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Abstract—In this paper, we present a model for TCP/IP con- helped to understand the impact of network and TCP parame-
gestion control mechanism. The rate at which data is transmitted ters on the throughput of the connection and on the efficiency
increases linearly in time until a packet loss is detected. At of patwork resource utilization. Recently, these expressions

this point, the transmission rate is divided by a constant factor. -
Losses are generated by some exogenous random process whicﬁ‘a\’e been also used to adapt the rate of UDP flows (e.g., audio

is assumed to be stationary ergodic. This allows us to account for and video) in a way to be friendly with TCP flows [16].
any correlation and any distribution of inter-loss times. We obtain The mathematical analysis of TCP requires two steps. First,
an explicit expression for the throughput of a TCP connection and e need to construct a model for the window size evolution.
bounds on the throughput when there is a limit on the window — gince most of Internet traffic in terms of bytes is carried by
size. In addition, we study the effe_ct of thg Timeout mechanism long-lived TCP connections. the maiority of existing models
on the throughput. A set of experiments is conducted over the 9 - v jority . 9 A
real Internet and a comparison is provided with other models focus on the Congestion Avoidance mode. A fluid model is
that make simple assumptions on the inter-loss time process. often used. The window of TCP is assumed to increase linearly
The comparison shows that our model approximates well the as a function of time until a loss occurs, and it is divided
throughput of TCP for many distributions of inter-loss times. by two when the loss is detected. An initialization to one
packet is proposed in [30] for losses detected via Timeout.
The phase of recovery from losses is assumed to be negligible
. INTRODUCTION and the source is assumed to resume the linear increase of

We analyze in this paper the performance of TCP (Tran@s congestion windovy directly after the reduction. In _[35],
mission Control Protocol), the widely-used transport protoc8 Packet-level model is proposed to account for the discrete
of the Internet [21], [38]. TCP is a reliable window-based flof#ature of TCP. Indeed, the volume of data in the network is at
control protocol where the window is increased until a pack8flY moment in multiple of packets (packet size equal to MSS
loss is detected. Here, the source assumes that the netwofdaximum Segment Size) due to the Nagle algorithm [31],
is congested and reduces its window. Once the lost pack@ich for efficiency reasons, prohibits TCP from injecting into
are recovered, the source resumes its window increase. Ad13 network packets of small size (smaller than MSS). This
performance measure, we consider the throughput of a lof{g/ume of data increases by one packet when the increase in
lived TCP connection having an infinite amount of data tH1® Window size exceeds the packet size. Later in our paper,
send. A mathematical model is presented to find a closed-fol§ Will show how a fluid model can be corrected to account
expression for the throughput of the connection. for this discreteness of TCP. o _

We assume that the reader is familiar with basic mechanisms>¢cond, TCP analysis requires a characterization of times
of TCP [38] such as Slow Start and Congestion Avoidan&@twee” congestion events. Namely, one needs to quel .the
algorithms, the two methods for loss detection: DuplicafgPact of the path between the source and the destination
ACKs and Timeout, the Delay ACK mechanism, the limitatio?" the TCP connection. Particular models are considered in
on the congestion window due to receiver or sender buffer, et@€ literature. The fixed point approach used in [24], [28]
(see [8] for a survey on TCP issues). assumes a constant time between congestion events. The

A remarkable attention has been given to TCP modelifgpSumptions made in [35] can also be shown to imply a
within the research community, e.g., [2], [15], [23], [24], [28]cOnstant time between congestion events. In [30], congestion

[29], [30], [35], [37]. This is not surprising since 95% of Inter-EVeNts are modeled by a homogenous Poisson process. In [37],
net traffic is carried over TCP [39]. Closed-form expressiorf§€ intensity of the Poisson process is assumed o increase
for the throughput of a long-lived TCP connection have bedth the window size. Instead of working in real time, the

obtained under different assumptions. These expressions hayiors in [29], [34] chose to work in a virtual time, which
is obtained by sampling the congestion window of TCP at the
* An earlier version of this paper has appeared in ACM SIGCOMM 2006noments of ACK_arrlvaIS' Th_ey C_OnS'_der th? case Where _t'mes
1 The work of this author was financed by a grant of CNET France-Telecobetween congestion events in this virtual time are identically
on flow control in High Speed Networks. , _and exponentially distributed. The distribution as well as the
1 The work of this author was financed by an RNRT “Constellations” project . . . . .
on satellite communications. moments of the congestion window size are found in this

1 Contact author. virtual time and a method is suggested to transform them back



to the real time. that X (¢) increases linearly with time at a rate® If we denote
Our experimentations over the Internet show that timdsy b the number of data packets covered by one ACK and by
between congestion events can have general distributioRd'T the average round-trip time, we find = 1/(bRTT?).
Depending on the monitored path, these times can vary frdrat v denote the decrease in the transmission rate when a loss
an approximately deterministic case to a considerably burstyent occuré. The arrivals of losses are modeled by a general
case. Moreover, some correlation can exist between congesttetionary ergodic point process [7] with non-null and finite
events. We note in particular that if packets are droppéatensity \. Let {7,,};7>° __ be a particular realization of the
independently of each other with constant probability, then tlp@int process. Consider for instance the case when losses are
times between drops are not independent (since the instamfaickly detected without the need for a long Timeout period
neous transmission rate is variable). We believe that the Inter(ei. via the three duplicate ACKs algorithm or an efficient fine-
is so heterogeneous that different types of distributions of timgsanularity Timeout mechanism). Then, the evolution of the
between congestion events will always exist. transmission rate can be described by the following recurrence
In this paper, we investigate the case of a general sequence Xpi1 =vX, + aSy, 1)
of times between congestion events. In the sequel, we will call
a congestion event tss eventA loss (event) correspondsWhereX, is the value ofX (¢) just prior to the arrival of the
to a moment where the congestion window is divided by l8ss at7;, and S, := T,.1 — T,. The pair{T,, X,,} can
constant factor — usually equal to' 2Ve only require that this be considered as a marked point process [7]. As we will see,
process of loss events is stationary ergodic. With this minimde model that we consider here allows in particular for the
requirement we are able to obtain an explicit expression féistribution ofS,, to depend onX,,.
the throughput of TCP. Our loss model is general enough toln the next section we use the machinery of stochastic
capture any correlation and any distribution of inter-loss timeBfocesses to study this model of TCP rate evolution. We first
Obtaining a closed-form expression of TCP throughput fdptroduce some tools to handle (1), and in particular to handle
general loss processes can be quite useful for many design Bigicase where the distribution 8f, may depend oX,,. Using
dimensioning purposes. It could be used for the fine-tuniffese tools we compute the throughput, i.e. the time average
of physical transmission channels; for example on satelli@d ProcessX(¢). We also compute the first two moments of
links, coding schemes that include redundancy and interleaviti¢ TCP transmission rate at loss arrivals for the stationary
cause losses to appear in bursts (see [20]). Formulas that ti@@me. The model can be used to compute all the higher
into account this burstiness can help to predict the impact Boments of the transmission rate of TCP in the stationary
Coding schemes on TCP Connections’ and hence to Op“mﬁgglme In particular, we will show how to find the variance of
the amount of redundancy that should be added. A modelXs(t). Then different examples of loss processes are studied:
presented in [9] to optimize the amount of redundancy daeterministic, Poisson, i.i.d. and Markov arrival processes. The
a noisy link using a formula for TCP throughput. AnothegXpression of the throughput is provided for each of these
important use of closed-form expressions for the averagarticular cases. In Section II-E, we extend our model to
transmission rate (or equiva|ent|y the throughput) is in th’@count for the case when there is a limitation on the evolution
design of TCP-friendly applications. The latter are typicall?f the transmission rate (e.g. due to the receiver advertised
real time applications that are designed to use a fair shaydow); we provide bounds on the throughput for this case.
of the bandwidth in comparison with TCP connections (séB Section II-F, we explain how to extend our model to the
[16], [17] and references therein). As we will see, when log#se when some losses are detected via a conservative coarse-
events are highly bursty, the transmission rate computed un@éanularity Timeout mechanism, which is used in most TCP
the assumption of deterministic or exponential inter-loss timeg)plementations. In Section IlI, we present the testbed as well
considerably underestimate the throughput of a TCP conndé-the results of our experimentations. The results demonstrate
tion. Hence, TCP-friendly applications can perform better arifat different types of loss processes exist in the Internet,
transmit at a h|gher rate when using a more precise model ﬁﬂ'd that often the distribution of inter-loss times cannot be
the losses. approximated by a constant or by the exponential distribution.
As for the dynamics of TCP, we model the instantaneng]e eXperimentationS also show the common prOblem of linear
transmission rate which is defined as the number of packé&de increase models. On traces where the transmission rate
in the network (or the volume of data) divided by the RTPf TCP exhibits a linear increase, our model gives excellent
(Round-Trip Time) of the connection. The TCP source jkesults. However, on traces where the TCP window grows sub-
assumed to always have data to send. The number of pack&@arly, linear models overestimates the real throughput. We
in the network is thus equal to the number of packets that caanclude Section Il with a method to correct the error caused
fit within the window. Denote byX () the transmission rate of by the fluid approximation. Finally, we present our conclusions
the TCP connection at timeaveraged over RTTWe assume in Section IV.

