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Abstract—Packet sampling can greatly reduce traffic measure-
ment overhead in high-speed broadband networks. At the same
time, this operation introduces estimation errors that have to be
carefully handled to ensure a reasonable measurement accuracy.
Recently, a frequency-based approach has been proposed to catch
the impact of such errors in bitrate estimation of a generic
IP traffic flow, binned at both small and high time-scales.
In particular, a closed-form expression for the signal-to-noise
ratio has been derived as a function of the packet sampling
probability, the bin size, and some basic information aboutthe
flow (i.e., first and second order moments of the packet size,
and long term average packet-rate). In this work, we adopt such
a model to design a real-time algorithm, that sets the IPFIX
counter export timers in order to grant, to each flow, a target
estimation accuracy. Computer simulations carried out using real
packet traces have demonstrated the effectiveness of the proposed
approach.

I. I NTRODUCTION

Advanced tools for traffic engineering, attack/intrusion de-
tection, QoS monitoring and network tomography are becom-
ing fundamental to plan and control the activities of complex
communication networks [1]–[4]. They require sophisticated
traffic measurement systems in order to estimate network
properties and application related parameters.

In high speed networks, packet sampling techniques are
usually adopted by network operators to reduce the overall
amount of packets to capture and process [5]–[7]. These
approaches consist in capturing a subset of packets, used to
infer the original traffic properties. Obviously, the reduction
of the measurement overhead comes at the expense of the
estimation accuracy and, as a consequence, a fine tuning of the
sampling strategy is required to satisfy the target measurement
requirements [8]. The mostly known sampling pattern consists
of a random selection of packets at the incoming interfaces of
routers with some predefined and homogeneous probability.
Such a probability,p, is called assampling rateand is set by
operators according to some policy, for example a constant
function of the bitrate of links [2].

Flow level models are used to characterize, within an
aggregate traffic, sub-streams of packets sharing a set of
common properties, such as TCP/UDP ports and/or portions of
both sender and receiver IP addresses. In this way, the overall
traffic carried over a backbone link can be described in terms
of the properties of its composing flows. For example, Cisco

NetFlow solution1 satisfies this necessity to classify traffic
flows belonging to the same aggregate stream. In particular,
flow records are generated to keep track of principal mea-
surement parameters observed for each monitored flow. The
IETF Working Group, starting from Cisco NetFlow v.9 system
guideline, has brought forward a standardization process to
define specifications for an exporting traffic flow information
protocol, named IP flow information export (IPFIX) [9], [10].

Network measurement systems proposed so far have been
conceived under the implicit assumption that flow properties
should be evaluated with a coarse time resolution [11]. This
implies that only low frequency components of the traffic can
be captured. Nevertheless, high frequencies carry information
that can be very precious for a correct detection of traffic
anomalies [1]. The same remark applies to traffic engineering
where decisions on rerouting the traffic are taken by network
administrators based on variations in the traffic bitrate.

To face this problem, herein, we propose an IPFIX com-
pliant system for real-time traffic monitoring, named LEMON
(Lightweight Enhanced MOnitoring for backbone Networks).
Given a target estimation accuracy, LEMON is able to adapt
the time resolution analysis of traffic flows by taking into
account both flow properties and the sampling probability
p. To accomplish this task, LEMON exploits recent results
reported in [12], expressing in close-form models the accuracy
of bitrate measurements taken from a sampled stream. The
effectiveness of LEMON has been demonstrated using real
traffic traces from the MAWI project [13].

The rest of the paper is organized as follows: in Section
II an overview of IPFIX is provided. Section III describes
all details of the LEMON framework. Section IV presents
the experimental evaluation of the LEMON performance.
Finally, the last Section draws conclusions and forecasts future
research.

II. OVERVIEW OF THE IPFIX PROTOCOL

IPFIX is an IETF standard protocol [10] created to sup-
port flow-based IP traffic measurement systems. Its reference
architecture is composed by interacting IPFIXdevicesand
collectors(see Fig. 1).

In IPFIX, a flow is defined as a set of IP packets which share
common properties (i.e., theflow key) referred, for example, to

1For details, see “Cisco IOS NetFlow”, available on-line at
http://www.cisco.com/web/go/netflow.



the packet header or the transport header (source/destination IP
address, source/destination transport port, transport protocol,
packet length), or belonging to the characteristics of the packet
itself.

