Efficient solutions for the monitoring of the Internet

Chadi BARAKAT

INRIA Sophia Antipolis, France Planète research group

HDR defense - January 22, 2009

Email: Chadi.Barakat@sophia.inria.fr WEB: http://www.inria.fr/planete/chadi

Outline

□ Internet monitoring: Interests and Challenges

Overview of the state of the art + selected contributions

- Passive monitoring, sampling and traffic modeling
- Active monitoring and network inference
- Zoom on some contributions
 - A framework for network wide sampling
 - TICP: A transport protocol for active probing and data collection

□ Conclusions and future research

Internet monitoring: Interests

□ From a network operator perspective

- Real time monitoring of router and link load
- Understanding the behavior of users, predicting SLAs
- Routing optimization, provisioning
- Detection and blocking of undesirable traffic
- Topology and connectivity between other operators
- □ From a user perspective
 - Path characteristics for the optimization of applications
 - Network resource localization
 - Network troubleshooting

Network monitoring: Challenges

□ Explosion of the Internet size

- Around 1.5 billion users (23% of world population) (source internetworldstats)
- Around 600 million hosts (source swivel)
- Around 1 trillion web page (source google)
- Around 30,000 advertised AS numbers (source potaroo)

Hardware limitations

- Fast links (~ 100 Mbps) vs. slow memory access (~ 10 ns)
- □ Completely decentralized architecture
 - No one knows how all this looks like and how it connects and behaves
 - We only know our neighbors and what do they tell us
 - Except routing information and the ICMP messages, operators and users don't exchange information on network performance

Network monitoring: Challenges

□ Simplicity of the Internet service

- Get an access and send whatever you want
- To whomever you want
- As much as your bandwidth allows

The main reason behind the Internet success

Origin of many problems: attacks, congestion, traffic uncertainties

Selfish policies adopted by operators

- Very often announced routes are not the shortest ones
- Some block control (ICMP) messages

Security problems

- Difficulties in placing measurement points
- Difficulties in sharing measurement results

State-of-art: Two approaches (1)

Passive measurements

- Sniff traffic on one or multiple interfaces inside a network
- Aggregate the traffic and send reports to a collector
- Analyze the traffic and infer as much as possible

Among the hot topics

- Fast traffic collection and analysis
- Traffic sampling
- Bypass encryption and non standard port usage
- Traffic modeling
- Anomaly detection
- Monitor placement

State-of-art: Two approaches (2)

Active measurements

- Send probe packets through the network
- Packets got delayed differently
- Infer what is in the box from the pattern of packets at the output
- ICMP can be used to get feedback

□ Among the hot topics

- Path characterization (bandwidth, loss, delay, jitter)
- Router and link characterization (a la traceroute)
- Topology mapping and modeling
- Network delay embedding (virtual coordinates)

Better modeling of the Internet using probabilities, stochastic analysis & machine learning

- Poisson shot noise to model Internet traffic at the flow level
- Packet size distribution and unsupervised machine learning for application identification
- Kalman filter for tracking delay error in coordinate systems
- Linear filters (wiener filter) for counting large populations (number of receivers, number of flows, number of entities)

Real traces for validation

Better modeling of the Internet using probabilities, stochastic analysis & machine learning

- Poisson shot noise to model Internet traffic at the flow level
- Packet size distribution and unsupervised machine learning for application identification
- Kalman filter for tracking delay error in coordinate systems
- Linear filters (wiener filter) for counting large populations (number of receivers, number of flows, number of entities)

Real traces for validation

Counting large populations

 \Box Suppose a large size-varying population X_n to be tracked

• Machines, flows, receivers, etc

□ Exact counting not possible because of the overhead

Probabilistic counting:

- Members signal themselves with some low probability p
- Count the received signals Y_n and infer the global
- Simple inference: $X_n = Y_n / p$
- Quadratic error proportional to 1 / p 🙁
- One can do better by accounting for the auto-correlation of X_n

Counting large populations

Auto-correlation important when counting is done at faster than members' lifetime

□ Actual measurement to add to previous estimation, e.g.,

$$X_n = A \cdot X_{n-1} + B \cdot Y_n / p$$

□ How to set the weights ?

