
A CBQ-Based Dynamic Resource Allocation Mechanism for

Diffserv Routers

Rares Serban
1
, Chadi Barakat

1
, Walid Dabbous

1

1
Planète Project, INRIA Sophia Antipolis

2004, Route des Lucioles, BP.93, 06902, Sophia Antipolis, France

{Rares.Serban, Chadi.Barakat, Walid.Dabbous}@sophia.inria.fr

Résumé :

Class Based Queueing (CBQ) is a link-sharing and resource management mechanism for packet networks. The
weights of CBQ control the way with which the available bandwidth at the output interface of the router is distributed
among the different classes of the input traffic. CBQ also disposes of rules for bandwidth borrowing based on a
hierarchy of classes. In [1], we proposed a dynamic, self-tuning mechanism for allocating resources in Diffserv
routers called DRAM (Dynamic Resource Allocation Mechanism). The routers in [1] are supposed to implement a
simple version of CBQ equivalent to Weighted Fair Queuing (WFQ), where the bandwidth borrowing feature of CBQ
is disabled. DRAM tunes the weights of WFQ so that each class of traffic realizes its needs, and the resources of the
network are efficiently utilized. The tuning is automatic, self-configurable, easy to deploy and to manage, without
any additional signaling. In this paper, we study the impact of CBQ mechanisms related to bandwidth borrowing on
the performance of DRAM. We show that the simultaneous use of DRAM and CBQ leads to better overall
performance due to the bandwidth borrowing capabilities of CBQ; Service Level Agreement (SLA) profiles are more
respected and network resources are better utilized than when DRAM is used with WFQ. The performance
improvements are validated by a campaign of experiments on a real network testbed.

MOTS-CLÉS : CBQ, Diffserv, WFQ, Service Level Agreement.

1. Introduction

 Service Level Agreements (SLA) between providers and customers define Service Level Specifications (SLS)
with traffic conditioning specification, monitoring service capabilities, service availability and the fees corresponding to
each level. The Traffic Conditioning Specification (TCS) defines service level parameters (bandwidth, packet loss, peak
rate, etc), offered traffic profiles and policies for excess traffic.
 Various sets of QoS (Quality of Service) mechanisms and policies are tuned using the traffic conditioning
specification. The heart of the QoS technology is a packet scheduling mechanism, also known as queuing mechanism.
Sophisticated queuing mechanisms can provide performance bounds of bandwidth, delay, jitter and loss and thus, can
meet the requirements of real-time services. Queuing mechanisms are also vital to IP services to avoid congestion and
to provide fairness and protection, which leads to more stable and predictable network behavior. These mechanisms are
responsible of providing bandwidth guarantee and traffic protection, and of distributing correctly the available
bandwidth among the classes of services supported by the QoS framework.
 Internet Service Providers (ISP) guarantee some level of service for their users. Given the SLA of a stream of
packets, the network has to allocate enough resources so that the service required by that stream is guaranteed. The
allocation can be done in different ways, depending on the total amount of resources available in the network and the
number of customers. When the number of the customers approaches a maximum limit, the resources start to be rare

