
On ACK Filtering on a Slow Reverse Channel ?

Chadi Barakat and Eitan Altman
INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France

{cbarakat,altman}@sophia.inria.fr

Abstract. ACK filtering has been proposed as a technique to alleviate
the congestion on the reverse path of a TCP connection. In the literature
the case of a one-ACK per connection at a time in the buffer at the input
of a slow channel has been studied. In this paper we show that this is
too aggressive for short transfers. We study first static filtering where
a certain ACK queue length is allowed. We show analytically how this
length needs to be chosen. We present then some algorithms that adapt
the filtering of ACKs as a function of the slow channel utilization rather
than the ACK queue length.

1 Introduction
Accessing the Internet via asymmetric paths is becoming common with the intro-
duction of satellite and cable networks. Users download data from the Internet
via a high speed link (e.g., a satellite link at 2 Mbps) and send requests and
acknowledgements (ACK) via a slow reverse channel (e.g., a dial-up modem line
at 64 kbps). Figure 1 shows an example of such asymmetric path. It has been
shown [1, 3, 5, 8, 13] that the slowness of the reverse channel limits the through-
put of TCP transfers [10, 15] running in the forward direction. A queue of ACKs
builds up in the buffer at the input of the reverse channel (we call it the reverse
buffer) causing an increase in the round trip time (RTT) and an overflow of the
buffer (i.e., loss of ACKs). This results in a performance deterioration for many
reasons. First, an increase in RTT reduces the throughput since the transmission
rate of a TCP connection is equal at any moment to the window size divided by
RTT. Second, the increase in RTT as well as the loss of ACKs slows the win-
dow increase. Third, the loss of ACKs results in gaps in the ACK clock which
leads to burstiness at the source. Fourth, the loss of ACKs reduces the capacity
of TCP (especially Reno) to recover from losses without timeout [9]. Another
problem has been also reported in case of multiple connections contending for
the reverse channel. This is the problem of deadlock of a new connection sharing
the reverse channel with already running connections [13]. Due to the overflow
of the reverse buffer, the new connection suffers from the loss of its first ACKs
which prohibits it from increasing its window. This deadlock continues until the
dominant connections reduce their rates. We can see this latter problem as a re-
sult of an unfairness in the distribution of the slow channel bandwidth between
the different flows. The main reason for such unfairness is that a flow of ACKs
is not responsive to drops as a TCP data flow.
? A detailed version of this paper is available as an INRIA Research Report at

http://www.inria.fr/RRRT/RR-3908.html

Destination

B A

Slow Reverse Link

High-Speed
Forward Link

Source

Fig. 1. An asymmetric path

Many solutions have been proposed for this problem of bandwidth asymme-
try. Except the header compression solution (e.g., the SLIP algorithm in [11])
which proposes to reduce the size of ACKs in order to increase the rate of the
reverse channel in terms of ACKs per unit of time, the other solutions try to
match the rate of ACKs to the rate of the reverse channel. The match can be
done by either delaying ACKs at the destination [3, 8], or filtering them in the
reverse buffer [1, 3]. Adaptive delaying of ACKs at the destination, called also
ACK congestion control [3], requires the implementation of new mechanisms at
the receiver together with some feedback from the network. The idea is to adapt
the generation rate of ACKs as a function of the reverse buffer occupancy. ACK
filtering however requires only modification at the reverse buffer. It profits from
the cumulative nature of ACKs. An ACK can be safely substituted by a sub-
sequent ACK carrying a larger sequence number. From ACK content point of
view, there is no need for queueing ACKs in the reverse buffer. Thus, when an
ACK arrives at the reverse channel, the reverse buffer is scanned for the ACKs
from the same connection and some (or all) of these ACKs are erased. The buffer
occupancy is then maintained at low levels.

