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Abstract—The increasing demand for mobile data is overload-
ing the cellular infrastructure. Small cells and edge caching is
being explored as an alternative, but installation and maintenance
costs for sufficient coverage are significant. In this work, we
perform a preliminary study of an alternative architecture based
on two main ideas: (i) using vehicles as mobile caches that can
be accessed by user devices; compared to small cells, vehicles
are more widespread and require lower costs; (ii) combining the
mobility of vehicles with delayed content access to increase the
number of cache hits (and reduce the load on the infrastructure).
Contrary to standard DTN-type approaches, in our system max
delays are guaranteed to be kept to a few minutes (beyond this
deadline, the content is fetched from the infrastructure). We first
propose an analytical framework to compute the optimal number
of content replicas that one should cache, in order to minimize the
infrastructure load. We then investigate how to optimally refresh
these caches to introduce new contents, as well as to react to the
temporal variability in content popularity. Simulations suggest
that our vehicular cloud considerably reduces the infrastructure
load in urban settings, assuming modest penetration rates and
tolerable content access delays.

I. INTRODUCTION

The rapidly increasing demand for mobile data is men-
acing cellular operators. Upgrading the architecture to 4G is
expensive, making operators reluctant. Densification through
small cells is proving to be a bigger hassle and investment
than initially expected [6]. What is more, introducing small
cells requires significant upgrades to the backhaul network,
which is predicted to become the new bottleneck [17].

Caching (popular) contents at the edge of the network
(e.g., in small cells) has been proposed to alleviate the load
on the backhaul and core network [9], [19], [31]. The utility
of such caching systems is supported by recent studies on
content popularity, demonstrating a significant overlap between
user demands. Nevertheless, to ensure a high enough amount
of requests are served by small cells, and thus significantly
reduce the load on the main infrastructure, extensive coverage
by small cells is necessary [32], which raises again concerns
for CAPEX/OPEX costs.

To this end, in this paper we propose and study an
alternative architecture, based on two main ideas. First, we
propose to use vehicles as mobile small cells and data caches.
These caches are controlled by the ISP (e.g., over a cellular
interface [3]) and can be accessed directly by mobile devices
(e.g. using WiFi or 802.11p [28]). In urban environments,
the number of vehicles (private or public) is expected to be
considerably higher than any envisioned small cell deployment.

Furthermore, the related CAPEX/OPEX costs are expected to
be lower, as many future vehicles will already be equipped
with wireless communication equipment and storage [3], and
some of the involved costs can be delegated, as in the femto-
cell model. While there exist other works that have considered
content storage in vehicles [37], [38], this is the first to consider
such vehicles as a common cloud maintained by an ISP.

Second, we propose to exploit the mobility of vehicles to
serve more content requests, locally, from vehicular caches.
Specifically, in our architecture, a user requests a content
initially from the infrastructure (which redirects the user to
the vehicular cloud) or queries nearby vehicles using WiFi.
However, a key component in our system is that, if the content
is not immediately available at a nearby vehicle, the user agrees
to wait few minutes until any car with the content moves within
range. Such delayed content access can increase the number of
cache hits and reduce the load on the infrastructure, compared
to the case of static, small cell caches.

Delayed content access has been widely investigated in the
context of delay tolerant and opportunistic networking [10],
[22] as well as for WiFi-based offloading [8], [27]. However,
contrary to most such “DTN-type” approaches, in our system
maximum delays are guaranteed, and kept to a few minutes:
beyond a Time-To-Live (TTL) agreed between the ISP and
the user, the content is fetched from the infrastructure. Such
additional waiting delays could be easily amortized for large
content transmissions (e.g., videos, software downloads), or
be acceptable based on user subscription level (e.g. some
users might be willing to pay cheaper plans and live with the
occasional longer delays [20]) and context (e.g. roaming users
might be more willing to wait for a low cost access).

While deadlines or TTLs are also considered in some WiFi-
based offloading proposals, the sparseness of WiFi coverage
implies that considerably larger deadlines, e.g. in the order of
hours, are required to achieve significant offloading gains [25].
Furthermore, device-based offloading systems [34], while com-
prising a comparable number of mobile caches, face major
resource constraints (battery lifetime, storage space, etc.) that
vehicles do not face, raising significant concerns about the
likelihood of such approaches being adopted in the near future.

The basic communication protocol for our “Storage on
Wheels” system is defined by six steps (Fig. 1): (1) base
stations or macro-cells push popular contents in vehicles; we
refer to this action as seeding; (2) a user requests a content to
nearby vehicle: (3) if the content is found (cache hit), the user
can immediately download it; (4) otherwise he waits for new



Fig. 1: Basic communication protocol of the offloading mech-
anism for the proposed infrastructure.

vehicles. (5) When TTL expires and the content has not been
found in the vehicles (cache miss), the user contacts the cellular
network (6) to get the content directly from the infrastructure.
In this work, we study how to optimally allocate contents in
order to minimize the load on the cellular infrastructure. Our
main contributions in this paper are the following:

• We study analytically the problem of optimal content
allocation, and derive the optimal number of copies of each
content to be allocated to vehicles in the cloud, assuming
a stable catalogue and average content popularity;

• We extend our analysis to more practical settings where
connectivity can be lost while retrieving the content (due
to mobility, interference, etc.) or (large) content is retrieved
from multiple vehicles (e.g. in differently sized chunks);

• We study how to refresh the vehicles caches dynamically,
to react to new content and changing content popularity;

• We use real traces for content popularity and mobility to
study the feasibility of our system, and show that consid-
erable offloading gains can be achieved even with modest
technology penetration (< 1% of vehicles participating in
the cloud) and reasonable max delays (1-5min).

