
A Markovian Model for TCP Analysis in a
Differentiated Services Network ?

Chadi Barakat and Eitan Altman
INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France

{cbarakat,altman}@sophia.inria.fr

Abstract. Many schemes have been proposed to support TCP traffic in
a Differentiated Services network. We present in this paper an analytical
model to study the performance of these schemes. The model is based
on a Markovian fluid approach. We provide first a general version of the
model, then we specify it to the different proposed schemes. For each
scheme, we calculate the throughput achieved by a TCP connection.
We compare then their service differentiation capacity under different
subscription levels, different reservations, and different round-trip times.

1 Introduction

There has been an increasing interest these last years in enhancing the best effort
service of the Internet to provide new applications with some guarantees in terms
of bandwidth, losses, and end-to-end delay. Differentiated Services architecture
(DiffServ) is considered as the most promising approach in this field for reasons
of scalability and incremental deployment [3, 14]. Flows are monitored at the
edge of the network. Their parameters (rate, burst size) are compared to the
contract signed between the user and the service provider. Compliant packets
are marked with a high priority. Non-compliant packets are shaped, rejected,
or injected into the network with a low priority. In the core of the network,
priority packets are privileged over non-priority ones. This privilege can be in the
form of a better scheduling (e.g., priority scheduling) as in the Premium service
architecture [11, 14], or in the form of a lower drop probability as in the Assured
service architecture [3, 8]. The main advantage of the DiffServ framework is that
packets in the network are treated as a function of their priority not as a function
of the flow they are belonging to. This makes the framework scalable, flexible,
and easy to introduce into the Internet.

The utility of such framework to applications using UDP, the best effort
transport protocol of the Internet, is evident. An example of such applications is a
real time video or audio communication tool. If the network is well dimensioned,
these applications are able to realize the throughput they desire. The problem
appears with applications using TCP [10], the connection-oriented transport
protocol of the Internet. An application using TCP may ask the network for a
better service (i.e., more throughput) by reserving a certain bandwidth. If at
the edge of the network non-compliant packets are rejected, TCP will reduce its
? An extended version of this paper is available upon request from the authors.



rate when it reaches the reserved bandwidth. The application fails in this case
to use the bandwidth it is paying for as well as any unreserved bandwidth in
the network. The solution to this problem is to let non-compliant packets get
into the network as low priority packets. This improves TCP performance since
the rate can now reach larger values. But, TCP is not aware of the reservation.
The loss of a low priority packet is not distinguished from the loss of a high
priority packet and the rate is reduced in the same manner. This has been
shown to result in an unfairness in the distribution of network resources [2, 3, 5,
6, 17, 18]. The main result of these studies is that TCP is unable to realize its
target throughput in a DiffServ network. The target throughput is defined as the
reserved bandwidth plus a fair share of any unreserved bandwidth. A connection
with a small reservation has been shown to achieve better performance than
a connection with a large reservation. These works show also the well known
problem of TCP unfairness in presence of different round-trip times (RTT).
A connection with small RTT achieves better performance than a connection
with long RTT. Some solutions have been proposed to alleviate these problems.
They consist in either changing TCP sources, or marking TCP flows differently
at the edge of the network, or changing the behavior of network routers. The
performance of these solutions has been often evaluated via simulations in [3, 5, 6,
17]. In [18], a mathematical model has been proposed to calculate the throughput
of a connection as a function of the drop probability of its packets. Three schemes
have been compared. But, this model is not able to study the impact of the
parameters of the other connections (e.g., RTT, reserved bandwidth). Also, it
makes the simplistic assumption that TCP window varies in a cyclic manner
with all the cycles having the same duration. Our experimentations over the
Internet have shown that this assumption is not so realistic [1].

