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Reformulating the Monitor Placement Problem:
Optimal Network-Wide Sampling
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Abstract— Confronted with the generalization of monitoring
in operational networks, researchers have proposed placement
algorithms that can help ISPs deploy their monitoring infras-
tructure in a cost effective way, while maximizing the benefits
of their infrastructure. However, a static placement of monitors
cannot be optimal given the short-term and long-term variations
in traffic due to re-routing events, anomalies and the normal
network evolution. In addition, most ISPs already deploy router
embedded monitoring functionalities. Despite some limitations
(inherent to being part of a router), these monitoring tools give
greater visibility on the network traffic but raise the question on
how to configure a network-wide monitoring infrastructure that
may contain hundreds of monitoring points.

We reformulate the placement problem as follows. Given a
network where all links can be monitored, which monitors should
be activated and which sampling rate should be set on these
monitors in order to achieve a given measurement task with
high accuracy and low resource consumption? We provide a
formulation of the problem, an optimal algorithm to solve it,
and we study its performance on a real backbone network.

I. INTRODUCTION

Network operators perform traffic measurements as part
of their day by day network management activities that in-
clude, for example, traffic engineering, anomaly detection,
accounting and capacity planning. There exist several ways
to perform traffic measurements. Some involve router support
(e.g., SNMP counters, Netflow [1]), while others require
additional equipment to be installed in the network to perform
passive or active measurements.

The various solutions present a trade-off between the ac-
curacy of the measurement and the amount of computing re-
sources they require. SNMP counters, for example, represent a
very low cost solution (in terms of router processing resources)
but give the operator only a rough idea on the traffic that is
traversing the network. The aggregate counters are of little
use to operators interested in users’ perceived performance [2]
or in estimating network traffic demands [3]. At the other
extreme, passive monitoring equipment, that captures every
packet on a link, allows extremely accurate measurements,
but scales very poorly for large networks, given the high unit
cost for deployment and maintenance.

Furthermore, the nature of the measurement task has a
clear impact on the choice of traffic monitors to be used. For
example, in order to estimate the traffic demands, a network
operator would ideally monitor all ingress links in the network
or at least all peering links [4]. However, when the network
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operators want to focus on an individual network prefix or
Autonomous System (AS), they may require a very different
layout of monitors in the network.

Very often network operators do not have prior knowledge
of the measurement tasks the monitoring infrastructure will
have to perform. This is particularly true with security applica-
tions. For example, a specific network prefix that is “below the
radars” for traffic engineering purposes may play an important
role in the early detection of anomalies.

In addition, network traffic demands are subject to short
term variations due to failures and other anomalous events
as well as longer term variations due to the addition of
new customers, peering links, Points of Presence, etc. These
changes quickly make a static placement of traffic monitors
perform sub-optimally.

For these reasons, Internet Service Providers (ISP) prefer
widespread monitoring infrastructures that provide visibility
over the entire network. Netflow [1] is a perfect example
of such monitoring system. Embedded into the routers, it
maintains a list of flow records that describe the traffic for-
warded by the router. The flow records are then exported to a
collector for analysis and storage. However, enabling NetFlow
can have an impact on packet forwarding performance. To
address this problem, router vendors have introduced versions
of Netflow that sample the incoming packets and update the
flow information only with sampled packets.

Network operators then face two options: (i) enable Netflow
on all routers but using very low sampling rates to minimize
potential network impact, or, (ii), enable Netflow on a chosen
set of routers where the sampling rates are set depending on
the measurement task and the target accuracy.

Currently the first option is the one followed by ISPs
because no automated method exists for the second. This work
aims at filling this gap.

The contributions of this paper can be summarized as
follows. First, we define a general framework to approach
the problem of sampling traffic data in large IP networks
(Section III). Our framework allows to combine and solve
in one step the selection of traffic monitors and the setting
of the sampling rates for each monitor. We show how it
can be applied to a general class of measurement tasks. In
particular, we choose one example of such tasks to illustrate
our contributions. We find the sampling rates to estimate the
amount of traffic flowing among a set of origin-destination
pairs1 selected by the network operator. We have chosen this

1In our terminology, origin or destination could refer to any end-host,
network prefix, autonomous system, etc.
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task because it helps in illustrating our contribution and it is,
at the same time, a canonical measurement task for classical
traffic engineering, security and accounting applications. Then,
we provide an optimal algorithm to solve the sampling and
placement problem (Section IV). Finally, we validate the
algorithm using network data collected from the GEANT’s
backbone network [5] (Section V).