Summarizing, this work is structured as follows: in Section
II, we present the model and the general formulation of the
content allocation problem; next, in Section III, we provide
closed form expressions for the optimal allocation when vehi-
cles caches are initially empty; then, we present an algorithm
to periodically update the caches according to the variability
of the content popularity in Section IV; after that, we validate
our results through simulations in Section V; finally, we review
related work in Section VI and conclude our paper with a
summary and future work in Section VII.

II. PROBLEM FORMULATION

In this section, we first describe the proposed architecture
and the system model. Then, we add some implementation
details of the system. Finally, we define the cost function to
minimize in order to optimally allocate contents in the vehicles.
The main notation used in the paper is summarized in Table I.

System model. We have a network with three types of nodes:

• Infrastructure nodes (I), i.e. base stations or macro-cells.
Their role is to serve users with the contents requested and
to fill the vehicles buffers;

• Cloud nodes (C), i.e. all the vehicles that can store contents
(cars, buses, taxis, etc.), where |C| = α. Contents are pushed
(seeded) to C nodes directly from I nodes. We assume that

TABLE I: Notation used in the paper.

α Number of vehicles

β Buffer size per vehicle

ν Meeting rate

TTL Time that the user is willing to wait before getting the content

ϕ
(i)
t

Popularity rate for content i at time t

N(i) Number of copies stored in the vehicles for content i

k Number of contents in the catalogue

∆t Refresh time and time window considered in the optimization

p Probability to successfully download a content during a meeting

vehicles do not exchange contents with each other; inter-
vehicular communication (V2V) is left as future work;

• Mobile nodes (M), i.e. the users asking for online con-
tents through their mobile devices, such as smartphones,
tablets or netbooks. These nodes do not store any content,
rather they ask for them to C or I nodes. Specifically, a
communication between C and M can take place when
their distance is less than a certain communication range
(contact). Finally, we assume that the amount of time a
user is willing to wait is smaller than the time window over
which we are optimizing.1

Let K denote a set of contents available, where |K| = k.
We refer to it as catalogue. Each content is assumed to have
a known popularity rate ϕ(i) during a given time window
∆t, calculated as ϕ(i) , 1/∆t

∫∆t

0
ϕ

(i)
t ∂t. To keep analysis

tractable, we assume that all contents have equal size, e.g.
equal to the mean file size in the catalogue. While this
assumption is not true in reality, our model trivially allows
to absorb the heterogeneity in the contents size: in fact, large
contents can be split in chunks of equal smaller size, where
chunks for the same content have the same popularity (and
thus obtain the same number of replicas).

Finally, we assume that the mobility between C and M
nodes leads to a contact process between them exhibiting
exponential pairwise inter-contact times with rate ν. While
inter-contact time distributions are still a subject of debate,
several studies suggest that this is a reasonable assumption,
especially in the tail of the distribution [12] [29] [24].
Architecture. ISP providers often offer low cost data plans
with limited bandwidth, because of the increasing demand for
data. However, the bandwidth offered is usually not enough to
satisfy the users’ needs. Thus, we propose our infrastructure
as an additional feature to boost these cheap data plans.
Basically, a user can browse the Internet contacting directly his
cellular provider as usual. The cellular provider might decide
to redirect the request to the vehicles for the popular contents
as it happens in the CDN context, if the user has subscribed
for the “Storage on Wheels” additional feature. Recall that the
ISP is aware of what contents are popular or not. This setup
might be really interesting for roaming users as well, that do
not want to use expensive data plans abroad.

An alternative use case is to consider querying directly
vehicles through WiFi. Because of the immense size and of
the variety of the catalogue, we think that is more profitable

1In fact, in our system TTL << ∆t, since we only consider TTLs in the
order of a few minutes. This is in contrast with some related work which use
much longer TTLs to obtain similar gains [25].



in terms of cache hits to limit the user’s choice to a smaller
number of contents. For instance, the user can ask contents
based on a generic list of popular contents updated by the I
nodes. This list could be directly downloaded from the I or
C nodes or in alternative ways (e.g., NFC tags or QR codes
at bus stops). Finally, our architecture can naturally provide
additional services such as traffic information, advertisement,
events, news, P2P applications, etc. However, the definition of
a complete and detailed architecture is beyond the scope of
this paper as we focus on performance optimization.