3The linear growth is known to hold for TCP connections where the round-
trip time is almost constant, or varies independently of the window size. The
1This division can be the result of multiple packet losses. Ideally, a TCfrowth of X (¢) stops being linear when the RTT is correlated to the window
connection must divide its window by two whatever is the number of packsize, see [5], [8]
losses within a Round Trip Time (RTT) [35]. 4Usually v is equal to one half, but we consider a more general scenario to
2At any time in the analysis, one can multip¥/ (t) by RTT to get the account for other possible Additive Increase Multiplicative Decrease (AIMD)
window size in terms of packets (or MSS). flow control mechanisms.



The model we propose in this paper is a fluid mode\ TCP-friendly application is considered in which the trans-
that studies an AIMD flow control mechanism. It is then amission rate of packets is constant, but the variations of the
extension of AIMD fluid models in the literature to scenariothroughput are implemented by varying the packet size. This
where times between loss events are generally distributedakes the TCP throughput independent of the distribution of
not only constant and exponential. This extension allows tise process of losses of packets.
to generalize the well knovsquare root formulafor TCP Remark 2: The monotonicity ofS in condition©3 is quite
throughput, and to prove that it still holds in case of generahtural. It reflects the fact that the time till the next loss
stationary ergodic loss processes. We also explain how to adigptds in general to decrease as the window size increases,
a fluid model to the TCP protocol, in particular how to accoursince there are more packets in the network and thus there
for the discrete nature of TCP, the receiver window limitatiorare more chances for losse¥he conditionE [S(0,170)] < oo,
and the Timeout mechanism. To consider these latter T@yether with the monotonicity o in the first argument,
mechanisms, we use techniques similar to those introdudetlies thatE [S(z,n0)] is finite for all z. The condition that
in [35]. As a consequence, our model can be seen as @< E[S(a,no)] for some constant guarantees that there
extension of [35] to scenarios where times between loss eveoésinot be clusters of infinitely many simultaneous losses.
are generally distributed not only constant. If we consider Proposition 1: Under either one of the assumptioBs, O2
constant times between losses, we must obtain very close,Os, there is a unique stationary ergodic regime given by
if not the same, throughput as that obtained by [35]. Owxpression (2). Moreover, undeér, or O3, if the transmission
experimental results validate this claim for loss rates rangimgte evolution starts from an arbitrary ratg, it will converge
from few losses per 10,000 packets to few losses per l18nost surely to the above stationary regime,
packets. As for higher loss rates, we expect our model to inherit Jim X, — X5 =0, —as. 3
the same performance limitation as [35] since finally both Proof: Under assumptior®;, equation (1) is a particular
works deploy the same modeling for the Timeout mechanisggse of stochastic linear difference equations [12], [18]. Since
Modeling TCP performance under very high loss rates is ndite sequence of inter-loss times is stationary ergodic, it follows

the main objective of this paper. from Theorem 2A in [18] (and assuming that< v < 1
and that0 < E[S,] < oo; see the Appendix of [2] for more
Il. THE MAIN RESULTS details) that equation (1) has a stationary solution given by (2).

To compute the throughput, we use the following expressié\ﬂoregver’ (3) follqws from the resrt:lts T [1211’ [fl. 8l. di
for the stationary regime oofothe process defined by (1): Under Assumptiond,, we see thatX;; as defined in (2),

is stationary ergodic, since it is a function of a stationary

X, = anksn—l—k- (2) ergodic sequence. Moreover, the sum is well defined (since
k=0 all summands are nonnegative), and it has finite expectation.
Next, we present various types of conditions under which (Zherefore, it is almost surely finite. Since undgy there is a
describes the unique stationary regime of our system. unique stationary regime for (1), it has to be given Xy.
Finally we considei©3. We use a Loyns-type scheme [25]
A. The stationary regime to show thatX as defined in (2) is stationary and ergodic.

. . . . e then show that it is finite and that, converges to the
We consider the dynamic equation (1) under either one é%ationary regime from any initial state. Define the process

the following assumptions: o X to be a solution of (L) obtained with the initial condition
©:: The process, is stationary-ergodic witlh < E[So] < x(k) _ ( Then it follows from the monotonicity off in
oo. The distribution of the procesS, does not depend ‘kf. hat f h i )
on X,,. We may thus construct on the same probabilit e first argument that for each fixed X" is monotone

space a family of processes, (z), = > 0 indexed by the ondecreasing irk (for each sample, and for all > —k).

initial state Xy = z, such that all have the same inter-IosglOte also that i ntk—1
times S,,. XP=a > v"Sy .
©,: The process(S,, X,,) is stationary-ergodic with) < m=0

E[Sp] < oo. Moreover, there is a unique stationaryThys the limit ask — oo of X\® equals X, and it is
ergodic regime that solves the dynamic equation (1). stationary ergodic (since it is a function of the stationary
©3: There is a stationary ergodic sequenggesuch thatS, ergodic sequencs).
can be represented as Due to the monotonicity ofS, the sequenceX\” with a
Sn = 5(Xun, n)- fixed initial stateXék) = z, is bounded by the sequenéié(f)
Equation (1) then becomes the so-called "stochastic rec@btained by
sive equation” (see [11]) of the fort¥,,+1 = f( X, ),

where f(Xy,7,) = vXn +aS(Xn,n,). We assume that yith the same initial stat&(” = 2. As the latter sequence is
f s nondecreasing inX,, and thatS is nonincreasing finjte almost surely (assumptio®; holds for that sequence),
in its first argument. Moreoveif [S(0,7y)] < oo, and

0 < E[S(a,no)], for some constant. 50ne exception could be the case of wide area networks where lot of traffic
R K 1:A lei hich . f is multiplexed and where the loss process seen by a TCP connection can be
emar AN example In which even in presence o COmépproximated by a homogenous Poisson process independent of the window

plex loss processes, Assumptiéh holds, is given in [40]. size, see the long-distance connection in the experimentation part.