Within an IPFIX device [14], themetering process is in
charge of managing the timestamp, the sampling, the classifi-
cation, and the organization of IP traffic information, taken
from packets relieved at anobservation point(i.e., router
interface). A local database is used to maintain Flow Records,
containing flow statistics derived from packet processing.

Under certain conditions, useful to an effective management
of flow record table, some flows are considered expired. Such
conditions include (but are not limited to): traffic overloads,
which may generate too much new Flow Record entries; TCP
headers with FIN or RST flags set (which indicate a TCP
session is going to end); and IPFIX timeouts configured by
the metering process. Expired flow records are exported to
one or more collectors by anexporting process, using an
IPFIX message. An IPFIX message consists of a header, which
provides basic information about the message itself (protocol
version, message length, sequence number), followed by one
or more sets. Three set types are defined:data, template, and
option template[10].

There are several kinds of IPFIX messages, depending on
the measurement task. Within them, flow records attributes
are encoded asinformation elementdata records into data
set fields, using information model guideline [15]. Settings of
metering process (such as sampling rate, flow timeout interval,
and so on) are inserted ascontrol informationdata records.
Each message may contains also a detailed description of
the structure and the semantics of the data record embedded
(e.g., information element or control information) into the
template record field [10]. Fig. 2 shows an example of fields
for template and data sets in a possible IPFIX message (the
header field is omitted to simplify the figure). An IPFIX
message could also contain a set of different data records with
the corresponding template set.

The exporting process encapsulates IPFIX messages at the
transport layer, using TCP or UDP depending on the kind
of data they contain (TCP is mandatory only for control
information messages).

At the end, a collector (e.g., a remote access router) re-
ceives IPFIX messages from different exporting processes and
decodes flow record information elements. These information
are stored in its database, which is made accessible to network
operators. The functionalities of the IPFIX architecture have
been enhanced in the Packet SAMPling framework (PSAMP)
[16] by extending the information model specifications [17]in
order to handle packet payload too.

III. LEMON F RAMEWORK

LEMON is a real-time traffic monitoring algorithm for IP-
FIX systems. It has been conceived for monitoring applications
targeting a fine time resolution, such as anomaly detection,
path characterization and network tomography [2]–[4].

Fig. 1. IPFIX Architecture.
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Fig. 2. Examples of IPFIX export template and data sets.

LEMON is a highly scalable technology able to set in real-
time some important working parameters such as the sampling
probability, the kind of traffic to analyze, the time resolution of
measurements, and, more in general, the granularity of traffic
monitoring operations. Specifically, LEMON is able to set
IPFIX counter export timers in order to grant, to each flow, a
target estimation accuracy.

To fulfill this objective, LEMON leverages on the recently
proposed frequency analysis of packet sampling [18]. The
traffic stream, sampled with a uniform sampling probability,
p, is measured in terms of number of bytes sent from a sender
to a receiver and averaged over a time interval window,T ,
that is thebin time. Then, these measures are compensated
by dividing them by the sampling probabilityp, to infer the
original rate of traffic in the considered bin. An estimation
error in valuation of traffic bitrate signal is introduced by
sampling a packet stream. It can be modeled as an aliasing
affecting the signal spectrum in the frequency domain [18].
Thus, it is possible to recover information about the starting
signal bitrate also from a sampled version, with different level



of accuracy and time resolution, using a particular closed-
form expression that relates the Signal-to-Noise Ratio (SNR)
associated to the traffic spectral density, to some important
parameters, as the sampling probabilityp and the bin timeT
[12]. In what follows, we will show how theoretical results
derived in [12] are used in LEMON to dynamically tune the
measurements time resolution.

A. Model for the Signal-to-Noise Ratio

In this subsection, we briefly summarize the SNR closed-
form models derived in [12] to catch packet sampling effects.
We consider a discretized time axis: each time slot has a
regular size t0, smaller than the bin sizeT . Under this
assumption, no more than one packet can be transmitted in
each short time slot. In practice, thist0 corresponds to the
transmission time of the smallest packet over the monitored
link. One can also see it as the minimum possible time between
two consecutive packets over the monitored link.