In this paper we present a general Markovian model able to a) calculate the
performance of all the connections sharing a bottleneck b) account for the differ-
ent solutions already proposed, or to be proposed. Using this model, we compare
the performance of some schemes proposed to support TCP in a DiffServ net-
work. In the next section we outline the different schemes we are considering
in this paper. In Section 3 we explain our model. In Section 4 we calculate the
throughput of a TCP connection as a function of two parameters. By appropri-
ately setting these two parameters, we are able to specify our model to any one
of the proposed schemes. Section 5 explains how these two parameters must be
set. In Section 6 we present some numerical results.

2 TCP in a DiffServ Network

The main objectives of a DiffServ scheme supporting TCP traffic are:

– The available bandwidth must be efficiently utilized.
– In the case where the sum of the reservations is less than the total throughput

(the under-subscription case), each connection must realize its reservation.
The difference between the total throughput and the total reservation must
be shared equally between the different connections.



– In the case where the sum of the reservations is greater than the total
throughput (the over-subscription case), the total throughput must be dis-
tributed between the different connections proportionally to their reserva-
tions.

The original proposition to support TCP in a DiffServ network is due to
Clark [3]. Two priority levels have been proposed for packet marking. A packet
that arrives at the edge of the network and finds the rate of the connection
smaller than the reservation, is marked with a high priority and is called an IN
packet, otherwise it is marked with a low priority and it is called an OUT packet.
The service differentiation comes from the different probabilities network routers
drop these two types of packets at the onset of congestion. A variant of RED
(Random Early Detection) buffers [7] is proposed to implement this difference
in the drop probability. This variant, called RIO (RED IN/OUT) [3], has two
minimum thresholds instead of one. When the average queue length exceeds the
lower minimum threshold, OUT packets are probabilistically dropped in order
to signal congestion to TCP sources. The buffer starts to drop probabilistically
IN packets when the average queue length (sometimes the average number of IN
packets in the buffer) exceeds the upper minimum threshold. This scheme has
however some problems to satisfy the above objectives. Due to the saw tooth
window variation of TCP (Figure 1), a connection is obliged to transmit a certain
amount of OUT packets in order to realize its reservation. Since OUT packets
are very likely to be dropped, the reservation may not be realized. Moreover,
a connection with a large reservation is obliged to transmit more OUT packets
than a connection with a small reservation. Also, a connection with a large
reservation has in general larger window than that of a connection with a small
reservation which makes it more affected by the loss of an OUT packet. This
explains the bias of the scheme proposed in [3] against connections with large
reservations.

The first and the most intuitive solution to this problem is to change TCP in
a way that the source reduces differently its window when OUT or IN packets are
lost [5, 17]. The source is supposed to know the priority of the lost packet. Also,
it is supposed to know the bandwidth reserved by the connection. The loss of an
IN packet is an indication that the congestion window must be divided by two as
in standard TCP. The loss of an OUT packet is an indication that the unreserved
bandwidth in the network is congested. The source reduces then its window by
half the number of OUT packets it has in the network. The main problem with
this solution is that it requires a change at the source and a knowledge of the
priority of the lost packet which are two difficult tasks to implement.

The other solutions try to help connections with large reservations to send
more OUT packets than connections with small reservations, and this is without
changing TCP algorithms. The first solution proposed in [3] is based on the saw
tooth variation of TCP window. To be able to realize its reservation, a TCP
connection must be protected from the other connections until it reaches 4/3
of its reservation (see Figure 1). The idea [3] is to change the marker so that
it marks packets as OUT when the rate of the connection exceeds 4/3 of the



reserved bandwidth. We call this proposition the Saw Tooth Marking scheme.
It has the drawback of injecting into the network during some periods more IN
packets than we promised it.

The second solution [17] proposes to drop OUT packets in network routers
according to the reserved bandwidth. The authors [17] show that dropping OUT
packets with a probability inversely proportional to the bandwidth reserved by
the connection improves the performance. We call this solution the Inverse Drop
Probability scheme. Its main drawback is that it requires that network routers
know the bandwidth reserved by every connection.