X8 =vX P +a8.(0,m,)



it follows thatXff) is also almost surely finite. Moreover, by Remark 5:The expectation computed in (4) is taken with
taking the limit ask tends to infinity, we also see thaf* is respect to loss instants. This expectation is also referred to as
bounded by a stationary process which is finite almost sureBalm expectation in the context of point processes [7].
and therefore the process; is also finite almost surely. Next, by using (2) and the concept of the Palm probability,
Next we establish (3) under assumpti®g. Let X,, corre- we proceed for the computation of the TCP throughput:
spond to the process with initial stafé, = =z, and let X/, — . 1 [T
correspond to the process with initial stat§ = «’. Without X = TIEI;Q T/ X(t)dt.
0
loss of generality, assume thalt > . Then by the fact thaf

is monotone nondecreasing in the first argumert, > X, ' ) )
for all n. On the other hand. from the fact thatis non the throughput as a function of the correlation functifin

increasing in its first argument, we havé’ ., — X,41 = of the loss intensity), the linear increase factax and the
V(X! — X)) +a(S(X],,nn) —S(X,n ) < Vn&/ —XZ)- We multiplicative decrease factor.
conclude thatX’,, | — X,41| < v(X/, — X_n), from which (3) Proposition 3: The throughputogf TCP is given by

Our main result is the following closed-form expression for

follows. This implies the uniqueness of the stationary regime. X — )\a[lR(O) + Z VR R ()] (6)
0 2 '
k=1
Remark 3:Note that assumptio; implies assumptio®s Proof: Since the procesX (¢) is ergodic, the throughput is

which in turns implies assumptidB,. Thus,©, is the weakest equal to the expectation of the transmission M&fX (¢)] at
assumption under which we obtain the expression (2) for t?ﬁ arbitrary time point. To comput® [X (¢)] one can use the
. . . . ollowing inversion formula (see e.g., [7] Ch.1 Sec.4)
stationary regime, where&; is the weakest assumption under )
which we obtain the convergence to the stationary regime (3). E[X(t)] = AE® {/ X(T)dT:| , )
Throughout the rest of the paper, we shall only consider the 0
stationary ergodic regime, and our results will thus hold undewhere E° -] is an expectation associated with Palm distribu-

assumptior9s,. tion. In particular,P’ {7, = 0} = 1. Now using formula (7)
and expression (2), we can write
T
0 0 a2
B. The computation of the first two momentsXgf and the EX(H] = AE UO (vXo +M)d7} = AE [”X(’SO + 550]
throughput of TCP 0
_ 0 k 012
Here we compute the expectation and the second moment = A O‘VkZ_OV S—1-450 | +Aa2E” [So]
of the TCP transmission rate at the instants of losses as well S N
as the TCP throughput. = A TR+ 1)+ 7“}2(0)
Proposition 2: Let A = 1/E[S,,] be the intensity of the loss k=0
process and leR(k) = E [S,,S»+«] be the correlation function B 1 Sl
of the procesg S, }, > .. Then, N /\a[QR(O) + ;1” R(k)]
o -
EX=—— 4
[ 'IL] )\(1 _ V) ) ( ) I:l

Remark 6:Often the covariance functio®'(k) = R(k) —
2 o] 2. . . .
w2« & E[S,]” is used instead of the correlation functi®ik). Then,
E [(X") } T 1 -2 [R(0) + 2};” R(k)]- ®) the formulas (5) and (6) become
Remark 4:We note the remarkable insensitivity property, E[(X*)2] = a? C(0) + 2 - kO(k o?
thatE [X ] does not depend on the correlation between inter- [(X2)°] 1- V2[ 0+ ;V ()] + A2(1—v)?’
loss times nor on their moments of order greater than one. -

Proof: To compute (4) and (5), we use the expression (2) 1 oo a(l+v)
for the stationary regime. X = Aa[=C(0) + Z ,/kc(k)] it Sl
e [SS) kES _goo . o - 2 1 2A(1—l/)
(X2l =a) v'ElSn1s]= By > vh= Y ) Define A(t) as the number of packets transmitted on the
h=0 k=0 TCP connection until time, and L(t) be the number of loss
Similarly, we obtain events until time. The probabilityp of losing a packet is then
E[(X)?] = E QZV’SnHaZVkSn—l—k} >y L(t) At A
=0 k=0 p=lim —= = lim ——— = —. (8)
o ko , t—oo A(t)  t—oo fo X(rydr X
= o’E [Z Z VJSnlek]Sn—l—k+j:| . . . .
=0 5= This allows us to write our main result (6) in another form so
ok as to grasp the influence pfand RT'T on the throughput for
= o> > VE[Sn1-5Sn1-k1s] general distribution of inter-loss times. Define the normalized
k=0 j=0 correlation function:?(n) = A2R(n). Then using (8) and: =
_ ax= [ RO)+237_ R(2j), k=2 1/(bRTT?), we get
= o> v 250 R(2j — 1), k=2r—1.
k=0

_ 1 1. > .
X = ZR0)+ S R
By regrouping the terms of the last series, we get (5). O RTT\/Z%\I o ; (®)



If we define, similarly, the normalized covariance(%@k) = variable the times between losses, the higher the throughput.
A2C (k) (whereC(k) is defined in Remark 6) then we obtainWhen the loss events are highly bursty (which implies a
the following formula for the TCP throughput: large variance of inter-loss times), assuming that the loss

1 14v 1. o) . process is Poisson [30] or deterministic yields a non-negligible
RTT Vi \ 201 = 1) + 50(0) + ZukC(k). (9) underestimation of TCP throughput. Similarly, assuming that
k=1 the loss process is Poisson when it is close to deterministic

X =

We conclude that for arbitrary stationary ergodic loss procedgads to an overestimation of TCP throughput. _

the throughput of TCP is inversely proportionalR’'T and to ~ 2) Correlated losses modeled as a Markovian Arrival Pro-

the square root of the packet loss probabitityThis constitutes C€SS: In this section we con§|der correlated losses which are

the main finding of our model, where the classical square rdd°deled by Markovian Arrival Process (MAP) [26], [32],

formula is generalized to the case of stationary ergodic lossE%3]- It was shown in [6] that for a given general point
Remark 7:Note that (6) can also be rewritten in terms oPTOCesS, there is a sequence of MAPs which converges to the

the second moment of the transmission rate at loss instant£0int process in distribution. In particular, this implies that in
- AM1-17) principle the general point process can be approximated by

_ *\2
X = 20 E[(X)°]- appropriate MAPs. Furthermore, the PH-renewal process [33]

From this expression we can conclude that constant inter-IG¥ the Markov Modulated Poisson Process (MMPP) [14] are

times lead to the smallest TCP throughput over all the set Brticular cases of the Markovian arrival process. _
stationary loss processes having the same intensity. Let us br_|efly review the definition and some _propert|es of
the Markovian Arrival Process. LéY (¢) be a counting process

associated with MAP, that igy(¢) is the number of arrivals
C. Examples of loss process (or losses in our setting) in the intervéd, ¢]. Also let J(t)
Now let us consider some important particular cases of the an auxiliary state variable. Then MAP can be described in
general loss process. terms of a two-dimensional Markov proce&8/(¢), J(¢)} on
1) ID random losses (General Renewal Proces$)le the state spacé(i,j)|i > 0,1 < j < m} with the following
model the loss process as a general renewal process. Namgfjhitesimal generator

we assume thatS,,n = ...,—1,0,1,... are i.i.d. random C D 0 0
variables. The formulas (4), (5) and (6) take the following form. o C D 0 ---
Proposition 4: Let {S,}>° _ be iid. withd := E[S,] Q=10 0o ¢ D ---|>
andd® := E [S2]. Then,
o ad
E[X]=1—. (10)

where the matrixC' € R™*™ governs the transition of the
E [(X*)Q] _ o? d® 4 2vd® (11) processJ without arrival (loss) and it has negative diagonal
1—v2 1—v]’ elements and nonnegative off-diagonal elements. The matrix
o o T1 V2 D e R™*™ governs the transitions of with the simultaneous
X=E[X(@)]= 3 {2d(2) + 1 (12) arrivals and it has nonnegative elements. Thus, the underlying
In particular, if the inter-loss times are exponentially disMarkov process/(t) has the following infinitesimal generator
tributed. we have @ = C + D. Further, we assume thg # C and thatC is a
’ - od 3 stable matrix. This ensures thé{t) does not get absorbed in
X = 1—0° (13) 4 class of states in which arrivals stop. Whi(t) = i, the rate
For v — 0.5, this is similar to the expression obtained in [30]°f fransitions to statg # i is Q;;. If such a transition occurs
If the inter-loss times are deterministic, we get then ar).arrlval occurs simultaneously with the transition with
_ 14+ v probability D, ; /(—C;; —D;;). Note that MAP becomes MMPP
X = 2(1—v) ad (14 with infinitesimal generatoR? and arrival rate matrix\, if we

