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ABSTRACT
In this paper we analyze the performance of a TCP-like flow
control in a lossy environment. The transmission rate in the
control scheme that we consider has a linear growth rate;
whenever a loss occurs, the transmission rate is halved. This
approximates the performance of several versions of TCP
that divide their congestion window by two when a loss is
detected. We propose a mathematical model that allows to
account for burstiness in the loss process. We compute the
expected transmission rate and its moments at some poten-
tial loss instants, and provide a useful implicit expression for
the Laplace Stieltjis Transform. This allows us to compute
explicitly the time average of the transmission rate as well
as its moments. We show that the time average of the trans-
mission rate is indeed sensitive to the distribution of losses,
and not just to the average loss rate: for a given average loss
rate, we show that the time average of the transmission rate
increases with the burstiness of losses. We finally examine
the impact of burstiness of losses on the transmission rate
variability.

1. INTRODUCTION
Flow control mechanisms in the Internet, particularly those
of the Transmission Control Protocol [12], use the loss of
packets as an indication of network congestion. In general,
the transmission rate of the controlled flow is linearly in-
creased until a loss occurs. The network is supposed here
to be congested and the transmission rate is multiplicatively
decreased in order to alleviate this congestion. In TCP as
an example, the transmission rate is controlled via a con-
gestion window which is increased in absence of losses and
decreased upon loss detection [17]. Another set of flow con-
trol mechanisms recently introduced into multimedia appli-
cations consist in measuring the loss rate of packets and in
controlling the transmission rate in a way to be friendly with
TCP transfers [9]. Explicit expressions for TCP throughput
for a given loss rate (e.g.[16]) are used for this purpose.

A good understanding of the impact of a loss process on the
performance of a flow control mechanism is required for a

good network and protocol tuning. Several previous works
have addressed the problem of TCP performance as a func-
tion of data packet losses. The focus on TCP is due to the
dominance of TCP traffic in today’s Internet. Some of these
works [8, 13, 14, 16] have studied the impact of the inten-
sity of losses (or the average loss rate) on the performance.
TCP packets are assumed to be lost independently with the
same probability. Explicit expressions for the throughput of
the TCP connection are derived by simply dividing the av-
erage number of packets transmitted between losses to the
average time between losses. No other parameter than the
packet loss probability is used to characterize the distribu-
tion of loss instants over time. As we will see in this paper,
this will cause a wrong estimation of the throughput when a
certain burstiness of losses exists. Other works [1, 4, 5] have
addressed the problem of burstiness of packet losses but in
the wireless environment context. It is known that due to
multiple phenomena such as multipath fading [6], wireless
links as those found in terrestrial wireless networks or satel-
lite networks present a certain degree of transmission error
burstiness. The impact of consecutive packet losses on the
different versions of TCP is studied in these works [1, 4,
5]. They model losses with a two-state Markov chain where
small bursts of losses appear in an independent and uniform
manner. They study then TCP performance as a function
of the average rate of bursts as well as the average burst
size. But, the new versions of TCP (New Reno, SACK) [7]
are able to resist to consecutive packet losses and to reduce
their window once for all losses in the same Round Trip
Time. This will result in these models becoming similar to
the previous ones since they study the impact on TCP per-
formance of only the average rate at which the window is
reduced.

In this paper, we propose a completely different model for
a TCP-like flow control protocol that, in addition to the
average rate of window reduction events, it accounts for the
burstiness of these events. Rather than looking at the packet
level and considering the probability that a packet is lost,
we look at the transmission rate level and look at instants
when the transmission rate is reduced. We associate then a
new loss process to the moments at which the transmission
rate is reduced. A loss event is equivalent to a transmission
rate reduction event. This loss can be the result of a single
packet loss or multiple consecutive packet losses during the
same RTT. Our aim is to study the impact of burstiness of
this new loss process on the throughput of the connection.
We compute the expectation of the transmission rate as well



as an implicit expression for its Laplace Stieltjis Transform
at some potential loss instants. This allows us to compute
the time average of the transmission rate which we call the
throughput of the transfer. We show that this throughput
is indeed sensitive to the distribution of losses, and not just
to the average loss rate: for a given average loss rate, we
show that the throughput increases with the burstiness. We
finally examine the impact of burstiness on the transmission
rate variability. Our results are compared to simulations
done with the ns simulator developed at LBNL [15] and a
good match is reported.

The structure of the paper is as follows. In the next section
we present our model for losses and for the controlled rate.
Section 3 contains our analysis of the performance of the
transmission rate in presence of losses. At the end of this
section, we give the general expression of the throughput.
The throughput in the case of an independent loss process
having the same average loss rate as a bursty loss process is
defined. This second throughput is then used as a reference
to show the effect of burstiness. In section 4, we study the
impact of the parameters of the loss process on the perfor-
mance. The analytical results are compared to simulation
ones. The paper is concluded in section 5. In the Appendix,
we prove the convergence of the dynamics to a unique sta-
tionary regime.