and the Quality of Service (QoS) required by customers cannot be realized. Thus, some kind of Call Admission Control
(CAC) [2] has to be implemented by the network, to protect already accepted customers from newly arriving ones.
 The allocation can be done using many queuing disciplines. Two factors determine whether a packet scheduling (a
queuing discipline) is able to support QoS in the Internet: its ability to provide bandwidth guarantee and to fulfil the
delay requirement of the data flows. Providing guarantee for minimum bandwidth when there is a large demand is
important to ensure that competing data flows do not degrade each other's throughput. Without proper bandwidth
guarantee, non-responsive transport protocols as UDP finish up by consuming most of the bandwidth, and by shutting
down responsive transport protocols as TCP.
 Queuing disciplines are used in the two well known QoS architectures: Integrated Services and Differentiated
Services. Intserv [3] is an IETF framework for guaranteed services and for controlling the load of traffic along a
transmission path. This framework is based on the Resource reservation protocol (RSVP). RSVP itself is a signaling
protocol to set up the traffic control modules of the routers based on SLA parameters. QoS is guaranteed since each
router along the transmission path holds a resource reservation table able to handle flows. In IntServ, two classes of
service are defined: guaranteed service and controlled-load service [4]. A flow is a stream of packets belonging to the
same user/application (the 5-tuple criterion). The tuning of routers in IntServ is done by RSVP. Parameters of the
packet scheduler in each traffic module are changed in a dynamic manner based on signaling properties of RSVP.
 Differentiated Services (Diffserv) is an IETF framework for classifying traffic into classes, with different service
levels for each class [5]. The edge routers in a Diffserv network mark/shape/police flows based on their SLAs and the
core routers offer packets belonging to these flows different treatments using the marks they carry. Core routers handle
aggregates of flows instead of individual flows, which is known to considerably reduce the complexity of Diffserv,
compared to its counterpart IntServ [6], where core routers allocate resources on a per-flow basis. The treatment a core
router gives to packets from one service class is called PHB (Per Hop Behavior). The PHB classes (or service classes)
defined in Diffserv are: Best Effort (BE), Assured Forwarding (AF) and Expedited Forwarding (EF). EF packets are
queued in separate buffer and are served before packets of the other classes. Packets of the different AF classes are
queued in separate buffers and are served using a packet scheduler mechanism (e.g., CBQ, WFQ, WRR, CBWRR, etc.).
 We focus in [1] on the tuning of core routers in a DiffServ network. Routers are supposed to implement a simple
version of CBQ equivalent to Weighted Fair Queuing (WFQ), where the bandwidth borrowing feature of CBQ is
disabled. The purpose of [1] is to dynamically tune the weights of WFQ, which are actually set in a static way by
manual work based on a trial-and-error process. To this end, a dynamic, self-tuning mechanism is proposed. We call
this mechanism DRAM (Dynamic Resource Allocation Mechanism). The weights of WFQ control the way with which
the available bandwidth at the output interface of the core router is distributed among DiffServ classes. For simplicity
reasons, only two AF classes are considered, in addition to the classical BE class. DRAM ensures that AF and BE
classes are protected from each other, and that the excess of bandwidth, which is not allocated to high priority traffic is
fairly shared among the different classes.
 In this paper, we study the impact of CBQ mechanisms related to bandwidth borrowing on the performance of
DRAM. We show that the simultaneous use of DRAM and CBQ leads to better overall performance due to the
bandwidth borrowing capabilities of CBQ; SLA profiles are more respected and network resources are better utilized
than when DRAM is used with WFQ. The improvement in performance when DRAM and CBQ are combined together
is validated by a campaign of experiments on a real network testbed.
 The remainder of this paper is organized as follows. A short presentation of CBQ is given in Section 2. Section 3
reminds the behavior of the Dynamic Resource Allocation Mechanism described in [1]. Section 4 details on the aim of
this paper. Section 5 and Section 6 study the interaction between CBQ and DRAM based on the scenarios proposed in
[1] and illustrate the gain in overall performance. Section 7 concludes the paper.

2. Class Based Queuing - CBQ

 CBQ was proposed and studied in [7]. It is a packet-scheduling algorithm that supports hierarchical link sharing
and preserves bandwidth guaranteed. CBQ presents a solution for unified scheduling for link-sharing and real-time
purposes. It isolates real-time and best-effort traffic by allowing the separation of traffic in different traffic classes that
are then treated according to their requirements, e.g. by giving priority to real-time traffic.
 Link-sharing allows multiple organizations or multiple protocols to share the link bandwidth and to distribute
available bandwidth according to the class tree structure. Each class has its own queue and is assigned its share of
bandwidth. A child class can borrow bandwidth from its parent class as long as the available bandwidth is disposable.
Although CBQ has the concept of using a general scheduler, which is used in the absence of congestion, and a link-
sharing scheduler for rate-limiting classes, most implementations implement both mechanisms in a single scheduler.

