
Chkdiff: Checking Traffic Differentiation at Internet Access

Riccardo Ravaioli ∗

I3S/CNRS UMR 7271
Sophia Antipolis, France
ravaioli@i3s.unice.fr

Chadi Barakat
Inria

Sophia Antipolis, France
chadi.barakat@inria.fr

Guillaume Urvoy-Keller
I3S/CNRS UMR 7271

Sophia Antipolis, France
urvoy@i3s.unice.fr

ABSTRACT
In this paper we introduce Chkdiff, a novel method for the detection
of traffic differentiation. By aiming at application and differentiation
technique agnosticism, we choose an approach that is not specific to the
currently most popular applications or to the discrimination mechanisms
in use at the time of our writing. The design of such method is carefully
described, for both upstream and downstream traffic.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Operations—
Network monitoring

Keywords
Internet neutrality, traffic differentiation, active measurements

1. INTRODUCTION
In the last few years, ISPs have been reported to discriminate against

specific user traffic, especially if generated by bandwidth-hungry appli-
cations. The so-called network neutrality, advocating that an ISP should
treat all incoming packets equally, has been a hot topic ever since.

We propose here Chkdiff, a novel method to detect network neutrality
violations that takes a radically different approach from existing work:
it aims at both application and differentiation technique agnosticism. We
achieve this in three steps. Firstly, we perform measurements with the
user’s real traffic instead of using specific application traces. Secondly,
we do not assume that discrimination takes place on any particular packet
field, which requires us to preserve the integrity of all the traffic we intend
to test. Thirdly, we detect differentiation by comparing the performance
of a traffic flow against that of all other traffic flows from the same user,
considered as a whole.

In this paper we introduce the design of Chkdiff for upstream and
downstream traffic at an Internet access and we evaluate its potentials.

2. RELATED WORK AND OBJECTIVE
The several tools found in literature vary in their methodology, goal and

assumptions. Some [3, 4, 7] analyze the performance of flows originating
∗The first author is supported by Labex UCN@Sophia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT Student’12, December 10, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1779-5/12/12 ...$15.00.

from traces collected by the tool’s developer. These tools are in theory
application-independent but can only test one application at a time. In
practice, they are deployed only with a very small set of application traces,
which greatly reduces their effectiveness. Glasnost [2] addresses this by
relying on advanced users to add traces for new applications. Nano [6]
instead takes a more general approach and passively collects traffic perfor-
mance information from all users. In light of this, we wanted to get rid of
any dependence to specific applications, while at the same time not assume
a priori that an ISP deploys certain packet scheduling or buffer manage-
ment techniques. In short, we wanted our method to be robust to i) the rise
and fall of popular applications (application agnosticism) ii) the evolution
of differentiation mechanisms applied by ISPs (technique agnosticism).

3. KEY DESIGN IDEAS
Throughout the whole design of Chkdiff, we adhered to three key ideas.
IDEA 1: USE REAL USER TRAFFIC. We want to test the existence of

traffic discrimination for the exact set of applications run by the end user.
Hence, we only consider user-generated traffic.

IDEA 2: LEAVE USER TRAFFIC UNCHANGED, OR ALMOST. All
methods performing active measurements send probes made of real
application packets and of packets that are similar, but slightly modified,
so that they do not get discriminated along their path. This is quite
an assumption, as we do not know exactly what ISPs do behind the
scenes. In the extreme case, ISPs could even white-list traffic generated by
differentiation detecting tools. It is therefore crucial to preserve as much
of the original packets as possible, as well as their original per-flow order.
We will see that the modifications introduced by our tool affect only the
ordering of packets, their TTL value or their IP identification field.

IDEA 3: BASELINE IS THE ENTIRE TRAFFIC PERFORMANCE. Since
we do not want to make any hypothesis in advance on what kind of
mechanisms - if any - are deployed, we claim that the performance of
each single non-differentiated flow should present the same behaviour
as that of the rest of our traffic as a whole. Differentiated flows, on the
other hand, should stand out when compared to all other flows grouped
together, where a large fraction of non-differentiated flows should mitigate
the impact of differentiated ones.

4. UPSTREAM SPECIFICATION
We replay user’s outgoing traffic and evaluate if their access ISP per-

forms any differentiation. The metric we use is the round-trip time (RTT)
between the user and a selected router on their access ISP. A brief outline
follows (also refer to Figure 1)

1. CAPTURE TRAFFIC. We capture the user’s outgoing packets for a
pre-determined time window, generally for a few minutes.

2. ARRANGE PACKETS INTO FLOWS. We arrange packets into 5-tuple
flows, which display a sufficiently fine granularity for the meaningfulness
of our next analysis.

3. SHUFFLE PACKETS. We want to make sure that all flows see the
same network conditions, regardless of any possible transient congestion

57

Figure 1: Upstream scenario. 1) Capture traffic 2) Arrange
packets into flows 3) Shuffle packets 4) Replay with TTL=k
and get ICMP packets back 5) Apply statistical test

Figure 2: Downstream scenario. 1) Capture traffic 2) Arrange
packets into flows 3) Shuffle packets 4) Upload packets to
measurement server 5) Packets replayed from server to user 6)
Apply statistical test.

along the path, and at the same time not introduce any bias by the order in
which we inject packets. We now show how flows exhibit such property
after shuffling. We assign a weight to each flow, according to its initial
size in packets, and we craft the trace to replay by picking packets from all
flows according to flows’ weights. By popping packets in the above fash-
ion, we obtain a Bernoulli process for each flow. The waiting time between
the occurrence of packets from each flow clearly follows a geometric dis-
tribution, which is known to be the discrete version of the exponential dis-
tribution. Consequently, each shuffled flow follows a Poisson Process and
the PASTA property (Poisson Arrivals See Time Averages) finally holds.