2. THE MODEL
Consider a flow control mechanism where the transmission
rate grows linearly at a rate α per unit of time. The growth
continues until a loss occurs. The transmission rate is halved
and the linear growth is then resumed. This model approxi-
mates the performance of several versions of TCP/IP where
the transmission rate at any instant is equal to the window
size divided by the RTT and where the window increases
linearly by 1 packet every RTT [12]. If the delay ACKs
mechanism is implemented at the destination, the increase
in TCP window is by one packet every two RTTs. This
linear window increase corresponds to the congestion avoid-
ance mode of TCP. The slow start mode is neglected in this
paper due its fast exponential window increase. The model
can also approximate any additive-increase multiplicative-
decrease flow control mechanism.

Let us propose a model which accounts for burstiness of
losses. The Gilbert model is often used in this context [6].
The path between the source and the destination called
channel in the wireless terminology is assumed to have two
states: Good and Bad; losses are assumed to occur in the
Bad state. The time during which the channel is in a Good
or in a Bad state is taken to be geometrically (or exponen-
tially) distributed. We propose an extension of this model
in order to handle generally distributed periods of Good and
Bad states. Our model is related to the MAP (Markovian
Arrival Process) process [11]. We allow losses to occur both
in the Good state as well as in the Bad state; the occur-
rence of losses in each of these states is different. To that
end, we define a series of potential losses. Let tn denote
the time at which the nth potential loss may occur. Let
Dn, n = 1, 2, . . . be the sequence of times between potential
losses: Dn = tn+1− tn. Dn are assumed to be i.i.d. with ex-
pectation d, second moment d(2) and Laplace Stieltjis Trans-
form D∗(s). Let Xn be the transmission rate just prior to
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Figure 1: The Markov chain associated to the path

the instant of the nth potential loss.

Potential losses are transformed to real losses with a certain
probability. This is similar to MAP processes in which at
each state transition an arrival can occur with a probability
that depends on the state. Let Yn be the state of the channel
at the nth potential loss instant. We consider the states B
(for Bad) in which a potential loss is transformed to a real
loss with probability pB , and G, (for Good) in which it is
transformed with a smaller probability pG . We shall assume
throughout that pG ≤ pB and that pB > 0. We assume
further that the sequences {Yn} and {Dn} are independent.

Yn is assumed to be a Markov chain with the following tran-
sition probabilities (Figure 1),

P (Yn+1 = G|Yn = G) = g

P (Yn+1 = B|Yn = G) = ḡ = 1− g

P (Yn+1 = B|Yn = B) = b

P (Yn+1 = G|Yn = B) = b̄ = 1− b

We shall assume throughout that g, b ∈ (0, 1). {Yn}+∞n=1 is
then ergodic with stationary probabilities,

πG =
1− b

2− b− g
=

b̄

b̄ + ḡ
, πB =

1− g

2− b− g
=

ḡ

b̄ + ḡ

The average loss rate is given by,

R =
pGπG + pB πB

d
.

This is equal to the average number of times the source
reduces its rate per unit of time. With this loss process,
we are able to vary the average loss rate as well as the the
burstiness of losses. Let us now calculate the throughput
under the above described loss process.

3. PERFORMANCE ANALYSIS
Define the two random variables Un and Vn describing the
behavior of Xn when a potential loss occurs. They corre-
spond to the two states of the channel. A value one of these
variables means that the potential loss causes really a re-
duction in Xn. A value zero however means that Xn is not
affected (i.e. a real loss didn’t occur). We have,

P (Un = 1) = pG , P (Un = 0) = 1− pG

P (Vn = 1) = pB , P (Vn = 0) = 1− pB

The evolution of the transmission rate is the following,

Xn+1 = (1− Un)Xn1{Yn = G}+ Un
Xn

2
1{Yn = G}

+ (1− Vn)Xn1{Yn = B}+ Vn
Xn

2
1{Yn = B}

+ αDn



=

�
1− Un

2

�
Xn1{Yn = G}

+

�
1− Vn

2

�
Xn1{Yn = B}+ αDn (1)

1{A} is the indicator function which is equal to 1 if expres-
sion A is true and to 0 otherwise.

We begin by computing the first moments of Xn in the sta-
tionary regime. The calculation of these moments allows us
to calculate the time average of the transmission rate, called
also the throughput. We denote,

xG = lim
n→+∞

E[Xn1{Yn = G}]

xB = lim
n→+∞

E[Xn1{Yn = B}]

x = lim
n→+∞

E[Xn] = xG + xB

We show first that these moments exist, then we follow two
approaches to calculate them. The first approach consists
in (a) using the relationship between Xn+1 and Xn given
in equation (1) and (b) moving n to infinity. The second
approach uses the Laplace Stieltjis Transforms of Xn.

Theorem 1: The first moments of the transmission rate
just prior to the potential loss occurrence converge and they
are equal to,

xG = αd
γB (πB − b) + πG

1− γB b− γGg + γB γG(g + b− 1)

xB = αd
γG(πG − g) + πB

1− γB b− γGg + γB γG(g + b− 1)

with,

γG = 1− pG

2
, γB = 1− pB

2
Proof: First we write,

E[Xn+11{Yn+1 = G}]

= gE

�
1− Un

2

�
E[Xn1{Yn = G}]

+ b̄E

�
1− Vn

2

�
E[Xn1{Yn = B}] + αdP (Yn+1 = G)

= gγGE[Xn1{Yn = G}]
+ b̄γB E[Xn1{Yn = B}] + αdP (Yn+1 = G) (2)

E[Xn+11{Yn+1 = B}]

= ḡE

�
1− Un

2

�
E[Xn1{Yn = G}]