The last scheme we consider is the one that proposes to mark the packets with
three priority levels instead of two [8, 9, 17]. A RED buffer with three thresholds
is used. The idea is to protect the OUT packets of a connection transmitting at
less than its fair share from the OUT packets of another connection exceeding
its fair share, by giving them some medium priority while giving low priority to
those of the latter connection. The difference from Saw Tooth Marking is that
we are not injecting into the network more high priority packets than what we
promised.

3 The Markovian Fluid Model

Consider N long life TCP connections sharing a bottleneck of bandwidth µ. Let
Xi(t) be the transmission rate of connection i at time t. It is equal to the window
size divided by the RTT of the connection. The connections increase their rates
until the network gets congested. The congested router starts to drop packets in
order to signal the congestion to TCP sources. A source receiving a congestion
signal (i.e. by detecting the loss of packets) reduces its rate, then it resumes
increasing it. Let tn denote the time at which the nth congestion event occurs
and let Dn = tn+1 − tn. Denote by Xi

n the transmission rate of connection i at
time tn, and by Xi

n+ its transmission rate just after tn (after the disappearance
of the congestion). Xi

n+ is equal to Xi
n if connection i did not reduce its rate

at tn and to Ri(Xi
n) otherwise. Ri(Xi

n) is a function of Xi
n usually equal to

Xi
n/2 [10]. We introduce now some assumptions:

Assumption 1: We assume first that queueing times in network nodes are small
compared to the propagation delay. This holds with the active buffer manage-
ment techniques (e.g., RED [7]) that keep the queue length at small values. The
RTT of a connection say i is then approximately constant equal to Ti and the
rate of the connection can be considered to increase linearly with time between
congestion events (by one packet every bTi, with b equals the number of data
packets covered by an ACK). We can write Xi

n+1 = Xi
n+ + αiDn. This is ture

if the slow start phases and timeout events are rare which is the case of new
versions of TCP in case of long transfers [4]. We can also consider that the con-
gestion appears when the sum of the transmission rates reach µ. Thus, instants
tn are given by

∑N
i=1 Xi(tn) = µ.

Assumption 2: The second assumption we made is that only one connection
reduces its rate upon a congestion and that the probability that a connection
reduces its rate is a function of its rate and the rates of the other connections



at the moment of congestion. This is again the aim of the new buffer manage-
ment techniques (e.g. RED [7]) that implement random drop in order to sent
congestion signals to connections consuming more than their fair share of the
bottleneck bandwidth while protecting connections consuming less than their
fair share [7]. We assume that the reaction of the connection receiving the first
congestion signal is quick so that the congestion in the network disappears before
other packets from other connections are dropped.

Let U i
n be a random variable equal to 1 if source i reduces its rate at time

tn and to 0 otherwise. Using Assumption 2, we have always
∑N

i=1 U i
n = 1. The

probability that U i
n is equal to one is a function of the connection rates at time

tn. Let pi(X1
n, X2

n, . . . , XN
n ) denote this probability. It represents the probability

that the dropped packet upon congestion belongs to connection i. This probabil-
ity together with Ri(Xi

n) form the two parameters that need to be appropriately
chosen in order to cover all the proposed schemes.

Theorem 1. The process {X1
n, X2

n, . . . , XN
n } can be described as a homogeneous

Markov process of dimension N − 1.