II. RELATED WORK

Identifying the strategic locations for traffic monitors is
a hard problem that has attracted significant interest in the
literature. Several solutions have been proposed for different
contexts. For example, in [6], the authors focus on the place-
ment of measurement devices for active monitoring (more
specifically for the construction of distance maps). Others
have addressed the placement problem in an active monitoring
infrastructure to measure delays and detect link failures [7],
[8], [9].

In the passive monitoring domain, Suh et al. [10] address
the problem of placing monitors and set their sampling rates in
order to maximize the fraction of IP flows being sampled. They
propose a two phase approach where they first find the links
that should be monitored and then run a second optimization
algorithm to set the sampling rates. Their approach bears
some similarities with our work, but the analysis is limited
to a generic monitoring goal (maximize the overall sampled
traffic) and only considers a static placement of monitors.
Their formulation leads to a set of heuristics that find near-
optimal solutions. Our approach, instead, allows to indicate
whether a solution corresponds to the global optimum.

Many researchers have also explored ways to improve
NetFlow to automate some of the features and help network
operators configure the routers. Estan et al. [11] propose a
set of techniques to let a router running NetFlow adapt the
sampling rate in order to keep a fixed resource consumption.
The adaptation is a local and independent decision of the
router, and is not tied to any measurement objective. Our
work is complementary to [11] in the sense that it provides a
global sampling strategy for a specific monitoring goal. The
individual routers could then apply local decisions in order to
minimize their memory usage.

There is a large body of literature that addresses the problem
of inversion of traffic properties from sampled traffic [12],
[13], [14]. Duffield et al. [12] show that periodic and random
sampling provide roughly the same result on high speed
links. Random sampling can thus be used in the mathematical
analysis for its appealing features.

Traffic matrix estimation techniques (e.g., [3], [15], [16])
address a measurement task similar to the one we are consid-
ering as example. However, the focus in those works is the
inference of the traffic matrix from partial information (e.g.,
link loads). Indeed, they often use sampled Netflow data to
validate their methods.

III. PROBLEM FORMULATION

In this section we formalize the placement problem. Our
approach to solve it will be described in the next section.

We represent the network by a directed graph G(V, E) where
V corresponds to the set of nodes and E is the set of edges.
The traffic load on edge e ∈ E is denoted by Ue. The routing
of each origin-destination pair (OD pair) is specified by the
routing matrix R, whose entries ri,j = 1 if the OD pair i
traverses edge j and 0 otherwise.

The measurement tasks are defined over a set F =
{1, 2, . . . , F} of OD pairs. We indicate the subset of links
traversed by the OD pairs in F by L ⊆ E . The optimization
framework we propose in this paper is general and can be
applied to any definition of node (e.g., end-host, network
prefix, Autonomous System, etc.).

The quality of a measurement for an OD pair k ∈ F is com-
puted via a utility function M : R+ → R+, whose argument
ρk is the effective sampling rate of OD pair k ∈ F , defined
as the probability that a packet of the kth OD pair is sampled
at least once by at least one monitor deployed in the network.
Note that this definition assumes that we have means to discern
whether the same packet is sampled at multiple locations in
the network. In Section V, we will address this aspect of the
monitoring infrastructure in more detail. Assuming that the
packets are sampled in an i.i.d. (independent and identically
distributed) fashion at each monitor, with pi denoting the
packet sampling probability of the monitor deployed on link
i, and that the sampling processes of different monitors are
statistically independent, we have that

ρk = 1−
∏

i∈L
(1− pi)rk,i . (1)

Clearly, the larger the effective sampling rate, the more infor-
mation it brings. However, the marginal rate of information is
usually smaller for large values of ρk than for small values.
These two observations lead us to reasonably assume that
M(ρk) is an increasing and strictly concave function of ρk.