In this paper we ask the question of how many ACKs from a connection
we must queue in the reverse buffer before we start filtering. In the literature
the case of a one ACK per-connection at a time has been studied [1, 3]. When
an ACK arrives and before being queued, the reverse buffer erases any ACK
from the same connection. Clearly, this behavior optimizes the end-to-end delay
and the queue length, but it ignores the fact that TCP uses ACKs to increase
its window. This may not have an impact on the congestion avoidance phase.
However, it has certainly an impact on slow start where the window is small
and needs to be increased as quick as possible to achieve good performance. The
impact on slow start comes from the fact that TCP is known to be bursty during
this phase [2, 4, 12], and thus ACKs arrive in bursts at the reverse buffer. ACKs
may also arrive in bursts due to some compression of data packets or ACKs
in the network. Filtering bursts of ACKs will result in few ACKs reaching the
source and then in a slow window increase. This negative impact of ACK filtering
will be important on short transfers which dominate most of today’s Internet
traffic [6] and where most of the transfer is done during slow start. In particular,
it will be pronounced over long delay links (e.g., satellite links) where slow start

is already slow enough [5]. Authorizing some number of ACKs from a connection
to be queued in the buffer before the start of filtering will have the advantage
of absorbing these bursts of ACKs which will result in faster window increase.
However, this threshold must be kept at a small value in order to limit the end-
to-end delay. A certain tradeoff then appears; one must predict an improvement
in the performance as the threshold increases, followed by a deterioration in the
performance when it becomes large (see Figure 6 for an example).

We study first the case when the ACK filtering threshold (the number of
ACKs that a connection can queue) is set to a fixed value. We show analytically
how this threshold must be chosen. We present then our algorithm, we call
Delayed ACK Filtering, that adapts the filtering of ACKs as a function of the
slow channel utilization rather than the ACK queue length. This is equivalent
to a dynamic setting of the ACK filtering threshold. The objective is to pass as
many ACKs as possible to the source while maintaining the end-to-end delay at
small values. In case of many connections, our algorithm adapts the filtering in a
way to share fairly the slow channel bandwidth between the different connections.

2 Impact of ACK Filtering Threshold

We focus on short transfers which are considerably affected by the slow start
phase. We consider first the case of a single transfer. The burstiness of ACKs
caused by slow start itself is considered. Our objective is to show that delaying
the filtering until a certain number of ACKs get queued, shortens the slow start
phase and improves the performance if this threshold is correctly set. We assume
in the sequel that router buffers in the forward direction are large enough so that
they absorb the burstiness of traffic resulting from the filtering of ACKs. We
don’t address later the problem of burstiness of traffic in the forward direction
since our algorithms reduce this burstiness compared to the classical one-ACK
at a time filtering strategy.

2.1 TCP and Network Model

Let µr be the bandwidth available on the reverse path and let T be the constant
component of RTT (in absence of queueing delay). µr is measured in terms of
ACKs per unit of time. Assume that RTT increases only when ACKs are queued
in the reverse buffer. This happens when the reverse channel is fully utilized,
which in turn happens when the number of ACKs arriving at the reverse buffer
per T is more than µrT . In the case of no queueing in the reverse buffer, RTT is
taken equal to T . This assumption holds given the considerable slowness of the
reverse channel with respect to the other links on the path.

Assume for the moment that the reverse buffer is large and that ACKs are
not filtered. The window at the sender grows then exponentially with a rate
function of the frequency at which the receiver acknowledges packets. Recall
that we are working in the slow start mode where the window is increased by
one packet upon every ACK arrival [10]. Suppose that the receiver acknowledges
every d packets, thus the window increases by a factor α = 1 + 1/d every RTT.
Note that most of TCP implementations acknowledge every other data packet

t t + RTT t + 2RTT t + 3RTT

W(n+1)/d ACKs W(n+2)/d ACKsW(n)/d ACKs

Time t : Start of service of the W(n)/d ACKs at the entry of the slow reverse channel

Fig. 2. Bursts of ACKs as they cross the
reverse channel

δR
ev

er
se

 b
uf

fe
r

co
nt

en
t T

δ δN(n)

N(n+1) N(n+2)

N(n+1)

Time ()1/µr

Fig. 3. Reverse buffer occupancy as a
function of time

(d = 2) [15]. Denote by W (n) the congestion window size at the end of the nth
RTT. It follows that, W (n + 1) = (d + 1)W (n)/d = αW (n). For W (0) = 1, this
gives W (n) = αn which shows well the exponential increase.