Problem formulation. In our model, both pushing a copy in the
vehicular cloud and having a cache miss cost a transmission.
The final goal is to minimize the load on the infrastructure,
i.e. the number of transmissions. To this end, we choose the
cost function to be equal to the sum of the number of copies
to be seeded (I −→ C) and the cache misses that occur in
the considered time window ∆t (I −→ M). Both of these
require resources (e.g. bandwidth) from I to be expended, and
thus should be minimized. Yet, reducing the one often leads
to increasing the other. Hence, we can write the corresponding
optimization problem in order to minimize the number of
accesses to the I nodes:

min
N(i)

k∑
i=1

(
∆tϕ(i)P[X(i) > TTL] + max

(
N (i) −N (i)

0 , 0
))

s.t.: 0 ≤ N (i) ≤ α, i = 1, . . . , k,
k∑
i=1

N (i) ≤ αβ,

(1)
where N (i) is the number of copies stored in the vehicles
for the content i, N (i)

0 is the initial number of copies and
X(i) is a random variable corresponding to the time needed to
successfully download content i.

The first term of the objective function takes into account
the number of cache misses occurring in ∆t: ∆tϕ(i) is the
expected number of requests for content i during ∆t. Every
time that a requested content is not provided by the vehicles
within TTL, we have a cache miss that increases the cost.
P[X(i) > TTL] is the probability not to download the whole
content within TTL. Hence, the product of these three terms
is equal to the total number of missed requests in the time
window. The second term corresponds to the incremental
seeding cost for the communication I −→ C, i.e. the cost
of adding new copies when buffers are not empty (we assume
that removing a copy does not have a cost). The objective
function is subject to the constraints:

• the number of vehicles having the content i cannot be
negative: N (i) ≥ 0,

• the number of vehicles having the content i cannot be
higher than the cardinality of C (|C| = α): N (i) ≤ α,

• each vehicle has storage constraints and cannot store more
than β contents2:

∑k
i=1N

(i) ≤ αβ.

In the following section, we discuss the particular case
when the vehicles caches are empty (N (i)

0 = 0); then, in

2We do not need to put extra constraints for individual car capacities (i.e.
no car having more than β contents), because we assume that all the vehicles
are statistically identical.

Section IV, we solve the optimization problem in Eq. (1)
considering also the incremental seeding.

III. OPTIMAL CONTENT ALLOCATION FOR LARGE ∆t

In this section, we consider how to optimally allocate
contents in the vehicular cloud, when the caches are initially
empty. This scenario can be considered as a bootstrap phase
for the infrastructure, where the buffers need to be filled. Fur-
thermore, when the operator defines a large ∆t, we assume that
the new allocation does not depend on the initial set of contents
stored in the vehicles (i.e. N (i)

0 = 0,∀i ∈ K), since content
popularity substantially changes in large intervals. Thus, the
operator needs to reboot all its caches. This scenario provides
useful insights and methodology for subsequent results.

A. Baseline scenario
We first consider the baseline scenario, where we assume

that if aM node encounters a C node, it will be able to receive
the whole requested content with probability 1. Thus, we can
derive the following lemma:
Lemma 1. In the baseline scenario, the probability not to
download the whole content within TTL is P[X(i) > TTL] =

e−νTTL·N
(i)

.
Proof: The inter-meeting time between two contacts is

assumed to be exponentially distributed. In this scenario, X(i)

corresponds to the time needed to meet the first vehicle having
the requested content, therefore X(i) ∼ exp(ν · N (i)). The
result in Lemma 1 directly follows from elementary properties
of the exponential distribution [16].

By using Lemma 1, we obtain the following result:
Result 1. Consider the problem described by Eq. (1). The
optimal number of copies to allocate is given by:

N (i) =


0, if ϕ(i) < L

1
νTTL ln

(
νTTLϕ(i)∆t

γ(i)

)
, if L ≤ ϕ(i) ≤ U

α, if ϕ(i) > U

where L , 1+ρ
νTTL∆t , U , (1+ρ)eανTTL

νTTL∆t , γ(i) , 1 − µ(i) +
λ(i) + ρ and µ(i), λ(i) and ρ are appropriate Lagrangian
multipliers (non-negative since the constraints are formulated
as inequalities).

Proof: The problem in Eq. (1) is convex since the objec-
tive is the sum of convex functions and the constraints are all
linear. Thus, it can be solved with the method of Lagrangian
multipliers [7]. We convert Eq. (1) to the standard form (from
minimization to maximization) and we write the Lagrangian
function of the problem:

L = −∆t

k∑
i=1

ϕ(i)e−νTTL·N
(i)

−
k∑
i=1

N (i) +

k∑
i=1

µ(i)N (i)+

k∑
i=1

λ(i)
(
α−N (i)

)
+ ρ

(
αβ −

k∑
i=1

N (i)

)
, (2)

where λ(i), µ(i) and ρ are the Lagrangian multipliers. The
corresponding KKT conditions are:

µ(i)N (i) = 0

λ(i)(α−N (i)) = 0

ρ(αβ −
∑k
i=1N

(i)) = 0

(3)
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Fig. 2: Optimal allocation in semi-log scale (α = 100).

