shown that the
flows are transmitted according to their priorities. The highest priority flow
gains 6.2 Mbps, while 3.4 Mbps is given to the second priority flow.

11

4 Performance Analysis

4.1 Simulation Results with Internet Traffic

The performance of a network is decided by those links where congestion
occurs, usually called bottleneck links. A necessary condition for our service
to be effective is to deploy D-QoS at these links. One can ignore what happens
in the other non-congested links of the network. Thus, as a first step, we only
consider a single bottleneck topology in our simulations, which follows the D-
QoS prototype shown in Fig. 2. The congestion is supposed to appear in one
place of the network which is modelled in the topology by the 10 Mbps link,
and the rest of the network is abstracted by the two links before and after the
bottleneck. In a second step we consider a simulation topology composed of
multiple bottleneck links in series.

The simulations are performed on a modified version of ns-2 based on realistic
traffic types according to the traffic patterns found in the Internet. For our
privileged flow, we use a sample telesurgery flow which is a transmission of
a high quality video stream from the patient side to the doctor side. It is
represented as a unidirectional VBR stream. On the background, the Internet
traffic is divided into two main types, time-sensitive and non time-sensitive
applications. Additional video flows with VBR are simulated as time-sensitive
background traffic. Non time-sensitive traffic is represented by FTP flows. The
performance parameters measured in the simulations for the time-sensitive
flows are delay, jitter and packet loss percentage. In case of non time-sensitive
flows, only the transmission time is measured.

All VBR flows are generated from video trace files of movies [20–24]. Each
trace file records the results obtained from the video encoding algorithm, with
ITU-T H.26L standard, and comprises the times at which the frames are
transmitted and the frame sizes. These times are then transformed into the
inter-frame times, which are equal, of 40 msec (millisecond), since all the
streams are generated with the rate of 25 frame/sec. The frame size varies as
a result of the video encoding mechanism. Each frame may be split into several
UDP packets of 1500 bytes each. As burstiness is not likely to happen in the
network due to traffic shaping mechanisms, the packets from a single frame are
spaced evenly within 40 msec instead of being generated as a bunch at every 40
msec. Each VBR flow starts with a random starting point within the trace file.
As the random starting point is used, the trace files are modified by excluding
the beginning and/or ending parts to get rid of the extraordinary frames.
When the end of the trace file is reached, the trace is wrapped around and the
beginning of the trace is used. To make sure that flows are not synchronized,
each flow begins its transmission at a random time within the first 40 msec.

12

t = 0 t= 120 t = 420 t = 540

Video1

Video2

Telesurgery

FTP1*

FTP2*

* FTP completion time is not known in advance

t = 0 t= 120 t = 420 t = 540

Video1

Video2

Telesurgery

FTP1*

FTP2*

* FTP completion time is not known in advance

Fig. 9. Traffic Generation Pattern of 5 Flows

The FTP flows are based on TCP Reno implementation in ns-2.

We present, in this section, four simulation scenarios. The first scenario, in
Section 4.1.1, aims to compare the performance in normal operation mode
where the network uses DiffServ without any D-QoS enabled nodes and in the
interruption mode where D-QoS nodes are present. To demonstrate a scenario
when the bandwidth available is insufficient, an extreme case where the priv-
ileged flow requires higher bandwidth than the total link capacity is reported
in Section 4.1.2. The scalability of the system is analyzed in Section 4.1.3 and
4.1.4 based on the number of the interruptions at a particular bottleneck link,
and the number of interruption links on a flow path, respectively. For each
scenario, a number of simulations are repeated to obtain simulation results
with 90% confidence level. As we mainly consider the network within an au-
tonomous system (AS), each link has been configured with 10 msec delay. The
sizes of the network queues are set with ns-2 default values of 50 packets.

4.1.1 Performance Comparison with DiffServ

We compare the performance of the flow transmissions in two operation modes,
in normal operation mode without the interruption and the one supporting
interruption request on D-QoS nodes. The predefined QoS setting follows the
CBQ structure previously presented in Fig. 3. The time diagram in Fig. 9
shows the traffic generation pattern used in this scenario. The simulations first
start with the transmission of two video flows, video1 and video2, which last
for 540 seconds. The telesurgery flow starts 120 seconds after the beginning of
the simulation and completes after its 300 seconds of transmission. These flows
are generated from a trace file [20], of which the average bit rate is 3.5 Mbps,
at different starting points randomly chosen in each simulation run. They are
classified into the same class, DiffServ EF class. There are also two FTP flows,
each of which is configured for a transfer of 100 MB file. FTP flows start their
transmissions at the beginning of the simulation and are placed into DiffServ
AF class 3 or AF3.