Once the reverse channel is fully utilized, ACKs start to arrive at the source
at a constant rate µr. Here, the window together with RTT start to increase
linearly with time. The transmission rate, which is equal to the window size
divided by RTT, stops increasing and becomes limited by the reverse channel.
This continues until ACKs start to be filtered or dropped. RTT stops then
increasing and the transmission rate resumes its increase with the window size
(see Figure 5). The first remark we can make here is that the ACK queue length
needs to be maintained at small values in order to get a small RTT and a
better performance. An aggressive filtering (say one ACK per-connection) is
then needed. But, due to the fast window increase during slow start, ACKs may
arrive at the reverse buffer in separate bursts during which the rate is higher
than µr, without having an average rate higher than µr (see [4] for a description
of slow start burstiness). An aggressive filtering will reduce the number of ACKs
reaching the source whereas these bursts can be absorbed without causing any
increase in RTT. Such absorption will result in a faster window increase. Given
that RTT remains constant whenever the reverse channel is not fully utilized, a
faster window increase results in a faster transmission rate increase and thus in a
better performance. The general guideline for ACK filtering is to accept all ACKs
until the slow channel becomes fully utilized, and then to filter them in order to
limit the RTT. We consider first the case when a connection is allowed to queue a
certain number of ACKs in the reverse buffer. This number, which we denote by δ
and which we call the ACK filtering threshold, is maintained constant during the
connection lifetime. We study the impact of δ on the performance and we show
how it must be chosen. Later, we present algorithms that adapt ACK filtering as
a function of the slow channel utilization. This permits a simpler implementation
together with a better performance than fixing a certain number of ACKs.

2.2 ACK Filtering Threshold

During slow start, TCP is known to transmit packets in long bursts [4]. A burst
of W (n) packets is transmitted at the beginning of round trip n. It causes the
generation of W (n)/d ACKs which reach the source at the end of the RTT

(Figure 2). Given that the reverse channel is the bottleneck and due to the
window increase at the source, bursts of ACKs can be assumed to have a rate
µr at the output of the reverse channel and a rate αµr at its input. During the
receipt of a long burst of ACKs, a queue builds up in the reverse buffer at a rate
(α− 1)µr. A long burst of X ACKs at a rate αµr causes the building of a queue
of length X/(d + 1) ACKs. The full utilization of the reverse channel requires
the receipt of a long burst of ACKs of length µrT and then the absorption of
a queue of length µrT/(d + 1). This is the value of δo, the optimum filtering
threshold, the buffer must use:

δo = µrT/(d + 1) (1)

2.3 Early ACK Filtering
We consider now the case when δ < δo. When an ACK finds δ ACKs in the
buffer, the most recently received ACK is erased and the new ACK is queued at
its place. We call this a static filtering strategy since δ is not changed during the
connection lifetime. Let us study the impact of δ on the window increase rate.

Starting from W (0) = 1, the window increases exponentially until round
trip n0 where ACKs start to be filtered. This happens when the ACK queue
length reaches δ which in turn happens when the reverse buffer receives a long
burst of length δ(d + 1) ACKs at a rate αµr. Given that the length of the long
burst of ACKs received during round trip n0 is equal to W (n0)/d, we write
W (n0) = αn0 = δd(d + 1).

After round trip n0, ACKs start to be filtered and the window increase slows.
To show the impact of δ on the window increase, we define the following variables:
Consider n > n0 and put ourselves in the region where the slow channel is not
fully utilized. We know that the maximum window increase rate (µr packets per
unit of time) is achieved when the reverse channel is fully utilized, and the best
performance is obtained when we reach the full utilization as soon as possible.
Let N(n) denote the number of ACKs that leave the slow channel during round
trip n. Given that we are in slow start, we have W (n + 1) = W (n) + N(n).

The burst of data packets of length W (n + 1) generates W (n + 1)/d ACKs
at the destination which reach the reverse buffer at a rate faster than µr. The
duration of this burst of ACKs is equal to the duration of the burst N(n) at the
output of the slow channel in the previous round trip. Recall that we are working
in a case where the bandwidth available in the forward direction is very large
compared to the rate of the slow reverse channel so that many packets can be
transmitted at the source between the receipt of two ACKs. During the receipt
of the W (n+1)/d ACKs, a queue of δ ACKs is formed in the reverse buffer and
the slow channel transmits N(n) ACKs. The ACKs stored in the reverse buffer
whose number is equal to δ are then sent. Thus, N(n + 1) = N(n) + δ. Figure 3
shows the occupancy of the reverse buffer as a function of time after the start
of ACK filtering and before the full utilization of the slow reverse channel. We
can write for n > n0,

N(n) = N(n− 1) + δ = N(n0) + (n− n0)δ
= W (n0)/d + (n− n0)δ = δ(d + 1 + n− n0)

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6

T
C

P
 W

in
do

w
 S

iz
e

(p
ac

ke
ts

)