The differentiation of Eq. (2) with respect to N (i) gives:

∂L

∂N (i)
=νTTLϕ(i)∆te−νN

(i)TTL − 1 + µ(i) − λ(i) − ρ = 0

⇒ N (i) =
1

νTTL
ln

(
νTTLϕ(i)∆t

γ(i)

)
. (4)

Eq. (4) is subject to the constraints described by Eq. (3).
Specifically:

• Low popularity contents (µ > 0): since the allocation
cannot be negative, when the popularity is too low the
number of copies to allocate is 0 (left side of Fig. 2). We
are in this case when:

1

νTTL
ln

(
νTTLϕ(i)∆t

γ(i)

)
< 0⇒ ϕ(i) <

1 + ρ

νTTL∆t
, L

(5)
and

µ(i) = 1 + ρ− νTTLϕ(i)∆t. (6)

• High popularity contents (λ > 0): on the other hand, the
number of copies in the cars is limited, upper-bounded by
the number of cars available (N (i) = α) as we can see
from the right side of Fig. 2. We are in this case when:

ϕ(i) >
(1 + ρ)eανTTL

νTLL∆t
, U (7)

and
λ(i) = νTTLϕ(i)∆t · e−ανTTL − 1− ρ. (8)

As we can see from Eqs. (6) and (8), µ(i) and λ(i) directly
depend on the value of ρ. For this reason, a last step in deriving
the exact allocation is just to infer the value of the Lagrangian
multiplier ρ. Unluckily, since the value of ρ depends on the
popularity of the entire set of contents K, it is not possible
to determine a closed form expression for it. However, it can
be proved that the cost function is monotonically increasing
according to ρ (the proof is omitted due to space limitations
and can be found in [1]), i.e. the cost is minimum for the
minimum value of ρ that satisfies the capacity constraint.
Moreover, if the capacity constraint is satisfied, ρ is trivially
equal to 0. Thanks to these considerations, we can find this
value of ρ through a simple minimum search algorithm.

According to the value of ρ, we now elaborate on the
different solution regimes for the Medium popularity contents:
All constraints inactive (γ = 1): when all the constraints are
inactive, the optimal allocation depends on the logarithm of the
popularity (Fig. 2). Since here the buffer space is not an issue,
the content allocation is decoupled, i.e. the optimal number of
copies per content is independent of the popularity of the other

contents. Finally, from Eq. (4), we can note that the optimal
number of copies is attenuated by νTTL.
Capacity constraint active (γ = 1 + ρ): increasing the pop-
ularity or reducing the buffer space can violate the storage
constraint. Even in this case, the allocation is still logarithmic
on popularity. When the capacity is limited, the multiplier
ρ reduces the optimal allocation as the number of contents
increases or the total capacity decreases by increasing the
thresholds L and U .

B. Connectivity loss scenario
When anM node is inside the communication range of a C

node, the connectivity might be lost. This can be due to many
reasons, such as network failures, vehicle mobility and interfer-
ences. In detail, a success or a failure in downloading a content
depends on few key factors: (i) the contact duration, that is the
amount of time during which M and C nodes can exchange
data inside the communication range; (ii) the throughput that
depends on the distance between the nodes: in fact, WiFi
protocols are defined to use dynamic rate scaling, and the
throughput will automatically decrease as the signal strength
decreases, i.e. as the distance between the nodes increases; (iii)
the size of the content; (iv) interferences and variability in the
urban radio environment [26]. In this subsection, we propose
two policies to face the problem of connectivity loss:

1) Repeat policy: In reality, it might be difficult to give
an accurate estimation of the success/failure probability per
contact. For this reason, we define the average probability p to
successfully download a content during a meeting. In the repeat
policy, the content download will restart from the beginning
when an M node loses the connection with a vehicle (e.g.,
TCP session expires) and meets a new one.
Result 2. The optimal content allocation for the repeat policy
is given by:

N (i) =


0, if ϕ(i) < L′

1
pνTTL ln

(
pνTTLϕ(i)∆t

γ(i)

)
, if L′ ≤ ϕ(i) ≤ U ′

α, if ϕ(i) > U ′

where L′ , 1+ρ
pνTTL∆t and U ′ , (1+ρ)epανTTL

pνTTL∆t .
Proof: Given the Poisson process with rate ν counting

the contacts between C and I nodes, suppose that each event
corresponds to a successful download with probability p. Then
successful downloads form a Poisson process with rate pν. For
this reason, we have:

P[X(i) > TTL] = e−pνTTL·N
(i)

.

The rest of the proof proceeds as in the proof of Result 1.
2) Resume policy: Due to the limited contact duration and

to the large size of the contents, downloading a content in one
shot might be hard, leading to a small value of p. Alternatively,
if we consider large contents, like videos, chunking is a popular
way to break down the file into smaller pieces. Hence, during a
contact a node could download one or more chunks. Moreover,
new technologies allow easily to stop and resume the download
at any time (e.g., latest versions of browsers, online music
players, etc.). In the resume policy, when a M node loses
the connection, the download will resume from the point of
interruption during the following cache hit. Specifically, we



suppose that for each meeting j, we can download rj bytes
of the content, where rj is a continuous random variable with
values ∈ [0,+∞). Furthermore, we define s0 as the content
size in bytes (recall that s0 is assumed equal for any content).

