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Résumé :  

Class Based Queueing (CBQ) is a link-sharing and resource management mechanism for packet networks. The 
weights of CBQ control the way with which the available bandwidth at the output interface of the router is distributed 
among the different classes of the input traffic. CBQ also disposes of rules for bandwidth borrowing based on a 
hierarchy of classes. In [1], we proposed a dynamic, self-tuning mechanism for allocating resources in Diffserv 
routers called DRAM (Dynamic Resource Allocation Mechanism). The routers in [1] are supposed to implement a 
simple version of CBQ equivalent to Weighted Fair Queuing (WFQ), where the bandwidth borrowing feature of CBQ 
is disabled. DRAM tunes the weights of WFQ so that each class of traffic realizes its needs, and the resources of the 
network are efficiently utilized. The tuning is automatic, self-configurable, easy to deploy and to manage, without 
any additional signaling. In this paper, we study the impact of CBQ mechanisms related to bandwidth borrowing on 
the performance of DRAM. We show that the simultaneous use of  DRAM and CBQ leads to better overall 
performance due to the bandwidth borrowing capabilities of CBQ; Service Level Agreement (SLA) profiles are more 
respected and network resources are better utilized than when DRAM is used with WFQ. The performance 
improvements are validated by a campaign of experiments on a real network testbed. 

MOTS-CLÉS : CBQ, Diffserv, WFQ, Service Level Agreement. 

1. Introduction 

 Service Level Agreements (SLA) between providers and customers define Service Level Specifications (SLS) 
with traffic conditioning specification, monitoring service capabilities, service availability and the fees corresponding to 
each level. The Traffic Conditioning Specification (TCS) defines service level parameters (bandwidth, packet loss, peak 
rate, etc), offered traffic profiles and policies for excess traffic.  
 Various sets of QoS (Quality of Service) mechanisms and policies are tuned using the traffic conditioning 
specification. The heart of the QoS technology is a packet scheduling mechanism, also known as queuing mechanism. 
Sophisticated queuing mechanisms can provide performance bounds of bandwidth, delay, jitter and loss and thus, can 
meet the requirements of real-time services. Queuing mechanisms are also vital to IP services to avoid congestion and 
to provide fairness and protection, which leads to more stable and predictable network behavior. These mechanisms are 
responsible of providing bandwidth guarantee and traffic protection, and of distributing correctly the available 
bandwidth among the classes of services supported by the QoS framework. 
 Internet Service Providers (ISP) guarantee some level of service for their users. Given the SLA of a stream of 
packets, the network has to allocate enough resources so that the service required by that stream is guaranteed. The 
allocation can be done in different ways, depending on the total amount of resources available in the network and the 
number of customers. When the number of the customers approaches a maximum limit, the resources start to be rare 