Contribution:

- Fit the problem in the context of Optimal Wiener filter
- Optimal weights for Poisson arrivals
- Optimal form over all linear filters for exponential lifetimes

Counting large populations

Number of receivers in a multicast session – p=0.01, S=1s

HDR defense - 22/01/2009

INKIA

Packet sampling as a solution to reduce the overhead of passive measurements

Packet sampling as a solution to reduce the overhead of passive measurements

Original traffic

Packet sampling as a solution to reduce the overhead of passive measurements

Packet sampling as a solution to reduce the overhead of passive measurements

- Packet sampling as a solution to reduce the overhead of passive measurements
 - Serious impact on flow based statistics
 - Most flows are small and get disappear

- Packet sampling as a solution to reduce the overhead of passive measurements
 - Serious impact on flow based statistics
 - Most flows are small and get disa
 - We quantified the impact on flow 10000 size estimation and large flows 10000 detection and ranking 1000
 - A sampling rate of order 10% for the detection of the few largest flows
 - Considered as a negative result given the practiced sampling rate

- Packet sampling as a solution to reduce the overhead of passive measurements
 - Serious impact on flow based statistics
 - Most flows are small and get disappear
 - We quantified the impact on flow size estimation and large flows detection and ranking
 - We introduced the notion of network-wide sampling
 - Allow sampling in all network routers (not only at the edge)
 - Run a global optimization problem to find the optimal sampling rate per router interface
 - Target: Maximize accuracy while minimizing overhead

- Packet sampling as a solution to reduce the overhead of passive measurements
 - Serious impact on flow based statistics
 - Most flows are small and get disappear
 - We quantified the impact on flow size estimation and large flows detection and ranking
 - We introduced the notion of network-wide sampling
 - Allow sampling in all network routers (not only at the edge)
 - Run a global optimization problem to find the optimal sampling rate per router interface
 - Target: Maximize accuracy while minimizing overhead

Common configuration

- Invert flow sizes by a simple division by sampling rate
- Export

•

A flow seen once. No optimization.

Common configuration: Discussion

Simple, no duplicate flows

- Monitoring tasks have different requirements
 - Some don't require to sample all edge routers
 - Think about monitoring a point-to-point traffic
 - Other may require/tolerate different sampling rates
 - Lightly sample loaded routers
 - Heavily sample non loaded ones
- □ Limited choice: A flow is only seen once
 - More control by sampling and monitoring all network routers
 - In this case, the collector needs to merge flow measurements from different routers and invert

Case study: Traffic calculation

- Estimate amount of traffic flowing among a subset of origin-destination flows (common task for traffic engineering apps).
- □ Where and how to tune the sampling to estimate all UK sent traffic?

An OD (Origin Destination) flow

HDR defense - 22/01/2009

Problem formulation

Choose vector of sampling rates *p* that maximizes

- Effective sampling rate approximated by sum of sampling rates
- All constraints are linear and define a convex solution space
 - Unique maximizer exists as long as **M(.)** is strictly concave
- Problem solved numerically

□ Start from some default p vector and iterate until estimation converges

INRIA

The accuracy function

 $\hfill\square$ Measures the quality of sampling an OD flow

□ Our example:

- M = 1 Mean Square Relative Error
- MSRE = E[((X/ρ S) / S)²]

where S is the actual estimation of the size of the OD flow

Other functions could be possible to model other measurements tasks (left for future research):

- accuracy of ranking/estimating the largest flows
- accuracy of estimating the flow size distribution
- accuracy of anomaly detection

Evaluation scenario

□ Consider NetFlow data from GEANT

- Collected using Juniper's Traffic Sampling
- 1/1000 periodic sampling
- We scale the measurement by 1000
- □ Get OD flow sizes and link loads every 5 minutes

□ Solve the algorithm for the sampling rates that allow to estimate the sizes of the OD flows originated at UK

 \Box Set θ to 100K packets. Don't limit the sampling rate.