Our objective is to choose the vector of sampling rates p =
(pi)i∈L that maximizes

∑

k∈F
M (ρk (p)) , (2)

under the constraints

pi ≥ 0 for all i ∈ L (3)
pi ≤ αi for all i ∈ L (4)∑

i∈L
piUi ≤ θ, (5)

where θ is the capacity of the system, defined as the maximum
total number of packets that can be sampled in the entire
network, and αi represents the maximum sampling rate that
can be applied to the individual link i.

All constraints are linear and therefore define a convex
solution space Ω defined by {p | ∑i∈L piUi ≤ θ, 0 ≤ pi ≤
αi ∀i ∈ L}. As the utility function M is strictly concave, the
optimization problem, given by (2), (4) and (5), has a unique
maximizer, that we denote p∗ (see e.g., [17, Chapter 2]).

Note that an alternative objective could be to maximize the
minimum of the utilities, i.e., mink∈FM(ρk(p)). The two
formulations have their advantages and limitations. Maximiz-
ing the sum of utilities gives us more flexibility in setting the



3

sampling rates. Indeed, we can compensate the poor accuracy
of one OD pair increasing the accuracy of another. We will
discuss the implications of this in greater detail in Section V.
On the other hand, maximizing the minimum utility may
lead to increase significantly the sampling rate on those links
that carry small OD pairs. Furthermore, the minimum of
the utilities is not a differentiable function over the whole
parameter space and this may impact the convergence of the
algorithm (see Section IV-D). We leave the study of alternative
objective functions for future work.

IV. METHOD

In this section we first reformulate the optimization prob-
lem using Lagrange multipliers. Second, we introduce and
comment on the assumptions that simplify the computation
of the optimal solution. Third, we discuss the choice of a
suitable utility function M(·). Last, we briefly present the
algorithm used to solve the optimization problem and discuss
its advantages and pitfalls.

A. Our approach

The most common approach to solve a constrained opti-
mization problem, such as the one in (2), (3), (4) and (5), is
to define the corresponding Lagrangian:

L(p, λ, µ, ν) =
∑

k∈F
M (ρk(p))− λ

(∑

i∈L
piUi − θ

)

−
∑

i∈L
µi(pi − αi) +

∑

i∈L
νipi, (6)

where (λ, µ, ν) = (λ, µi, νi)i∈L is the set of Lagrange
multipliers. Each Lagrange multiplier enforces the satisfaction
of one of the constraints (3), (4) and (5) with an equality
sign. A constraint met with an equality sign is called an active
constraint. For example, if pi = αi, then the ith constraint (4)
is active, whereas if pi < αi, it is inactive.

In order to find the unique maximizer p∗, we can solve
the system of equations provided by the Karush-Kuhn-Tucker
(KKT) conditions [18, Chapter 5]. As the solution space is a
convex hull and the objective function is concave, the KKT
conditions are sufficient for optimality (see e.g., [17, Chapter
5.5]). The difficulty in using the KKT conditions to solve the
problem given by (2), (3), (4) and (5) is that it requires to know
the set of active and inactive constraints in advance, which
is not possible. Therefore, we need to rely on an iterative
procedure, such as a gradient projection method to explore
the solution space. Our approach to find the optimal solution
p∗ is given in more details further below.

B. Assumptions

Let us recall the assumptions made so far: the utility
function M is strictly increasing and concave; each monitor
sampling process is i.i.d. and is statistically independent from
the sampling process of the other monitors.

From a practical perspective, we expect to obtain sampling
rates that are in the order of 0.01 and lower. Moreover, we

rarely expect to have more than one or two monitors observing
the traffic of the same OD pair. This allows us to approximate
the effective sampling rate (1) by

ρk =
∑

i∈L
rk,ipi. (7)

This set of assumptions allows to make the optimization
problem more tractable and, as we show in Section V-B, have
a minor impact on the performance of our method.