+ bE

�
1− Vn

2

�
E[Xn1{Yn = B}] + αdP (Yn+1 = B)

= ḡγGE[Xn1{Yn = G}]
+ bγB E[Xn1{Yn = B}] + αdP (Yn+1 = B) (3)

Then we show that the sequences E[Xn1{Yn = G}] and
E[Xn1{Yn = B}], n = 0, 1, ... converge. We rewrite the
recursive equations (2) and (3) in the following matrix form,

Xn+1 = ΠXn =

2664 γGg γB b̄ αdg αdb̄
γG ḡ γB b αdḡ αdb
0 0 g b̄
0 0 ḡ b

3775Xn

with,

Xn =

2664 E[Xn1{Yn = G}]
E[Xn1{Yn = B}]

P (Yn = G)
P (Yn = B)

3775
The convergence properties of the augmented sequence Xn,
n = 0, 1, ... depend on the spectrum of the transition matrix
Π. In turn, the spectrum of Π is formed by the spectra of
the matrices,

P =

�
g b̄
ḡ b

�
and A =

�
γGg γB b̄
γG ḡ γB b

�
Since P is the transition matrix of the Markov chain {Yn},
it always has an eigenvalue which is equal to one. Further,
because {Yn} is ergodic, P has only one unit eigenvalue. Let
us show that all the eigenvalues of matrix A are less than 1
if g and b are less than 1. Actually, the eigenvalues of A can
be given in the closed analytic form,

λ1,2 =
(gγG + bγB )

2
±
p

(gγG + bγB )2 − 4(gbγGγB − ḡb̄γGγB )

2

The term under the root square is always positive. Indeed
we write,

(gγG + bγB )2 − 4(gbγGγB − ḡb̄γGγB )

= (gγG − bγB )2 + 4ḡb̄γGγB

which is always positive since,

0 < b < 1, 0 < g < 1
1/2 ≤ γG ≤ 1, 1/2 ≤ γB < 1

The smallest eigenvalue (λ1) is smaller than one given that
(gγG + bγB )/2 is. For the other eigenvalue (λ2) we write,

λ2 < 1

i.e. (gγG +bγB )2−4(gbγGγB−ḡb̄γGγB ) < (2−(gγG +bγB ))2

i.e. γGγB + gγG(1− γB ) + bγB (1− γG) < 1

Since g < 1 and b < 1, the left-hand term of the latter
equation is smaller than,

γGγB + γG(1− γB ) + γB (1− γG)

which can be written as

γB (1− γG) + γG .

Since we assumed that γB is strictly smaller than 1, this
latter equation is also strictly smaller than 1. Thus, pG > 0,
g < 1 and b < 1 imply that λ1,2 < 1. We conclude that
the transition matrix Π of the augmented sequence has only
simple unit eigenvalue (it is of multiplicity one). This implies
that the powers of matrix Π converge to its eigenprojection
corresponding to the unit eigenvalue. However, it is more
simple to compute the limits of sequences E[Xn1{Yn = G}]
and E[Xn1{Yn = B}], n = 0, 1, ... by moving n to +∞ in
the original equations (2) and (3). We get,

xG = γGgxG + γB b̄xB + αdπG

xB = γB ḡxG + γB bxB + αdπB

The solution of this system in xG and xB concludes the
proof. ¦



Remark: The existence of xG and xB means the existence
of x. In the Appendix we show that in fact Xn converges to
a unique stationary regime.

3.1 Laplace Transforms and moments ofXn

Define the following Laplace Stieltjis Transforms,

Z(s, G) = E
h
e−sXn1{Yn = G}

i
Z(s, B) = E

h
e−sXn1{Yn = B}

i
where we assume that Xn is in the stationary regime.

Theorem 2: The Laplace Stieltjis Transforms are the so-
lutions of the following implicit equations,

Z(s, G) = D∗(αs) [g(1− pG)Z(s, G) + gpGZ(s/2, G)]

+ D∗(αs)
�
b̄(1− pB )Z(s, B) + b̄pB Z(s/2, B)

�
Z(s, B) = D∗(αs) [ḡ(1− pG)Z(s, G) + ḡpGZ(s/2, G)]

+ D∗(αs) [b(1− pB )Z(s, B) + bpB Z(s/2, B)]

Proof: We write,

E
h
e−sXn+11{Yn+1 = G}

i
= gE

h
e−s((1−Un

2 )Xn+αDn)1{Yn = G}
i

+ b̄E
h
e−s((1−Vn

2 )Xn+αDn)1{Yn = B}
i

E
h
e−sXn+11{Yn+1 = B}

i
= ḡE

h
e−s((1−Un

2 )Xn+αDn)1{Yn = G}
i

+ bE
h
e−s((1−Vn

2 )Xn+αDn)1{Yn = B}
i

Using the fact that,

E
h
e−s(1−Un

2 )Xn1{Yn = G}
i

= (1− pG)E
h
e−sXn1{Yn = G}

i
+ pGE

h
e−s Xn

2 1{Yn = G}
i
,

E
h
e−s(1−Vn

2 )Xn1{Yn = B}
i

= (1− pB )E
h
e−sXn1{Yn = B}

i
+ pB E

h
e−s Xn

2 1{Yn = B}
i

and by taking the limit as n goes to infinity, we get the
required relations. ¦

Although the Laplace Stieltjis Transforms in Theorem 2 are
only given as solutions of implicit equations, all moments of
Xn1{Yn = G} and Xn1{Yn = B} (in the stationary regime)
can be obtained explicitly. In particular, the first moments
are no other than the opposite of the derivatives of Z(s, G)
and Z(s, B) at s = 0. By differentiating the implicit equa-
tions in Theorem 2 and substituting s = 0, one can obtain
a system of two linear equations with two unknowns, whose
solution coincides with what we already obtained in Theo-
rem 1. The calculation requires the following equations,