. : . . takeC =R - AandD = A.
With a change of variables, the above expression is equwalenLet (5,12, be the sequence of inter-arrival times for MAP.
nJfn=1 ]

to the classical square root formula obtained in the Iiteratug%d let{.J,}2 | be the sequence of states of the underlying
inicti . nSfn=1
for deterministic losses [24]1‘ [2\7'—3@5]' Markov process at the arrival epochs. ThéA,, S, }52, is

X=—u/—, (15) a Markov renewal process [19] with the following transition
RTT \ 2bp - : i
probability matrix [33]:
wherep is the probability that a TCP packet is lost. Indeed, z .
substitutingd in (14) by its value in (8), setting = 0.5, and Fx) = (/ eXp{C“}d“> D = (I = exp{Cu})(=C)""D.
recalling thata is equal to1/(bRTT?), we get the square 0
root formula in (15). This can also be obtained from (9), asote that7 = F(oco) = —C~'D is a transition probability
C(k) = 0 for all k in the case of deterministic inter-loss timesmatrix of a discrete time Markov chain embedded at the
Remark 8:We note from (12) that the throughput of TCRnstants of arrivals. Lef. be its stationary distribution. If we
can be expressed as a constant that only depends on ttie the initial distribution of the underlying Markov chaiit)
average time between loss events, plus a term that groasu, the arrival process becomes event-stationary. The event-
linearly with the variance of inter-loss times. Hence, the morgtationary version of MAP has the following joint distribution



function for the inter-arrival times [22]: Using the Palm inversion formula as in the proof of Proposi-
s tion 3, the moment of ordet of X (¢) in the stationary regime

Fsgos, (w0,0) = [ J{T — exp{Cai)The. (16)  can be written as follows,
1=0 T
k _ 0 k
Consequently, the joint Laplace Stleltjes transform is given by E[X*(#)] = AE /0 (vXo +ar) dT] :

f(z0,wes2n) = E | exp{— szsk _“H{ (sI—C)"'D}e.  peveloping the term inside the integral using the Binomial

=0 k=0 (17) formula then integrating, we get the following expression for
Using this Laplace-Stieltjes transform, we can easily compufﬂée/f -th moment of the transm|35|on rate of TCP,
the_ fII’St.tWO moments and the correlation function of the inter- _ Z Cku [X Sk z+1] .
arrival time process. Namely, 0

D 4zl — C) ' De)g = —pC e, (18)

(24)

E[Sn] = ds We still have to compute the expectatidi$ [ XS5~ "] for
° 1 = 0to k. These expectations can be easily computed by using
E [53] = —(p(zI - C)~1De)|,—o = 2uC " 2e (19) the expression o in the stationary regime given in (2). We
ds show next the expressions of these expectationg fer2.
92 The second moment of{(¢), and hence the variance,
R(k) = ElSuSn+r] = 5 O (20, 2k)]z=0 requires the expressions Bf[S3], E [Xo52] andE [X2S,].
— uCDTR O 2De' (20) Using (24), this second moment is equal to

E [X2(8)] = A (ﬂa X35] + vk [X,53] + © E [SS]) .

To derive the expression for the correlation functi®(k), w 25)

have used the following formula for the differentiation of an, 8] is a characteristic of the loss process. Using the

I i ) A s
mverse matrix-valued functiontA™!(2))" = —A~'(2)4'(2) expression ofX, in (2), the other two expectations can be
~(2) [10]. expressed as a function of the auto-correlation functions of the
Now we can calculate the first two moments of the procefsss process. We have

{X,} and the TCP throughput for a MAP loss process.

k 2
Proposition 5: Let the loss proces§S,, } be represented by E[XoS5] = O‘Z” E [SoS-1-4]
MAP. Then, k=0
* [0 _ oo oo ]
E [Xn} = - — V/LC 16 (21) E [XOZSO} = O¢2]E Z I/kS_l_k Z l/]51]'s0:|
k=0 j=0
2
E[(X})?] = ——2u(C™ 2+ vC D[l —vT|"'C~2D)e (22) o oo
1—p2 2 2k 2 J X
Proof: The above formulas are immediately obtained from D v | E[SoSZimi] + 22” ES0S-1-k5-1-k-3] |
(4), (5) with the help of (18), (19), (20) and the following k=0 =t
derivation .
k _ —2 kmk—1,~—2
Z v R(k) = n¢ DZ v e E. Bounds for the model with transmission rate limitation

k=1
- In the previous sections we did not include in the modeling
— MC_QDVZVkaC_QDe = vpC2D[I — vT) ' C2De the fact that TCP transmission rate may stop growing when
=0 the congestion window exceeds the window advertised by
O the receiver. This latter quantity corresponds to the maximum
Proposition 6: Let {S,,} be a Markovian Arrival Process. number of packets_that can wait at the destlaatlon be.fore balng
Then, the throughput of TCP is given by handed to the appllpatlon [30], [38]. We qoa5|der in this seatlon
1 that the transmission rate of TCP is limited by a maximal
(C2+ 50 ’D[I —vT]~'C™*D)e. (23) value M. We taker = 0.5 since TCP divides the minimum of
the receiver window and the congestion window by two upon
) o congestion. Note here that the transmission rate can be limited
D. Higher moments of the transmission rate by other factors such as the buffer size at the source or the
Similarly to the way with which we compute the throughpuavailable bandwidth in the network. The difference from the
of TCP, one can find the expression of any moment of tlease where the limitation is due to the receiver window is in
TCP transmission rate in the stationary regime. Of particultre reduction factor which can be less than two. For example,
interest is the second moment which tells us how much tlhéen the limitation is caused by the available bandwidth, some
transmission rate of TCP oscillates. This is useful for theackets of the TCP connection are stored in the buffer at the
design of TCP-friendly transport protocols for multimedidottleneck router at the moment of congestion, so dividing the
applications. Multimedia applications are known to requireongestion window by two will free some of these packets,
small oscillations in the transmission rate [16], [17], [40]will reduce the round-trip time of the connection, but the ratio
while the TCP-friendly requirement urges them to transmitf the window size divided and the round-trip time will stay
their packets in a way that their average rate is no more thianger than half the available bandwidth due to those packets
the average rate of a TCP connection. of the connection backlogged in the bottleneck router.

a
qule'u



Transmission rate M

And if S, > 5=, then
1 1
Xk+1 = §Xk + (M — iXk) N (O[Sk)
1 1 M
> ZXp+ (M —=Xp) A (=
25Xk +( 5Xk) A ()
1 M 1 M .
= “Xp4+—>-Xp+—=X
V 2 k+ 9 =9 k+ 9 k+1
S Time The first inequality is true, sinc&’, < M. Hence, X1 <
T Tn Tl Xr+1 and according to the induction principle, the inequality
X, < X, holds for alln > 0. Consequentlyf [X,,] < E[X,,]