Next, we force the constraint (5) to be met with an equality
sign. This assumption is pretty straightforward to make, as
there is no practical interest not to use all the provided
resources. Hence (5) becomes

∑

i∈L
piUi = θ. (8)

C. Choosing the utility function

The choice of the utility function M(ρk) is dictated by the
following conditions. First, the utility function has to quantify
the information provided by the measurement for each OD-
flow in F . Second, the function has to comply with the
requirements set by the optimization framework: as mentioned
earlier, it is strictly increasing and concave. Without loss of
generality, we assume that M(0) = 0, i.e. that the utility is
zero if no packet is sampled at all. Third, the function M must
be easy to use in our optimization algorithm. This requires
the function to be twice continuously differentiable. We next
derive a possible function which combines the above specified
properties.

A first straightforward choice for the utility function M is to
use the relative error between the actual metric of interest that
we want to measure (in the present case, the flow size) and its
value estimated from the sampled packets. Let Sk be the actual
size of the kth OD pair (number of packets of the kth OD pair)
in a given time interval, and Xk be the number of sampled
packets from this OD pair in the same time interval. Because
of the assumptions that the sampling processes at different
monitors are independent and that packets are sampled at
most once (Section IV-B), the distribution of Xk conditionally
to Sk is binomial with parameters (Sk, ρk). In this paper,
we consider the squared relative error (SRE) between the
estimated size Xk/ρk and the actual size of the flow Sk, i.e.

SRE =
(

Xk/ρk − Sk

Sk

)2

, (9)

whose expected value is

E[SRE](ρk) =
∫ ∞

0

1− ρk

ρks
dP(Sk ≤ s) = E

[
1
Sk

](
1
ρk
− 1

)
.

Define A(ρk) = 1 − E[SRE](ρk), that we call the mean
squared relative accuracy. A possible candidate for M(ρk)
would be to take it equal to A(ρk), since it is a strictly
increasing, concave function of ρk. However, this function is
not yet adequate to be used as utility function M . The problem
is that the function A(ρk) is not defined at the origin. This is
required, as we expect to have zero utility for zero sampling.
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Fig. 1. The utility function M with respect to the effective sampling rate
ρk . The utility function is defined over the interval [0,1], such as given in
(10).

To fix this problem, we divide the interval [0, 1] in two
intervals [0, x0] and [x0, 1]. We take M(ρk) = 1−E[SRE](ρk)
if x0 ≤ ρk ≤ 1 and M(ρk) = A′(ρk) for 0 ≤ ρk < x0,
where A′ is defined in such a way that it is strictly concave
and increasing and twice differentiable over [0, x0], with
A′(0) = 0, A′(x0) = A(x0), ∂A′(x0)/∂ρk = ∂A(x0)/∂ρk

and ∂2A′(x0)/∂ρ2
k = ∂2A(x0)/∂ρ2

k. A function that complies
with these requirements is the quadratic expansion of A(ρk)
at x0, that reads

A′(ρk) = A(x0) + (ρk − x0)
∂A

∂x
(x0) +

(ρk − x0)2

2
∂2A

∂x2
(x0),

where x0 is given by the relation A′(0) = 0, that is,

A(x0)− x0
∂A

∂x
(x0) +

x2
0

2
∂2A

∂x2
(x0) = 0.

To summarize, we define the utility function M as

M(ρk) =
{

A′(ρk) if 0 ≤ ρk ≤ x0

A(ρk) if x0 ≤ ρk ≤ 1. (10)

We plot the function M(ρk) for E[1/Sk] = 0.002 and for
E[1/Sk] = 0.0002 in Figure 1. We emphasize that this
manipulation on the function has the sole purpose of making
it suitable for our optimization framework. The interval 0 ≤
ρk < x0, on which we use the quadratic expansion A′(ρk), is
of little practical interest because it corresponds to low values
of utility. Hence, we expect that this necessary manipulation
does not affect much the optimization results. We will validate
this observation in Section V.