Lemma 2. Let Y (i) ,
∑M(i)

j=1 rj be the number of bytes
downloaded within TTL for content i, where M (i) indicates the
number of cache hits in that interval. In the resume scenario,
the probability not to download the whole content within TTL
is equal to:

P[X(i) > TTL] ≡ P[Y (i) < s0] = L−1

{
e[R

∗(s)−1]νTTL·N(i)

s

}
(s0).

(9)
where L−1{F (s)}(t) is the inverse Laplace transform of F (s).

Proof: Since the inter-meeting time between two contacts
is assumed to be exponentially distributed, M (i) follows a
Poisson distribution. Furthermore, a random sum of identically
distributed random variables has a Laplace transform that is
related to the transform of the summed random variable and
of the number of terms in the sum:

Y ∗(i)(s) = M∗(i)(R∗(s)),

where Y ∗(i) (resp. R∗) is the Laplace transform of Y (i) (resp.
rj) and M∗(i) is the Z-transform of M (i). The number of
meetings within TTL is Poisson distributed, therefore we can
write Y ∗(i)(s) as follows:

Y ∗(i)(s) = e[R∗(s)−1]νTTL·N(i)

.

In the resume policy, the probability not to download the whole
content within TTL is equal to the probability that the sum of
the bytes downloaded within TTL (Y (i)) is less than s0. Since
the cdf of fX is given by FX(x) = L−1

{
L{fX}}

s

}
(s0), we

can compute P[X(i) > TTL] as in Eq. (9).
While the above formula is generic, it requires knowledge

of the distribution of r, the “effective capacity” of contacts,
which might be difficult to obtain. Furthermore, calculating the
inverse transform is not trivial, except for very specific r distri-
butions. To proceed and obtain a closed form estimate of this
probability, observe that Y (i) is a compound Poisson process,
because the number of meetings are Poisson distributed and
the reward (bytes downloaded) in each contact is independent
of the inter-contact times. According to this definition, we can
derive the following result:
Result 3. For large values of M (i), the optimal content alloca-
tion corresponding to the resume policy can be approximated
using the solution of the following equation:

N (i) = ω(i)e−ω
(i)2

· ϕ(i)∆t/(γ(i)
√

8π),

where ω(i) , (s0 −E[Y (i)])/
√

Var(Y (i)).

Proof: Let E[Y (i)] = r̄νTTL · N (i) and Var(Y (i)) =
(r̄2 + σ2)νTTL · N (i) be the mean and variance of the
compound Poisson process Y (i), where r̄ , E[rj ] and
σ2 , Var(rj) are respectively the mean and the variance of
rj . Especially in urban environments, the number of contacts
is expected to be considerably large. When M (i) corresponds
to large values, we could use a normal approximation for
Y (i) using only the first two moments [33], i.e. Y (i) ∼

N (E[Y (i)],Var(Y (i))); in this case, the probability not to
download the whole content within TTL is:

P[Y (i) < s0] ≈ Φ

(
s0 − r̄νTTL ·N (i)√
(r̄2 + σ2)νTTL ·N (i)

)
(10)

Finally, from Lemma 2 we know that P[X(i) > TTL] ≡
P[Y (i) < s0]. Thus, we can replace Eq. (10) in Eq. (1) and
solve with the method of the Lagrangian multipliers as in the
proof of Result 1.

For this approximation to hold, the “stopping” M (i), i.e. the
number of contacts until the whole content is retrieved, needs
to be sufficiently large. However, if Y (i) is highly skewed, then
this approximation might also fail. In this case, it is possible
to use other approximations (e.g., gamma, Edgeworth).

IV. DYNAMIC ADAPTATION TO CHANGING POPULARITY

In this section, we consider a more practical setup, where
caches are updated dynamically, as new contents are intro-
duced, and/or existing contents exhibit a significant change in
popularity. Adapting to changing content popularity is not only
important to introduce new contents and delete obsolete ones,
but also to increase the potential performance gains.

Specifically, suppose that video A and video B have the
same number of views per day. Moreover, suppose that video A
is very popular during the day, while video B is more popular
during the night. We would like to capture this behaviour by
allocating more copies for A during the day and for B during
the night. Since they have the same average popularity over
one day, if ∆t is too large (e.g. one day) the two videos will be
allocated the same number of copies. On the other hand, for a
small ∆t, the cache hits due to the additional copies allocated
during the interval, are not large enough to amortize the cost
of seeding these new copies, being perhaps removed before a
newer allocation is selected in the next time window.

In such a system, seeding is incremental, taking into ac-
count the existing allocation, and adjusting it where necessary,
depending on the potential gains predicted for a shorter time
window (i.e., until the next update).