 CBQ works as follows: The classifier assigns arriving packets to the appropriate class. The estimator estimates the
bandwidth recently used by a class. This is done by calculating an exponentially weighted moving average over the
discrepancy between the actual inter-departure time of two packets of a class to the inter-departure time corresponding
to the specified rate of the class. If a class has exceeded its predefined limit, the estimator marks the class as overlimit.
The scheduler determines the next packet to be sent from the various classes based on priorities and states of the classes.
CBQ has been implemented in Linux RedHat 7.2 using the algorithm skeleton from NS simulator. The original CBQ
implementation is the classical WRR (Weighted Round Robin) but in Linux is DRR (Deficit Round Robing). The Top-
Level link-sharing algorithm employs heuristics to control how far the scheduler needs to traverse the class tree.
Implementation of this algorithm is complicated so CBQ Linux simplified implementation uses DRR independently of
the borrow level form. This leads to sharing policies: when class A has higher priority than B, both are borrowing from
C then A gets as much as it can and the remainder is served to B (but B still gets its own rate). If B has the same priority
as A then borrowed bandwidth would be divided between A and B in the same proportion as their own base rates are.

3. Dynamic Resource Allocation Mechanism - DRAM

 The tuning of core routers in a Diffserv network is actually done in a static way by manual work based on a trial-
and-error process. A static tuning is time-consuming and costly for network manager. A static tuning may lead to an
inefficient utilization of network resources and unfairness among the Diffserv classes. A dynamic tuning of core routers
is needed to satisfy as much as possible all reservations of customers, and to fairly distribute the excess of bandwidth.
To realize such objective, we proposed DRAM in [1] and we validate its performance with real experiments.
 DRAM makes the following two assumptions. First, the network is over-provisioned, i.e. there are enough
resources in the core of the network to support the high priority traffic marked at the edge. Second, the resources of the
network may not be enough to support the total amount of traffic coming from the edge, i.e. the high priority plus the
low priority. The decision on whether to accept a new SLA is done at the edge of the network, and core routers
dynamically tune their parameters so as to absorb the marked traffic and to use efficiently the network resources.
 We consider in [1] the allocation of bandwidth based on the average rate of high priority traffic of each DiffServ
class. The interval over which the data rate is averaged is an important parameter of our mechanism. It must not be too
small, since the system may become unstable, especially when we have a transport protocol like TCP, which adapts its
rate as a function of the reaction of the network. A small averaging interval also results in high computational overhead.
For simplicity of the analysis, the model we studied in [1] omits the EF service and focuses on AF and BE classes of
services. We consider two-drop precedence per AF class. At the edge of the network, compliant packets of AF are
marked with high priority (called IN packets), and non-compliant packets are injected into the network with low priority
(called OUT packets). IN and OUT packets are buffered in the same queue in core routers, but are dropped differently
at the onset congestion. The idea is to start dropping OUT packets while protecting IN packets. When all OUT packets
are dropped and the congestion persists, IN packets start to be discarded. The mechanism proposed in [8] to support
such a preferential dropping is called RIO (RED IN/OUT).
 In summary, DRAM measures the rate of IN packets, and sets the weights of the CBQ buffer so as to absorb all IN
packets and to distribute fairly the rest of the bandwidth (called excess) among OUT and BE packets. The excess
bandwidth distribution rule forms important part of the mechanism. Here are two examples that have been studied: fair

division - the excess bandwidth is distributed among classes using equal weights, weighted division - the excess
bandwidth is distributed among classes using a priori weights. Note that the CBQ version used in [1] disables
bandwidth borrowing. When one class transmits at less than its allocated rate, the remaining rate is distributed among
the other classes proportionally to their allocated rates, without any control from the network manager.