An example of the bandwidth sharing among the flows, taken from a particular

13

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450 500 550

Time (second)

B
an

d
w

id
th

 (
M

b
p

s)

Telesurgery Video1 Video2 FTP1 FTP2

Fig. 10. Bandwidth Sharing of Flows with DiffServ in Normal Mode

Flow Packet Loss Percentage(%) Delay(msec) Jitter(msec)

Telesurgery 27.32±2.35 94.69±0.10 2.11±0.10

Video1 27.16±1.43 94.67±0.10 2.21±0.14

Video2 28.42±1.99 94.70±0.12 2.21±0.14
Table 1
Statistical Results in the Middle 300 Seconds with DiffServ

run in case of DiffServ, is shown in Fig. 10. The bandwidth assigned to EF
class of 7.5 Mbps is shared among the three VBR flows and the rest of the link
bandwidth is given to the two FTP flows. Table. 1 presents results from 10
simulation runs. The performance parameters are calculated within the 300
seconds transmission time of the telesurgery flow when all flows are active. The
performance of the three VBR flows are close to each other as they belong to
the same class and, therefore, they receive the same treatment. The two FTP
flows, placed in AF3 class, finish their transmissions at nearly the same time.
The transmission time used by the FTP1 is 563.24±3.96 seconds, while FTP2
uses 563.26±3.96 seconds.

When D-QoS nodes are present in the network, the telesurgery flow can make
an interruption, assumed at level 16, on other existing flows before its trans-
mission. It then receives the highest priority during the interruption period of
300 seconds. The bandwidth sharing result, taken from a single run, is shown
in Fig. 11. The rest of the link bandwidth is first given to the two VBR flows
previously belonging to EF class, as they have priority level 2. The two FTP
flows have priority level 1, the lowest level, and receive nearly no bandwidth
during the interruption. The results during the interruption, calculated from
50 runs, are shown in Table. 2. The transmission times for FTP flows are
649.27±1.78 and 649.69±1.69 seconds for FTP1 and FTP2 respectively.

Comparing to the results in the normal mode with DiffServ, the telesurgery
flow is transmitted over D-QoS nodes with the best service from the network

14

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Time (second)

B
an

d
w

id
th

 (
M

b
p

s)

Telesurgery Video1 Video2 FTP1 FTP2

Fig. 11. Bandwidth Sharing of Flows with D-QoS Interruption Mechanism

Flow Packet Loss Percentage(%) Delay(msec) Jitter(msec)

Telesurgery 0.00±0.00 21.86±0.00 0.41±0.00

Video1 6.96±0.66 86.74±3.26 29.82±1.55

Video2 7.24±0.77 86.67±3.27 29.79±1.56
Table 2
Statistical Results in the Middle 300 Seconds with D-QoS Interruption Mechanism

and receives much lower delay and jitter, with no packet loss at all. The
performance of the two video flows are also improved with less delay but higher
jitter, and less packet loss percentages. D-QoS outperforms DiffServ in this
particular case. This is because the static configuration of DiffServ is posing
limitation on bandwidth allocation of the EF flows where 7.5 Mbps is given to
all the three VBR flows which is insufficient. D-QoS allows dynamic bandwidth
allocation where all the three VBR flows share the 10 Mbps link bandwidth,
in which the highest priority is given to the telesurgery flow (3.5 Mbps) and
the other two flows each of 3.25 Mbps. Thus, dynamic bandwidth allocation
scheme in D-QoS offers better services, in terms of delay and loss, to EF flows
when the preconfigured bandwidth limitation in DiffServ is insufficient for
their requirements. The jitter experienced by these two VBR flows are higher
due to the interruption mechanism where the packets are possibly blocked for
longer times. Video1 and Video2 have less packet loss percentages since there
are two flows in the queue instead of three flows. The two FTP flows need
longer transmission times because they are pending during the interruption
period. The bandwidth portion of 2.5 Mbps assigned to them in DiffServ is no
longer available for their transmissions, but is reallocated to those VBR flows.
Most of FTP data are transmitted after the interruption has completed.