Result 4. Consider that the initial allocation N (i)
0 is given and

not null. Then, given a ∆t, the optimal number of copies to
add (or remove) is:

∆N (i) =
1

νTTL
ln

(
νTTLϕ(i)∆t

γ̄(i)

)
−N (i)

0 , (11)

where ∆N (i) , N (i)−N (i)
0 , γ̄(i) , 1A(∆N (i))−µ(i)+λ(i)+ρ

and A = (0,+∞).
Proof: The proof proceeds as in the proof of Result 1, by

using the method of the Lagrangian multipliers. However, the
derivative of the max function in Eq. (1) is equal to:

∂max(∆N (i), 0)

∂∆N (i)
=

{
0, if ∆N (i) ≤ 0
1, if ∆N (i) > 0

i.e., the solution is different depending whether we add or
remove copies.

As we can see from Result 4, the incremental seeding
makes the problem of updating the caches non trivial, because
∆N (i) appears also in γ̄(i). Thus, we now propose a simple
algorithm computing the number of copies to add or remove



every ∆t for each content. This heuristic allows to have an easy
implementation in practice. Specifically, every time window,
we make the decision if it is convenient adding more copies
for a given content. Basically, seeding one more copy provides
a gain equal to the number of cache misses saved by the
additional copy. The gain is given by:

gain(i) , ϕ(i)∆t · e−νTTL·N
(i)

(1− e−νTTL).

Then, we sort the contents according to the gain that can
provide and, if this is higher than the seeding cost, we add a
copy (or more copies) in the cloud until the buffer is full or
there no other contents to seed. On the other hand, if all the
caches are full, storing new copies must follow the deletion of
the less popular ones; removing one copy leads to a loss equal
to the additional cache misses:

loss(i) , ϕ(i)∆t · e−νTTL·N
(i)

(eνTTL − 1).

Then, we select the content with the highest gain and the one
with the lowest loss. If max (gain)−min (loss) > 1, then the
switching is advantageous. We call switching the action taken
by the I nodes to remove a content and replace it with another
one. We recompute the gain and the loss for the contents
switched and we iterate until the condition is satisfied, i.e.
there is at least one advantageous switching. We add/switch
the contents every time window.

V. SIMULATION RESULTS

We validate our model through MATLAB simulations. We
simulate the load on the infrastructure and we compare it with
other caching systems. In Section V-A, we consider the optimal
allocation policies described in Section III and we analyse the
impact of different parameters in the proposed cache system.
Then, in Section V-B we test the performance of the contents
replacement algorithm seen in Section IV. Finally, in Section
V-C we perform simulations based on a real mobility trace to
inspect the cost savings in a real world scenario.

In our analysis we consider the content popularity of
YouTube videos, since a large percentage of mobile data traffic
is represented by video files. We download from [4] a database
generated with YouStatAnalyzer [36] that collects statistics for
100.000 YouTube videos. The database includes static (title,
description, author, duration, related videos, etc.) and dynamic
information (daily and cumulative views, shares, comments,
etc.). In our simulations, we only take into account the number
of views related to the last 360 days. However, these values
are equal to the total number of views per day in the world,
then we scale them properly3. We have also created synthetic
traces based on the work in [13]. Simulations based on these
synthetic trace confirm the observations made using the real
trace. We therefore focus on the former.

Furthermore, we consider a square area 5000m x 5000m
in the center of San Francisco. We use the Cabspotting4 trace
to compute the average meeting rate ν: we randomly place the
M nodes and, considering a communication range of 200m,
we calculate the meeting rate with each C node. We find ν = 4
contacts/day. According to the density of the city and to the
number of vehicles per capita, we estimate to 100.000 the

3We scale them linearly taking into account the number YouTube users and
the population of San Francisco

4GPS coordinates from 536 taxis in San Francisco over 23 days [30].

number of vehicles in the area considered. However, in order
to be realistic about initial technology penetration we assume
that only 1% of these vehicles is participating in the cloud.
We assume that each car can store 100 contents (0, 1% of the
catalogue). We set TTL to 3 minutes. Unless otherwise stated,
we will use these parameters summarized in Table II.

DESCRIPTION PARAM VALUE

Number of vehicles α 1000 cars

Buffer size β 100 contents/car

Meeting rate ν 4 contacts/day

Time-To-Live TTL 3 minutes

Number of contents K 100.000 contents

Communication range 200m

TABLE II: Parameters of the scenarios considered.

Finally, we compare our allocation policies with:

• No cache: no contents are stored in the vehicles; the prob-
ability of miss is equal to 1, therefore the cost corresponds
to the total demand: cost = ∆t

∑K
i=1 ϕ

(i);
• Random: contents are allocated randomly in the vehicles;
• Square root: this policy behaves similarly to our optimal

allocation, but it replaces the logarithm with the square
root, after an appropriate normalization to satisfy the stor-
age constraint.

A. Optimal Content Allocation for Large Time Windows
We perform numerical simulations considering constant

content popularity during a time window ∆t, which is set to 1
week. Specifically, we compare the effect of buffer size, TTL
and other parameters on the final gain comparing different
policies. We show that the allocation policies presented in
Section III clearly decrease the load on the infrastructure.

Fig. 3 depicts the cost in terms of total accesses during the
period ∆t, broken down into seeding cost and cache misses, for
the various policies. Our policy reduces the total cost by around
65%, more than any other policy. What is more, it improves
twice the performance compared to the square root policy,
which is known to achieve optimal results in conventional peer-
to-peer networks [11].
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Fig. 3: Cost savings with different policies (∆t = 1 week) with
numerical simulations.