Optimal sampling rates

For this example, one needs to sample 10 links at around 0.1% per link

	OD pair	$\rm pkt/s$	p_5 UK-FR	p_{7} UK-SE	p_8 UK-NL	p_9 UK-NY	p_{17} SE-PL	<i>р</i> зо UK-РТ	p_{31} IT-IL	p_{33} FR-BE	p_2 FR-LU	p_{28} CZ-SK	Accuracy
OD flow	JANET-NL	30123	-	-	0.0016	-	-	-	-	-	-	-	0.9999
	JANET-NY	9387	-	-	-	0.0002	-	-	-	-	-	-	0.9982
	JANET-DE	4300	-	-	0.0016	-	-	-	-	-	-	-	0.9995
	JANET-SE	4080	-	0.0003	-	-	-	-	-	-	-	-	0.9973
	JANET-CH	4033	0.0013	-	-	-	-	-	-	-	-	-	0.9994
	JANET-FR	1723	0.0013	-	-	-	-	-	-	-	-	-	0.9985
	JANET-PL	1400	-	0.0003	-	-	0.0003	-	-	-	-	-	0.9960
	JANET-GR	1080	-	-	0.0016	-	-	-	-	-	-	-	0.9981
	JANET-ES	1003	0.0013	-	-	-	-	-	-	-	-	-	0.9974
	JANET-SI	913	-	-	0.0016	-	-	-	-	-	-	-	0.9977
	JANET-IT	873	0.0013	-	-	-	-	-	-	-	-	-	0.9971
	JANET-AT	790	0.0013	-	-	-	-	-	-	-	-	-	0.9968
	JANET-CZ	590	-	-	0.0016	-	-	-	-	-	-	-	0.9965
	JANET-BE	490	0.0013	-	-	-	-	-	-	0.0002	-	-	0.9955
	JANET-PT	463	-	-	-	-	-	0.0011	-	-	-	-	0.9935
	JANET-HU	377	-	-	0.0016	-	-	-	-	-	-	-	0.9945
	JANET-HR	237	-	-	0.0016	-	-	-	-	-	-	-	0.9912
	JANET-IL	87	0.0013	-	-	-	-	-	0.0018	-	-	-	0.9877
	JANET-SK	43	-	-	0.0016	-	-	-	-	-	-	0.0092	0.9929
	JANET-LU	20	0.0013	-	-	-	-	-	-	-	0.0090	-	0.9840
	Link Loads (pkt/s)		63603	51833	57756	37286	23680	19950	15213	11173	6133	2600	
	Contribution to θ		24.5%	5.1%	26.9%	2.1%	2.1%	6.8%	8.3%	0.7%	16.5%	7.1%	

Sampled Link ID

Comparing to common configuration

□ Why does our method work better?

• It looks across the entire network to find where small OD flows manifest themselves without hiding behind large flows

HDR defense - 22/01/2009

Dynamic version of our algorithm

□ Compute new sampling rates when

- estimated accuracy drops below target
- collected traffic exceeds capacity
- □ If the estimated accuracy is still below target, increase capacity constraint by some factor say 10%
- □ Decrease capacity constraint if estimated accuracy is above target for more than some time (say one hour)

Implementation of dynamic version

Implementation of dynamic version

Network monitoring by active probing

- Embedding network delays and securing coordinate calculation
- Correlation and compressibility of network path characteristics
 - Over the same path, among different paths
- Congestion and error control for active probing
 - TICP: TCP-friendly Information Collection Protocol
 - Initially designed for data collection in large networks
 - Regulate the rate of probes and ensures reliability
 - A component absent in existing measurement infrastructures (Periodic probing, Poisson probing, round-robin, etc)

Network monitoring by active probing

- Embedding network delays and securing coordinate calculation
- Correlation and compressibility of network path characteristics
 - Over the same path, among different paths
- Congestion and error control for active probes
 - TICP: TCP-friendly Information Collection Protocol
 - Initially designed for data collection in large networks
 - Regulate the rate of probes and ensures reliability
 - A component absent in existing measurement infrastructures (Periodic probing, Poisson probing, round-robin, etc)

