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Abstract—Packet sampling can greatly reduce traffic measure- NetFlow solutioft satisfies this necessity to classify traffic
ment overhead in high-speed broadband networks. At the same flows belonging to the same aggregate stream. In particular,
time, this operation introduces estimation errors that hawe to be flow records are generated to keep track of principal mea-
carefully handled to ensure a reasonable measurement acary. ¢ t b d f h itored fl Th
Recently, a frequency-based approach has been proposed t@tch suremen parame ers o s_erve or _eac monitored Tow. e
the impact of such errors in bitrate estimation of a generic |ETF Working Group, starting from Cisco NetFlow v.9 system
IP traffic flow, binned at both small and high time-scales. guideline, has brought forward a standardization process t
In particular, a closed-form expression for the signal-tonoise define specifications for an exporting traffic flow informatio
ratio has been derived as a function of the packet sampling protocol, named IP flow information export (IPFIX) [9], [10]

probability, the bin size, and some basic information aboutthe Network ¢ t d far h b
flow (i.e., first and second order moments of the packet size, etwork measurement Systems proposed so far have been

and long term average packet-rate). In this work, we adopt sah ~ conceived under the implicit assumption that flow propertie
a model to design a real-time algorithm, that sets the IPFIX should be evaluated with a coarse time resolution [11]. This
counter export timers in order to grant, to each flow, a target implies that only low frequency components of the traffic can
estimation accuracy. Computer simulations_carried out usig real be captured. Nevertheless, high frequencies carry inftioma
packet traces have demonstrated the effectiveness of theqposed . . .
approach. that can be very precious for a correct detec_'uon 01_‘ traf_ﬁc
anomalies [1]. The same remark applies to traffic engingerin
where decisions on rerouting the traffic are taken by network
|. INTRODUCTION administrators based on variations in the traffic bitrate.
To face this problem, herein, we propose an IPFIX com-
Advanced tools for traffic engineering, attack/intrusie d pliant system for real-time traffic monitoring, named LEMON
tection, QoS monitoring and network tomography are becom-ightweight Enhanced MOnitoring for backbone Networks).
ing fundamental to plan and control the activities of complegjven a target estimation accuracy, LEMON is able to adapt
communication networks [1]-{4]. They require sophisttht the time resolution analysis of traffic flows by taking into
traffic measurement systems in order to estimate netwqfkcount both flow properties and the sampling probability
properties and application related parameters. p. To accomplish this task, LEMON exploits recent results
In high speed networks, packet sampling techniques atsorted in [12], expressing in close-form models the aacyr
usually adopted by network operators to reduce the overatl bitrate measurements taken from a sampled stream. The
amount of packets to capture and process [5]-[7]. Thesffectiveness of LEMON has been demonstrated using real
approaches consist in capturing a subset of packets, usedraffic traces from the MAWI project [13].
infer the original traffic properties. Obviously, the retion The rest of the paper is organized as follows: in Section
of the measurement overhead comes at the expense of Ithan overview of IPFIX is provided. Section Ill describes
estimation accuracy and, as a consequence, a fine tuning ofdh details of the LEMON framework. Section IV presents
sampling strategy is required to satisfy the target measemn¢ the experimental evaluation of the LEMON performance.
requirements [8]. The mostly known sampling pattern cassisFinally, the last Section draws conclusions and forecastsd
of a random selection of packets at the incoming interfaéesr@search.
routers with some predefined and homogeneous probability.
Such a probabilityp, is called assampling rateand is set by

operators according to some policy, for example a constantPFIX is an IETF standard protocol [10] created to sup-
function of the bitrate of links [2]. port flow-based IP traffic measurement systems. Its referenc

ychitecture is composed by interacting IPFtévicesand

II. OVERVIEW OF THE IPFIX PrROTOCOL

Flow level models are used to characterize, within -
aggregate traffic, sub-streams of packets sharing a setCgféctors(see Fig. 1). _
common properties, such as TCP/UDP ports and/or portions of " IPFIX, aflowis defined as a set of IP packets which share
both sender and receiver IP addresses. In this way, thelbvef@Mmon properties (i.e., thitow key referred, for example, to
traffic carried over a backbone link can be described in termse,.  getails, see “Cisco 10S NetFlow”, available on-ine at
of the properties of its composing flows. For example, Cisatp://www.cisco.com/web/go/netflow.