Z(0, G) = πG , Z(0, B) = πB

D∗(0) = 1, dD∗(αs)
ds

���
s=0

= −αd

More general, the order k moments can be obtained in a

similar way using,

E[Xk
n1{Yn = G}] = (−1)k dkZ(s, G)

dsk

����
s=0

E[Xk
n1{Yn = B}] = (−1)k dkZ(s, B)

dsk

����
s=0

3.2 The average throughput
Theorem 3: The throughput or the time average of the
transmission rate we denote by x̄ can be expressed as,

x̄ = lim
t→+∞

1

t

Z t

0

X(t)dt = γGxG + γB xB +
1

2
α

d(2)

d

where xG and xB are given in Theorem 1, and where the
limit holds almost surely.

Proof: We have almost surely,

x̄ = lim
n→+∞

Pi=n−1
i=0

R ti+1
ti

X(t)dtPi=n−1
i=0 Di

= lim
n→+∞

1
n

Pi=n−1
i=0 Di(1− Ui/2)Xi1{Yi = G}

1
n

Pi=n−1
i=0 Di

+ lim
n→+∞

1
n

Pi=n−1
i=0 Di(1− Vi/2)Xi1{Yi = B}

1
n

Pi=n−1
i=0 Di

+ lim
n→+∞

1
n

Pi=n−1
i=0

1
2
αD2

i

1
n

Pi=n−1
i=0 Di

(4)

= lim
n→+∞

E[1− Un/2]E[Xn1{Yn = G}]E[Dn]

E[Dn]

+ lim
n→+∞

E[1− Vn/2]E[Xn1{Yn = B}]E[Dn]

E[Dn]

+ lim
n→+∞

1
2
αE[D2

n]

E[Dn]

= γGxG + γB xB +
1

2
α

d(2)

d

The equality that appears just after (4) can easily be shown
to follow from the convergence of Xn to a stationary ergodic
regime, which follows from the Appendix. This concludes
the proof. ¦

3.3 The reference throughput
To study the effect of burstiness, we change in what follows
the parameters of the Markov chain (b and g) while keeping
the average loss rate unchanged. The throughput in the
bursty case is then compared to the throughput when the
channel is subjected to a non-bursty loss process having the
same average loss rate. We denote this latter throughput
x̄r and we use it as a reference to evaluate the impact of
burstiness. A non-bursty loss process is obtained when we
have the same loss probabilities in the two states. We call
this probability p. To get the same average loss rate as in
the bursty case, p must be equal to,

p = dR = pGπG + pB πB .

Lemma 1: On a non-bursty path, the source achieves a
throughput of

x̄r =
2− p

p
αd +

1

2
α

d(2)

d
(5)



Proof: This expression of x̄r can be easily obtained by
substituting in the expression of x̄ (Theorem 3), γG and γB

by their values as a function of p, the loss probability in the
two states. We have,

γ = γG = γB = 1− p

2
.

The parameters of the Markov chain disappear and we get
an expression of the reference throughput as a function of p
and the distribution of potential losses. ¦

3.4 Comparison with previous works
Consider a particular case where p = 1. In this case, all
potential losses cause a reduction in the transmission rate.
This forms a loss process similar (even more general) to the
one used in many previous works [8, 14, 16]. These works
suppose that in the stationary regime, TCP window (or the
transmission rate) varies in a cyclic manner between two
values X and 2X. They found that the time average trans-
mission rate is about 3X/2. Our model shows well that in
the presence of a non-bursty channel with p = 1, the expec-
tation of the transmission rate just prior to a loss is equal to
2αd. The expectation of the transmission rate just after a
real loss is simply αd. Thus, αd in our model corresponds to
their X. However, our model doesn’t give the same through-
put they found. In our expression for the throughput, we
see the appearance of the second moment of the time be-
tween losses (d(2)). To get their result, the second moment
of the time between losses must be equal to the square of its
average. This is only the case for a deterministic inter-loss
distribution of value d. Although they are using a proba-
bilistic loss model, these works transform the loss process
into a deterministic one which results in the disappearance
of the term d(2) in their analysis. The second moments of
Xn and Dn are taken equal to the square of their average
rates. The difference in these works is that the packet loss
probability is used for the calculation of these quantities.
This deterministic evolution of the window can be seen as a
normal result of the mutual independence that they assume
between processes {Xn} and {Dn}. Our model however,
in addition to the consideration of the burstiness, considers
the exact expression of the throughput. It shows that the
average time between losses as well as the second moment
of this time must be considered otherwise the throughput
will be underestimated. As an example, in the case of an
exponential loss distribution, d(2) is equal to 2d2 and the
throughput is simply equal to the average transmission rate
just prior to losses.