Fig. 1. TCP transmission rate evolution with limitation foralln>0

Since by the results of [18] and Theorem 1 both processes
The example of TCP transmission rate evolution we considgk,, } and{X,,} converge to the stationary regime, we can let
in this section is presented in Fig. 1. The stochastic differengego to infinity. This results in the lower bound which holds
equation (1) is respectively modified to the following form for any initial state of the two processes.
Xpi1=MA (an + aS,), (26) The upper bound is obtained in a similar manner by using

o ) the auxiliary process (28).
whereA stands for theninimumoperation. The model becomes 0

nonlinear and it is probably not possible to derive the explicit Now we calculate the lower and upper bounds on the
expressions ofX for the general loss proce$sie use here throughput.
the results of the previous sections to obtain bounds on th%roposition 8 Letd?® —F [(gn)z} R(k) :=E [Sn—ksn]

performance measures instead. S2) 4 o] A - 2
Before deriving the bounds we shall state a stability res 4%~ =E [(S”) } R(k) :=E [S"—ksn}' Then, the lower

for the processx,,. and upper bounds on the throughput aré given by
Theorem 1:Assume tha{5, } is a stationary process. Then ¥ ~ ) R(0) — 1d(2) + Z %R(k +1) ], (29
there exists a stationary proce§X*} defined on the same 2 =2 +

probability space, and satisfying the recursion (26). Further- -
more, for any initial stateX,, we have P-a.s. = 2 L 49 L 5
lim [ X S0, X <a\(R(0) - 5d +kz:2k+1R(k+1) . (30)
n— o0 A . =0
Proof: The proof can be easily made using a Loynes-type Proof: To obtain the lower bound on the throughput, we
construction similar to that used for Proposition 1. We refefgain use the auxiliary process (27). Suppose {Agt} is in
to [3] for details. U the stationary regime and define 3
Now we note that equation (26) can be rewritten as 1Xr+at, te[T,,T,],

X(t) = : 31
X7L+1 = EX’!L + aSn A (M - §X7L)- ( ) %X: + aS?Lv te [T7L7Tn+1]7 ( )

S.inceol < X,, < M, we have whereT,, = T,,+5,, (see Fig. 1). Similarly to (2), one can write
“Xp+aSy A — < Xpi1 < =X, 4 aS, A M. the eépressign for the stationary version{df,, }, that isX}; =

2 2 2 a Y20 (3)"S,—1-. Using (31) and the above expression for

The above estimates prompt us to derive lower and uppgr, we obtain the lower bound

i ili o r T Ty
bounds on thg throughput, using the next auxiliary stochastic - _ 4o / X(t)dt} > AE? {/ X(t)dt}
processes deflnedz\?n the same Probablht)f\fpach’@s /o o

. 1. Ny 4

Xnt1==Xn+ — A (aS,) = =X, — AS,), (27 [ S0 X X 3
1= 5 X0+ Aadh) = 5 Xn+alG oA S), (27) — AR / (X0+at)dt+/ (X4 agoyar
and M o 2 S 2
s 14 14 -
Xng1 = 5 X0+ M A (a8n) = 5 Xp +a(-— A Sa). (28) — B %xs + 058+ (%Xa + aiS0)(So — 55)}
Proposition 7: Let {S,} be a stationary stochastic point 0 1 .. 3 Q o
process. Assume that, = X, = X,. Then for alln > 0, = AE _§X050 +aSoSo — 550}
X, < X, < X,. Moreover,2ad < E[X,,] < 2ad, where [ &1, ) o
the expectatiorE [X,,] is taken with respect to the stationary = AE” |5a) (5)"S-1-kS0 +adeSo - 253]
regime,d =E [$,], d = E [Sn} and whereS,, := 2 A S, -
S = & N S = al (Z(;)HlR(k +1) + R(0) — ;d@)) .
Proof: We show by induction thak,, < X,,. It holds for k=0
n = 0. Assume it holds fom = k. Then, consider two casesNow, by using the auxiliary process (28), one can calculate the
Sy <M and Sy, > 2L. For Sy, < 2£, one has upper bound on the throughput in a similar way. O
Xir1 = =Xp +aSp > =Xp + aSk = Xpp1. Note that the two bounds given in Proposition 8 coincide
2 -2

with the throughput given by (6) @&/ \/a — oo (due to large

\We refer to [4] for an illustration on how much this derivation is difficuit/ Or t0 h'gh |OSS_ rate). However, whelf\ /a — 0, the upper
even in the simple case of a homogenous Poisson loss process. bound provided in (30) goes /. Therefore, we propose to



take as an upper bound on the TCP throughput the minimum Trensmissonrae

betweenM and the upper bound given in (30). As for the Sl S+l Snt2
lower bound, it converges to the fol2lowing expression S Zn Sw1  Sw2
- AM
X>~M-— —— (32)
Sa

asMM\/a — 0. As was shown in [2], [35], the expression (32)
appears to be a very good approximation of the through-
put when the maximal raté/ is frequently reached. It is
the throughput obtained by TCP when the transmission rate
reaches its maximum valuk/ between each two losses.

Let us Specify the two bOUhdS on the throughput f0r thag 2. A model for TCP with TO and TD losses
cases of Poisson and IID losses. We refer to [2] for the case

of losses driven by a MAP process. - . . . .
Assume first that the loss process is Poisson. Then formu%e of negligible importance in the future given the different

. i ensnancements proposed recently to enhance the TCP error
(29) agg (30) give the following bounds on the throughput recovery phase, e.g. SACK [27], Limited Transmit [1].

) — «

By (1 -€ MA/QQ) X< By (1 -€ MA/Q) : Let Z,, be the duration of the idle period after loss event
gn is equal to O if the loss is of TD type, and is greater than
zero if the loss is of TO type. Le¥ = E[Z,|Z, > 0] denote
the average duration of the idle periods after TO losses, and
?& Q = P{Z, > 0} denote the probability that a loss is of
type TO. DefineT;, as the instant at which the transmission
rate resumes its increase after thi loss (TD or TO), and

B 1. B - R 1. R let S, = Tni1 — Tn. If the nth loss is of TO type, the
A (R(O) - §d(2) +dd ) <X <aX| R(0) - §d(2) +dd )  connection gets in an idle period at tinig — Z, until time

T,, where the transmission is resumed. During this idle period,

the transmission rate is equal to zero (we are interested in the

TCP throughput). We assume that after the idle period, the

Th\'Ne' w_erde azsuhmmg uill n(;]w thlat losses wgre quuijkly_ dedtecf_el[fjansmission rate jumps directly to half its value before the
IS Is Indeed the case when losses are detected via dupll loss. This is justified by the fact that the slow start phase

ACKs (the Fast Retransmit algorithm [38]) or via a f'neé\fter Timeout is fast compared to the linear increase phase. We

granularity correctly-set retransmission timer. However, mOEEpict in Fig. 2 a sample of the transmission rate evolution in

TCP implementations use a coarse-granularity timer (500@%sence of TO losses according to our model
in unix implementations) for the detection of losses in the Define now the sequence (see Fig. 2) '

case when three duplicate ACKs are not received. This coarse- S if the loss isTD

granularity together with the back-off mechanism of the re- S, = { Sn _z if the loss isTO
transmission timer in case of retransmission losses introduce " "

some idle times during which the congestion window of TCBnd assume it to be stationary ergoflicet \' = 1/E[S]

is not increasing and the transmission rate is approximatelyid let C’(k) denote the normalized covariance function of
equal to zero. We call these losses followed by an idle timee sequencdS’,}. Using (9), the throughput of TCP when
before the resumption of the transmissiobmeout losseéTO).  excluding Timeout intervals is given by