Proof. The transmission rates at time tn are related by
∑N

i=1 Xi(tn) = µ. Thus,
the problem can be analyzed by considering only the rates of N −1 connections.
In the particular case of N = 2 we get a one-dimensional problem. Concerning
the Markovian property of the model, it is easy to show that the state of the
process at time tn+1 depends only on its state at time tn. Indeed, for any i we
have,

Xi
n+1 = Xi

n + U i
n(Ri(Xi

n)−Xi
n) + αiDn. (1)

Summing over all the i, we get,

Dn =
∑N

i=1 U i
n(Xi

n −Ri(Xi
n))∑N

i=1 αi

. (2)

Given that Ri(Xi
n) and the value taken by U i

n are only a function of the process
state at time tn, Xi

n+1 is only a function of the process state at time tn and the
Markovian property holds. The process is homogeneous since its state at time
tn+1 depends only on its state at time tn and not on n. ¦

The transmission rate of a connection takes a finite number of values between
0 and µ. This number depends on the RTT of the connection and the packet size.
Denote by X the state space of our chain. For each state X = (x1, . . . , xN ) ∈ X ,
the chain can jump to N different states at the next congestion event. This
depends on which source reduces its rate. Denote by F i(X) = (f i

1, . . . , f
i
N ) the

next state when the system is in state X and source i reduces its rate. Using (1),

f i
j =

{
xj + (xi −Ri(xi))αj/

∑N
m=1 αm if j 6= i

Ri(xi) + (xi −Ri(xi))αi/
∑N

m=1 αm if j = i

Let P = (PXY )X,Y ∈X denote the transition matrix of the chain. We have,

PXY =
{

pi(X) if there is an i such that Y = F i(X)
0 otherwise



Denote by Π = (πX)X∈X the stationary distribution of our chain. We solved
the system numerically for different scenarios and we found that Π always exists
and is unique. Let Xi, U i, and D represent the processes Xi

n, U i
n, and Dn in the

unique stationary regime.

4 Calculation of the Throughput

The throughput of a connection say i (or the time average of its transmission
rate) is equal to

X̄i = lim
t→∞

1
t

∫ t

0

Xi(u)du = lim
n→∞

∑n−1
m=0

∫ tm+1

tm
Xi(u)du

∑n−1
m=0 Dm

= lim
n→∞

1
n

∑n−1
m=0(X

i
m + U i

m(Ri(Xi
m)−Xi

m))Dm + αi(Dm)2/2
1
n

∑n−1
m=0 Dm

=
E[(Xi + U i(Ri(Xi)−Xi))D + αi(D)2/2]

E[D]
(3)

Let Dj(X) denote the time until the next congestion event when the system
is in state X ∈ X and source j reduces its rate. Using (2) we have, Dj(X) =
(xj −Rj(xj))/

∑N
m=1 αm. Thus, X̄i =

∑
X∈X πX

(∑N
j=1 pj(X)

(
xiD

j(X) + αi(Dj(X))2/2
)

+ pi(X)(Ri(xi)− xi)Di(X)
)

∑
X∈X πX

∑N
j=1 pj(X)Dj(X)

(4)

5 Application of the Model to Real Schemes

Suppose that the system is in state X = (x1, . . . , xN ) ∈ X in the stationary
regime. In order to calculate the throughput, we find in this section the expres-
sions of the two functions pi(X) and Ri(xi) for every scheme.

5.1 Standard TCP with RIO
A source i asks the network for a bandwidth µi. When the congestion appears
at the bottleneck, the router starts to drop OUT packets with a certain prob-
ability. If there is no OUT packets in the network, congestion remains and
the router starts to drop probabilistically IN packets. When an OUT or IN
packet is dropped, the corresponding connection divides its rate by two. Thus,
Ri(xi) = xi/2 in this case and in all the subsequent cases where standard TCP
is used.

The probability that a connection reduces its rate upon a congestion is equal
to 0 when it is transmitting only IN packets and there is at least one connection
transmitting OUT packets. It is equal to 1 if it is the sole connection transmitting
OUT packets. Now, we study the case where the connection is transmitting
OUT packets together with other connections. The other case, that of all the
connections transmitting only IN packets, will be directly deduced.