Time (s)

delta = 1
delta = 3
delta = 30
delta = 500
delta = 1000

Fig. 4. TCP window vs. time

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6

In
st

an
ta

ne
ou

s
T

C
P

 T
hr

ou
gh

pu
t (

K
bp

s)

Time (s)

delta = 1
delta = 3
delta = 30
delta = 500
delta = 1000

Fig. 5. Transmission rate vs. time

W (n) = W (n− 1) + N(n− 1) = W (n0) +
n−1∑

k=n0

N(k)

= δ[d(d + 1) + (n− n0)(d + 1) + (n− n0)(n− n0 − 1)/2]

We remark that due to the small value of δ, the window increase changes from
exponential to polynomial and it slows with δ. The source spends more time
before reaching the maximum window increase rate of µr packets per unit of
time.

2.4 Simulation

Consider a simulation scenario where a TCP Reno source transmits packets of
size 1000 Bytes over a forward link of 10 Mbps to a destination that acknowledges
every data packet (d = 1). The forward buffer, the receiver window, as well as
the slow start threshold at the beginning of the connection, are set to high
values. ACKs cross a slow channel of 100 kbps back to the destination. T is set
to 200 ms. We use the ns simulator [14] and we monitor the packets sent during
the slow start phase at the beginning of the connection. We implement an ACK
filtering strategy that limits the number of ACKs in the reverse buffer to δ, and
we compare the performance for different values of δ. The reverse buffer itself
is set to a large value. We provide three figures where we plot as a function of
time, the window size (Figure 4), the transmission rate (Figure 5), and the last
acknowledged sequence number (Figure 6). The transmission rate is averaged
over intervals of 200 ms.

For such scenario the calculation gives a δo equal to 30 ACKs (Equation (1)).
A δ less than δo slows the window growth. We see this for δ = 1 and δ = 3 in
Figure 4. The other values of δ give the same window increase given that the
filtering starts after the full utilization of the reverse channel, and thus the
maximum window increase rate is reached at the same time. But, the window
curve is not sufficient to study the performance since the same window may mean
different performance if RTT is not the same. We must also look at the plot of
the transmission rate (Figure 5). For small δ, RTT can be considered as always
constant and the curves for the transmission rate and for the window have the

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

0 1 2 3 4 5 6

D
at

a
B

yt
e

S
eq

ue
nc

e
N

um
be

r

Time (s)

delta = 1
delta = 3
delta = 30
delta = 500
delta = 1000

Fig. 6. Last acknowledged sequence num-
ber vs. time

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0 1 2 3 4 5 6

D
at

a
B

yt
e

S
eq

ue
nc

e
N

um
be

r

Time (s)

delta = 1
delta = 30
delta = 1000
Delayed Filtering

Fig. 7. Last acknowledged sequence num-
ber vs. time

same form. However, the transmission rate saturates when it reaches the available
bandwidth in the forward direction (at 1000 kbps). It also saturates somewhere
in the middle (e.g., at 3s for δ = 1). This latter saturation corresponds to the time
between the full utilization of the reverse channel and the convergence of RTT to
its limit (T +δ/µr) when δ ACKs start to be always present in the reverse buffer.
During the convergence, the transmission rate remains constant due to a linear
increase of both the window and RTT. Once the RTT stabilizes, the transmission
rate resumes its increase with the window. Note that the stabilization of RTT
takes a long time for large δ (around 5s for δ = 500). Now, Figure 6 is an
indication of the overall performance. We see well how taking δ = δo leads to
the best performance since it gives a good compromise between delaying the
filtering to improve the window increase and bringing it forward to reduce the
RTT. While increasing δ, the overall performance improves until δ = δo then
worsens. This conclusion may not be valid for long transfers where slow start
has a slight impact on the overall performance.

3 Delayed Filtering : Case of a Single Connection

Tracking the queue length for filtering is not a guarantee for good performance.
First, in reality and due to the fluctuation of the exogenous traffic, the arrival
of ACKs may be completely different than the theoretical arrival we described.
Second, the calculation of the optimum threshold (Equation (1)) is difficult since
it requires knowledge of RTT and the acknowledgement strategy (d). Third,
setting the filtering threshold to a fixed value leads to an unnecessary increase
in RTT in the steady state. Some mechanisms must be implemented in the
reverse buffer to absorb the bursts of ACKs when the slow channel is not well
utilized, and to filter ACKs with a small δ otherwise. For the first and second
problems, one can imagine to set the filtering threshold to the bandwidth-delay
product of the return path (µrT) in order to account for the most bursty case.
The cost to pay here is a further increase in RTT in the steady state.