15

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Time (second)

B
an

d
w

id
th

 (
M

b
p

s)

Telesurgery Video1 Video2 FTP1 FTP2

Fig. 12. Bandwidth Sharing in the Extreme Case of the Interruption

Flow Packet Loss Percentage(%) Delay(msec) Jitter(msec)

Telesurgery(14Mbps) 33.38±0.02 79.26±0.01 1.00±0.02

Video1(1Mbps) 99.99±0.00 n/a n/a

Video2(1Mbps) 99.99±0.00 n/a n/a
Table 3
Statistical Results During the Interruption Period in the Extreme Case

4.1.2 An Extreme Case

It is possible that the bandwidth requirement of the privileged flow is higher
than the link capacity. In this scenario, the telesurgery flow is represented
as a 14.3 Mbps VBR flow [21]. Two 3.5 Mbps VBR flows [20] and two FTP
of 100 MB files are generated as the background traffic. The simulations fol-
low the time diagram used in the previous scenario, as shown in Fig. 9. The
bandwidth sharing result is shown in Fig. 12 and the statistical results during
the interruption, from 5 runs, are presented in Table. 3. The results demon-
strate that the privileged flow is always given the network resources at D-QoS
nodes. It can be seen, from the figure, that no other flows is serviced during
the interruption period. However, even the link is dedicated to the telesurgery
flow, the flow also experiences losses since its bandwidth requirement is higher
than the network capacity. In this scenario, the network queue is always full
and, therefore, this results in higher delay and jitter of the telesurgery flow, in
comparison to the former case in Section 4.1.1. With nearly 100% packet loss
of the two background VBR flows, their delay and jitter cannot be reported.
The transmission time of the two FTP flows are 655.63±2.64 and 655.68±2.63
seconds for FTP1 and FTP2 respectively.

16

t = 0 t = 300

Video1

Video2

Telesurgery1

FTP1*

Telesurgery2

Telesurgery10

* FTP completion time is not known in advance

t = 0 t = 300

Video1

Video2

Telesurgery1

FTP1*

Telesurgery2

Telesurgery10

* FTP completion time is not known in advance

Fig. 13. Traffic Generation with Various Number of Telesurgery Flows

4.1.3 Multiple Number of Interruptions

As Internet traffic is dynamic, there can be an arbitrary number of flows at
a bottleneck link. In this scenario we aim to find the number of interruptions
of privileged flows at a bottleneck. The background traffic is configured to
consume half of the link bandwidth and consists of two VBR flows and one
FTP flow. Video1 and Video2 have the average bit rates of 3.4 and 1.9 Mbps
respectively [22,23]. The FTP flow is configured for a transmission of a 100
MB file. The telesurgery flow is a VBR flow of size 1.2 Mbps [24]. All flows
start their transmissions at the same time at the beginning of the simulation
and last for 300 seconds, except the FTP flow in which its completion time
is unknown, as illustrated in Fig. 13. We increase the number of telesurgery
flows in the system, with an increment of its interruption level, one by one. The
first interruption is at level 3 and the interruption level of the 10th telesurgery
flow is at level 12. The results of the performance degradation of the back-
ground traffic are shown in Fig. 14–17. The two background video flows start
to have packet loss when there are 3 telesurgery flows in the system. Packet loss
percentages increase linearly until they reach 100%. When the loss percent-
age reaches 100%, the delay and jitter cannot be reported. The transmission
time required by the FTP flow increases and becomes stable after there are 4
telesurgery flows in the system as FTP flow can use the link only after all the
video flows have completed.

We can conclude that the maximum number of telesurgery flows at a bot-
tleneck link is limited by the total link bandwidth. All telesurgery flows are
transmitted with nearly 0% packet loss and low delay and jitter. However,
when the total bandwidth requirement of the privileged flows nearly reaches
the bottleneck link bandwidth, the privileged flow with the lowest priority
starts to experience performance degradation. In this case, when there are 7
telesurgery flows in the system, even the total average rate is 8.4 Mbps, the
first telesurgery flow with the lowest interruption priority (level 3) starts to
experience 2.9% packet loss due to the nature of VBR traffic.