and the Quality of Service (QoS) required by customers cannot be realized. Thus, some kind of Call Admission Control 
(CAC) [2] has to be implemented by the network, to protect already accepted customers from newly arriving ones. 
 The allocation can be done using many queuing disciplines. Two factors determine whether a packet scheduling (a 
queuing discipline) is able to support QoS in the Internet: its ability to provide bandwidth guarantee and to fulfil the 
delay requirement of the data flows. Providing guarantee for minimum bandwidth when there is a large demand is 
important to ensure that competing data flows do not degrade each other's throughput. Without proper bandwidth 
guarantee, non-responsive transport protocols as UDP finish up by consuming most of the bandwidth, and by shutting 
down responsive transport protocols as TCP.  
 Queuing disciplines are used in the two well known QoS architectures: Integrated Services and Differentiated 
Services. Intserv [3] is an IETF framework for guaranteed services and for controlling the load of traffic along a 
transmission path. This framework is based on the Resource reservation protocol (RSVP). RSVP itself is a signaling 
protocol to set up the traffic control modules of the routers based on SLA parameters. QoS is guaranteed since each 
router along the transmission path holds a resource reservation table able to handle flows. In IntServ, two classes of 
service are defined: guaranteed service and controlled-load service [4]. A flow is a stream of packets belonging to the 
same user/application (the 5-tuple criterion). The tuning of routers in IntServ is done by RSVP. Parameters of the 
packet scheduler in each traffic module are changed in a dynamic manner based on signaling properties of RSVP.  
 Differentiated Services (Diffserv) is an IETF framework for classifying traffic into classes, with different service 
levels for each class [5]. The edge routers in a Diffserv network mark/shape/police flows based on their SLAs and the 
core routers offer packets belonging to these flows different treatments using the marks they carry. Core routers handle 
aggregates of flows instead of individual flows, which is known to considerably reduce the complexity of Diffserv, 
compared to its counterpart IntServ [6], where core routers allocate resources on a per-flow basis. The treatment a core 
router gives to packets from one service class is called PHB (Per Hop Behavior). The PHB classes (or service classes) 
defined in Diffserv are: Best Effort (BE), Assured Forwarding (AF) and Expedited Forwarding (EF). EF packets are 
queued in separate buffer and are served before packets of the other classes. Packets of the different AF classes are 
queued in separate buffers and are served using a packet scheduler mechanism (e.g., CBQ, WFQ, WRR, CBWRR, etc.). 
 We focus in [1] on the tuning of core routers in a DiffServ network. Routers are supposed to implement a simple 
version of CBQ equivalent to Weighted Fair Queuing (WFQ), where the bandwidth borrowing feature of CBQ is 
disabled. The purpose of [1] is to dynamically tune the weights of WFQ, which are actually set in a static way by 
manual work based on a trial-and-error process. To this end, a dynamic, self-tuning mechanism is proposed. We call 
this mechanism DRAM (Dynamic Resource Allocation Mechanism). The weights of WFQ control the way with which 
the available bandwidth at the output interface of the core router is distributed among DiffServ classes. For simplicity 
reasons, only two AF classes are considered, in addition to the classical BE class. DRAM ensures that AF and BE 
classes are protected from each other, and that the excess of bandwidth, which is not allocated to high priority traffic is 
fairly shared among the different classes. 
 In this paper, we study the impact of CBQ mechanisms related to bandwidth borrowing on the performance of 
DRAM. We show that the simultaneous use of DRAM and CBQ leads to better overall performance due to the 
bandwidth borrowing capabilities of CBQ; SLA profiles are more respected and network resources are better utilized 
than when DRAM is used with WFQ. The improvement in performance when DRAM and CBQ are combined together 
is validated by a campaign of experiments on a real network testbed. 
 The remainder of this paper is organized as follows.  A short presentation of CBQ is given in Section 2. Section 3 
reminds the behavior of the Dynamic Resource Allocation Mechanism described in [1]. Section 4 details on the aim of 
this paper. Section 5 and Section 6 study the interaction between CBQ and DRAM based on the scenarios proposed in 
[1] and illustrate the gain in overall performance. Section 7 concludes the paper.   

2. Class Based Queuing - CBQ 

 CBQ was proposed and studied in [7]. It is a packet-scheduling algorithm that supports hierarchical link sharing 
and preserves bandwidth guaranteed. CBQ presents a solution for unified scheduling for link-sharing and real-time 
purposes. It isolates real-time and best-effort traffic by allowing the separation of traffic in different traffic classes that 
are then treated according to their requirements, e.g. by giving priority to real-time traffic.  
 Link-sharing allows multiple organizations or multiple protocols to share the link bandwidth and to distribute 
available bandwidth according to the class tree structure. Each class has its own queue and is assigned its share of 
bandwidth. A child class can borrow bandwidth from its parent class as long as the available bandwidth is disposable. 
Although CBQ has the concept of using a general scheduler, which is used in the absence of congestion, and a link-
sharing scheduler for rate-limiting classes, most implementations implement both mechanisms in a single scheduler.  