The simplest solution is to measure the rate of ACKs at the output of the
reverse buffer and to compare it to the channel bandwidth. Measuring the rate
at the output rather than at the input is better since ACKs are spread over

time which increases the precision of the measurement tool. In case we don’t
know the channel bandwidth (e.g., case of a shared medium), one can measure
how frequently ACKs are present in the reverse buffer. When the measurement
indicates that the channel is fully utilized (e.g., the utilization exceeds a certain
threshold that we fix to 90% in our simulations), we start to apply the classical
filtering studied in the literature [3]: erase all old ACKs when a new ACK arrives.
Once the utilization drops below a certain threshold, filtering is halted until the
utilization increases again. This guarantees a maximum window increase during
slow start and a minimum RTT in the steady state. We can see it as a dynamic
filtering where δ is set to infinity when the slow channel is under-utilized and
to 1 when it is well utilized. Also, it can be seen as a transformation of the rate
of the input flow of ACKs from λ to min(λ, µr) without the loss of information,
of course if the reverse buffer is large enough to absorb bursts of ACKs before
the start of filtering. Recall that we are always working in the case of a single
connection. The case of multiple concurrent connections is studied later.

3.1 Utilization Measurement

We assume that the slow channel bandwidth is known. The time sliding window
(TSW) algorithm defined in [7] is used for ACK rate measurement. When a new
ACK leaves the buffer, the time between this ACK and the last one is measured
and the average rate is updated by taking a part of this new measurement and the
rest from the past. The difference from classical low pass filters is that the decay
time of the rate with the TSW algorithm is a function of the current average
rate not only the frequency of measurements. The coefficient of contribution
of the new measurement is more important at low rates than at high rates.
This guarantees a fast convergence in case of low rates. The decay time of the
algorithm is controlled via a time window that decides how much the past is
important. The algorithm is defined as follows: Let Rate be the average rate,
Window be the time window, Last be the time when the last ACK has been seen,
Now be the current time, Size be the size of the packet (40 bytes for ACKs).
Then, upon ACK departure,

1) Volume = Rate*Window + Size; 2) Time = Now - Last + Window;
3) Rate= Volume /Time; 4) Last=Now;

The same algorithm with a slight change can be applied to measure how fre-
quently ACKs are present in the reverse buffer.

3.2 Simulation

We consider the same simulation scenario. We implement delayed filtering in the
reverse buffer and we plot its performance. The time window is taken in the same
order as RTT. Figure 7 shows how our algorithm gives as good performance as
the case where δ is correctly chosen. Moreover, it outperforms slightly the case of
static filtering with δ = δo due to the erasing of all ACKs once the slow channel
is fully utilized. The behavior of delayed filtering can be clearly seen in Figures 8
and 9 where we plot the reverse buffer occupancy. These figures correspond to

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

R
ev

er
se

 B
uf

fe
r

O
cc

up
an

cy
 (

pa
ck

et
s)

Time (s)

Fig. 8. Reverse buffer occupancy for static
filtering

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

D
at

a
B

yt
es

 S
eq

ue
nc

e
N

um
be

r

Time (s)

Fig. 9. Reverse buffer occupancy for de-
layed filtering

static filtering with δ = δo = 30 and delayed filtering respectively. Bursts of
ACKs are absorbed at the beginning before being filtered some time later. The
filtering starts approximately at the same time in the two cases.

4 Delayed Filtering : Case of Multiple Connections

Consider now the case of multiple connections running in the same direction
and sharing the slow reverse channel for their ACKs. Let N be the number of
connections. In addition to the problems of end-to-end delay and reverse channel
utilization, the existence of multiple connections raises the problem of fairness
in sharing the reverse channel bandwidth. A new connection generating ACKs
at less than its fair share from the bandwidth must be protected from other con-
nections exceeding their fair share. We consider in this paper a max-min fairness
where the slow channel bandwidth needs to be equally distributed between the
different ACK flows. However, other fairness schemes could be studied. As an
example, one can imagine to give ACKs from a new connection more bandwidth
than ACKs from already running connections. We study the performance of
different filtering strategies. We consider first the case of a large reverse buffer
where ACKs are not lost but queued to be served later. There is no need here for
an ACK drop strategy but rather for a filtering strategy that limits the queue
length, that improves the utilization, and that provides a good fairness. Second,
we study the case where the reverse buffer is small and where ACK filtering
is not enough to maintain the queue length at less than the buffer size. ACK
filtering needs to be extended in this second case by an ACK drop policy.