address, source/destination transport port, transpotbgol,
packet length), or belonging to the characteristics of tekpt
itself. 2
Within an IPFIX device [14], themeteringprocess is in ‘. ‘@ JF————
charge of managing the timestamp, the sampling, the classifi
cation, and the organization of IP traffic information, take
from packets relieved at anbservation point(i.e., router
interface). A local database is used to maintain Flow Res;ord
containing flow statistics derived from packet processing.
Under certain conditions, useful to an effective managemen
of flow record table some flows are considered expired. Such
conditions include (but are not limited to): traffic overtisa
which may generate too much new Flow Record entries; TCP
headers with FIN or RST flags set (which indicate a TCP

the packet header or the transport header (source/déstitat NetworkBackbone
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session is going to end); and IPFIX timeouts configured by Fig. 1. IPFIX Architecture.

the metering process. Expired flow records are exported to

one or more collectors by aexporting process, using an Example of Template Set

IPFI)_( message. An IPFI_X message consists of a header, which {0 — 16 L@thzazg(um)

provides basic information about the message itself (paito Template ID =256 Field Count =7

version, message length, sequence number), followed by one T e P a4

or more sets. Three set types are defirdata template and ~ Template Record ourcelumspontbor. 17 T T =2

option templatg10]. | el ii:ﬁi;ﬁ:i
There are several kinds of IPFIX messages, depending on inOctetDeltaCoutn = 1 Field Length =

the measurement task. Within them, flow records attributes Tnformation Element TD Tnformation Element Length

are encoded amformation elementdata records into data

set fields, using information model guideline [15]. Setting o , ampleofDaasSet

metering process (such as sampling rate, flow timeout iaterv Set Header { EEN N 134“9130245 Lottt

and so on) are inserted asntrol informationdata records. — 137i139|i74i151 -

Each message may contains also a detailed description of . 3 10

the str_ucture a_nd the semantics of the_data ref:ord _embedded -~

(e.g., information element or control information) intoeth l

template record field [10]. Fig. 2 shows an example of fields

for template and data sets in a possible IPFIX message (the  Fig. 2. Examples of IPFIX export template and data sets.

header field is omitted to simplify the figure). An IPFIX

message could also contain a set of different data recotttis wi

the corresponding template set. LEMON is a highly scalable technology able to set in real-
The exporting process encapsulates IPFIX messages attime some important working parameters such as the sampling

transport layer, using TCP or UDP depending on the kirRrobability, the kind of traffic to analyze, the time resautof

of data they contain (TCP is mandatory only for contrgneasurements, and, more in general, the granularity dictraf

information messages). monitoring operations. Specifically, LEMON is able to set
At the end, a collector (e.g., a remote access router) JBFIX coqnter_ export timers in order to grant, to each flow, a

ceives IPFIX messages from different exporting processds 4279€t estimation accuracy.

decodes flow record information elements. These informatio 1© fulfill this objective, LEMON leverages on the recently

are stored in its database, which is made accessible to netwfoPosed frequency analysis of packet sampling [18]. The

operators. The functionalities of the IPFIX architectusvédr traffic stream, sampled with a uniform sampling probability

been enhanced in the Packet SAMPling framework (PSAMP) IS measured in terms of number of bytes sent from a sender

[16] by extending the information model specifications [irv] {© @ receiver and averaged over a time interval windéw,

order to handle packet payload too. that is thebin time Then, these measures are compensated
by dividing them by the sampling probability, to infer the
. LEMON ERAMEWORK original rate of traffic in the considered bin. An estimation

error in valuation of traffic bitrate signal is introduced by
LEMON is a real-time traffic monitoring algorithm for IP- sampling a packet stream. It can be modeled as an aliasing
FIX systems. It has been conceived for monitoring appliceti affecting the signal spectrum in the frequency domain [18].
targeting a fine time resolution, such as anomaly detectiorhus, it is possible to recover information about the stgrti
path characterization and network tomography [2]-[4]. signal bitrate also from a sampled version, with differevel



of accuracy and time resolution, using a particular closedalue SN R;,. Typically SN Ry, is imposed larger than 10 to
form expression that relates the Signal-to-Noise RatioRBNachieve a high estimation accuracy. Notice that, the exmprt
associated to the traffic spectral density, to some impbrtaimer plays the same role of the binning winddiv As a
parameters, as the sampling probabifitand the bin timel" consequence, given a predefined sampling probabhilithy
[12]. In what follows, we will show how theoretical resultsusing Eq. (1), the resulting exporting period counter fag th
derived in [12] are used in LEMON to dynamically tune the-th flow can be expressed as follows:

measurements time resolution. —o
Ti _ I——pSNRth _1]. (Ml — priDi )089t0

A. Model for the Signal-to-Noise Ratio ) Dos Dy - G

In this subsection, we briefly summarize the SNR Closeg\/_here, with reference to thath flow, D, M, andp,., are