4. CBQ as a basic component of DRAM

 One of the components of a Dynamic Resource Allocation Mechanism is the packet-scheduling algorithm. With
packet scheduling algorithm we control the interactions among traffic streams, different performance-oriented traffic
classes and different administrative traffic classes. The interactions among traffic streams define rules to share the
bandwidth of one output link. The traffic classes can share the total bandwidth using sharing rules combined with
priority. The administrative rules are provided using a hierarchy of traffic classes. The first set of interactions can be
controlled with weight parameter. The second one depends on the traffic design rules. Different types of traffic can

share each one another the bandwidth in function of their requirements. The optimum solution is each class of streams
to receive the minimum requirements in order to assure a good behavior of the total bandwidth traffic.
 Class Based Queuing (CBQ) is a packet scheduler that is able to preserve the bandwidth allocated to the classes
and to support hierarchical link sharing. However, it does not scale well with the number of data flows as it incurs
additional delay with each new data flow admitted. Due to this additional delay, the admission control cannot predict
the delay experienced by the existing flows after admitting a new flow. Although CBQ is able to provide lower delay to
higher priority flows, it also introduces jitter to the traffic owning to its packet-scheduling artifact. As such, CBQ is not
suitable for fine-grained scheduling of real-time traffic. It is more suited for providing bandwidth guarantee to
aggregated data flows.
 We consider that using DRAM with CBQ enhances link sharing and resource allocation management. Our
Dynamic Resource Allocation Mechanism does not replace CBQ. It ensures that SLAs are respected and allows at the
same time an efficient utilization of network resources. As we said in Section 1, our assumption is that a customer is
satisfied if its IN packets get through the network without being dropped. We also assume that it is in the interest of
customers and operator that the excess bandwidth in the network is fairly distributed among the classes: AF1, AF2 and
BE. There are two levels of bandwidth distribution. The first one is defined by the link-sharing algorithm of CBQ and
the second one is set by the network administrator. Given the variability of the traffic and the change of SLAs, it is very
likely that a static tuning of core routers implementing CBQ does not realize the above objectives. The problem that can
be caused by a static tuning of weights at the output interface of a CBQ core router, can be summarized as: bias against
the IN packets of one or more AF traffic classes and unfairness in the distribution of the excess bandwidth. DRAM
solves the problems caused by a static tuning of CBQ weights, and CBQ enhances DRAM with its mechanisms (class
hierarchy and priority) for bandwidth sharing and borrowing.
 In Section 5, we study the problems caused by a static tuning of the CBQ core router using two hierarchies of
classes: a flat level hierarchy and a multilevel hierarchy of classes. In Section 6, we introduce DRAM and we check if
the link-sharing hierarchy of the classes mechanism of CBQ affects the performance of DRAM or not.

5. Studied CBQ class hierarchies

 This section shows the behavior of CBQ using the two static bandwidth link-sharing configurations shown in
Figure 1. We study the two configurations and the influence of the linux "bounded" parameter. The network
configuration used is described in [1]. The 6Mbits/s link bandwidth is allocated to DiffServ classes like in Figure 1. The
number of classes, the hierarchy of classes, and the efficiency of the packet filtering process affect the latency and the
performance achieved by each class of traffic. In our case, the number of classes (of services) used is three: AF1, AF2
and BE.