D. The algorithm

We solve our optimization problem by use of the gradient
projection method for constrained optimization (Refer to [18,
Chapter 5]). At each iteration step n, this method consists
in projecting first the gradient of the objective function onto
the subspace spanned by the active constraints (that is, the
set of points p that satisfy the active constraints). This pro-
jected gradient gives the search direction s(n), along which
the current feasible solution p(n) is moved until either the
objective function is maximized along this line or an inactive
constraint is hit. In the latter case, this inactive constraint has to

be activated and incorporated into the next computation of the
gradient projection. In the former case, the maximization of
the objective function along s(n) reduces to a one-dimensional
search. We choose Newton’s method (refer to [17], chapter
9.5) to perform this search. Newton’s method shows fast
convergence but requires the objective function to be twice
continuously differentiable. Once the new solution p(n + 1)
that maximizes the objective along s(n) is found, a new
search direction s(n + 1) has to be computed. The new
search direction will be orthogonal to the previous one. The
successive search directions s(n), s(n+1), . . . form therefore
a zigzag path in the subspace spanned by the active constraints,
which may result in a poor convergence depending on the
shape of this subspace. A better approach is to add, with some
weighting factor, the previous search direction to the new one.
This weighting factor is usually chosen according the Polak-
Ribiere rule. More details can be found e.g. in [19].

We start our search with a feasible solution p(0) arbitrarily
chosen on the plane defined by the active constraints (5). We
then follow the search direction s(0), that coincides with the
projection of the gradient of the objective function (2) on the
subspace spanned by the active constraints, until we hit the
constraint p1 ≥ 0. This forces us to activate this constraint,
i.e. to set p1 = 0, and to recompute next the search direction
s(1). With Newton’s method we finally find p(2).

We mentioned earlier that in order to find the optimal
solution, we eventually have to know the set of active and
inactive constraints of our optimization problem. That is,
we have to know which monitors i are going to be used
(whose corresponding constraint pi > 0 is inactive) and
which ones not (whose corresponding constraint pi = 0 is
active). This combinatorial explosion is unavoidable as the
monitor placement problem is NP-hard. Probing each possible
combination is not feasible in practice, hence we use the above
introduced gradient method to find iteratively the optimum.
However, we do not have any guarantee that the gradient
projection method always converges to the optimum. It might
well happen that the projection of the gradient s converges to
a zero vector at some point, say p′, which forces us to stop
the search, even though p′ is not optimal. This means that
the algorithm has not generated the optimal set of active and
inactive constraints, and thus that some monitors are turned
on/off on suboptimal links. Given the feasible solution p′

we have obtained, we apply the Karush-Kuhn-Tucker (KKT)
conditions [18, Chapter 5] that determine whether this solution
is optimal or not. To do so, we have to compute the Lagrange
multipliers defined in (6). Having some of them negative
indicates that the algorithm cannot converge to the optimum
with the current set of active constraints. It may be possible
to continue the search by removing (making inactive) some of
the currently active constraints.

A strategy is to remove (make inactive) the subset of active
constraints associated with negative Lagrange multipliers (a
similar strategy is given in [18, Chapter 5]). After this opera-
tion, we recompute the gradient projection on the subspace
spanned by the new set of active constraints and proceed
with the search. We continue until we either reach a point
that satisfies the KKT conditions and therefore is the optimal
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solution by KKT’s theorem, or we abort the search because
the number of iterations (a new iteration starts each time a new
search direction has to be computed) exceeds a threshold we
set on the maximum number of iterations. In our experiments
described in Section V, this threshold is set to 2000 to keep the
execution time of the algorithm in the order of few seconds.
We observe that in 98.6 percent of cases the optimum is found
in less than 2000 iterations.

The performance of the gradient projection method can also
be measured by the number of times we end up in the situation
where we have to remove (make inactive) the active constraints
associated with negative Lagrange multipliers. To provide a
number, we conducted 200 independent executions of the
algorithm, each time with a different set of input parameters
(different OD pair sizes, different link loads, different capacity
θ). The input parameters are given from the data set discussed
in Section V. Even though we cannot have a formal upper
bound on the number of times we have to remove some
active constraints, we observe an average of 1.64 situations per
execution of the algorithm, where we have to remove (make
inactive) the constraints associated with negative Lagrange
multipliers, with a standard deviation of 1.17. These low
numbers, that are specific to the monitoring problem we solve,
justify our choice of the gradient projection method to solve
efficiently our optimization problem.