4. REPLAY. We need to target the user’s access ISP. In the IP header of
each packet, the Time-To-Live field needs to be forged with a value of k,
with k being the number of IP hops to the router under examination. This
way, each replayed packet will trigger an ICMP Time Exceeded Message
on the k-th router along its path, which lets us easily compute the RTT.
Care must be taken in choosing the inter-packet delay so as to bypass
ICMP-rate limitation.

5. APPLY STATISTICAL TEST. We only consider large enough flows
(> 20 packets) as meaningful for testing, while smaller flows only
contribute to form our baseline for comparison. To detect traffic dif-
ferentiation, we use a method that was first introduced by A. Soule et
al. [5] in the context of flow classification. Our goal is to be able to
decide the likelihood of one flow being generated by the same source that
generated all other flows, considered as a whole. This can be achieved by
converting our samples into histograms, which have the desirable property
of incorporating the entire distribution of one flow’s delays. We then fit
the entire set of histograms to a Dirichlet random distribution, which is
able to capture the behaviour of almost any type of distribution, without
making any a priori assumption on them. The probability that each flow
belongs to the same Dirichlet random distribution as all other flows will
let us claim whether or not that flow was differentiated.

5. DOWNSTREAM SPECIFICATION
We replay the user’s incoming traffic and evaluate if their access ISP

performs any differentiation. The metric we use is the one-way delay
between our measurement server and the end user. A brief outline follows
(also refer to Figure 2).

1. CAPTURE TRAFFIC. As in 4.1

2. ARRANGE PACKETS INTO FLOWS. As in 4.2
3. SHUFFLE PACKETS. As in 4.3
4. UPLOAD TRAFFIC TO MEASUREMENT SERVER. We deploy a mea-

surement server in order to replay spoofed packets and measure one-way
delays to our end user. We don’t want to modify any important IP packet
fields (e.g. source address, payload), but we have to distinguish at destina-
tion our replayed packets from current traffic. We thus forge the IP identi-
fication field with a known value that is recognized by a firewall at the user
side (such firewall is also responsible for not letting replayed packets go up
the user’s network stack). This is only a minor alteration: differentiation
techniques based on IP flows will still see the original IP addresses and
those based on Deep Packet Inspection will still see the original payloads.

5. REPLAY TRAFFIC FROM SERVER TO USER. The server can finally
send our shuffled packets back to the user at a constant rate ρ (with ρ <
available bandwidth, to avoid stressing the network), starting at instant
t0. Once the user-side application knows these two values, it can directly
estimate when each packet was sent and can compute one-way delays.

6. APPLY STATISTICAL TEST. As in 4.5

6. ASSESSMENT AND FUTURE WORK
Only the upstream method is currently available, with the implemen-

tation of the downstream part being among future work. The current
version of Chkdiff successfully manages to identify differentiation on flow
type when packet delays are directly affected. Simple tests in a testbed
environment with Dummynet [1] as our traffic differentiator yielded very
promising results.

Development possibilities in this domain are rather vast. An easy
improvement would be to include an analysis of lost packets on a per-flow
basis. This could enable us to detect differentiation when triggered by
injection of RST packets into a TCP connection, modification of TCP
advertisement window or alteration of application messages. Post-analysis
mapping of differentiated flows to applications could give us a better
understanding of how user applications might be impacted. Also, while
our first prototype only targets a selected router along the path of each
packet, the next step would be to test the first few k routers and classify
flow delays accordingly. The statistical analysis would then be among
delays experienced to the same router. This, together with a large-scale de-
ployment of Chkdiff, could let us map the behaviour of routers at each ISP.

References
[1] M. Carbone and L. Rizzo. Dummynet revisited. SIGCOMM Comput.

Commun. Rev., 40(2):12–20, apr 2010. ISSN 0146-4833.

[2] M. Dischinger, M. Marcon, et al. Glasnost: Enabling end users to
detect traffic differentiation. In Proceedings of the 7th Symposium
on Networked Systems Design and Implementation (NSDI). San Jose,
CA, Apr 2010.

[3] P. Kanuparthy and C. Dovrolis. Diffprobe: detecting isp service
discrimination. In Proceedings of the 29th conference on Information
communications, INFOCOM’10, pp. 1649–1657. IEEE Press,
Piscataway, NJ, USA, 2010. ISBN 978-1-4244-5836-3.

[4] —. Shaperprobe: end-to-end detection of isp traffic shaping using
active methods. In Proceedings of the 2011 ACM SIGCOMM con-
ference on Internet measurement conference, IMC ’11, pp. 473–482.
ACM, New York, NY, USA, 2011. ISBN 978-1-4503-1013-0.

[5] A. Soule, K. Salamatia, et al. Flow classification by histograms:
or how to go on safari in the internet. In ACM SIGMETRICS
Performance Evaluation Review, vol. 32, pp. 49–60. ACM, 2004.

[6] M. B. Tariq, M. Motiwala, et al. Detecting network neutrality viola-
tions with causal inference. ACM SIGCOMM CoNext, p. 289, 2009.

[7] U. Weinsberg, A. Soule, et al. Inferring traffic shaping and policy
parameters using end host measurements. In INFOCOM, pp.
151–155. 2011.

58