6Mbps

2:1 2:5
2:2

1:0

2:0

6Mbps

AF1
AF2

BE

a) simple configuration

6Mbps

2:1 2:5

2:11 2:12

1:0

2:0

6Mbps

AF1 AF2

BEAF

b) hierarchical configuration

Figure 1. Two configurations of CBQ classes

Static tests help to discover the behavior of the CBQ implementation. The following tests verify the link sharing of the
Linux CBQ implementation for a congested link by means of latency and throughput. The data source for class AF1 is a

UDP flow that sends 1470 bytes packets. The data source for class AF2 is a long-lived TCP flow. The data source for
class BE is a UDP flow that sends 1470 bytes packets.
 The first sharing test uses the simple configuration of CBQ from Figure 1a. The link bandwidth (C = 6Mbit/s) is
shared by the three classes following the Top-Level link sharing rule described in [7]. Each class of traffic is allocated
1/3 of the link bandwidth. The root class 1:0 is used by dsmark classifier and is linked to the class 2:0. Class 2:0
represents the root class for CBQ configuration. Class 2:0 has three children classes AF1, AF2 and BE.
 The test scenario is the following. First, all three data sources send at a rate 4Mbit/s. Each class rate of CBQ
scheduler is provisioned to 2Mbit/s. Then, the source BE successively diminishes its rate to 2Mbit/s, 1Mbit/s,
600Kbit/s, 500Kbit/s and 100Kbit/s.

RAF1[Mbit/s] RAF2[Mbit/s] RBE[Mbit/s]
2.1 2.0 1.9
2.3 2.0 1.0
2.4 2.2 0.6
2.5 2.0 0.5
3.4 2.1 0.1

Table 1. Test scenario for simple configuration of CBQ

RAF1[Mbit/s] RAF2[Mbit/s] RBE[Mbit/s]
2.1 2.0 1.9
2.6 2.1 1.0
2.7 2.3 0.6
2.6 2.1 0.5
2.3 2.1 0.1

Table 2. Test scenario for simple configuration of CBQ
using "bounded" parameter

 Table 1 shows the behavior of link sharing between AF1, AF2 and BE classes for the class hierarchy of Figure 1a.
Class AF1 being allocated the highest priority borrows the unused bandwidth of class BE. Class AF2 gets its allocated
rate 2.0Mbit/s. We measure the delay through the AF1 class. The value of delay decreases when AF1 gets more
bandwidth (i.e. from 0.856ms to 0.653ms).
 The same test is resumed but this time using the "bounded" parameter of CBQ. The "bounded" parameter blocks
the borrowing of bandwidth by a class from its parent class (i.e. it bounds the rate obtained by a class to its allocated
rate). Table 2 shows the bandwidth allocation error where we see that classes AF1 and AF2 are still trying to borrow
bandwidth from the BE class. Class AF1 has increased its rate from 2Mbit/s to the values indicated in the table. It is
very hard to implement precisely the bandwidth borrowing mechanism of CBQ. We measure in this case the delay of
AF1 packets. The value of the delay is approximately constant (i.e. 0.858ms).
 The second sharing test uses the hierarchical configuration of CBQ from Figure 1b. The rates of sources and the
types of traffic are the same as above. The total link bandwidth is shared by two classes with the same priority: AF and
BE. As such, the root class 2:0 has two children AF and BE. AF class has two children AF1 and AF2. The root class 1:0
is used by dsmark classifier and is linked to the class 2:0. AF class is configured to share 2/3 of the total bandwidth
(C=6Mbit/s) and class BE shares 1/3 of the link bandwidth. Each child of AF class shares 1/2 of class AF bandwidth.
AF1 class has higher priority than AF2 class.

RAF1[Mbit/s] RAF2[Mbit/s] RBE[Mbit/s]
2.2 1.9 1.9
2.6 1.9 1.0
2.9 2.0 0.6
3.0 2.4 0.5
3.4 2.5 0.1

Table 3. Test scenario for hierarchical configuration of
CBQ

RAF1[Mbit/s] RAF2[Mbit/s] RBE[Mbit/s]
2.1 2.0 1.9
2.3 2.1 1.0
2.4 2.3 0.6
2.6 2.1 0.5
2.7 2.2 0.1

Table 4. Test scenario for hierarchical configuration of
CBQ using "bounded" parameter