V. EVALUATION

We study the performance of our method by defining and
simulating a measurement task on GEANT, the European
Research network [5]. Our goal is to verify the following
properties of the solution we obtain with the method described
in Section IV: (i) the sampling rates are low and validate
the approximation in (7); (ii) the solution results in a fair
allocation of resources to each OD pair; (iii) the solution is
clearly superior to other solutions that could be derived without
running any optimization algorithm.

A. Data

We use sampled Netflow data collected on all interfaces of
GEANT network. The links have varying speeds from OC-
3 (155 Mbps) to OC-48 (2.5 Gbps). We also collect in a
continuous fashion BGP and ISIS updates.

Every GEANT router has NetFlow-compatible monitoring
capabilities [20] enabled with a sampling rate of 1/1000. The
packets are classified by the 5-tuple (source and destination
IP address, source and destination port number and protocol
number) and the flow records are exported every minute by
the routers. Each record contains the following information
(in addition to the 5-tuple) that is relevant to this study: (i)
Flow start and end time. The start time is the timestamp of
the first sampled packet of the flow. The end time is the
timestamp of the last packet of the flow. Flow termination is
triggered either by a FIN packet or by an idle timeout (set to 30
seconds). (ii) Sampled packets and bytes. The total number of
sampled packets in the flow and their cumulative size in bytes.
(iii) Source and Destination Autonomous System (AS). The
AS numbers to which the source and destination IP addresses

belong. (iv) Input and output interface. The index of the router
interface on which the flow was received and sent.

Before using NetFlow data, we need to perform some
additional post-processing of the records. First, we aggregate
all flow records (exported by the routers every minute for all
active flows) in 5 minutes bins according to their start time. We
choose 5 minutes as our measurement interval to reduce the
impact of synchronization issues that could have arisen when
collecting flow data from different routers. Then, we adjust
the sampled packet and byte count by multiplying them by
the inverse of the sampling rate (1000 in our case).

Henceforth, we consider the post-processed NetFlow data
to represent the actual traffic traversing the GEANT network.
Our experiments then consist in simulating a sampling process
with the rates set by the optimal algorithm and comparing the
results with the post-processed data. Although our validation
does not depend on a perfect reconstruction of the traffic
dynamics, the sampled Netflow data present a potential bias
against small flows that can affect the relative contribution of
each OD pair of interest. Unfortunately, this is the only type of
data available today for research and we are not aware of any
other public dataset that contains full unsampled information
for a network of the size of GEANT.

B. Results

For the evaluation we choose to estimate the traffic sent
by JANET (UK Research Network, AS number 786) to each
individual GEANT PoP through the UK PoP.

This task gives us a set F of 20 OD pairs. The OD pairs
traverse 22 of the 72 unidirectional links of GEANT. We use
flow data from November 22nd, 2004 where we associate to
each flow record the egress PoP, computed from the destination
IP address using the technique presented in [4]. The first
two columns of Table I present a summary of the OD pairs
and their sizes in packets/sec. The results in this section are
computed over a single measurement interval.

This task shows that the method operates on OD pairs where
origins (i.e., the JANET AS) and destinations (i.e, all the
GEANT PoPs) are of a different nature. In addition, the OD
pair sizes cover the entire spectrum: JANET to Netherlands
(NL) consist of more than 30,000 packets/sec while JANET
to Luxembourg is made of a mere 20 packets/sec. As it will
become clear later, this is one of the main strengths of the
method, i.e., the ability to track indifferently small and large
OD pairs.