Congestion and error control

Challenges

□ End-to-end, scalability and reliability

- Retransmit probes when lost
- No help from inside the network

□ Congestion control in the forward and the reverse directions

• High throughput and low loss rate

Probes and reported information of different sizes, but generally small (many TCP connections would not work)

- IP address of a router
- Availability and statistics per a machine
- Experienced Quality of Service

□ Can be seen as many-to-one TCP session

Congestion and error control

Requirements

□ Probed entities known by collector

• E.g. PlanetLab IP adresses, List of machines to traceroute, etc.

Probes directly answered

• Any delay is interpreted as network delay

□ How to regulate the rate of these probes ?

Protocol in brief: Congestion control

- □ A window-based flow control
 - **cwnd**: maximum number of machines the collector can probe before receiving any information
- □ The collector increases cwnd and monitors at the same time the loss rate of probes (during a time window in the past)
 - The protocol has two modes: slow start and congestion avoidance
- □ Congestion of the network is inferred when the loss rate of probes exceeds some threshold
- Upon congestion, divide cwnd by 2, and restart its increase

Protocol in brief: Error control

□ The protocol is reliable

• It ensures that all probes came back

□ To reduce the duration of the session

- In the first round, the protocol probes all machines
 - Order to be defined later
- In the second round, the protocol probes machines whose reports were lost in the first round
- In the third round, the protocol probes machines whose reports were lost in the first two rounds
- Continues in rounds until all reports are received

Measuring the loss ratio

- The collector disposes of a timer, denoted TO, over which the loss rate is measured
 - Probes sent during one cycle of the timer have to arrive the next cycle, otherwise they are supposed lost

HDR defense - 22/01/2009

INRIA

Ordering of probed machines

□ Serious problem

- Random, topology independent
 - Inefficient.
 - Hard to handle multiple bottlenecks at once
 - RTT hard to predict (bad setting of the timer)

Topology dependent

- Cluster sources and rank clusters from closest to the collector to the farthest
- Use this ordering to probe sources
- Sources inside a cluster probed randomly
- We use Internet coordinates for clustering

Performance of TICP

- □ Included in the ns-2 simulator and implemented over PlanetLab
- □ For ns-2, almost 2000 nodes in a Transit-Stub topology
- □ 500 probed machines generating a packet each

Performance of TICP: Cluster size

Performance of TICP: Cluster size

- Important parameter of the protocol to set.
- Our observation: As the number of sources increases, it converges to some constant value function of the underlying topology and the distribution of bottlenecks.

Performance of TICP: Cluster size

- Important parameter of the protocol to set.
- Our observation: As the number of sources increases, it converges to some constant value function of the underlying topology and the distribution of bottlenecks.

TICP vs. constant probing rate

HDR defense - 22/01/2009

Compared to parallel TCP

□ What if parallel TCP connections were used?

□ TICP behaves better due to its multiplexing capability

HDR defense - 22/01/2009

References on TICP

Visit http://www.inria.fr/planete/chadi/ticp

Karim Sbai and Chadi Barakat, "Experiences on enhancing data collection in large networks", to appear in Computer Networks.

Chadi Barakat, Mohammad Malli, Naomichi Nonaka, "TICP: Transport Information Collection Protocol", Annals of Telecommunications, vol. 61, no. 1-2, pp. 167-192, January-February 2006.

Conclusions - Perspectives

□ A set of solutions for efficient network monitoring

- Network wide traffic sampling
- Congestion control for network probing

Domain will keep evolving

- Deal with new applications (social networks, P2P) and architectures
- Measurements at the service of applications and users (localization, topology-aware adaptation, diagnosis)
- Our future research will focus on leveraging correlation (spatial and temporal) to achieve better monitoring
 - Correlating sampled flow measurements made by routers
 - The ECODE FP7 project, 2008 2011
 - Correlating end-to-end measurements for network diagnosis
 - The CMON project with Thomson and the Grenouille.com, 2009-2012

INRIA