 Table 3 shows the behavior of the sharing bandwidth between classes and the case when the parameter "bounded"
is not used. The data source BE decreases its rate and sets it to the values shown in the table. Clearly, class AF1
borrows most of the unused bandwidth of BE class since it has higher priority compared to AF2.
 Table 4 shows the bandwidth allocation error when the parameter "bounded" is set to all classes of the hierarchical
configuration of Figure 1b. Again, the AF classes are still borrowing bandwidth from the BE class even though there
rates are bounded to their allocated rates.
 The delay measured for AF1 class in the test scenario for hierarchical configuration without "bounded" parameter
decreases when the AF1 class gets more bandwidth. This test has shown that CBQ is able to increase the quality of
services for the classes with priority and it is able to control the transmission rate at the network interface.
 The test scenario using hierarchical configuration and "bounded" parameter has shown that the delay on class AF1
has no constant values like in the test scenario with simple configuration of CBQ using "bounded" parameter.

6. Examples to compare link-sharing schemes

 The goal of this section is to compare the link-sharing configurations from Figure 1 using the Dynamic Resource
Allocation Mechanism presented in Section 3. This section proves that the behavior of our mechanism does not affect
the bandwidth link sharing of CBQ. Moreover, the bandwidth link sharing of CBQ is improved when using DRAM
since DRAM tunes the weights of CBQ as a function of the incoming traffic.

6.1. Link-sharing test if one reservation is not satisfied and one is satisfied

 The network test configuration is illustrated and described in Figure 2. The hierarchy of classes defined at the
output interface of the core router is illustrated in Figure 1. Consider the scenario where AF1 class generates a total rate
of 4.5Mbit/s and AF2 class generates a total rate of 0.5Mbit/s. The rate of data carried by IN packets of class AF1 is
equal to RAF1.1=2.5Mbit/s. All packets of class AF2 are marked as IN, RAF2.1=0.5Mbit/s. In the static tuning case, the
buffer is supposed to distribute the bandwidth C = 6Mbit/s equally among the three classes. The BE traffic rate is set to
3Mbit/s (Figure 2).

CR1CR2

HG1

HG2

HG3

HR1

HR2

AF1=4.5Mbps

AF2=0.5Mbps

BE=3Mbps

C=6Mbps

Figure 2. Test-bed network for link-sharing abilities if one reservation is not satisfied and one is satisfied. CR - core
router; HR - host receiver; HG - host generator.

 In this scenario, class AF2 is satisfied since all its IN packets get through the network. However, class AF1 is not
satisfied, since the CBQ buffer limits its rate to 2Mbit/s, whereas it is sending IN packets at a higher rate of 2.5Mbit/s..
The total rate of IN packets generated by the two classes is less than C, therefore it is possible to find another tuning
that allows all IN packets to get through, and corrects the bias against class AF1. When running our mechanism, the rate
allocated to AF1 increases to more than RAF1.1 and the rate allocated to AF2 is kept larger than RAF2.1.
 Figure 5 shows two cases. One is when the parameter "bounded" is not included in the simple configuration
hierarchy. Because the traffic of AF2 is low and marked IN profile, the rest of the bandwidth is borrowed by the AF1
and BE classes. The second case is when we set the parameter "bounded" to block the sharing algorithm. In both cases,
AF1 has the highest priority. We observe that the two AF classes always realize their desired rate. The BE service gets
the smallest amount of bandwidth, since it has zero guarantee. But, the throughput of AF1 is different for the two
presented cases. When the “bounded” parameter is off, the link-sharing algorithm of CBQ gives the bandwidth unused
by AF2 to the AF1 class since the AF1 class has the highest priority. The "fair division" rule of the excess bandwidth is
not strictly enforced when using the link-sharing algorithm with the “bounded” parameter set to off. If the "bounded"
parameter is on, the excess bandwidth is shared using the "fair division" rule and is more controlled.
 The same cases are presented in Figure 6 using the hierarchical configuration of CBQ. AF class has the 2/3 from
the link bandwidth and the BE class 1/3. Inside the class AF, the weight of each sub-classes is 1/2. AF1 class has the
highest priority and the AF2 class the lowest. AF and BE classes have the same priority.
 Using this hierarchy we observe from Figure 6 (in the case without bounding) that the traffic of BE is more
"nervous" because the Linux kernel is not a real-time kernel, hence it does not schedule its processes with different
levels of priorities. It does not make sense for a process that transmits 2 Mbit/s to be given the same CPU time as the
one that transmits only 200Kbit/s. We can observe this problem when we are using a complex hierarchy of traffic
streams. In our case we use two levels of hierarchy, the first one with no priorities and the second one with priorities.
This problem represents a lack of CBQ Linux implementation.
 Figure 7 shows another case where we test the link-sharing behavior using CBQ for dynamic guaranteed
bandwidth and for static guaranteed bandwidth. AF1 has UDP flows and AF2 and BE have long-lived TCP flows. The
AF2 class of service has low traffic, less than guaranteed. In the static case, all classes are guaranteed 2Mbit/s. Link-
sharing algorithm reacts giving the excess bandwidth from class AF2 to classes AF1 and BE. Having the same priority