Let q be the probability that an OUT packet is dropped at the bottleneck
upon congestion. Let V be the result of the probabilistic drop applied to a packet.
It is equal to 1 if the packet is really dropped and to zero otherwise. Denote by
Y the number of the connection to which the dropped OUT packet belongs. In
the following we denote by PX(A) the probability that event A happens given
that the system is in state X ∈ X upon congestion. We have,

pi(X) = PX(Y = i|V = 1) =
PX(Y = i).PX(V = 1|Y = i)∑N

m=1 PX(Y = m).PX(V = 1|Y = m)

PX(V = 1|Y = m) is no other than q. Thus, pi(X) is equal to PX(Y = i) which
is equal to the ratio of the rate at which connection i is sending OUT packets
and the total rate at which OUT packets are sent. Thus,

pi(X) = PX(Y = i) =
xi − µi∑N

m=1(xm − µm)1{xm > µm}
,

where 1{} is the indicator function.
Similarly, when all the connections are transmitting only IN packets, pi(X)

is equal to PX(Y = i) which is equal to the ratio of the rate at which connection
i is sending IN packets and the total rate at which IN packets are sent. It follows,

pi(X) =

{
xi/µ if

∑N
m=1 1{xm > µm} = 0

((xi − µi)1{xi > µi}) /
(∑N

m=1(xm − µm)1{xm > µm}
)

otherwise

5.2 Modified TCP with RIO

pi(X) is the same as in the previous section. The difference is in the function
Ri(xi). If an IN packet is lost, the source divides its rate by two as with standard
TCP. If the dropped packet is an OUT packet, only the rate of OUT packets is
divided by two. We consider in our model that the dropped packet from connec-
tion i is an IN packet if at the moment of congestion source i is transmitting at
less than its reservation, otherwise it is an OUT packet. Thus,

Ri(xi) =
{

xi/2 if xi < µi

µi + (xi − µi)/2 otherwise

5.3 Inverse Drop Probability Scheme

Standard TCP is used, therefore Ri(xi) is equal to xi/2. The difference in this
case is that packets of different connections (IN or OUT) are not treated in the
same manner in the core of the network. The idea proposed in [17] is to drop
OUT packets from a connection with a probability that varies as the inverse of
its reservation. However, the drop probability of IN packets is not specified. IN
packets are actually dropped when all the connections are transmitting at less
than their reservations. In this case and according to our objectives (Section 2),
the throughput of a connection must be proportional to its reservation. It is
known that the throughput of a TCP connection varies as the square root of the



packet drop probability [1, 13, 15]. Thus, we propose to drop IN packets with a
probability that varies as the inverse of the square of the reservation. We add
this new feature to the proposed scheme.

As in the case of RIO with standard TCP, a connection reduces its rate
with probability 1 if its the sole connection exceeding its reservation and with
probability 0 if it is transmitting only IN packets and if there is at least one
connection transmitting OUT packets. For the remaining two cases, we consider
first the case when the connection is transmitting OUT packets together with
other connections. The other case will be directly deduced.

Suppose that the bottleneck router drops OUT packets of source m with a
probability q/µm, q is a constant. Then,

pi(X) =
PX(Y = i).PX(V = 1|Y = i)∑N

m=1 PX(Y = m).PX(V = 1|Y = m)
=

PX(Y = i)/µi∑N
m=1 PX(Y = m)/µm

=
xi/µi − 1∑N

m=1(xm/µm − 1)1{xm > µm}

The general expression of pi(X) for this scheme is given by

pi(X) =





(
xi/µ2

i

)
/

(∑N
m=1 xm/µ2

m

)
if

∑N
m=1 1{xm > µm} = 0

((xi/µi − 1)1{µi > xi}) /
(∑N

m=1(xm/µm − 1)1{xm > µm}
)

otherwise

5.4 Saw Tooth Marking Scheme

Standard TCP, two priority levels, and RIO buffers are used. Thus, Ri(xi) =
xi/2. The difference here is in the marker operation. The flow of connection
i contains OUT packets when its rate xi exceeds 4µi/3. The rate of its OUT
packets at the moment of congestion is equal to xi − 4µi/3 rather than xi − µi.
The new expression of pi(X) is then