17

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Number of Telesurgery Flows

P
ac

ke
t

L
o

ss
 P

er
ce

n
ta

g
e

(%
)

Video1 Video2

Fig. 14. Packet Loss Percentage of Background Video Flows, with Various Number
of Telesurgery Flows

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9

Number of Telesurgery Flows

D
el

ay
 (

m
se

c)

Video1 Video2

Fig. 15. Delay of Background Video Flows, with Various Number of Telesurgery
Flows

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5 6 7 8

Number of Telesurgery Flows

Ji
tt

er
 (

m
se

c)

Video1 Video2

Fig. 16. Jitter of Background Video Flows, with Various Number of Telesurgery
Flows

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

Number of Telesurgery Flows

T
ra

n
sm

is
si

o
n

 T
im

e
(s

ec
o

n
d

)

Fig. 17. FTP Transmission Time with Various Number of Telesurgery Flows

4.1.4 Multiple D-QoS Enabled Links

This section presents the impact of the system with multiple interruption links
on a flow path. We increased the interruption links on a path by increasing,
one by one, the number of D-QoS nodes connecting to the system with the 10
Mbps Ethernet links, each has 10 msec delay. The traffic flows are generated
in the same manner as in the previous section, following Fig. 13, but with 3

18

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10

Number of Nodes

P
ac

ke
t

L
o

ss
 P

er
ce

n
ta

g
e

(%
)

Video1 Video2 Telesurgery1 Telesurgery2 Telesurgery3

Fig. 18. Packet Loss Percentage of Video Flows, with Various D-QoS Links

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10

Number of Nodes

D
el

ay
 (

m
se

c)
Video1 Video2 Telesurgery1 Telesurgery2 Telesurgery3

Fig. 19. Delay of Video Flows, with Various D-QoS Links

0

5

10

15

20

25

30

35

3 4 5 6 7 8 9 10

Number of Nodes

Ji
tt

er
 (

m
se

c)

Video1 Video2 Telesurgery1 Telesurgery2 Telesurgery3

Fig. 20. Jitter of Video Flows, with Various D-QoS Links

0

200

400

600

800

1000

1200

3 4 5 6 7 8 9 10

Number of Nodes

T
ra

n
sm

is
si

o
n

 T
im

e
(s

ec
o

n
d

)

Fig. 21. FTP Transmission Time with Various D-QoS Links

telesurgery flows. The results are shown in Fig. 18–21. From our simulation
results, it is observed that by increasing the number of nodes on the flow path
does not affect the performance of the privileged flows. The privileged flows
are given the best service over all the links with D-QoS nodes. Even the flows
experience higher delays, but they are due to the unavoidable link delays. As
the link is added linearly with a fixed delay of 10 msec each, the delay of each
flow is also linearly increased. Thus, having more D-QoS nodes on the flow
path would ensure the transmission quality of the privileged flows.

19

4.2 Analytical Analysis of Delays

We model the D-QoS mechanism by focusing on a D-QoS router that operates
in the Internet backbone. We assume that the D-QoS router degree is large
and that each individual flow has a very small throughput compared to the
router capacity. On each router there is a buffer, called NQ, for queuing packets
coming from the interrupted non-privileged flows such as DiffServ EF, and a
set of priority buffers, called IQs, for flows that have priority over the non-
privileged flows. The NQ and IQ buffers can be seen as a set of priority queues
in parallel ranked in the increasing order of priority. Since the network is large,
we assume that there are lot of IQ queues on each D-QoS node and that each
D-QoS node only sends a quantum of its load to each of its neighboring routers.

That way, considering an arbitrary router and referring to the Law of Large
Numbers we can assume that the global traffic load in its IQ queues and in its
NQ queue are Poisson of respective load λI and λN in packets/s. The input
traffic in each prioritized queue may be periodic with jitter but it does not
matter since we assume there are so many IQ queues that none of them will
contain more than one packet at a time. We further assume that all flows in
the network have the same throughput. This assumption is not critical, it is
made to ease the exposition of the analysis.

4.2.1 Queueing Analysis

If X and Y are two integer random variables, we denote by X ∗ Y the
random variable obtained by summing X identical independent distributed
(i.i.d) copies of Y . Or in other words X ∗ Y = Y 1 + · · · + Y X where the
Y is are i.i.d like Y . Notice that X ∗ Y 6= Y ∗ X. Let f(z) and g(z) be re-
spectively the probability generating functions (p.g.f.) of variables X and Y :
f(z) =

∑
k P (X = k)zk = E(zX) and g(z) =

∑
k P (Y = k)zk = E(zY), then

the p.g.f of X ∗ Y is E(zX∗Y) = f ◦ g(z)

4.2.2 Delay Distribution for Privileged Queues

We consider that the NQ and IQ priorities rank from 0 to 1 with 1 being the
lowest priority and 0 the highest priority. Therefore an IQ flow of priority x
has to give priority to a volume of traffic of size λIx. We take a slotted model
and slot duration is the time unit.