form modgls denv_ed |n.[12] t9 catch_p.acket samplmg eﬁectﬁ]e first order packet size, the second order packet size, and
We consider a discretized time axis: each time slot has, a

reqular sizeto, smaller than the bin size. Under this the probability to find a busy slot. It is worth to note that

assumption, no more than one packet can be transmitte |rr‘1d fo parameters does not depend on any specific flow but

each short time slot. In practice, thig corresponds to the are set for the aggregate traffic stream passing throughterrou

transmission time of the smallest packet over the monitor'en(}erface'. C .
In detail, LEMON starts by initializing all counter exparg

link. One can also see it as the minimum possible time between
. . . intervalsT; to a common default valu&y. After that, each
two consecutive packets over the monitored link.

Our metrics are function of the sampling rase the bin time the timer of thei-th counter expires, LEMON performs

sizeT, the probability to find a busy slot in the original trafficthe following opgratlons. . .
s, and the first and second order moments of the packet sizel) €XPorts the-th counter in a specific IPFIX message;
which will be referred to a® and M, respectively. Note that, 2) updates the estimates f6l;, M;, andp,., parameters;
by definition,p,s = P{D(k) > 0} whereD(k) is the discrete  3) Sets the next value df; according to Eg. (3);
signal which models the traffic packet size in the slottecetim 4) resets the counter; o
axis. All these parameters can be calculated from the sample ®) Starts again the counter exporting timer.
traffic without having access to the original traffic, henge t In order to estimateD;, M;, and p,s;, LEMON accounts
interest of our approach. for all sampled packets of theth flow.

In [12], two SNR models were derived: one assuming a

constant packet size and the other one explicitly taking int In thi . | he effecti f LEMON
account packet size variability by using its first (i.e.,ritean) n this section, we evaluate the effectiveness o

and second order moments. They can be summarized by lt’ﬁﬁ-'g two distinct packgt_ traces from the M.AWI project
following equation: collected at two trans-paC|f|c_ 150 Mbps links during Decembe
2005 and January 2089Main traffic parameters have been
posD” + (M — prsD°)0.89 - to/T @ summarized in Tab. |. Each trace lasts 15 minutes and it
=T —2 : has been sampled with probabilities ranging in the interval
TP(M ~ PusD7)0.89 -0/ T [10~4,0.8]. For each sampling probability, ten distinct experi-
Note that Eq. (1) derived for variable packet size is stifnents have been repeated using different seeds for themando

valid for constant packet size by simply considerﬁé — M, nhumber generator. We have considered as flow key the first 8

because a constant packet size means, as well known, a 2% of the sending IP address of each packet. Furthermore, 4

variance. Thus, eq. (1) becomes: distinct SN R;;, values have been considered, i.e., 10, 15, 20,

and 50. In our experiments, we monitored using LEMON only

Pos + (1 — pps)0.89 - tO/T. (2) flows for which a bin size smaller than 15 min was allowed. In

2 (1 — pys)0.89 - to/T fact, remaining ones are very small and hence can be handled

ing classic measurement techniques.

Figs. 3 and 4 show that the number of flows considered
y LEMON increases with the sampling probability. This is
ecause ap increases, the&s N R increases too, so that, the

same threshold value can be reached using a smaller bin size.

B. LEMON Algorithm As said before, a flow can be monitored by LEMON only if

As described above, LEMON is designed to be fully int_he bin s_ize computed accorc_iing to the a_lgorithm described i
tegrated in a IPFIX monitoring device. Following the IPFIXSeC‘ lll is smaller than 15 min. Thus, using a larger value of
architecture scheme, we can summarize LEMON actions fn“3" allow a larger number of flows to be processed.

three main processing operations: working parameterisgett In I_:lgs. 5 and.6, we evaluate LEMON accuracy — wher_1 it
flow bin counter management, and data exporting. exploits models in Egs. (2) and (1), respectively — dispigyi

BaSica_”y' LEMON sets the eXporting timer of each flow 2The traces are available at http:/mawi.wide.ad.jp/meamiiplepoint-
counter in order to grant for an SNR equal to a threshoit009/ and http:/itracer.cls.sony.co.jp/mawi/sampieB/2006/.