4. A CASE STUDY
In the sequel we consider the special case where,

pG = 0, γG = 1, pB = 1, γB = 1/2.

In other words we suppose that if the channel is in the Bad
state, each potential loss is transformed into a real loss, and
if it is in the Good state no real losses occur. This model is
sufficiently general to allow to vary both the average loss rate
as well as the burstiness. Substituting in the expressions of
xG and xB (Theorem 1), we get

xB = 2αd, xG = αd
b̄ + πG

ḡ
(6)

The throughput is given by,

x̄ = xG +
1

2
xB +

1

2
α

d(2)

d
(7)

Remark : It may seem remarkable that xB does not depend
on the transition probabilities of the Markov chain. This can
easily be explained using the following argument. The mean
time between losses is clearly 1/R = d/πB , so the mean
increase in the X between two consecutive losses is αd/πB .
Since we assume that we are in the stationary regime, the
mean decrease in X between losses should thus equal to the
mean increase. But the mean decrease in X is half its mean
value at loss. Thus,

E[Xn|Yn = B] = 2αd/πB .

We conclude that indeed,

xB = E[Xn1{Yn = B}] = E[Xn|Yn = B]P (Yn = B) = 2αd.

4.1 The deviation ofx̄ from x̄r

The non-bursty path that has the same average loss rate is
obtained when taking a loss probability p equal to πB in the
two states. The reference throughput in the non-bursty case
is then,

x̄r =
2α

R
− αd +

1

2
α

d(2)

d
.

Given a a certain average loss rate, we increase the bursti-
ness by increasing b and g in such a way that their ratio
remains unchanged. This guarantees that πB and πG , and
therefore the average loss rate R, remain the same. To study
the deviation of the throughput from the non-bursty case,
we express x̄ as a function of x̄r and the parameters of the
Markov chain. We get,

x̄ = x̄r + αdπG

�
1

ḡ
− 1

πB

.

�
(8)

It is clear from this expression of x̄, that the non-bursty case
is obtained when ḡ = b = πB . In our particular case, ḡ is
the probability that the next potential loss causes a real loss
given that we are in the Good state. b is that the probability
that it causes a loss given that we are in the Bad state. In
the non-bursty case, these two probabilities must be equal.
At the same time, they must be equal to πB , the probability
that the next potential loss causes a real loss independently
of the current state.

4.2 Effect of the loss model parameters
In this section, we study how the throughput varies as a
function of R and the burstiness (via d, b and g). We shall
show in particular that for a fixed loss rate R, the through-
put increases when the burstiness increases. To facilitate the
analysis, we suppose that the time between potential losses
is exponentially distributed.

First, we study the effect of an increase in R on the perfor-
mance. An increase in R can be caused by an increase in
the number of potential losses per unit of time (1/d) or by
an increase in πB . To study these two cases, we write x̄ as,

x̄ = αd

�
2 +

b̄

ḡ
+

b̄

ḡ(b̄ + ḡ)
.

�
(9)



It is clear that when d decreases, the throughput deterio-
rates. The increase in πB can be caused by an increase in ḡ
or a decrease in b̄. The two cases result also in throughput
deterioration.

Suppose now that d is fixed as well as πB and πG . We
increase b and g in order to increase the burstiness. The ref-
erence throughput remains constant given that it is only
a function of the average loss rate. Equation (8) shows
well that the average transmission rate improves when losses
start to appear in bursts.

4.3 Computation of second moments
In this section, we briefly mention our calculation of the
second moments of Xn in the stationary regime. These
moments will be shown to have an impact on the average
throughput. We define,

x(2)
B

= lim
n→+∞

E[X2
n1{Yn = B}]

x(2)
G

= lim
n→+∞

E[X2
n1{Yn = G}]

x(2) = lim
n→+∞

E[X2
n] = x(2)

B
+ x(2)

G

The variance of Xn in the stationary regime is no other than,

lim
n→+∞

V ar(Xn) = x(2)−x2 = x(2)
B

+x(2)
G
−(xB +xG)2 (10)

By using, either the relation between the expectations of
X2

n+1 and X2
n or the Laplace Transform approach, we can

prove the following theorem.

Theorem 4: In the stationary regime,

x(2)
B

=
4

3

h
2αdxG + αdxB + α2d(2)

i
x(2)

G
=

1

ḡ

�
α2d(2)

�
1

3
b̄ + πG

�
+ 2

�
1

3
b̄ + g

�
αdxG +

4

3
b̄αdxB

�
We can also prove that,

Theorem 5: Let d(3) be the third moment of the time be-
tween potential losses. The second moment of the transmis-
sion rate over a long time interval is equal to,

x̄(2) = lim
t→+∞

1

t

Z t

0

X2(t)dt = x2
G

+
1

4
x2

B

+ α
d(2)

d
xG +

1

2
α

d(2)

d
xB +

1

3
α2 d(3)

d

The effect of the second moments on the throughput can
be showed by writing x̄ in the following form,

x̄ =
3

4

x(2)
B

xB

.

As we know, xB is independent of the parameters of the
Markov chain (equation (6)). Thus, the increase in through-
put caused by an increase in burstiness can be only the re-
sult of an increase in the second moment of the transmission
rate upon real losses. Indeed, when losses become clustered,
the transmission rate suffers from an important reduction
in its value when a burst of losses occurs. The channel en-
ters then in a long Good state where the source has enough
time to increase again its rate to an important value. Thus,
the variance of the transmission rate increases causing an
improvement in performance.