 CBQ works as follows: The classifier assigns arriving packets to the appropriate class. The estimator estimates the 
bandwidth recently used by a class. This is done by calculating an exponentially weighted moving average over the 
discrepancy between the actual inter-departure time of two packets of a class to the inter-departure time corresponding 
to the specified rate of the class. If a class has exceeded its predefined limit, the estimator marks the class as overlimit. 
The scheduler determines the next packet to be sent from the various classes based on priorities and states of the classes. 
CBQ has been implemented in Linux RedHat 7.2 using the algorithm skeleton from NS simulator. The original CBQ 
implementation is the classical WRR (Weighted Round Robin) but in Linux is DRR (Deficit Round Robing). The Top-
Level link-sharing algorithm employs heuristics to control how far the scheduler needs to traverse the class tree. 
Implementation of this algorithm is complicated so CBQ Linux simplified implementation uses DRR independently of 
the borrow level form. This leads to sharing policies: when class A has higher priority than B, both are borrowing from 
C then A gets as much as it can and the remainder is served to B (but B still gets its own rate). If B has the same priority 
as A then borrowed bandwidth would be divided between A and B in the same proportion as their own base rates are. 

3. Dynamic Resource Allocation Mechanism - DRAM 

 The tuning of core routers in a Diffserv network is actually done in a static way by manual work based on a trial-
and-error process. A static tuning is time-consuming and costly for network manager. A static tuning may lead to an 
inefficient utilization of network resources and unfairness among the Diffserv classes. A dynamic tuning of core routers 
is needed to satisfy as much as possible all reservations of customers, and to fairly distribute the excess of bandwidth. 
To realize such objective, we proposed DRAM in [1] and we validate its performance with real experiments. 
 DRAM makes the following two assumptions. First, the network is over-provisioned, i.e. there are enough 
resources in the core of the network to support the high priority traffic marked at the edge. Second, the resources of the 
network may not be enough to support the total amount of traffic coming from the edge, i.e. the high priority plus the 
low priority. The decision on whether to accept a new SLA is done at the edge of the network, and core routers 
dynamically tune their parameters so as to absorb the marked traffic and to use efficiently the network resources. 
 We consider in [1] the allocation of bandwidth based on the average rate of high priority traffic of each DiffServ 
class. The interval over which the data rate is averaged is an important parameter of our mechanism. It must not be too 
small, since the system may become unstable, especially when we have a transport protocol like TCP, which adapts its 
rate as a function of the reaction of the network. A small averaging interval also results in high computational overhead. 
For simplicity of the analysis, the model we studied in [1] omits the EF service and focuses on AF and BE classes of 
services.  We consider two-drop precedence per AF class. At the edge of the network, compliant packets of AF are 
marked with high priority (called IN packets), and non-compliant packets are injected into the network with low priority 
(called OUT packets). IN and OUT packets are buffered in the same queue in core routers, but are dropped differently 
at the onset congestion. The idea is to start dropping OUT packets while protecting IN packets. When all OUT packets 
are dropped and the congestion persists, IN packets start to be discarded. The mechanism proposed in [8] to support 
such a preferential dropping is called RIO (RED IN/OUT). 
 In summary, DRAM measures the rate of IN packets, and sets the weights of the CBQ buffer so as to absorb all IN 
packets and to distribute fairly the rest of the bandwidth (called excess) among OUT and BE packets. The excess 
bandwidth distribution rule forms important part of the mechanism. Here are two examples that have been studied: fair 

division - the excess bandwidth is distributed among classes using equal weights, weighted division - the excess 
bandwidth is distributed among classes using a priori weights. Note that the CBQ version used in [1] disables 
bandwidth borrowing. When one class transmits at less than its allocated rate, the remaining rate is distributed among 
the other classes proportionally to their allocated rates, without any control from the network manager. 