4.1 Case of a Large Buffer

To guarantee a certain fairness, we apply delayed filtering to every connection. A
list of active connections is maintained in the reverse buffer. For every connection
we store the average rate of its ACKs at the output of the reverse buffer. When
an ACK arrives, the list of connections is checked. If no entry is found, a new
entry is created for this connection. Now, if the average rate associated to the
connection of the new ACK exceeds the slow channel bandwidth divided by
the number of active connections, all ACKs belonging to the same connection

D
10 Mbps

S

S

S

100 Mbps

100 ms

1 - 10 ms

N

SN-1

2

1

Reverse buffer
100 ms

100 Kbps

Fig. 10. Simulation scenario

are filtered and the new ACK is queued at the place of the oldest ACK. When
an ACK leaves the buffer, the average rates of the different connections are
updated. A TSW algorithm is again used for ACK rate measurement. The entry
corresponding to a connection is freed once its average rate falls below a certain
threshold.

Keeping an entry per-connection seems to be the only problem with our
algorithm. We believe that with the increase in processing speed, this problem
does not exist. Also and as we will see later, we can stop our algorithm beyond
a certain number of connections since it converges to static filtering with δ = 1.
This happens when the fair bandwidth share of a connection becomes very small.
Classical filtering can be applied in this case without the need to account for full
utilization.

Now, delaying the filtering of ACKs from a connection separately from the
other connections while keeping the classic FIFO service does not result in a
complete isolation. The accepted burst of ACKs from an unfiltered connection
increases the RTT seen by other connections. A round robin (RR) scheduling is
required for such isolation. ACKs from filtered connections will no longer need
to wait after ACKs from an unfiltered one.

We implement the different filtering algorithms we cited above into ns and
we use the simulation scenario of Figure 10. N TCP Reno sources transmit short
files of sizes chosen randomly with a uniform distribution between 10 kbytes and
10 Mbytes to the same destination D. The propagation delays of access links are
chosen randomly with a uniform distribution between 1 and 10 ms. ACKs from
all the transfers return to the sources via a 100 kbps slow channel. A source Si

transmits a file to D, waits for a small random time, and then transmits another
file. We take a large reverse buffer and we change the number of sources from
1 to 20. For every N , we run the simulations for 1000s and we calculate the
average throughput during a file transfer. We plot in Figure 11 the performance
as a function of N for five algorithms: no-filtering (δ = +∞), classical filtering
(δ = 1), delayed filtering with all the connections grouped into one flow, per-
connection delayed filtering with FIFO and with RR scheduling.

No-filtering gives the worst performance due to the long queue of ACKs in the
reverse buffer. Classical filtering solves this problem but it is too aggressive so it
does not give the best performance especially for small number of connections.

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 T
hr

ou
gh

pu
t d

ur
in

g
a

si
ng

le
 tr

an
sf

er
 (

K
bp

s)

Number of Sources

No Filtering
Classical Filtering
Delayed Filtering
Per-connection Delayed Filtering (FIFO)
Per-connection Delayed Filtering (Round Robin)

Fig. 11. Case of multiple connections and
a large buffer

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 T
hr

ou
gh

pu
t d

ur
in

g
a

si
ng

le
 tr

an
sf

er
 (

K
bp

s)

Number of Sources

No Filtering
Classical Filtering
Delayed Filtering
Per-connection Delayed Filtering (FIFO)
Per-connection Delayed Filtering (Round Robin)

Fig. 12. Case of multiple connections and
a small buffer

For large number of connections, the bandwidth share of a connection becomes
small and classical filtering gives close performance to that of the best policy, per-
connection filtering with RR scheduling. Single-flow delayed filtering is no other
than static filtering beyond a small number of connections, and per-connection
filtering with FIFO scheduling gives worse performance than RR scheduling due
to the impact of unfiltered connections on the RTT of filtered ones.