to all classes, the excess bandwidth is divided in same proportion. The BE service gets approximately the same amount
of bandwidth like AF1 class.
 The case when we use DRAM, the bandwidth guaranteed by the network to AF1 is set to 3Mbit/s, instead of
2Mbit/s as before (this follows the change in the contract according to a new agreement between customer and ISP). We
use the "fairly division" rule. In this case, BE service gets the smallest amount of bandwidth, since it has zero guarantee.

6.2. Link-sharing test if all reservations are not satisfied

 This case we consider when all reservations are not satisfied, due to an appropriate static tuning of CBQ weights.
The total rate of IN packets generated by the AF1 and AF2 classes is less than C and the total traffic is more than C
(capacity of link). If CBQ limits the maximum rate of each class to 2Mbit/s, both classes AF1 and AF2 will not be
satisfied since some of their IN packets will be dropped. On contrary, clients of BE class are favored, since they obtain
more than their fair share of the excess bandwidth.

CR1CR2

HG1

HG2

HG3

HR1

HR2

AF1=3Mbps

AF2=3Mbps

BE=3Mbps

C=6Mbps

Figure 4. Test-bed network for link-sharing ability if all reservation are not satisfied. CR - core router; HR - host
receiver; HG - host generator;

 Figure 8a shows the static case of CBQ using link-sharing algorithm. We measure each class at the output
interface of the core router. In this test we use simple configuration hierarchy. All the classes have the same priority.
The network configuration used to conduct the test is presented in Figure 6. The implementation schema is described in
[1].
 As we observe from Figure 8a, CBQ can maintain the bandwidth of several concurrent data flows. Figure 8b
shows the case when we use DRAM with flat hierarchy configuration. This proves that our algorithm changes the
weights of the CBQ in order to satisfy the guaranteed bandwidth (represented by the IN packets) and to distribute the
excess bandwidth using "fair division" rule. We can observe that in this case, the link-sharing algorithm has the same
behavior like the rule used in our algorithm. Figure 8c shows the case when we use DRAM with the hierarchy
configuration from Figure 1. We observe low values of AF1 and AF2 classes when are using the hierarchy
configuration compared with flat configuration. We measure the delay in both cases for AF1 class. For the flat
hierarchy, the delay is 0.832 ms and for the hierarchy configuration the delay is 0.893 ms (average values).