The idle time separates the loss of a packet and the receipt

of the ACK for its retransmission. This includes any back- X7 =
off of the retransmission timer due to retransmission loss. RTTVpb'\| 2(1 - v)
Losses which are detected quickly without the need for an idle ) ] ]

period are called TD losses (TD for three duplicate ACKs}Vhen including Timeouts, the throughput of TCP can be
As shown in our experimentations, TO losses can be quRBOWn to be equal to (see [8] for proof):

frequent. For instance, we refer to Tables I, Il and Ill, where we X — X’ _ )i .

show statistics on three long-lived TCP connections. The 10th 1+ XNQZ 1+pX'QZ

columns in these tables (labell€g) indicate the percentage_l_he last equality follows from the fact tha — pX".

of losses which are of TO type. This number is sometime Two general functions appear in the above modeliggnd

non-negligible for different reasons: the high loss rate that '
gig 9 aé To compute these functions, one needs to model the loss

TCP connection may encounter at some hours during the eDI%CQSS at the packet level, i.e. how many packets are lost upon
the column labelleg), the fact that multiple packets can b . P ; .
( @) e p congestion event, then to model the way with which TCP

lost upon a congestion event, and finally the inaccuracy in t endles these packet losses. This is a complex problem stronal
estimation of the TCP retransmission timer. The same finding P ' piexp gy

has been reported in [35]. We explain in this section how on
P [35] P e7Note that the distribution of the time between thth and the(n + 1)th

can include these idle times into our explicit expression for th&s may depend on the type ath loss (TD or TO). This however does not
throughput, even though we believe that this phenomenon witkvent the process’ of being stationary.

Time

Tn Tn+1 The2  Thes

Note that2a/ )\ is the TCP throughput in the case of Poisso
losses and an infinite maximum window si2é (see Subsec-
tion 11-C.1).

Consider next the more general case of an IID loss proce
The correlation functions?(k) and R(k) are simply equal to
dd and dd respectively. We have then the following bounds,

F. Modeling conservative Timeouts

1 1+v

1 ~ [ee} ~
—_C kv
+2C(O)+k§:1u C'(k).




! ESSI - Sophia Antipolis
=

dependent on the version of TESome effort has been made
in [35] to model the reaction of TCP to the first packet loss
upon a congestion evehit) and Z have been computed as a
function of p, the packet loss probability, then validated with
real experimentations over the Internet. The expressio of  mria - Sophia Antipolis
is somehow general and holds for all versions of TCP. The _ ,
expression ofQ suites those versions of TCP that have af9 3 The experimentation testoed
intelligent Fast Recovery phase, and that only timeout when the
first packet lost upon congestion cannot be recovered by Fastchanism, sax = 1/(2RTT?). For the simplicity of the
Retransmit® These expressions have shown good performanegposition, we denote the three TCP connections by SD (Short
in modeling TCP Timeouts. This good performance added Ristance), MD (Medium Distance) and LD (Long Distance),
the fact that our main focus in this work is on the distributionespectively. The experimentation testbed is depicted in Fig. 3.
of inter-arrival times more than on Timeouts, motivated us to Data packets and the corresponding ACKs are captured with
use the expressions @} and Z proposed in [35]. This also thetcpdump tool [36] at INRIA. Given the version of the TCP
allows a fair comparison of our model with [35]. source, we developed a tool that looks at the trace of every
connection and identifies the instants of window reductions
(T%). In the case of a loss detected via Timeout, the tool
. . . computes the duration of the Timeout period. In general, the
Our work is mainly motivated by the fact that the 10SS Ofjeyeloped tool determines the timss andS”., the packet loss
TCP packets over the Internet may present & more complgxhapility p (number of loss events divided by the number of
structure than the simple processes considered in the |Itel’atlﬂ’§ckets transmitted), the parametérand Z, the average RTT

To support this motivation, we run real long-lived TCP confom the measured trace file, and the frequency with which the
nections between several Intemet sites. For each connectigReiver window is reache®( X (1) — M}).

we measure the instants of losses as well as some othegach connection is run for multiple hours. Its total trace
statistics as the average round-trip time and the total number{fyever is divided in short intervals of the order of minutes.
packets transmitted. We study then our model under differefitis division is necessary since the loss process is certainly
assumptions on the type of the loss process. After that, Wet stationary at the scale of the total trace duration. The
evaluate how well linear rate increase models approximaigtionarity of the loss process over time intervals of the order
real TCP performance. We also evaluate our expression ffminutes is judged a reasonable assumption according to [41].
Timeouts. At the end, we introduce a method to account fQye choose the intervals so that the number of loss events per
the discreteness of TCP. With this method, our model undeferval is large enough for the characterization of the loss

deterministic inter-loss time assumption gives very close resugﬁjcess to be accurate (around 500 loss events per interval).

ENST - Paris

), N
-}

Univ. of South Australia

IIl. M ODEL VALIDATION

to the detailed discrete model in [35]. This gives us a set of trace files for each connection. For every
trace file, we compute statistics on the TCP connection and
A. Experimentation testbed on the loss process using our tool. We summarize the results

Th . tation has t First. t . tin Tables I, 1l and Il for respectively the SD, MD, and LD
€ expenimentation has two purposes. FIrst, to examine g, ,qqtions. Each row in the tables corresponds to a trace file.

loss process and to check whether it can be approximated ¥lumns present different information, which are from left to

sm\;\s)le mod(t—:-lz..ﬁSecopg, to \:jal|c_iateJthe TCP2|(”)nOogetl.h | right: starting time of the trace in daytime hours (between 0 and
€ ran at ditierent days during January , three on 3), end time of the trace, number of bytes transmitted, number

lived TCP transfers to three different machines. Each transc?frpackets transmitted, packet loss probability, the average

consists of a cor_1t|nu0us_ ﬂ(.)W of data_durlng_ a whole daﬁTT, the real throughput of the TCP connection in Kbps, the
The source machinelppe.inria.fr ) is running the New

. f dis | q h_average rate of loss events)(the probability that a loss event
Reno version of TCP and is located at INRIA - Sophigag s jn Timeout @), the normalized covariance of times

Antipolis in the soth of France. The destination macmn?ﬁatween loss events (when excluding Timeout intervals), and
are located respectively at the ESSI school at 1 km o,y the probability that the receiver window is reacttéd.

INRIA (nessie.essi.fr, 4 hops ), atthe ENST school o1 aach trace file, we compare the real throughput of
in Paris golo.enstfr, 10 hops ), and at the University 1cp 5 the one expected by our model as well as to the

of South Australialinus.levels.unisa.edu.au, 22 _ computed bounds. We also compare the real throughput to the
hops ). TCP Packets are of 1460 Bytes size (excluding TCELe "exnected by [35]. We examine the validity of different

and IP headers). The machine in Australia advertises a windg{yqe|s for the distribution of inter-loss times (deterministic,
of 22 packets and those at ESSI and ENST advertisepgisson, jid, general correlated). The moments and correlation
window of 44 packets. All machines implement the Delay ACK ctions of inter-loss times are calculated from the trace files.

8 ) ) ) ) We study separately the effect of assumptions on the loss
We refer to [13] for a discussion on how the different versions of TCP

react to packet losses. process and the correctness of our fluid model for TCP
9TCP reacts either by timing out or by detecting the first loss by Fast
Retransmit (three duplicate ACKSs) 1

Equivalently the fraction of time during which the TCP connection is

10This can be the case of the SACK version that does not support the Limitﬁ'gnsmitting at its maximum window

Transmit enhancement.