pi(X) =





xi/µ if
∑N

m=1 1{xm > 4µm/3} = 0
((xi − 4µi/3)1{xi > 4µi/3}) /

(∑N
m=1(xm − 4µm/3)1{xm > 4µm/3}

)

otherwise

5.5 Standard TCP with Three Drop Priorities

In this scheme the source makes two reservations instead of one. Denote these
reservations by µ1

i and µ2
i with µ1

i < µ2
i . Standard TCP is used at the source,

then Ri(xi) = xi/2. Packets are marked with three priority levels or three colors.
Packets exceeding µ2

i are marked with low priority (red color). Those exceeding
µ1

i but not µ2
i are marked with medium priority (yellow color). Packets sent at

a rate slower than µ1
i are marked with a high priority (green color).

As in the RIO case, the network starts first to drop low priority packets. This
happens when one of the sources, say i, is exceeding its upper reservation µ2

i . If
those packets don’t exist, medium priority packets are dropped. Medium priority
packets exist in the network when one of the sources say i is exceeding its lower



TCP transmission rate

TCP Throughput = Reservation

R

4R/3

2R/3

Time

OUT packets
IN packets

Fig. 1. The saw tooth variation of TCP
rate

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350 400

P
er

fo
rm

an
ce

 R
at

io
 (

S
ou

rc
e 

1/
S

ou
rc

e 
2)

Source 1 Reservation (Kbps)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Fig. 2. Performance comparison for a 50%
total reservation

reservation µ1
i . If it is not the case, the network drops high priority packets. A

connection reduces its rate with probability one if it is transmitting alone above
a certain level. It reduces its rate with probability 0 if it is transmitting below a
level and there is another connection transmitting above the same level. In the
other cases, the probability that a connection reduces its rate is equal to the
probability that the dropped packet belongs to this connection. Similarly to the
RIO case we write,

pi(X) =





xi/µ if
∑N

m=1 1{xm > µ1
m} = 0(

(xi − µ1
i )1{xi > µ1

i }
)
/

(∑N
m=1(xm − µ1

m)1{xm > µ1
m}

)

if
∑N

m=1 1{xm > µ1
m} > 0 and

∑N
m=1 1{xm > µ2

m} = 0(
(xi − µ2

i )1{xi > µ2
i }

)
/

(∑N
m=1(xm − µ2

m)1{xm > µ2
m}

)
otherwise

To compare this scheme to previous ones, µ1
i and µ2

i must be set as a function
of the desired throughput µi. We looked at the saw tooth variation of TCP rate
(Figure 1). On average and in order to realize a throughput µi, the connection
rate should vary between 2µi/3 and 4µi/3. Thus, we give packets below 2µi/3
the highest priority, packets between 2µi/3 and 4µi/3 the medium priority, and
packets above 4µi/3 the lowest priority. This corresponds to µ1

i = 2µi/3 and
µ2

i = 4µi/3. This scheme is compared in the sequel to the other schemes with
these particular values of the two reservations. Other values could be however
used.

6 Some Numerical Results

We solve numerically our model for the case of two concurrent TCP connections.
We take µ =1.5 Mbps and we set TCP segments to 512 bytes. Reservations are
expressed in kbps. The receivers are supposed to acknowledge every data packet
(b = 1). First, we give the two connections the same RTT (100ms) and we
study the performance of the different schemes under different reservations and
different subscription levels. Second, we study the impact of a difference in RTT
on the service differentiation provided by the different schemes.