Our metrics are function of the sampling ratep, the bin
sizeT , the probability to find a busy slot in the original traffic
pbs, and the first and second order moments of the packet size,
which will be referred to asD andM , respectively. Note that,
by definition,pbs = P{D(k) > 0} whereD(k) is the discrete
signal which models the traffic packet size in the slotted time
axis. All these parameters can be calculated from the sampled
traffic without having access to the original traffic, hence the
interest of our approach.

In [12], two SNR models were derived: one assuming a
constant packet size and the other one explicitly taking into
account packet size variability by using its first (i.e., itsmean)
and second order moments. They can be summarized by the
following equation:

SNR =
pbsD

2

+ (M − pbsD
2

)0.89 · t0/T
1−p

p
(M − pbsD

2

)0.89 · t0/T
. (1)

Note that Eq. (1) derived for variable packet size is still
valid for constant packet size by simply consideringD

2

= M ,
because a constant packet size means, as well known, a zero
variance. Thus, eq. (1) becomes:

SNR =
pbs + (1− pbs)0.89 · t0/T
1−p

p
(1− pbs)0.89 · t0/T

. (2)

Our SNR models calculate, for a given sampling probability
p and an averaging bin time windowT , the amount of error
in each frequency band for the traffic rate signal. It allows us
to trade off sampling overhead with frequency resolution [12].

B. LEMON Algorithm

As described above, LEMON is designed to be fully in-
tegrated in a IPFIX monitoring device. Following the IPFIX
architecture scheme, we can summarize LEMON actions in
three main processing operations: working parameters setting,
flow bin counter management, and data exporting.

Basically, LEMON sets the exporting timer of each flow
counter in order to grant for an SNR equal to a threshold

valueSNRth. Typically SNRth is imposed larger than 10 to
achieve a high estimation accuracy. Notice that, the exporting
timer plays the same role of the binning windowT . As a
consequence, given a predefined sampling probabilityp, by
using Eq. (1), the resulting exporting period counter for the
i-th flow can be expressed as follows:

Ti =

[

1− p

p
SNRth − 1

]

·
(Mi − pbsiD

2

i )0.89t0

pbsiDi

2
, (3)

where, with reference to thei-th flow, Di, Mi, andpbsi are
the first order packet size, the second order packet size, and
the probability to find a busy slot. It is worth to note thatp
and t0 parameters does not depend on any specific flow but
are set for the aggregate traffic stream passing through a router
interface.

In detail, LEMON starts by initializing all counter exporting
intervalsTi to a common default valueTd. After that, each
time the timer of thei-th counter expires, LEMON performs
the following operations:

1) exports thei-th counter in a specific IPFIX message;
2) updates the estimates forDi, Mi, andpbsi parameters;
3) sets the next value ofTi according to Eq. (3);
4) resets the counter;
5) starts again the counter exporting timer.
In order to estimateDi, Mi, and pbsi, LEMON accounts

for all sampled packets of thei-th flow.

IV. PERFORMANCEEVALUATION

In this section, we evaluate the effectiveness of LEMON
using two distinct packet traces from the MAWI project
collected at two trans-pacific 150 Mbps links during December
2005 and January 20092. Main traffic parameters have been
summarized in Tab. I. Each trace lasts 15 minutes and it
has been sampled with probabilities ranging in the interval
[10−4, 0.8]. For each sampling probability, ten distinct experi-
ments have been repeated using different seeds for the random
number generator. We have considered as flow key the first 8
bits of the sending IP address of each packet. Furthermore, 4
distinctSNRth values have been considered, i.e., 10, 15, 20,
and 50. In our experiments, we monitored using LEMON only
flows for which a bin size smaller than 15 min was allowed. In
fact, remaining ones are very small and hence can be handled
using classic measurement techniques.

Figs. 3 and 4 show that the number of flows considered
by LEMON increases with the sampling probability. This is
because asp increases, theSNR increases too, so that, the
same threshold value can be reached using a smaller bin size.
As said before, a flow can be monitored by LEMON only if
the bin size computed according to the algorithm described in
Sec. III is smaller than 15 min. Thus, using a larger value of
p can allow a larger number of flows to be processed.

In Figs. 5 and 6, we evaluate LEMON accuracy – when it
exploits models in Eqs. (2) and (1), respectively – displaying

2The traces are available at http://mawi.wide.ad.jp/mawi/samplepoint-
F/2009/ and http://tracer.cls.sony.co.jp/mawi/samplepoint-B/2006/.