Begin | End Byte # | Packet #| Lossp | RTT Thrp A =1/E[Sh] Q CoV (S)) | P{X(t) =M}
(hour) | (hour) | x103 (%) (ms) | (Kbps) (2/s) (%) (%) (%)
10.80 | 11.07 | 157125 | 115110 0.36 112 | 1280.90 0.4300 1.42 115.78 4.92
11.07 | 11.34 | 155500 | 113919 0.47 105 | 1293.96 0.5575 2.05 115.85 1.96
11.34 | 11.60 | 156030 | 114308 0.45 104 | 1314.47 0.5423 3.49 113.92 1.64
11.60 | 11.86 | 156963 | 114991 0.38 113 | 1346.41 0.4728 2.72 136.24 4.97
11.62 | 11.87 | 139052 | 101869 0.45 114 | 1254.14 0.5264 2.35 138.90 5.43
11.87 | 12.11 | 138739 | 101640 | 0.68 84 | 1271.68 0.7997 1.43 95.22 0.69
12.11 | 12.37 | 140466 | 102906 | 0.56 92 | 1226.88 0.6299 3.81 120.09 4.55
12.37 | 12.63 | 143625 | 105219 0.29 146 | 1234.12 0.3286 1.63 150.43 13.70
13.20 | 13.47 | 150529 | 110277 0.48 117 | 1205.46 0.5405 2.40 137.48 3.21
13.47 | 13.76 | 144508 | 105866 0.77 106 | 1101.02 0.7828 1.33 138.52 0.39
13.77 | 14.12 | 190662 | 139679 0.60 110 | 1187.22 0.6553 1.90 139.16 3.18
TABLE |
STATISTICS ON THE SHORTDISTANCE CONNECTION
Begin End Byte # | Packet #| Lossp | RTT Thrp A= 1/E[Sh] Q CoV (S)) | P{X() =M}
(hour) | (hour) | x103 (%) (ms) | (Kbps) (1/s) (%) (%) (%)
1452 | 15.43 | 219758 | 160995 1.40 141 | 532.37 0.6846 9.73 49.40 0
18.43 | 19.71 | 212720 | 155838 2.21 152 | 385.37 0.7817 20.42 55.29 0
19.71 | 20.32 | 227599 | 166739 0.67 125 [ 834.90 0.5195 3.35 46.61 0
20.32 | 21.00 | 228578 | 167456 0.69 138 | 757.10 0.4823 9.44 76.64 1.38
21.00 | 21.52 | 229746 | 168312 0.51 119 | 1002.09 0.4710 1.38 40.69 0
2152 | 22.08 | 228937 | 167719 0.57 123 | 915.53 0.4808 1.14 36.91 0
22.08 | 22.60 | 229427 | 168078 0.52 120 | 985.37 0.4735 2.26 38.53 0
22.60 | 23.11 | 229826 | 168371 0.52 114 | 1024.21 0.4957 1.57 37.82 0
TABLE Il
STATISTICS ON THE MEDIUM-DISTANCE CONNECTION
Begin End Byte # | Packet #| Lossp | RTT Thrp [ A=1/E[S,] Q CoV (S]) | P{X(t) =M}
(hour) | (hour) | x103 (%) (ms) | (Kbps) (1/s) (%) (%) (%)
17.52 | 19.22 | 43816 32099 1.84 1245 | 57.19 0.0962 67.97 11454 0.84
19.22 | 21.07 | 42369 31039 4.20 781 51.21 0.1970 66.33 80.94 0
21.07 | 22.29 | 44296 32451 2.70 662 80.37 0.1989 70.35 95.62 0.07
22.29 | 23.01 | 45036 32993 1.32 596 | 139.16 0.1687 59.49 105.83 2.53
23.01 | 0.34 | 43356 31762 2.92 684 | 72.83 0.1952 66.98 95.91 0.25
0.34 1.10 45005 32970 1.41 613 132.15 0.1717 61.75 123.76 3.94
1.10 155 | 45490 33326 0.59 647 | 220.88 0.1195 55.83 142.36 13.40
1.55 2.08 45121 33056 0.68 652 | 193.17 0.1214 51.54 140.92 12.56
2.08 2.45 | 45477 33316 0.43 578 | 269.68 0.1067 53.47 159.16 28.74
2.45 2.75 | 46035 33725 0.15 565 | 358.12 0.0515 39.62 138.10 54.79
2.75 3.05 | 45867 33602 0.23 579 | 332.29 0.0715 44.30 156.57 41.65
3.05 3.50 | 45506 33338 0.67 605 | 225.55 0.1387 61.16 199.21 25.28
3.50 3.80 | 46068 33750 0.19 564 | 356.79 0.0629 44.61 150.95 56.50
3.80 410 | 46065 33747 0.18 631 | 335.40 0.0555 52.45 134.85 46.88
4.10 441 | 45966 33675 0.21 584 | 331.94 0.0649 47.22 206.70 51.19
4.41 4.97 92305 67623 0.10 570 | 371.10 0.0366 38.35 176.68 66.19
4.97 523 | 46196 33843 0.12 564 | 378.07 0.0439 46.51 195.97 60.23
5.23 5.79 92480 67751 0.12 574 | 361.38 0.0429 40.90 158.22 57.88
5.79 6.10 | 46291 33913 0.14 567 | 357.64 0.0482 46.00 140.03 55.44
6.10 6.42 | 45655 33447 0.28 570 | 317.21 0.0825 41.05 142.73 32.28
6.42 6.79 | 45801 33554 0.39 564 | 292.21 0.1068 54.47 198.34 31.93
6.79 7.08 45887 33617 0.19 567 | 350.42 0.0610 46.87 161.51 55.99
7.09 8.08 185215 | 135688 0.06 659 | 401.16 0.0240 35.95 196.20 74.04
8.08 8.88 138616 | 101550 0.04 565 | 411.59 0.0155 38.09 189.07 78.25
8.88 9.31 45527 33353 0.42 689 | 238.65 0.0923 50.35 180.34 35.03
9.31 10.21 | 44724 32765 1.64 686 | 110.65 0.1667 68.46 123.66 1.93
10.21 | 12.09 | 44487 32591 291 976 52.66 0.1404 74.71 102.84 0
12.09 | 14.73 | 44377 32511 3.56 1169 | 37.35 0.1219 78.94 98.39 0
1474 | 17.52 | 43433 31819 3.31 1355 | 3541 0.1074 73.90 94.19 0
TABLE 1l

STATISTICS ON THE LONG-DISTANCE CONNECTION
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transmission rate evolution. The validation of the loss modglsq hrocesses are considered: deterministic, Poisson, general
was done. as ,fOII(,)WS' We reconstruct for. a given tr.ace f'|ﬁ1, general correlated. We plot the results in Fig. 4, 5 and 6
the evolution in time of the proposed fluid model (i.e. th%s a function of time for the three connections SD, MD and
mechanism with linear increase and multiplicative decreasgy gq, Timeouts, we measure the functiogsand Z directly
silence time during Timeouts, and maximum limit on the,m he traces rather than using those computed in [35]. The
congestion window; see Fig. 7). We call this processERact  fiq, res also show the real throughput of TCP. We clearly notice
Fluid Model (EFM) and we compute exactly its throughputya¢ our general model gives the same result as the exact fluid
This is done by computing the area below the transmissigfy,ye| although five terms are only considered in the infinite
rate between two consecutive losses, then by summing gl in formula (6). The iid model gives approximately the
the areas and dividing the result by the transfer time. Th&me result as the correlated model which means that losses
EFM throughput is the throughput we are trying to estimate ifye rarely correlated especially on the medium-distance and
our analysis and which we (and other authors that use lingg |ong-distance connections. Some correlation can be seen
rate increase fluid models to study TCP) are claiming thgh the short-distance connection, which is illustrated by the
it represents the real TCP throughput. Our measure of NQY¢tance that separates the "general correlated” throughput line
good a given model for the distribution of inter-loss times igyom the "jid” throughput line. Our analysis of the traces of the
will be how close the thrc_;ughput predicted by our closed-for§p connection indicates indeed that loss events appear mostly
expression (6) agrees with the EFM throughput. in bursts. This burstiness of loss events can be seen in Fig. 7,
Note that if the loss model is good according to the abo\ghere we plot the congestion window of the SD connection
criterion, we are still not guaranteed that the real throughpyérsus time during 25 seconds.
of TCP agrees with our throughput formulas. We expect the consider now the Poisson and deterministic cases. The
latter to be close to the real TCP throughput if the linear raigpression of the throughput in the iid case (12) states that at
increase model is appropriate, which is not always the case@pstant loss intensity, the throughput of TCP increases with
we will see later. In fact, on some paths as our LD connectiofhe variance of inter-loss times. Thus, a comparison of the iid
the increase of TCP rate is far from linear (sub-linear) whicihroughput line to the Poisson and deterministic throughput
leads to a considerable throughput estimation error even if yiges indicates how much times between loss events vary. On
use the right model for loss events in our general formula. the SD connection, the variance of inter-loss times is more
than that of the exponential distribution. This is caused by the
B. Validation of the model for losses bursty occurrence of losses we discovered on this connection
o5 shown in Fig. 7. On such connection, one should expect that