7. Conclusions

 CBQ Linux implementation can influence the behavior of our algorithm. Flat hierarchy configuration has less
delay of packets for AF1, AF2 classes than hierarchy configuration. More nodes in hierarchy link-sharing structure
introduce delay and jitter. Another observation is that our algorithm using hierarchic configuration has a non-
predictable behavior. The excess sharing bandwidth rule is not exactly respected in the case of hierarchic configuration.
The tuning process is heavy with hierarchic configuration than the flat hierarchic configuration. The "bounded"
parameter introduces delay but gives more control of the DRAM behavior. It blocks the excess link-sharing algorithm.

8. References

1] Rares Serban, Chadi Barakat and Walid Dabbous, "Dynamic Resource Allocation in Core Routers of a Diffserv Network",
ASIAN02, Hanoi, December 2002;

[2] H. G. Perros, K. M. Elsayed, "Call Admission Control Schemes: A Review", IEEE Communications Mag., Vol.34, No.11,
November 1996, p.82-91;

[3] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker and Daniel Zappala, "RSVP: A New Resource Reservation Protocol",
IEEE Network, No.7, September 1993, p.8-18;

[4] J. Wroclawski, "Specification of the Controlled-Load network element service", RFC 2211, September 1997;
[5] S. Blake, D. Black, M. Carlson, "An Architecture for Differentiated Services", RFC 2475, December 1998;
[6] J. Wroclawski, "The use of RSVP with IETF Integrated Services", RFC 2210, September 1997;
[7] Sally Floyd and Van Jacobson, "Link-sharing and resource management models for packet networks", IEEE/ACM Transactions

on Networking, No4, August 1995;
[8] David D. Clark, Wenjia Fang, "Explicit Allocation of Best-Effort Packet Delivery Service", IEEE/ACM Transactions on

Networking, Vol.3, No.4 August 1995;
[9] Sally Floyd and Michael Francis Speer, "Experimental Results for Class-Based Queueing", November 11, 1998;
[10] Kenjiro Cho, "A framework for Alternate Queueing: Towards Traffic Management by PC-UNIX Based Routers", Sony

Computer Science Laboratory, Inc., Tokyo, Japan 1410022;
[11] KJ Loh, Irwin Gui, KC Chua, "Performance of a Linux Implementation of Class Based Queueing", 1999;
[12] D.Hoffman, M. Speer, An early access experimental realease of Solaris RSVP/CBQ;

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 20 40 60 80 100 120

B
an

dw
id

th
 [
M

bi
t/s

ec
.]

Time [sec.]

AF1_case1
AF1_case2
AF2_case1
AF2_case2
BE_case1
BE_case2

Figure 5. The behavior of DRAM with bounding (case2) and

without bounding AF1 class (case1) using simple configuration

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 20 40 60 80 100 120

B
an

dw
id

th
 [
M

bi
t/s

ec
.]

Time [sec.]

AF1_case3
AF1_case4
AF2_case3
AF2_case4
BE_case3
BE_case4

Figure 6. The behavior of DRAM bounding (case4) and without

bounding AF1 class (case3) using hierarchical configuration

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 20 40 60 80 100 120

B
an

dw
id

th
 [
M

bi
t/s

ec
.]

Time [sec.]

AF1_static
AF1_alg

AF2_static
AF2_alg

BE_static
BE_alg

Figure 7. Simple configuration with static guaranteed bandwidth
and with dynamic guaranteed bandwidth

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 20 40 60 80 100 120

B
an

dw
id

th
 [
M

bi
t/s

ec
.]

Time[sec.]

AF1
AF2
BE

Figure 8a. Link-sharing test if all reservation are not satisfied

using configuration hierarchies

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 20 40 60 80 100 120

B
an

dw
id

th
 [
M

bi
t/s

ec
.]

Time[sec.]

AF1
AF2
BE

Figure 8b. Link-sharing test if all reservation are not satisfied

using configuration hierarchies

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 20 40 60 80 100 120

B
an

dw
id

th
[M

bi
t/s

ec
.]

Time[sec.]

AF1
AF2
BE

Figure 8c. Link-sharing test if all reservation are not satisfied

using configuration hierarchies