First we analyze the length of the busy period Bx of the traffic of priority
less than x, i.e. the waiting time between two consecutive slots accessible for
traffic of priority x. We denote by βx(z) the probability generating function
(p.g.f.) of Bx, namely βx =

∑
k P (Bk = k)zk. We have the identity between

20

random variables

Bx = Ax ∗ (1 + Ax ∗ (1 + · · ·)) (1)

or, similarly

Bx = Ax ∗ (1 + Bx) (2)

where Ax is the number of packet arrivals of priority less than x during a time
slot. Since the p.g.f of Ax is exp((z − 1)xλI), we have the p.g.f identity.

βx(z) = exp((zβx(z)− 1)xλI) (3)

Using the well known Cayley Tree function T (z) =
∑

k
kk−1

k!
zk which is the

solution of the functional equation T (z) exp(−T (z)) = z [25] we get

βx(z) = T (xλIe
−xλIz)

1

xλIz
(4)

We have P (Bx = k) = ((k+1)k

(k+1)!

(
xλIe

−xλI

)k
. Since the tree function has a

singularity on z = e−1 which is of the square root type, we have P (Bx = k) ∼
1

k
√

2πk

(
xλIe

−xλI+1
)k

. Notice that xλIe
−xλI+1 < 1 as long as 0 < xλI < 1.

Second, from the busy period expression we derive the p.g.f of the delay dis-
tribution Wx of a random packet of the flow of priority x. Taking wx(z) =∑

k P (Wx = k)zk, it comes that Wx is the remaining of a busy period Bx

taken at a random time. In other word:

∑

k

P (Wx = k)zk =

∑
k P (Bx = k)(1 + z + · · ·+ zk−1)∑

` P (Bx = `)`
(5)

=
1− βx(z)

(1− z)β′x(1)
(6)

and it has the same singularity as βx(z), indeed one finds P (Wx = k) ∼
1√
2πk

(
xλIe

xλI+1
)k

. The delay distribution of packets belonging to IQ flows

has a geometric tail (the factor
√

k has negligible variations compared to
exponential).

4.2.3 Delay Analysis of the Non-Privileged Queue

The non-privileged queue, NQ, is equivalent to a single server queue with
vacation. A vacation corresponds to the busy period of the whole IQ queues,

21

namely B1 plus one slot.

First, let Q be the queue length after the end of a random busy period. We
have the random variable identity obtained from the evolution over a vacation
period:

Q = Q− 1|+ + (B1 + 1) ∗ AE (7)

where x|+ = x if x > 0 and zero otherwise, and AE is a per slot packet arrival
in the NQ queue. The p.g.f of A is a(z) = exp((z − 1)λN).

Translating this identity in p.g.f., with q(z) =
∑

k P (Q = k)zk it comes:

q(z) =
(

1

z
(q(z)− q(0)) + q(0)

)
a(z)β1(a(z)) (8)

and therefore

q(z) = q(0)a(z)β1(a(z))
z − 1

z − a(z)β1(a(z))
(9)

and q(0) = 1 − (β′1(1) + 1)λN in order to keep q(1) = 1 (unitarity). It turns
out that P (Q > k) ∼ ρ−k

1 where ρ1 is the first root greater than 1 of z −
a(z)β1(a(z)).

Second we look at the delay that a packet experiences when it arrives during
a vacation period of length `. The delay is Q ∗ (B1 + 1) + Ω` where Ω` is
the remaining delay, i.e. the sum of the remaining time before the end of the
current vacation period and the additional vacation cycles the packet has to
wait due to the packets arrivals before its own during that vacation cycle. Let
Ωj

` be the remaining delay when packet arrives on the jth slot of a vacation
period of length `. We have Ωj

` = ` − j + (j − 1) ∗ AE ∗ (B1 + 1) + CE ∗
(B1 +1), where CE is the number of arrivals on slot j which arrived before the

packet. The p.g.f of CE is c(zβ1(z)) = e(z−1)
λN
2 . Therefore ωj

`(z) = E(zΩj
`) =

c(zβ1(z))z`−j(a(zβ1(z)))j−1. Let ω`(z) =
∑

k P (Ω` = k)zk. We have

ω`(z) =
1

`

∑̀

j=1

ωj
`(z) (10)