The remaining columns in Table I represent the sampling
rates that the optimal solution provides. For each link i, we
indicate the sampling rate pi and the OD pairs that traverse
(and are sampled on) that link. All links that are not present
in the table have pi = 0, i.e., those monitors do not need
to participate in the measurement task. Finally, the last two
rows of the table show the load in packets/sec on the links
and the relative contribution to the total capacity. In this
experiment we have chosen a value of θ = 100, 000, that
is, at most 100, 000 packets can be sampled in each 5 minutes
measurement interval in the entire network. We also set αi = 1
for all links, i.e., we do not define an upper limit for the
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OD pair pkt/s p5 p7 p8 p9 p17 p30 p31 p33 p2 p28 Avg
UK-FR UK-SE UK-NL UK-NY SE-PL UK-PT IT-IL FR-BE FR-LU CZ-SK Utility Accuracy

JANET-NL 30123 - - 0.0016 - - - - - - - 0.9999 0.993
JANET-NY 9387 - - - 0.0002 - - - - - - 0.9982 0.965
JANET-DE 4300 - - 0.0016 - - - - - - - 0.9995 0.982
JANET-SE 4080 - 0.0003 - - - - - - - - 0.9973 0.960
JANET-CH 4033 0.0013 - - - - - - - - - 0.9994 0.979
JANET-FR 1723 0.0013 - - - - - - - - - 0.9985 0.969
JANET-PL 1400 - 0.0003 - - 0.0003 - - - - - 0.9960 0.950
JANET-GR 1080 - - 0.0016 - - - - - - - 0.9981 0.964
JANET-ES 1003 0.0013 - - - - - - - - - 0.9974 0.959
JANET-SI 913 - - 0.0016 - - - - - - - 0.9977 0.961
JANET-IT 873 0.0013 - - - - - - - - - 0.9971 0.956
JANET-AT 790 0.0013 - - - - - - - - - 0.9968 0.954
JANET-CZ 590 - - 0.0016 - - - - - - - 0.9965 0.952
JANET-BE 490 0.0013 - - - - - - 0.0002 - - 0.9955 0.946
JANET-PT 463 - - - - - 0.0011 - - - - 0.9935 0.937
JANET-HU 377 - - 0.0016 - - - - - - - 0.9945 0.940
JANET-HR 237 - - 0.0016 - - - - - - - 0.9912 0.924
JANET-IL 87 0.0013 - - - - - 0.0018 - - - 0.9877 0.910
JANET-SK 43 - - 0.0016 - - - - - - 0.0092 0.9929 0.932
JANET-LU 20 0.0013 - - - - - - - 0.0090 - 0.9840 0.897
Link Loads (pkt/s) 63603 51833 57756 37286 23680 19950 15213 11173 6133 2600
Contribution to θ 24.5% 5.1% 26.9% 2.1% 2.1% 6.8% 8.3% 0.7% 16.5% 7.1%

TABLE I
OPTIMAL SAMPLING RATES pi FOR EACH LINK i. FOR EACH OD PAIR, IT INDICATES THE SIZE (PKTS/SEC), THE LINK(S) WHERE IT IS MONITORED,

THEIR RESPECTIVE SAMPLING RATES AND THE AVERAGE ACCURACY. ALL OTHER LINKS HAVE ZERO SAMPLING RATE.

sampling rates. Thus, we assume the operator has no prior
knowledge of the network traffic.

We can immediately observe that the sampling rates are
extremely low on most links even if no upper limit was set.
Only two links (FR-LU and CZ-SK) need a sampling rates
somewhat higher (around 0.9%), but they are lightly loaded
links needed to accurately estimate the two smallest OD pairs
(JANET-SK and JANET-LU). Furthermore, the low sampling
rates we obtain and the fact that each OD pair is sampled in
at most two links validate the assumptions on the effective
sampling rate made in Section IV-B.

The last two columns in Table I show the value of the utility
function (10) and the accuracy of the measurement. We define
the accuracy of an OD pair size as 1 minus the absolute relative
error: 1− | x/ρ− s | /s, where s is the actual size of the OD
pair, x is the sampled size and ρ is the effective sampling rate
as in (7).

We use the accuracy instead of the utility M (10) to
validate the impact of two assumptions we made in the
definition of M : (i) the quadratic expansion to force M to
zero when the sampling rate is zero (see Section IV-C); (ii)
the approximation (7) for the effective sampling rate ρ, that
may result in overestimating the size of certain OD pairs.