4.4 Impact of transmission rate limitation
Consider the case of TCP flow control. In the absence of
losses on the link, the transmission rate increases until reach-
ing a maximum value given by the window advertised by the
receiver [17]. Once this window is reached, the transmission
rate remains constant until the next loss occurs. Our model
does not account for this limitation. It works well when
losses are frequent so that the maximum window is rarely
reached. We write first some conditions on the loss process
to define the region where our previous model works prop-
erly. Then, we present a simple approximate calculation to
account for this window limitation.

Suppose that the transmission rate is bounded by Xmax.
The point where the transmission rate is most likely to reach
the maximal value corresponds to the Good state and is just
before the first potential loss in a Bad state. This is the
first reduction in the transmission rate after getting out of
a Good state. For our previous model to be correct, the
expectation of the transmission rate at this point must be
much smaller than the upper bound. This condition can be
written as,

E[Xn|Yn = B, Yn−1 = G] << Xmax.

Taking into account that

E[Xn|Yn = B, Yn−1 = G] = E[Xn|Yn−1 = G] =

E[Xn−1|Yn−1 = G] + αd = xG/πG + αd

we get the following condition,

xG/πG + αd << Xmax

The larger the average loss rate and the lower the burstiness
are, the more likely is that the the above condition holds.
For a given loss rate, the increase in burstiness stretches the
duration of the Good state and makes it more likely that the
transmission rate reaches the upper bound. This impact of
burstiness on the correctness of the model cannot be seen
if we consider all the points at which the transmission rate
is reduced. The expectation in this latter case is equal to,
E[Xn|Yn = B] = xB /πB and it accounts only for the average
loss rate not for the burstiness.

The closer E[Xn|Yn = B, Yn−1 = G] is to Xmax, the more
important is the impact of the receiver window. At the
beginning, the receiver window starts to impact the trans-
mission rate evolution only during the Good state of the
channel. We can assume that during the Bad state, the
transmission rate still have the same evolution as that pre-
dicted by our previous model. The receiver window starts
to impact the two states once the expectation of the trans-
mission rate just prior to losses in the Bad state becomes
larger than Xmax. This latter condition can be written as,

E[Xn|Yn = B, Yn−1 = B] >> Xmax

i.e.
1

2

xB

πB
+ αd >> Xmax

Once the upper bound starts to impact a state, we make
the assumption that during that state the transmission rate
always reaches its maximal value. This is the kind of as-
sumption made in [16]. Using the above two conditions, we
separate first the space into three regions. In the first region,
the transmission rate is not affected by Xmax. In the second



region, the Good state is affected. In the third region, both
states are affected. We use then the above assumption to
calculate the throughput of the transfer during each state of
the channel. Let

x̄G = E[X(t)|Y (t) = G], x̄B = E[X(t)|Y (t) = B]

where the expectation is w.r.t. the stationary probability.
Thus, the throughput is simply equal to,

x̄ = πG x̄G + πB x̄B . (11)

Let us define the three regions and calculate x̄G and x̄B for
each of them:

E[Xn|Yn = B,Yn−1 = G] < Xmax: The transmission rate
limitation in this case has no influence and the throughput
given by equation (7) can be considered.

E[Xn|Yn = B,Yn−1 = G] > Xmax but E[Xn|Yn =
B,Yn−1 = B] < Xmax: During the Bad state, the trans-
mission rate limitation has no impact and x̄B can be simply
approximated by taking p = 1 in equation (5). This is the
throughput obtained when the transmission rate is reduced
at every potential loss, which is the case for the Bad state.
Thus,

x̄B = αd + α
d(2)

d
.

During the Good state, however, another throughput is to
be considered. In average, the transmission rate at the be-
ginning of the Good state is equal to,

x0 = E[Xn|Yn = G, Yn−1 = B] =
1

2

xB

πB
+ αd.

The average duration of the Good state is d/ḡ. Using our as-
sumption that the transmission rate during the Good state
always reaches Xmax, we consider that the transmission rate
grows first from x0 to Xmax, then stays at Xmax until the
beginning of the Bad state. We can find the following ex-
pression for x̄G,

x̄G =
ḡ

d
(

Z (Xmax−x0)/α

0

(x0 + αt)dt +

Z d/ḡ

(Xmax−x0)/α

Xmaxdt)

=
ḡ

d
(
X2

max −X2
0

2α
+ Xmax(

d

ḡ
− Xmax −X0

α
)).

Given x̄G and x̄B , the throughput can be calculated using
equation (11).

E[Xn|Yn = B,Yn−1 = B] > Xmax: In this case we assume
that the transmission rate always reaches Xmax. The trans-
mission rate just before the occurrence of a real loss can be
taken equal to Xmax, that is, we can now take x0 = Xmax.
Hence,

x̄G = Xmax

x̄B =
1

d
(

Z (Xmax/2α)

0

(Xmax/2 + αt)dt +

Z d

(Xmax)/2α

Xmaxdt)

= Xmax − X2
max

8αd
.