=
1

`
c(zβ1(z))

a(zβ1(z))` − z`

a(zβ1(z))− z
(11)

The p.g.f. of Q ∗ (B1 + 1) is equal to q(zβ1(z)). Let ω(z) be the unconditional
p.g.f of the remaining delay. we have:

22

ω(z) =
1

1 + β′(1)

∑

`

`P (B1 + 1 = `)ω`(z) (12)

= c(zβ1(z))
(a(zβ1(z))β1(a(zβ1(z)))− zβ1(z))

(1 + β′(1))(a(zβ1(z))− z)
(13)

Therefore the full delay p.g.f is equal to q(zβ1(z))ω(z). The main singularity
comes from the singularities of q(zβ1(z)), i.e. the root of function zβ1(z) −
a(zβ1(z))β1(a(zβ1(z))). In fact we have ρ1 = ρ2β1(ρ2): ρ2 maps to ρ1 with the
function z → a(zβ1(z)). The main singularity being a simple pole we have
therefore P (W = k) ∼ ρ−k

2 , which is a geometric tail of rate ρ−1
2 .

4.2.4 Delay Analysis in Full Network and Equivalent Bandwidth

According to our basic hypotheses, the routers are independent. In this case
the p.g.f of the overall delay in the network for a given flow is equal to the
product of the p.g.f of the delays that are experienced in the routers on the
path of the flow. Since the delay probability distribution have geometric tail,
the overall delay has also a geometric tail (which is basically the tail of the
distribution in the router that provides the dominant tail). This refinement
allows us to define an equivalent bandwidth for an IQ flow when we have to
conform to probabilistic delay requirement of the form P (delay > T) should be
smaller than a given ε. For detailed definition and discussion about equivalent
bandwidth, the reader should refer to the excellent survey [26]. For the IQ
traffic one must take care of the fact that the priority x of a given flow may
not be the same on the different routers crossed by the flow and therefore for
the same path and same delay requirement, two flows may have two different
equivalent bandwidths.

4.3 Security and Scalability

In this paper, we consider the use of D-QoS within an AS, thus the security
issue is not prominent and is outside the scope. However, the works in [27–
29] has suggested the implementation of security in active networks where
the sending network element or user identification and resource access autho-
rization are addressed for secure execution of active programs. The programs
should be constructed based on the languages that provide safe execution
such as Java and a special language particularly designed for active networks
in [30], and run on a secure environment with limited resource (CPU time and
memory). User identification is verified through cryptographic authentication
mechanism based on principal ID and digital signature to allow only trusted
users to perform the executions on network nodes. To limit the resource con-
sumption, node resource access is allowed only through the interfaces. Another

23

secured active network has been proposed by [31] based on another idea where
a web of trust elements is maintained using public/private key authentication.

In our D-QoS model, accesses to resources within each node is limited to in-
terruption handling operations through primitive invocation. Nevertheless, a
privileged user authentication is important and should be addressed. For large
scale deployment, D-QoS boundaries could be set up whereby user authenti-
cation can be applied to incoming active packets at the boundary nodes. Once
entered into the secured domain, active packets from privileged users can be
freely admitted to reconfigure the network nodes within the boundary. This
is similar to DiffServ in which complex functions are performed at network
boundaries and does not cause overhead on the interior nodes.

Although D-QoS provides QoS on a per-flow basis, similar to IntServ, the
overhead for node processing at each network node is minimal where the flow
state information does not have to be maintained. With an increased number
of D-QoS links on a given path, it would strengthen the assurance of the
transmission quality for the privileged flows. The number of D-QoS links on
the flow path has been shown to have no effect on the throughput, except for
some extreme cases where link capacity is insufficient.

Since the D-QoS node is an active IP node, the D-QoS scheme could be inter-
operated with normal IP nodes in the network. The network administrators
may deploy D-QoS nodes, at the beginning, only in a part of an edge network
where the link bandwidth is tight. The interruption mechanism provided by
D-QoS would allow the privileged flow to be transmitted over the tight band-
width link with the highest priority. Then the administrator may subsequently
expand the number of D-QoS nodes to cover other links within the network.

The performance of the active nodes is reported in [27] with consideration
on per capsule forwarding, code distribution and periodic node management
tasks. The capsule processing within active nodes in [27] is at most a factor
of two of the basic processing time.