In Fig. 4, we plot how TTL, buffer size and number of
cars affect the final cost. Specifically, Fig. 4a shows the cost
according to the value of TTL for the different policies. It is
very important to note that considerable gains can be achieved
with very small TTL values (in the order of a few minutes)
and small number of vehicles participating in the cloud (1%).
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Fig. 5: Cost savings with different values of p.

This provides some evidence on the advantages of offloading
based on a vehicular cloud, compared to offloading using small
cells or WiFi, as for example in [8] or [25]. E.g, [8] reports
minor gains for similar small deadlines, while [25] requires
a much longer TTL (order of 1-2 hours) to achieve similar
gains. In addition, increasing the TTL further has diminishing
returns. This implies that even users not willing to wait too
long could participate in such a system (benefiting themselves
and the operator).

An efficient cache system should store as many popular
contents as possible. However, in reality the catalogue of online
contents is really large and only a small percentage of them can
be stored. Fig. 4b shows the cost according to the buffer size.
From the plot we can observe that storing 100 contents/car
(only 0,1% of the total number of contents) provides a gain
of almost 60%. In a scenario with a larger catalogue (e.g. 100
millions), it seems doable to store 0,1% of the contents (e.g.
100.000 contents/car) needed to achieve good savings. What
is more, due to the intrinsic characteristics of the popularity
distribution, the system might require an even smaller number
of storage in order to achieve similar gains.

In an urban environment, the great availability of vehicles
leads to large gains for the proposed infrastructure. However,
an operator will probably keep using our framework even if the
number of vehicles available decreases: in Fig. 4c we depict the
cost savings according to the number of C nodes participating
in the cloud and the gain observed is not less than 50% when
more than 250 vehicles are part of the cloud.

So far we have assumed that the probability of downloading
a content during a meeting is equal to 1. However, because of
external factors, a user might not be able to get the requested
content during a meeting. According to the repeat policy
discussed in Section III-B1, in Fig. 5 we plot the percentage of
savings for different values of p. We can note that, even when
p = 0.5, i.e. aM node loses the connection during half of the
downloads, we can have a gain of almost 60% in terms of total
number of accesses to the core infrastructure. Clearly, this will
be at the expense of some larger delay compared to the case
of no disconnections. Furthermore, we plot the gain provided
by the original allocation policy (calculated with p = 1) in a
scenario with losses: the plot shows that it is important trying
to estimate the value of p and tune the allocation accordingly,
since this can bring up to the 20% of additional savings.

Finally, it has been long observed in many contexts,
including Internet contents, that popularity exhibits strong
skewedness. To evaluate the effect of such popularity differ-
ences, in Fig. 6 we do not take into account the real dataset,
rather we consider bounded Pareto distributions (minimum
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Fig. 6: Sensitivity analysis vs. popularity distributions.
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Fig. 7: Sensitivity analysis vs. ∆t.

value = 1 request/day, maximum value = 100.000 requests/day
and ζ as shape parameter). We can observe that when the
variance increases (ζ low), the optimal allocation brings a
considerable gain up to the 70% in terms of number of accesses
to the backbone. This is due to the fact that, if ζ is low, some
contents have very high popularity, and caching them leads
to a large number of cache hits. On the other hand, the gain
goes to 0 when ζ increases, i.e. the differences in the content
popularity are negligible making it hard to create enough cache
hits with any subset of them that can fit in the cloud.

B. Dynamic Adaptation to Changing Content Popularity
In this subsection, we analyse how refreshing the caches

affects the performance of the vehicular cloud. We still use the
parameters described in Table II. Moreover, here we increase
the realism of the simulations by considering that the popu-
larity of the contents is not known in advance, but it requires
to be estimated. Several studies have been done on content
popularity prediction [18] [15]. In our simulator, we build a
simple predictor to estimate the future popularity according
to the previous samples, by using an Exponential Weighted
Moving Average based on the latest 10 time windows. Building
the best predictor goes beyond the scope of this paper. Here,
we just want to show how an error in the prediction affects
the system and if the considerations done are still valid.

The content popularity provided by the database used [4]
has daily granularity; however, several studies have shown
a clear sinusoidal behaviour on a daily basis [18] [5]. We
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Fig. 8: Contents allocation (∆t = 2 days).
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(a) Cost comparison according to TTL.
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(c) Cost comparison according to number of vehicles.

Fig. 4: Sensitivity analysis vs. TTL, buffer size and number of vehicles.

exploit these studies to estimate the content popularity on a
hourly basis. Fig. 7 shows the final cost when caches are
updated with a varying refresh time over a long time period
to ensure capturing the variations in the content popularity
(in the simulator, we set this long time period to 1 year). In
this scenario, the vehicular cloud still provides a considerable
number of savings (from 50% to 70% depending on ∆t)
in terms of accesses to the infrastructure. Moreover, we can
have gains similar to the case with perfect knowledge (line
“optimal”) even by using a simple predictor.