And the total throughput is equal to

x̄ = πG x̄G + πB x̄B = Xmax − X2
maxπB

8αd
.
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Figure 2: The variation of X(t) vs. time

The difference between our calculation here and the calcula-
tion in [16] is that we benefit from the use of a Markov chain,
so we can introduce two refined conditions instead of one as
in [16]. It was assumed in [16] that only when E[Xn] exceeds
Xmax, the transmission rate limitation starts to impact the
throughput.

4.5 Validation of the model
4.5.1 The simulation scenrario
We validate our model using the TCP implementation in the
ns simulator [15]. Recall that TCP is a window-based flow
control protocol that increases its window exponentially dur-
ing slow start and linearly during congestion avoidance [12].
We consider long TCP transfers to eliminate the impact of
the transient behavior at the beginning of the connection.
Also, we use the SACK version [7] of TCP since it is able
to recover from losses quickly and with a low probability
of Timeout and slow start. We suppose that the receiver
acknowledges every data packet. This results in a window
growth during congestion avoidance of approximately one
packet every RTT [17]. We suppose also that the receiver
window is very large so that it does not affect the transmis-
sion rate. Later, we will show that the estimations derived
in Section 4.4 well agree with simulation results obtained in
the case when the window evolution is limited by the receiver
window. We consider the TCP window size in packets as the
transmission rate in our mathematical model since this win-
dow varies linearly as a function of time and is divided by
two upon loss detection. The different rates in our model are
then expressed in terms of packets and need to be divided
by the RTT in order to get the real rates.

The simulation scenario consists of a TCP connection cross-
ing a 2Mbps link. The RTT of the connection is taken equal
to 560 ms. TCP packets are of total size 1000 Bytes. We
add our loss model to the simulator and we associate it to
the 2Mbps link. We account only for losses on the link and
we study their impact on the throughput. We chose the pa-
rameters of the simulation in a way to not get losses in the
other parts of the network. This clearly requires that losses
are frequent so that the buffers in network routers do not
overflow. The first condition of Section 4.4 is always satis-
fied with Xmax equal to the network capacity. The purpose
of the present paper is to create and to validate the model
which takes into account the burstiness of losses. In a subse-
quent work, we will show how the parameters of our model
can be inferred from a real TCP trace.



The time between potential losses is taken to be exponen-
tially distributed. As we will explain later, we simulate a
potential loss that it is to be transformed to a real loss by
dropping all packets leaving the lossy link during a small
time interval (a 100 ms is chosen in the following simula-
tions). Loss events in our model correspond then to bursts
of packet losses on the lossy link. The reason for dropping
packets in bursts is that TCP traffic is not actually fluid
but rather bursty. Thus, it is very likely that at the instant
of loss, there is no packets leaving the link. By dropping
packets in bursts, we guarantee that some packets are at
least lost when our model tells us that the throughput of
the connection has to be reduced.

Figure 2 shows a typical variation of the congestion window
of the TCP connection. We see well how potential losses
are transformed into real losses and how real losses cause a
reduction of the window by a factor of two. In what follows,
we run the connection for one hour and then we calculate
the values of xG , xB and x̄. These simulation results are
then compared to those given by our analysis. When simu-
lating, xG (resp. xB ) is calculated by summing the window
sizes when a potential loss occurs and the link in the Good
state (resp. in the Bad state), then by dividing this sum
by the total number of potential losses. x̄ is calculated as
the throughput of the connection over one hour expressed
in terms of Packets/s times the RTT. This gives the time
average of the congestion window. First, we fix the param-
eters of the Markov chain of the link and we vary the time
between potential losses. This allows to check the impact of
the average loss rate on the throughput for a given bursti-
ness. Afterwards, we shall vary the burstiness while fixing
the average rate of losses.

4.5.2 Impact of the average loss rate
In our first set of simulations, d is varied between 1 and
10 seconds. b and g are however taken equal to 0.6. Our
analysis predicts a linear variation of the three quantities
xG , xB and x̄ (equations (6) and (9)). Figures 3, 4 and
5 show well the match between simulation and analytical
results.
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Figure 3: The variation of xB vs. d

We shall give some more details about the way the losses
are generated and then explain the small deviations from
the analytical results. We see that the slope of the line
given by simulation is slightly smaller than the one given by
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Figure 5: The variation of x̄ vs. d

analysis. The simulated model consists of individual packets
that are sent in bursts on the link. The lossy link may not
be carrying TCP packets when a potential loss has to be
transformed into a real loss. At small d, losses are frequent
and the window is most of the time of small size. When the
window is very small and an event of loss is simulated, there
might not be an actual packet on the link to which this loss
corresponds. This results in many real losses considered by
the analytical model but not considered by the simulation.
Now, when d increases, the window becomes larger and the
probability that the link is not carrying TCP packets when a
potential loss occurs becomes smaller. Thus, the simulation
line becomes closer to the analytical line.

To overcome the above problem, we simulate a loss as an
event that causes the loss of all the packets that cross the
lossy link during a certain time interval. By taking a large
time interval to represent potential losses, we solve the prob-
lem of small windows. However, large windows see a large
number of lost packets which causes sometimes a Timeout
and a slow start. For this reason, we see that the simulation
results fall below the analytical ones at large d.