For scalability, though processing requirements for each active node is much
lass than those of IntServ, it is suggested that D-QoS should be partially
deployed. Network nodes without tight bandwidth problem that are highly
loaded, such as core routers, should be normal IP nodes and thus are not slowed
down by capsule processing. With the advances of the underlying technology,
the bottleneck routers are considered having limitation on bandwidth rather
than the processing capacity. Hence, implementing D-QoS over these nodes
would not affect the throughput of the routers.

24

5 Related Works

Dynamic resource allocation presented in [6] differs from D-QoS in which the
resource allocation is free from any existing preconfiguration. The QoS setting
in D-QoS is automatically adjusted to offer the interruption according to the
requests from privileged flows. In addition, our work also differ from theirs in
term of service granularity while their work offers QoS based on an aggregation
of flows basis, our proposed D-QoS provides services based on a per flow basis
where interruption is generated for a particular flow.

In [9], a dynamic node configuration architecture, namely DACA architec-
ture, was proposed using active network technology for the control of DiffServ.
Similar to DACA, D-QoS model employ active network with the capsule ap-
proach, to provide a QoS reconfigurable network. However, the idea of QoS
reconfiguration differs in its details where in DACA architecture, it is required
that the network administrator adjusts the configuration, through the changes
of policies, according to the modification in SLA or in response to the traf-
fic monitoring process. In D-QoS, the QoS reconfiguration can be performed
automatically once the privileged application starts its transmission without
involving a network administrator. D-QoS also allows the network to quickly
react to the changes in the traffic requirements or the network condition when
compared to the reconfiguration in [9] where the SLAs may be modified in a
daily, weekly or monthly basis.

6 Conclusion

The proposed D-QoS system allows QoS settings to be reconfigured dynam-
ically according to user requests, based on the active network concept. An
interruption request by an authorized user can automatically trigger QoS re-
configuration on D-QoS nodes. The privileged flow is then transmitted over
the network with the highest priority at the expense or possibly blockage of
other existing flows. Through both experimentation and simulation, the sys-
tem has been shown to work satisfactorily where the QoS settings are correctly
reconfigured according to the interruption requests and the privileged flows
are transmitted with high priorities. In an extreme case in which the band-
width requirement of the privileged flow is more than the link capacity, all
the network resources are given to this flow and the link is dedicated to the
flow while other flows of lower priorities are blocked. In addition to providing
high quality of service to privileged flows, the system can also improve the
bandwidth utilization which may result in better transmission performance of
other flows.

25

With the D-QoS prototype and its performance evaluation, we have shown
that the active networking concept can be used as a tool to achieve dynamic
QoS network where network nodes can automatically adjust their settings
according to the active packets received. Even the model provides QoS based
on a simple priority queue mechanism, more general and complex QoS models
may also be accomplished through the use of active networks in the future.

7 Acknowledgements

The first author wishes to thank the Royal Thai Government for providing
a scholarship for her study. This work was partially supported by the French
regional cooperation programme and the 2004 Next Generation Internet STIC-
ASIE project.

References

[1] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, G. J. Minden,
‘A Survey of Active Network Research’, IEEE Communications Magazine, Vol.
35, No. 1, January 1997, pp. 80-86

[2] R. Braden, D. Clark, S. Shenker, ‘Integrated Services in the Internet
Architecture: an Overview’, RFC 1633, June 1994.

[3] A. Detti, M. Listanti, S. Salsano, L. Veltri, ‘Supporting RSVP in a Differentiated
Service Domain: an Architectural Framework and a Scalability Analysis’,
ICC’99, June 1999.

[4] Y. Bernet, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie,
J. Wroclawski, E. Felstaine, RFC 2998, ‘A Framework for Integrated Services
Operation over Diffserv Networks’, November 2000.

[5] S. Salsano, E. Sangregorio, M. Listanti, ‘COPS DRA: a protocol for
dynamic Diffserv Resource Allocation’, Joint Planet-IP NEBULA workshop,
Courmayeur, Italy, January 2002.

[6] A. Ramanathan, M. Parashar, ‘Active Resource Management for The
Differentiated Services Environment’, in Proc. of the Third Annual
International Workshop on Active Middleware Services, IEEE Computer
Society 2001, 2001, pp. 78-86.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, ‘An Architecture
for Differentiated Services’, RFC 2475, December 1998.