In Fig. 8 we can observe a snapshot of the number of copies
allocated per content according to its content popularity. We
capture the snapshot at a random day of our trace. The plot is in
semilog scale and ∆t = 2 days. In this case, even if the shape
globally follows the expected logarithmic behaviour, we can
see a significant number of outliers. This is due to the fact that
the number of copies does not change instantaneously when
the popularity varies, due to the seeding cost. It is interesting to
note that, in Fig. 8b, since the number of cars is limited, we
observe a single-threshold behaviour, where the system will
end up either caching contents everywhere (case of popular
contents) or not caching them at all (case of non popular ones).
Indeed, from Eqs. (5) and (7), when vehicles buffers cannot
satisfy the large user demand, L and U get closer.

C. Validation through real mobility traces
In this subsection, we present the results of MATLAB

simulations based on real mobility traces. We use the Cab-
spotting database [30], where ∆t is equal to 23 days and
the number of vehicles α is 536. In these simulations, we
first generate a set of requests per content according to the
popularity obtained by the YouTube database [4]. Then, we
associate a timestamp and a location to each request. We
assume that the number of requests in an area is proportional
to the density of vehicles in that area and that the requests are
concentrated during daytime. Once a request appears, we check
if one of the vehicles in the communication range of the request
within TTL has the required content. In this scenario, we set
TTL to 5 minutes. However, despite we consider small buffer
capacity per vehicle (0,1% of the total number of contents),
we will show that, on average, contents are delivered much
earlier than TTL. Furthermore, we assume that, when vehicles
are closer to the location of the request, the contact duration
and the throughput are larger, increasing the probability p to
successfully deliver the content. For this reason, we consider p
as inversely proportional to this distance, with mean equal to
0,7. We perform trace-based simulations comparing (i) repeat
policy (called “optimal” in the figure), (ii) dynamic adaptation
to the changing popularity (“optimal(var)”), where caches are
updated on a daily basis, and non optimal policies.

Fig. 9 depicts the cost in terms of number of accesses to
the infrastructure during the period ∆t when the Cabspotting
trace for mobility is used. The plot shows that repeat policy
can decrease the load on the infrastructure until 40% even if
only few hundreds of vehicles (with small buffer capacity) are
participating into the cloud. Similar cost savings are provided
when we allow to vary the content allocation on daily basis.
What is more, users usually wait much less than TTL in order
to download the requested content: simulations revealed that,
in more than 50% of cases, a user waits less than 60 seconds
when the content is eventually delivered.
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Fig. 9: Cost savings for different policies (∆t = 23 days).

VI. RELATED WORK

The high skewness in the content popularity and the rapidly
increasing demand for mobile data has led to a number
of recent papers related to mobile data offloading through
opportunistic communications [9] [21] and distributed storage
[14] [19]. For instance, in [9] the authors find a way to serve
user requests from other mobile devices located geographically
close to the user. They achieve this by clustering crowded
places (dataspots), where a user can ask for contents directly
to the close smartphones. [21] uses opportunistic local con-
nections and remote connections through cellular networks.
The solution proposed in [14] disseminates contents for Just-
in-Time streaming (Netflix, Hulu or YouTube) in the access
points distributed city-wide. [19] uses small cell access points
(helpers) to cache contents. In their work, the authors allocate
files in the helpers according to the network topology and the
file popularity distribution. Files not available from helpers
are transmitted by the cellular base station. In the context
of vehicular cloud, some preliminary attempts to build an
infrastructure similar to our proposal have been done by [37]
and [38]. In these works, authors model an architecture to carry
and forward contents making use of the predictable vehicle
mobility [38] or propose a P2P content sharing scheme based
on popularity [37], using a sub-optimal policy to store contents.



In this paper, we propose a new alternative caching in-
frastructure allowing to store popular contents in a vehicular
cloud overlapping the existing cellular network; compared to
other solutions, we limit resources constraints (e.g. caching in
mobile devices) or we decrease installation and maintenance
costs (e.g. caching in small cells). Moreover, in this work we
use the high mobility of the vehicles in order to provide better
performances and high availability of the popular contents.
Finally, refreshing the caches allows to further exploit the
variability of the content popularity to decrease the number
of the accesses to the infrastructure.

VII. SUMMARY AND FUTURE WORK

Offloading contents is considered a solution to the rapid
increase of mobile data demand and we firmly believe that
vehicular networks will play an important role in this field.
This is confirmed by the interest of research and companies in
exploiting vehicles to carry contents or to give connectivity to
users [2]. In this paper, we provide an analytical framework to
allocate popular contents in a vehicular cloud. Based on our
model, we suggest the periodicity of refreshing the caches in
order to face the variability in the content popularity.

As a part of future work, we plan to extend our model
including heterogeneity in content size, V2V communications
and location based popularity (e.g. football videos are more
likely to be downloaded near a stadium), using the recent stud-
ies on floating contents [35] [23]. We also plan to investigate
the impact of different TTL per content to decrease the total
load and/or to improve the end user Quality of Experience
(e.g., analysing the slowdown metric).
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