We measure how close is the throughput predicted b . A : .
ghput p y rﬁwdels assuming deterministic inter-loss times would give bad

closed-form expression (6) to the EFM throughput. Differe
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1600 E[‘:‘w‘dﬂ’l?m i o mation. In fact, the transmission rate of TCP does not increase
1400 - Packet evel model - 1 continuously but rather jumps when the number of packets

injected into the network increases by one. This is due to
the Nagle algorithm [31] which prohibits a TCP source from
injecting small packets into the network. However, the window
size at the source can be assumed to change continuously
with time between loss events. Fig. 11 explains the difference
between the congestion window size (continuous line) and the
' number of packets in the network (dashed line). The expression
‘ ‘ ‘ ‘ o ‘ ‘ of the throughput given by our fluid model corresponds to the
woE e ey ® average window size rather than to the number of packets in
Fig. 9. Medium-distance connection the network, so this expression has to be corrected to account

for the area between the dashed and continuous lines.
] “We explain here how our model can be adapted to account
results compared to the real throughput. Interestingly enoughidt the discrete nature of TCP. Assume tlatt) is measured
is not the case due to the problem of TCP rate sub-linearity thatpackets per unit of time. A good approximation is to shift

we will explain later. On the MD connection, we see that thf?zwn our processX (t) by 1/(2RTT), then to subtract from

1200

1000 -

800 -

TCP throughput (Kbps)

ke
| ]
-

400

200

; ; ; : : .. _.the throughput the error caused by the number of packets lost
variance of inter-loss times is closer to that of a determinist on congestion (Fig. 11). We infroduce this last error since

distribution than that of an exponential distribution. Finally, OMhany packets can be lost upon a congestion event, and since
the LD connection, it is clear that losses occur according {ge are interested in the computation of the throughput rather
a Poisson process, which is in some sense an expected reibaln the average sending rate. We follow [35] by assuming that

due to the high degree of multiplexing in Internet routers. 0N average, half of the window size is lost upon congestion.
9 9 P 9 We also add the last RTT where some packets are transmitted

until the detection of the congestion. On average, the number
C. Validation of the model for TCP of these tra}nsmitt%d pa}cléets is echjJaI'to rtmﬁlf thelz vvtir;dongli_zl_e.
. We approximate the window size during these last two s
We compare the exact fluid model (EFM) to real TCP 0By he window size given by our fluid model upon loss events,
the three connections. Our objective is to test the validity @k. E[X*] + RTT.*2 Thus, we subtracE [X*] + RTT from
the linear growth assumption and the fluid assumption. Thige average integral of the transmission rate between two loss
results are plotted in Fig. 8, 9, and 10. On the SD and MEVents. This gives the following corrected expression for the
connections, the exact fluid model overestimates real TCP aiPughput:
the overestimation increases with the real throughput. Thisig = X —
mainly due to the sub-linearity of TCP congestion window
evolution, which can be seen in Fig. 7. TCP rate sub-linearitysing this correction, we compare in Fig. 8, 9, and 10 our
is due to the increase in the RTT with the congestion windowodel with deterministic inter-loss times (14) to the packet
which in turn is due to the increase in the queuing time ievel model in [35]. We also plot in the figures the throughput
bottleneck routers. We refer to [5] for an example on howbtained with our model under the assumption that losses are
this correlation between the RTT and the window size céPoisson. We use fap andZ the expressions computed in [35]
be modeled. Unfortunately, as shown in [5], the modeling e&ther than those obtained from measurements as above. The
the sub-linearity of TCP is complex even under the simplgvo lines deterministic and Poisson are indexed by "Dis+TO”
assumption that the loss process is Poisson. Note that tlisdenote the fact that they account for the discrete nature of
problem of sub-linearity does not exist on our LD connectioMCP, and that they use the expressiong)adind Z from [35].
where the window size is usually small, the propagationhe line for deterministic losses coincides with that of the
delay is large, and the TCP connection does not contribute
considerably to the queuing time in network routers. 120ne can use another model for the number of packets lost upon congestion
Another source of error in our model is the fluid approxii—f statistics on the loss process at the packet level are available.

1 E[X;]* RTT — (b
R

1
2RTT ~ E|[S,] 2T 1o V> oRTT
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packet level model for all three connections. Both lines argg 12, Long-distance connection

close to the real throughput on the SD and MD connections,

but not on the LD one. On the MD connection, the result

for deterministic losses is good since the linear rate increa@cket loss probability, as was already proved in the literature
assumption is correct and losses are quite deterministic. On faemuch simpler loss models [24], [28], [35]. We also provided
SD connection, the result is good due to the TCP sub-linearfpunds on the throughput for the case when a limit exists on the
phenomenon we have exp]ained above. Concerning the reg[mximum window size. Furthermore, we extended our work to
for Poisson losses, it is better than the result for deterministitclude the Timeout mechanism and to account for the discrete
losses on the LD connection since the loss process on tAgfure of TCP. We explained how our model can be used to
connection is closer to Poisson than to deterministic. On tGeémpute moments of the TCP transmission rate of order higher
MD connection, the real throughput is somewhere between tfi@n 1, in particular the variance.

deterministic and Poisson lines. This is expected since the losghe importance of our model is justified by the different

process itself on the MD connection is less variable thantgpes of loss processes we observed while measuring Inter-
Poisson process. net traffic. The model we proposed is able to capture any

correlation and any distribution of inter-loss times. Several
existing models can be seen as particular cases of our general
approach. On paths where TCP transmission rate increases
To validate the derived bounds for the case of window sizigearly between congestion events, our model gives excellent
limitation, we choose to work on the LD connection whergesults. However, on paths where TCP window growth is sub-
our model for TCP is most appropriate (the rate is linear). Wihear, we notice some overestimation of the real throughput.
plot the results for the whole day in Fig. 12. First, we see thgi a future work, we will try to account for this sub-linearity
from 0 to 10 o’clock (slack periods) the throughput calculated TCP modeling. We will also try to characterize the loss
in the case of no limit on the congestion window (Eg. (6)process at the packet level and to compute based on that, good
significantly deviates from the exact fluid model. Our exagixpressions for the function and Z that model Timeouts.
fluid model accounts for the rate limitation. During the rest ohnother future work will be the use of the expression of the
the day both throughputs coincide. This deviation means thafriance of the TCP transmission rate to design congestion
the receiver advertised window is frequently reached during tentrol mechanisms for real time applications that are friendly
slack periods, and hence our bounds can be applied to estimgiiy TCP and that exhibit low rate variability.
the throughput. The saturation of the throughput is clearly
reflected by the last line in Table Ill, where we measure the ACKNOWLEDGMENTS
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D. Validation of bounds
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