4. CBQ as a basic component of DRAM 

 One of the components of a Dynamic Resource Allocation Mechanism is the packet-scheduling algorithm. With 
packet scheduling algorithm we control the interactions among traffic streams, different performance-oriented traffic 
classes and different administrative traffic classes. The interactions among traffic streams define rules to share the 
bandwidth of one output link. The traffic classes can share the total bandwidth using sharing rules combined with 
priority. The administrative rules are provided using a hierarchy of traffic classes. The first set of interactions can be 
controlled with weight parameter. The second one depends on the traffic design rules. Different types of traffic can 



share each one another the bandwidth in function of their requirements. The optimum solution is each class of streams 
to receive the minimum requirements in order to assure a good behavior of the total bandwidth traffic. 
 Class Based Queuing (CBQ) is a packet scheduler that is able to preserve the bandwidth allocated to the classes 
and to support hierarchical link sharing. However, it does not scale well with the number of data flows as it incurs 
additional delay with each new data flow admitted. Due to this additional delay, the admission control cannot predict 
the delay experienced by the existing flows after admitting a new flow. Although CBQ is able to provide lower delay to 
higher priority flows, it also introduces jitter to the traffic owning to its packet-scheduling artifact. As such, CBQ is not 
suitable for fine-grained scheduling of real-time traffic. It is more suited for providing bandwidth guarantee to 
aggregated data flows.  
 We consider that using DRAM with CBQ enhances link sharing and resource allocation management. Our 
Dynamic Resource Allocation Mechanism does not replace CBQ. It ensures that SLAs are respected and allows at the 
same time an efficient utilization of network resources. As we said in Section 1, our assumption is that a customer is 
satisfied if its IN packets get through the network without being dropped. We also assume that it is in the interest of 
customers and operator that the excess bandwidth in the network is fairly distributed among the classes: AF1, AF2 and 
BE. There are two levels of bandwidth distribution. The first one is defined by the link-sharing algorithm of CBQ and 
the second one is set by the network administrator. Given the variability of the traffic and the change of SLAs, it is very 
likely that a static tuning of core routers implementing CBQ does not realize the above objectives. The problem that can 
be caused by a static tuning of weights at the output interface of a CBQ core router, can be summarized as: bias against 
the IN packets of one or more AF traffic classes and unfairness in the distribution of the excess bandwidth. DRAM 
solves the problems caused by a static tuning of CBQ weights, and CBQ enhances DRAM with its mechanisms (class 
hierarchy and priority) for bandwidth sharing and borrowing. 
 In Section 5, we study the problems caused by a static tuning of the CBQ core router using two hierarchies of 
classes: a flat level hierarchy and a multilevel hierarchy of classes. In Section 6, we introduce DRAM and we check if 
the link-sharing hierarchy of the classes mechanism of CBQ affects the performance of DRAM or not.   

5. Studied CBQ class hierarchies 

 This section shows the behavior of CBQ using the two static bandwidth link-sharing configurations shown in 
Figure 1. We study the two configurations and the influence of the linux "bounded" parameter. The network 
configuration used is described in [1]. The 6Mbits/s link bandwidth is allocated to DiffServ classes like in Figure 1. The 
number of classes, the hierarchy of classes, and the efficiency of the packet filtering process affect the latency and the 
performance achieved by each class of traffic. In our case, the number of classes (of services) used is three: AF1, AF2 
and BE. 
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Figure 1. Two configurations of CBQ classes 
 
Static tests help to discover the behavior of the CBQ implementation. The following tests verify the link sharing of the 
Linux CBQ implementation for a congested link by means of latency and throughput. The data source for class AF1 is a 



UDP flow that sends 1470 bytes packets. The data source for class AF2 is a long-lived TCP flow. The data source for 
class BE is a UDP flow that sends 1470 bytes packets. 
 The first sharing test uses the simple configuration of CBQ from Figure 1a. The link bandwidth (C = 6Mbit/s) is 
shared by the three classes following the Top-Level link sharing rule described in [7]. Each class of traffic is allocated 
1/3 of the link bandwidth. The root class 1:0 is used by dsmark classifier and is linked to the class 2:0. Class 2:0 
represents the root class for CBQ configuration. Class 2:0 has three children classes AF1, AF2 and BE.  
 The test scenario is the following. First, all three data sources send at a rate 4Mbit/s. Each class rate of CBQ 
scheduler is provisioned to 2Mbit/s. Then, the source BE successively diminishes its rate to 2Mbit/s, 1Mbit/s, 
600Kbit/s, 500Kbit/s and 100Kbit/s. 