TABLE I
MAIN TRAFFIC PARAMETERS OF AGGREGATE TRACES

Link
Capacity
[Mbps]

Link
Usage
[%]

pbs D

[Byte]
M

[Byte2 ]
Number
of
flows

Trace 1
(MAWI)
Jan.
2009

150 13 0.015 341 400452 212

Trace 2
(MAWI)
Dec.
2005

150 34 0.022 621 829127 150
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(a) Constant Packet Size Model.
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(b) Variable Packet Size Model.

Fig. 3. Number of processed flows, trace 1.

for all processed flows measured SNRs values. It is important
to note that, regardless the flow size, the proposed approach
is able to guarantee SNR values larger than the required
threshold (SNRth) using either the constant packet size model
in Eq. (2) or the variable packet size one in Eq. (1). Another
important consideration is related to the minimum flow size
allowed by LEMON as a function of theSNRth. In fact, it
is easy to notice that increasing theSNRth parameter yields
the minimum size of processed flows to smaller and smaller
values. This effect is due to the fact that as the flow size
decreases, it becomes more and more difficult to find a suitable
value of the bin size granting an SNR larger than the threshold.
This suggests that using LEMON one operator should use
small values forSNRth if it is interested in small flows.

It is also interesting analyzing the bin size assigned to
each flow as a function of the flow size (see Figs. 7 and
8). Obviously, LEMON assigns smaller values to the bin size
for larger flows. In fact, only in the presence of a reasonable
number of packets composing a flow one can analyze it with
a fine time resolution.

Finally, Figs. 9 and 10 show the greatly accuracy level
achievable in bitrate estimation for a couple of selected flows
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(b) Variable Packet Size Model.

Fig. 4. Number of processed flows, trace 2.
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(a) SNR threshold 10, trace 1.
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(b) SNR threshold 50, trace 1.
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(c) SNR threshold 10, trace 2.
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(d) SNR threshold 50, trace 2.

Fig. 5. Mean SNR, Constant Packet Size Model. The straight line represents
the SNR threshold.
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(a) SNR threshold 10, trace 1.
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(b) SNR threshold 50, trace 1.
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(c) SNR threshold 10, trace 2.
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(d) SNR threshold 50, trace 2.

Fig. 6. Mean SNR, Variable Packet Size Model. The straight line represents
the SNR threshold.

10
0

10
2

10
4

10
610

0

10
1

10
2

10
3

Flow size [packet]

T
i −

bi
n 

tim
e−

 [s
]

 

 

p = 0.01
p = 0.02
p = 0.04
p = 0.08
p = 0.1

(a) SNR threshold 10, trace 1.
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(b) SNR threshold 50, trace 1.
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(c) SNR threshold 10, trace 2.
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(d) SNR threshold 50, trace 2.

Fig. 7. Temporal resolution (mean T), Constant Packet Size Model.
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(a) SNR threshold 10, trace 1.
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(b) SNR threshold 50, trace 1.
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(c) SNR threshold 10, trace 2.
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(d) SNR threshold 50, trace 2.

Fig. 8. Temporal resolution (meanT ), Variable Packet Size Model.
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(a) SNR threshold 10,p=0.04.
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(b) SNR threshold 10,p=0.08.
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(c) SNR threshold 50,p=0.04.
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Fig. 9. Bitrate of flow #4, trace 1.

To conclude, results clearly show the effectiveness of
LEMON: (i) in all cases the measured SNRs are larger than the
target thresholdSNRth; (ii) the largerSNRth is, the larger
becomes the smallest flow size processed by LEMON; (iii)
as flow size increases, LEMON allows finer and finer time
resolution accuracies.

V. CONCLUSIONS

In this work, the novel Lightweight Enhanced MOnitoring
for backbone Networks, LEMON, algorithm has been con-
ceived to improve the accuracy of IPFIX based monitoring
systems. It is based on recently proposed frequency based
models catching the impact of packet sampling and binning
operations on bitrate estimation. The effectiveness of LEMON
has been demonstrated using real packet traces. Future re-
search will consider a wider set of traces, the evaluation of
the processing and communication overheads, the integration
in anomaly detection frameworks, and the comparison with
analogous techniques already proposed in literature.
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(a) SNR threshold 10,p=0.04.
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(b) SNR threshold 10,p=0.08.
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(c) SNR threshold 50,p=0.04.
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Fig. 10. Bitrate of flow #14, trace 1.
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