IV. PERFORMANCEEVALUATION

SNR

SNR =

Our SNR models calculate, for a given sampling probabilitlflS
p and an averaging bin time windoW, the amount of error
in each frequency band for the traffic rate signal. It allows
to trade off sampling overhead with frequency resolutia?][1



TABLE |
MAIN TRAFFIC PARAMETERS OF AGGREGATE TRACES

Link Link s | D M Number o
Capacity | Usage [Byte] [Byte?] | of -
[Mbps] [%] flows CZ
Trace 1| 150 13 0.015 341 400452 | 212
(MAWI) 1’ 10° 10 ° 101002 10° 10* 10° 10°
Jan. Flow size [packet] Flow size [packet]
2009 (a) SNR threshold 10, trace 1. (b) SNR threshold 50, trace 1.
Trace 2 | 150 34 0.022 621 829127 | 150
(MAWI)
Dec.
2005
X X
7100 +SNR, =1 74 ?10 [+ SNR, = 1 10 107 10' 10° 09 10" 10°
= |oSNR =15 / = [eSNR =19 Flow size [packet] Flow size [packet]
,—9 L SNR =20 i ..—9 LLSNR, =2q
S 50/oSNR, =5 / S 50loSNR, =5 (c) SNR threshold 10, trace 2. (d) SNR threshold 50, trace 2.
19 p, 0
7] —% 7]
§ %7" § Fig. 5. Mean SNR, Constant Packet Size Model. The straigbtriépresents
a W=t a , the SNR threshold.
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Fig. 3. Number of processed flows, trace 1.

- o
.. 10 * a 107EP=00 % N =
for all processed flows measured SNRs values. It is importe oot ~
1 . ol ol#p=0.1
to note that, regardless the flow size, the proposed approi g AT oo g o w
is able to guarantee SNR values larger than the requircu ow size [packet] ow size [packe]

threshold N R;;,) using either the constant packet size model (@) SNR threshold 10, trace 1. (b) SNR threshold 50, trace 1.
in Eq. (2) or the variable packet size one in Eq. (1). Anothe~
important consideration is related to the minimum flow siz  [ss¢

|+p = 0.0
4 &p=00

allowed by LEMON as a function of th& N Ry;,. In fact, it nz:—w p=01
is easy to notice that increasing teéV R,;, parameter yields @ . 4
the minimum size of processed flows to smaller and small |
values. This effect is due to the fact that as the flow si:
decreases, it becomes more and more difficult to find a seitabl
value of the bin size granting an SNR larger than the threshol
This suggests that using LEMON one operator should uBig. 6. Mean SNR, Variable Packet Size Model. The straigt liepresents
small values forSN Ry, if it is interested in small flows. the SNR threshold.

It is also interesting analyzing the bin size assigned to
each flow as a function of the flow size (see Figs. 7 and
8). Obviously, LEMON assigns smaller values to the bin sizw | 1

g

10° 0
Flow size [packeti
(c) SNR threshold 10, trace 2. (d) SNR threshold 50, trace 2.

Flow si%% [packet] 10

oy nE
for larger flows. In fact, only in the presence of a reasonak¢ 4 !E 1
number of packets composing a flow one can analyze it Wiz  fw=o0 2 =00
a fine time resolution. ? elatod 7 Plhoa
Finally, Figs. 9 and 10 show the greatly accuracy levi wke=eil . o T
achievable in bitrate estimation for a couple of selectedslo Flow size [packe(] Flow size [packe(]

(a) SNR threshold 10, trace 1. (b) SNR threshold 50, trace 1.
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) Fig. 7. Temporal resolution (mean T), Constant Packet Sinelé¥l
Fig. 4. Number of processed flows, trace 2.
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from traces 1 and 2, respectively.
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Bitrate of flow #4, trace 1.

To conclude, results clearly show the effectiveness of
LEMON: (i) in all cases the measured SNRs are larger than thé]
target thresholdS N R,,; (ii) the larger SN Ry, is, the larger
becomes the smallest flow size processed by LEMON; (iiz]
as flow size increases, LEMON allows finer and finer time
resolution accuracies. [13]

V. CONCLUSIONS [14]

In this work, the novel Lightweight Enhanced MOnitoring15]
for backbone Networks, LEMON, algorithm has been co
ceived to improve the accuracy of IPFIX based monitori
systems. It is based on recently proposed frequency baged
models catching the impact of packet sampling and binni?r%]
operations on bitrate estimation. The effectiveness of CBM
has been demonstrated using real packet traces. Future re-
search will consider a wider set of traces, the evaluation of
the processing and communication overheads, the integrati
in anomaly detection frameworks, and the comparison with
analogous techniques already proposed in literature.

16]

(c) SNR threshold 50p=0.04.

400 600
Time [s]

(d) SNR threshold 50p=0.08.

'Igiol%e [s]

Fig. 10. Bitrate of flow #14, trace 1.
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