RAF1[Mbit/s] RAF2[Mbit/s] RBE[Mbit/s]
2.1 2.0 1.9
2.3 2.0 1.0
2.4 2.2 0.6
2.5 2.0 0.5
3.4 2.1 0.1  

Table 1. Test scenario for simple configuration of CBQ 

RAF1[Mbit/s] RAF2[Mbit/s] RBE[Mbit/s]
2.1 2.0 1.9
2.6 2.1 1.0
2.7 2.3 0.6
2.6 2.1 0.5
2.3 2.1 0.1  

Table 2. Test scenario for simple configuration of CBQ 
using "bounded" parameter 

 
 Table 1 shows the behavior of link sharing between AF1, AF2 and BE classes for the class hierarchy of Figure 1a. 
Class AF1 being allocated the highest priority borrows the unused bandwidth of class BE. Class AF2 gets its allocated 
rate 2.0Mbit/s. We measure the delay through the AF1 class. The value of delay decreases when AF1 gets more 
bandwidth (i.e. from 0.856ms to 0.653ms). 
 The same test is resumed but this time using the "bounded" parameter of CBQ. The "bounded" parameter blocks 
the borrowing of bandwidth by a class from its parent class (i.e. it bounds the rate obtained by a class to its allocated 
rate). Table 2 shows the bandwidth allocation error where we see that classes AF1 and AF2 are still trying to borrow 
bandwidth from the BE class. Class AF1 has increased its rate from 2Mbit/s to the values indicated in the table. It is 
very hard to implement precisely the bandwidth borrowing mechanism of CBQ. We measure in this case the delay of 
AF1 packets. The value of the delay is approximately constant (i.e. 0.858ms). 
  The second sharing test uses the hierarchical configuration of CBQ from Figure 1b. The rates of sources and the 
types of traffic are the same as above. The total link bandwidth is shared by two classes with the same priority: AF and 
BE. As such, the root class 2:0 has two children AF and BE. AF class has two children AF1 and AF2. The root class 1:0 
is used by dsmark classifier and is linked to the class 2:0. AF class is configured to share 2/3 of the total bandwidth 
(C=6Mbit/s) and class BE shares 1/3 of the link bandwidth. Each child of AF class shares 1/2 of class AF bandwidth. 
AF1 class has higher priority than AF2 class. 
 

RAF1[Mbit/s] RAF2[Mbit/s] RBE[Mbit/s]
2.2 1.9 1.9
2.6 1.9 1.0
2.9 2.0 0.6
3.0 2.4 0.5
3.4 2.5 0.1  

Table 3. Test scenario for hierarchical configuration of 
CBQ 

RAF1[Mbit/s] RAF2[Mbit/s] RBE[Mbit/s]
2.1 2.0 1.9
2.3 2.1 1.0
2.4 2.3 0.6
2.6 2.1 0.5
2.7 2.2 0.1  

Table 4. Test scenario for hierarchical configuration of 
CBQ using "bounded" parameter 

 
 Table 3 shows the behavior of the sharing bandwidth between classes and the case when the parameter "bounded" 
is not used. The data source BE decreases its rate and sets it to the values shown in the table. Clearly, class AF1 
borrows most of the unused bandwidth of BE class since it has higher priority compared to AF2. 
 Table 4 shows the bandwidth allocation error when the parameter "bounded" is set to all classes of the hierarchical 
configuration of Figure 1b. Again, the AF classes are still borrowing bandwidth from the BE class even though there 
rates are bounded to their allocated rates. 
 The delay measured for AF1 class in the test scenario for hierarchical configuration without "bounded" parameter 
decreases when the AF1 class gets more bandwidth. This test has shown that CBQ is able to increase the quality of 
services for the classes with priority and it is able to control the transmission rate at the network interface. 
 The test scenario using hierarchical configuration and "bounded" parameter has shown that the delay on class AF1 
has no constant values like in the test scenario with simple configuration of CBQ using "bounded" parameter.  