4.2 Case of a Small Buffer

The question we ask here is what happens if we decide to queue an ACK and we
find that the buffer is full. In fact, this is the open problem of buffer management
with a difference here in that the flows we are managing are not responsive to
drops as TCP data flows. The other difference is that in our case, ACK dropping
is preceded by ACK filtering which reduces the overload of ACKs on the reverse
buffer. The buffer management policy is used only in the particular case where
filtering is not enough to avoid the reverse buffer overflow. We can see the relation
between filtering and dropping as two consecutive boxes. The first box which is
the filtering box tries to eliminate the unnecessary information from the flow of
ACKs. The filtered flow of ACKs is then sent into the second box which contains
the reverse buffer with the appropriate drop policy.

For classical filtering we use the normal drop tail policy. The buffer space is
fairly shared between the different connections (one ACK per connection) and we
don’t have enough information to use another more intelligent drop policy. The
same drop tail policy is used in case of single-flow delayed filtering when ACKs
are filtered. When ACKs are not filtered, we use the Longest Queue Drop policy
described in [16]. The oldest ACK of the connection with the longest queue is
dropped and the new ACK is queued at the end. Now, for per-connection delayed
filtering, we profit in the drop procedure of the information available for filtering.
The oldest ACK of the connection with the highest rate is dropped.

We repeat the same simulation of the previous section but now with a small
reverse buffer of 10 packets. The average throughput is shown in Figure 12 as a
function of the number of sources. In this case and especially at large N , the dif-
ference in performance is mainly due to the difference in the drop policy. This can

be seen from the difference in performance at large N between per-connection
delayed filtering and classical filtering. If the drop policy is not important, these
two filtering strategies should give similar performance. Per-connection delayed
filtering with RR scheduling gives again the best performance. The relative po-
sition of classical filtering to no-filtering is a little surprising. When the number
of connections is smaller than the buffer size, classical filtering is able to keep
an empty place for a new connection and then to protect it from already run-
ning connections. This leads to better performance than in case of no-filtering.
However, as the number of connections exceeds the buffer size, the reverse buffer
starts to overflow and new connections will no longer be protected. Thus, the
performance of classical filtering deteriorates when N increases, and it drops
below that of no-filtering for large N . We conclude that when the number of
connections is larger than the buffer size, a simple drop tail policy is enough for
good performance. This again limits the number of connections that our delayed
filtering algorithm need to track.

References
1. M. Allman et al., “ Ongoing TCP Research Related to Satellites”, Internet Draft,

work in progress, Sep 1999.
2. E. Altman et al., “Performance Modeling of TCP/IP in a Wide-Area Network”,

IEEE Conference on Decision and Control, Dec 1995.
3. H. Balakrishnan, V. Padmanabhan, and R. Katz, “The Effects of Asymmetry on

TCP Performance”, ACM MOBICOM, Sep 1997.
4. C. Barakat and E. Altman, “Performance of Short TCP Transfers”, Networking

2000 (Performance of Communications Networks), May 2000.
5. C. Barakat, E. Altman, and W. Dabbous, “On TCP Performance in a Heteroge-

neous Network : A Survey”, IEEE Communications Magazine, Jan 2000.
6. Neal Cardwell, Stefan Savage, and Tom Anderson, “Modeling TCP Latency”, IEEE

INFOCOM, Mar 2000.
7. D. Clark and W. Fang, “Explicit Allocation of Best Effort Packet Delivery Service”,

IEEE/ACM Transactions on Networking, Aug. 1998.
8. R. Durst, G. Miller, and E. Travis, “TCP Extensions for Space Communications”,

ACM MOBICOM, Nov 1996.
9. K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK

TCP”, ACM Computer Communication Review, Jul 1996.
10. V. Jacobson, “Congestion avoidance and control”, ACM SIGCOMM, Aug 1988.
11. V. Jacobson, “Compressing TCP/IP Headers for Low-speed Serial Links”, RFC

1144, Feb 1990.
12. T.V. Lakshman and U. Madhow, “The performance of TCP/IP for networks with

high bandwidth-delay products and random loss”, IEEE/ACM Transactions on
Networking, Jun 1997.

13. T. V. Lakshman, U. Madhow, and B. Suter, “Window-based error recovery and flow
control with a slow acknowledgment channel: a study of TCP/IP performance”,
IEEE INFOCOM, 1997.

14. The LBNL Network Simulator, ns, http://www-nrg.ee.lbl.gov/ns.
15. W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms”, RFC 2001, 1997.
16. B. Suter, T.V. Lakshman, D. Stiliadis, and A.K. Choudhary, “Design Considera-

tions for Supporting TCP with Per-flow Queueing”, IEEE INFOCOM, Mar 1998.