[8] Y. Bai, M. R. Ito, ‘Active Network-based Mechanisms and Node Architecture
to Enhance Quality of Service for Video Transport over IP Networks’, 5th
Workshop on Media and Streaming Processors (MSP5), December 2003.

26

[9] N. Achir, N. Agoulmine, M. Fonseca, Y. Ghamri-Doudane, G. Pujolle,‘Active
Technology as an Efficient Approach to Control DiffServ Networks: the
DACA Architecture’, IFIP/IEEE International Conference on Management of
Multimedia Networks and Services (MMNS) 2002, October 2002.

[10] T. Tansupasiri, K. Kanchanasut, ‘Dynamic Quality of Service on IP Networks’,
in Proc. of ICOIN 2003, LNCS 2662, Springer-Verlag, 2003, pp. 573-582.

[11] ‘ABone Home page’, http://www.isi.edu/abone/.

[12] ‘Network Simulator – ns-2’, http://www.isi.edu/nsnam/ns/.

[13] D. J. Wetherall, D. L. Tennenhouse, ‘The ACTIVE IP Option’, in Proc. of the
Seventh ACM SIGOPS European Workshop, September, 1996.

[14] D. M. Murphy, ‘Building an Active Node on the Internet’, Master’s thesis, MIT,
1997.

[15] B. Davie, A. Charny, J. C. R. Bennett, K. Benson, J. Y. Le Boudec, W.
Courtney, S. Davari, V. Firoiu, D. Stiliadis, ‘An Expedited Forwarding PHB
(Per-Hop Behavior)’, RFC 3246, March 2002.

[16] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, ‘Assured Forwarding PHB
Group’, RFC 2597, June 1999.

[17] S. Floyd, V. Jacobson, ‘Link-Sharing and Resource Management Models for
Packet Network’, IEEE/ACM Transactions on Networking, Vol. 3 No. 4, August
1995.

[18] K. Cho, ‘A Framework for Alternate Queueing: Towards Traffic Management
by PC-UNIX Based Routers’, Proceedings of USENIX 1998 Annual Technical
Conference, 1998.

[19] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, ‘Iperf’, May 2002,
http://dast.nlanr.net/Projects/Iperf/

[20] Acticom Mobile Networks, ‘Starship Troopers: Quantization parameter for all
frames: 1’, 2002, http://www.acticom.info/1469.html

[21] Acticom Mobile Networks, ‘Bridge Close (CIF): Quantization parameter for all
frames: 1’, 2002, http://www.acticom.info/1631.html

[22] Acticom Mobile Networks, ‘Bridge Close (QCIF): Quantization parameter for
all frames: 1’, 2002, http://www.acticom.info/1630.html

[23] Acticom Mobile Networks, ‘High Way (QCIF): Quantization parameter for all
frames: 10’, 2002, http://www.acticom.info/1572.html

[24] Acticom Mobile Networks, ‘Starship Troopers: Quantization parameter for all
frames: 10’, 2002, http://www.acticom.info/1467.html

[25] J. Fill, P. Flajolet, N. Kapur, ‘Singularity Analysis, Hadamard Products, and
Tree Recurrences’, Journal of Computational and Applied Mathematics, Vol.
174, February 2005, pp. 271-313.

27

[26] L. Georgiadis,P. Georgatsos, K. Floros, S. Sartzetakis, ‘Lexicographically
optimal balanced networks’, IEEE/ACM Transactions on Networking, Vol. 10,
Issue 6, December 2002, pp. 818-829.

[27] D. Wetherall, ‘Active Network Vision and Reality: Lessons from a Capsule-
based System’, 17th ACM Symposium on Operating Systems Principles,
December 1999, pp. 64-79.

[28] S. Murphy, E. Lewis, R. Puga, R. Watson, R. Yee, ‘Strong security for active
networks’, In The Fourth IEEE Conference on Open Architectures and Network
Programming, April 2001.

[29] T. Faber, B. Braden, B. Lindell, S. Berson, K. Bhasker, ‘Active Network
Secutiry for the ABone’, November 2001.

[30] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, S. Nettles, ‘PLAN: A Packet
Language for Active Networks’, in Proc. of the International Conference on
Functional Programming (ICFP) 1998, 1998.

[31] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, J. M. Smith, ‘A Secure
Active Network Environment Architecture’, IEEE Network Magazine, Special
Issue on Active and Controllable Networks, 1998.

28