4.5.3 The impact of burstiness
We fix here the average time between potential losses to 5
seconds and we change the transition probabilities b and g
while keeping b = g. This results in πG = πB = 0.5 which
guarantees that the average loss rate remains constant. Our
analysis shows that xB must not change (equation (6)). xG

and x̄ must however increase as a result of the increase in
burstiness (equations (6) and (9)). Figures 6, 7 and 8 val-
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idate our analytical results. In particular, it is clear from
Figure 8 that by increasing b from 0.1 to 0.8, the average
throughput increases by around 60% even though the aver-
age loss rate remains unchanged. This confirms our result
concerning the improvement in performance when losses be-
come clustered.

We plot finally in Figure 9 the variance of the transmission
rate upon potential loss occurrence (the window size in case
of TCP). This variance is given in equation (10). As pre-
dicted by our analysis, the simulations show the increase in
the variation of Xn when burstiness increases. On a bursty
path, the source transmission rate varies between important
values when the path is in the Good state and small values
when it is in the Bad state.

4.5.4 Case of a limitation on the transmission rate
We now consider a case where the receiver window is set to
a finite value so that it limits the evolution of the congestion
window. We set b and g to 0.6 and we take an exponential
time between potential losses of average 5 s. We reduce the
RTT of the connection to 250 ms and we set the receiver
window to the bandwidth delay product. We change d from
1 to 10. By simple calculation, we see that in this setting,
we cross the three regions we defined in Section 4.4 while
introducing the limitation on the transmission rate for our
model. Figure 10 shows how our approximation correctly
estimates the real throughput. The model without limita-
tion on the transmission rate leadsto a clear overestimation
of the real throughput in this scenario.
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5. CONCLUSIONS
In this paper, we studied the performance of a TCP-like
flow control protocol as a function of losses. In addition to
the average loss rate considered in the previous works, we
evaluate the impact on the performance of burstiness in the
loss process. We define a model for losses using potential
losses and a two-state Markov chain to account for bursti-
ness. We then calculate the throughput and the moments of
the transmission rate at some potential loss instants. The
throughput is compared to the one achieved when operating
over a non-bursty path having the same average loss rate.
Our main result is that for a given loss rate, the performance
improves when losses tend to appear in bursts. This increase
in performance with burstiness is caused by an increase in
the second moment of the transmission rate. We conduct
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a set of simulations with ns to validate the analytical re-
sults. A good match between simulation and analysis has
been noticed.

Another result of our analysis is a better understanding of
how the throughput has to be calculated. In the litera-
ture, the source transmission rate (or the congestion window
in case of TCP) has been shown to vary in the stationary
regime between two fixed values X and 2X with a time av-
erage transmission rate equal to 3X/2. We showed in our
analysis that this is correct only when the time between
losses is constant which is not the case given the random
nature of the loss process. This transformation of the ran-
dom problem to a a deterministic one is the result of the
assumptions made to simplify the analysis. In general, the
second moment of the inter-loss time has to be considered
for an accurate calculation of the throughput. In the partic-
ular case of an exponentially distributed inter-loss time, we
found that the average transmission has to be taken equal
to 2X rather than 3X/2.

6. APPENDIX: CONVERGENCE OF XN TO
A STATIONARY REGIME

We rewrite the dynamics (1) of Xn as,

Xn+1 = AnXn + Bn (12)

where,

An = (1− Un/2)1{Yn = G}+ (1− Vn/2)1{Yn = B}
Bn = αDn

For any initial condition X0, we obtain by iterating (12),

Xn =

n−1X
j=0

 
n−1Y

i=n−j

Ai

!
Bn−j−1 +

 
n−1Y
i=0

Ai

!
X0

for all n ≥ 0. If we assume that Yn is initially in steady state
then (An, Bn) are jointly stationary. We denote by (A∗n, B∗

n)
this stationary process. We show in this section that the
process Xn converges to a stationary solution of (12), i.e. to
a process X∗

n satisfying X∗
n+1 = A∗nX∗

n + B∗
n for all n ≥ 0.

Theorem 6: Assume that Yn contains a single recurrent
class and is initially in steady state. Consider an arbitrary
initial state X0. Then,

X∗
n =

+∞X
j=0

 
n−1Y

i=n−j

Ai

!
Bn−j−1 (13)

is the only stationary solution of (12) and is ergodic. The
sum on the right hand side of (13) converges absolutely al-
most surely. Furthermore, |Xn−X∗

n| → 0 a.s. for all X0 on
the same probability space as {(An, Bn)}. In particular, the
distribution of Xn converges to that of X∗

n as n → +∞.

Proof: We use Theorem 2A in [10] (based on [3, 18]).
The assertion follows directly if we establish the following
conditions of the Theorem (i) −∞ ≤ E[log |A0|] < 0 (ii)
E[log |B0|+] < ∞. We show that these conditions indeed
hold.

The only possible values of A0 are 1/2 and 1. Thus the
only possible values of log |A0| are log 0.5 or 0. Under the

assumptions of our model, the value log 0.5 < 0 has posi-
tive probability. This implies conditions (i). By Jensen’s

inequality we have eE[log |B0|] ≤ E|B0| which is finite. This
implies condition (ii). Ergodicty follows from [2], p. 14. ¦

Remark: The conclusions of the above theorem can be ex-
tended to the case that the Markov chain Yn is initially not
in its steady state distribution. This is due to the fact that
coupling of Yn to a stationary regime occurs in a time which
is a.s. finite (since the Markov chain Yn contains a single
ergodic class).
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