6. Examples to compare link-sharing schemes 

 The goal of this section is to compare the link-sharing configurations from Figure 1 using the Dynamic Resource 
Allocation Mechanism presented in Section 3. This section proves that the behavior of our mechanism does not affect 
the bandwidth link sharing of CBQ. Moreover, the bandwidth link sharing of CBQ is improved when using DRAM 
since DRAM tunes the weights of CBQ as a function of the incoming traffic. 

6.1. Link-sharing test if one reservation is not satisfied and one is satisfied 

 The network test configuration is illustrated and described in Figure 2. The hierarchy of classes defined at the 
output interface of the core router is illustrated in Figure 1. Consider the scenario where AF1 class generates a total rate 
of 4.5Mbit/s and AF2 class generates a total rate of 0.5Mbit/s. The rate of data carried by IN packets of class AF1 is 
equal to RAF1.1=2.5Mbit/s. All packets of class AF2 are marked as IN, RAF2.1=0.5Mbit/s. In the static tuning case, the 
buffer is supposed to distribute the bandwidth C = 6Mbit/s equally among the three classes. The BE traffic rate is set to 
3Mbit/s (Figure 2). 
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Figure 2. Test-bed network for link-sharing abilities if one reservation is not satisfied and one is satisfied. CR - core 
router; HR - host receiver; HG - host generator.  

 
 In this scenario, class AF2 is satisfied since all its IN packets get through the network. However, class AF1 is not 
satisfied, since the CBQ buffer limits its rate to 2Mbit/s, whereas it is sending IN packets at a higher rate of 2.5Mbit/s.. 
The total rate of IN packets generated by the two classes is less than C, therefore it is possible to find another tuning 
that allows all IN packets to get through, and corrects the bias against class AF1. When running our mechanism, the rate 
allocated to AF1 increases to more than RAF1.1 and the rate allocated to AF2 is kept larger than RAF2.1. 
 Figure 5 shows two cases. One is when the parameter "bounded" is not included in the simple configuration 
hierarchy. Because the traffic of AF2 is low and marked IN profile, the rest of the bandwidth is borrowed by the AF1 
and BE classes. The second case is when we set the parameter "bounded" to block the sharing algorithm. In both cases, 
AF1 has the highest priority. We observe that the two AF classes always realize their desired rate. The BE service gets 
the smallest amount of bandwidth, since it has zero guarantee. But, the throughput of AF1 is different for the two 
presented cases. When the “bounded” parameter is off, the link-sharing algorithm of CBQ gives the bandwidth unused 
by AF2 to the AF1 class since the AF1 class has the highest priority. The "fair division" rule of the excess bandwidth is 
not strictly enforced when using the link-sharing algorithm with the “bounded” parameter set to off. If the "bounded" 
parameter is on, the excess bandwidth is shared using the "fair division" rule and is more controlled. 
 The same cases are presented in Figure 6 using the hierarchical configuration of CBQ. AF class has the 2/3 from 
the link bandwidth and the BE class 1/3. Inside the class AF, the weight of each sub-classes is 1/2. AF1 class has the 
highest priority and the AF2 class the lowest. AF and BE classes have the same priority. 
 Using this hierarchy we observe from Figure 6 (in the case without bounding) that the traffic of BE is more 
"nervous" because the Linux kernel is not a real-time kernel, hence it does not schedule its processes with different 
levels of priorities. It does not make sense for a process that transmits 2 Mbit/s to be given the same CPU time as the 
one that transmits only 200Kbit/s. We can observe this problem when we are using a complex hierarchy of traffic 
streams. In our case we use two levels of hierarchy, the first one with no priorities and the second one with priorities. 
This problem represents a lack of CBQ Linux implementation. 
 Figure 7 shows another case where we test the link-sharing behavior using CBQ for dynamic guaranteed 
bandwidth and for static guaranteed bandwidth. AF1 has UDP flows and AF2 and BE have long-lived TCP flows. The 
AF2 class of service has low traffic, less than guaranteed. In the static case, all classes are guaranteed 2Mbit/s. Link-
sharing algorithm reacts giving the excess bandwidth from class AF2 to classes AF1 and BE. Having the same priority 