We run 20 sampling experiments on the flow records and
compute the average accuracy over the 20 runs. Each sampling
experiment consists in simulating a random sampling process
on the flow records observed on link i using the sampling rate
pi in Table I. The values in those two columns demonstrate
that the method achieves good fairness among OD pairs.
Although the algorithm maximizes the sum of the utilities, the
results indicate that the individual utilities are well balanced.
Moreover, the accuracy of the measurement is extremely good
being on average above 0.89 for any OD pair.

C. Comparison with other solutions

The last aspect we want to address is how the optimal
solution compares to naı̈ve solutions. Clearly, if any solution
performs well enough, then there is no reason to add the
complexity of the optimization algorithm we propose.

The first naı̈ve solution would consist in monitoring only the
JANET access link to GEANT. This solution has the advantage
that every sampled packet would belong to one of the OD pairs
of interest. However, in order to track a small OD pair (e.g.,
JANET to Luxembourg) with a similar accuracy to the one
we obtain in Table I, the network operator would be forced
to sample the link at a rate of about 1%, i.e., the effective
sampling rate for JANET-LU. Given the high load on that
link, this would require the capacity θ to be 70% higher than
the one needed by our method to give the same measurement
accuracy2.

Furthermore, apart from being a suboptimal solution, moni-
toring the access link may not be feasible in all scenarios given
that, in corporate networks for example, the edge routers (i.e.,
the router that is connected to the ISP) is often directly owned
and managed by the ISP that provides network connectivity.
These routers, usually called called CPE (Customer Premise
Equipment), can only be accessed by the ISP network op-
erators. Therefore, in order to keep our method general and
applicable to a wide range of network scenarios, we do not
include the access links in the set of possible links to monitor.
Even with this additional constraint, Table I shows that our
method performs extremely well.

An alternative to the monitoring of the access link is to
monitor all links that connect the UK PoP to the other PoPs in
GEANT. This solution allows to “balance” the sampling rates
over six links, instead of just one, and gives more freedom to

2Adding up the values in the second column of Table I we obtain 57,933
packets per second. At a sampling rate of 1%, this results in 173,798 sampled
packets on average over a 5 minutes interval.
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Fig. 2. Accuracy of the measurement for two different solutions as a function
of θ.

reduce the resource consumption.
In order to compare this solution with the optimum we run

our algorithm and restrict the choice of available monitors
to just the six UK links. Figure 2 shows the comparison in
terms of the accuracy over a wide range of values of the
capacity θ. With respect to the optimum, this simple solution
has poor performance with respect to small OD pairs. This is
expected given that the UK links are heavily loaded and the
high sampling rate required to accurately estimate a small OD
pair results in a high resource consumption.

In summary, we have seen that both in terms of resource
usage and measurement accuracy there is a clear advantage
in using our method for setting the sampling rates when
compared to other naı̈ve solutions. This advantage comes
from the network-wide approach to packet sampling. Indeed,
the optimization method finds those links across the entire
network, where the small OD pairs “manifest” themselves with
a small amount of cross traffic from other large OD pairs.
Several studies [21], [4] have shown that this is a general
property of current network design, and we argue that the
benefits are not limited to the specific network topology under
consideration in this work.

VI. CONCLUSION

We reformulated the monitor placement problem to adapt
it to the reality of network operations and management in the
Internet. We have proposed an optimization method to select
and configure passive monitors in a backbone network. The
method receives as input the network topology, the routing
matrix and the set of OD pairs of interest. It returns a set of
monitors (and their sampling rates) that is optimal with respect
to the measurement task to perform. We have described the
performance of our method considering a canonical measure-
ment task, i.e., the estimation of the size of a set of OD pairs.

Although the evaluation in this paper is in terms of estimat-
ing OD pair sizes, the optimization method is not specific
to them. The method can be applied to a wide range of
measurement tasks for which a utility function can be sought.
Our ongoing work is centered on defining new expressions for
the utility function for applications such as anomaly detection
and network performance analysis. We are also studying

alternative formulations for the objective function as well as
trying to identify new datasets and networks.
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