to all classes, the excess bandwidth is divided in same proportion. The BE service gets approximately the same amount 
of bandwidth like AF1 class. 
 The case when we use DRAM, the bandwidth guaranteed by the network to AF1 is set to 3Mbit/s, instead of 
2Mbit/s as before (this follows the change in the contract according to a new agreement between customer and ISP). We 
use the "fairly division" rule. In this case, BE service gets the smallest amount of bandwidth, since it has zero guarantee.  

6.2. Link-sharing test if all reservations are not satisfied 

 This case we consider when all reservations are not satisfied, due to an appropriate static tuning of CBQ weights. 
The total rate of IN packets generated by the AF1 and AF2 classes is less than C and the total traffic is more than C 
(capacity of link). If CBQ limits the maximum rate of each class to 2Mbit/s, both classes AF1 and AF2 will not be 
satisfied since some of their IN packets will be dropped. On contrary, clients of BE class are favored, since they obtain 
more than their fair share of the excess bandwidth. 
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Figure 4. Test-bed network for link-sharing ability if all reservation are not satisfied. CR - core router; HR - host 
receiver; HG - host generator;  
 
 Figure 8a shows the static case of CBQ using link-sharing algorithm. We measure each class at the output 
interface of the core router. In this test we use simple configuration hierarchy. All the classes have the same priority. 
The network configuration used to conduct the test is presented in Figure 6. The implementation schema is described in 
[1]. 
 As we observe from Figure 8a, CBQ can maintain the bandwidth of several concurrent data flows. Figure 8b 
shows the case when we use DRAM with flat hierarchy configuration. This proves that our algorithm changes the 
weights of the CBQ in order to satisfy the guaranteed bandwidth (represented by the IN packets) and to distribute the 
excess bandwidth using "fair division" rule. We can observe that in this case, the link-sharing algorithm has the same 
behavior like the rule used in our algorithm. Figure 8c shows the case when we use DRAM with the hierarchy 
configuration from Figure 1. We observe low values of AF1 and AF2 classes when are using the hierarchy 
configuration compared with flat configuration. We measure the delay in both cases for AF1 class. For the flat 
hierarchy, the delay is 0.832 ms and for the hierarchy configuration the delay is 0.893 ms (average values). 

7. Conclusions 

 CBQ Linux implementation can influence the behavior of our algorithm. Flat hierarchy configuration has less 
delay of packets for AF1, AF2 classes than hierarchy configuration. More nodes in hierarchy link-sharing structure 
introduce delay and jitter. Another observation is that our algorithm using hierarchic configuration has a non-
predictable behavior. The excess sharing bandwidth rule is not exactly respected in the case of hierarchic configuration. 
The tuning process is heavy with hierarchic configuration than the flat hierarchic configuration. The "bounded" 
parameter introduces delay but gives more control of the DRAM behavior. It blocks the excess link-sharing algorithm. 
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Figure 5. The behavior of  DRAM with bounding (case2) and 

without bounding AF1 class (case1) using simple configuration 
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Figure 6. The behavior of DRAM bounding (case4) and without 

bounding AF1 class (case3) using hierarchical configuration 

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 20 40 60 80 100 120

B
an

dw
id

th
 [
M

bi
t/s

ec
.]

Time [sec.]

AF1_static
AF1_alg

AF2_static
AF2_alg

BE_static
BE_alg

 
Figure 7. Simple configuration with static guaranteed bandwidth 
and with dynamic guaranteed bandwidth 
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Figure 8a. Link-sharing test if all reservation are not satisfied 

using configuration hierarchies 
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Figure 8b. Link-sharing test if all reservation are not satisfied 

using configuration hierarchies 
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Figure 8c. Link-sharing test if all reservation are not satisfied 

using configuration hierarchies 

 