0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700

P
er

fo
rm

an
ce

 R
at

io
 (

S
ou

rc
e 

1/
S

ou
rc

e 
2)

Source 1 Reservation (Kbps)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Fig. 3. Performance comparison for a
100% total reservation

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

P
er

fo
rm

an
ce

 R
at

io
 (

S
ou

rc
e 

1/
S

ou
rc

e 
2)

Source 1 Reservation (Kbps)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Fig. 4. Performance comparison for a
150% total reservation

6.1 Impact of the Reservation

We change the reservations of the two sources in a way that their sum is constant
and equal to ρµ; ρ indicates the level of subscription. We consider three values
of ρ: 0.5, 1 and 1.5. For each ρ and according to the objectives in Section 2,
we define a factor F that characterizes how much connection 1 is favored with
respect to connection 2. For ρ < 1, the network is under-subscribed and the
two sources must share fairly the excess bandwidth. We define F as the ratio of
X̄1 − µ1 and X̄2 − µ2. The optimum scheme is the one that gives the closest F
to one. An F > 1 means that the scheme is in favor of connection 1. For ρ ≥ 1,
the network is over-subscribed. The bandwidth must be shared proportionally
to the reservation. We define F in this case as being the ratio of X̄1/µ1 and
X̄2/µ2. Again, the optimum scheme is the one that gives the closest F to one,
and an F > 1 means that the scheme is in favor of connection 1.

In Figures 2, 3, and 4, we plot F for the three cases ρ = 0.5, 1, and 1.5.
The X-axis shows the reservation of source 1. For all the schemes and as one
must predict, F converges to 1 when the the reservation of source 1 moves to
that of source 2. In the under-subscription case, the original RIO scheme gives
the worst service. The connection with the small reservation achieves better
performance than that with the large reservation. The other schemes improve
the service. They give connection 2 more chance to increase its rate above its
reservation which improves its throughput. In the over-subscription case the
situation changes. This is more depicted in Figure 4. In this case, the original
RIO scheme gives better performance than the proposed schemes (except for
the Three Color scheme). The problem here is that the source with the large
reservation is transmitting almost always IN packets and cannot profit from the
high priority we give to OUT packets. The increase in the priority of OUT packets
helps the source with the small reservation which achieves better throughput.

6.2 Impact of Round-Trip Time

We study in this section how well the proposed schemes resist to a difference in
RTT. We suppose that the two connections are asking for the same bandwidth
(µ1 = µ2). We set T2 to 50ms and we vary T1 between 50ms and 500ms. Ideally,



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s 
In

de
x

Round Trip Time Ratio (Source 1/Source2)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Fig. 5. Fairness index for a 0% total reser-
vation

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s 
In

de
x

Round Trip Time Ratio (Source 1/Source2)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Fig. 6. Fairness index for a 50% total
reservation

the two connections must achieve the same throughput independently of their
RTT. To quantify the impact of T1, we use the Fairness Index defined in [12]:
FI = (X̄1+X̄2)2/

(
2((X̄1)2 + (X̄2)2)

)
. This is an increasing function of fairness.

It varies between 1/2 when one of the two connections is shut down, and 1 when
the two connections realize the same throughput. We plot in Figures 5, 6, 7,
and 8, FI as a function of T1/T2 for four values of ρ: 0, 0.5, 1 and 1.5. The zero
reservation case corresponds to a best effort network. All the schemes achieve the
same performance (Figure 5). The fairness deteriorates as T1 increases. The small
RTT connection (i.e., 2) gets better and better performance. A small reservation
as for ρ = 0.5 protects the long RTT connection and improves the service.
Indeed, as T1 starts to increase, the throughput of connection 1 drops, but at
a certain point, it fells below its reservation and the connection starts to send
only high priority packets. It becomes then protected from the other connection.
The schemes other than RIO with standard TCP improve further the service.
With these schemes, the long RTT connection has more chances to stay above
its reservation. In the over-subscription case the situation again changes. RIO
with standard TCP gives better performance than that of the other schemes.
The reason is that giving a connection more chances to exceed its reservation
helps the connection with small RTT rather than the connection with long RTT.

6.3 Discussion of the Results
We summarize our results as follows: In the under-subscription case, the RIO
scheme is more biased against large reservation connections and long RTT ones
than the other schemes. This is not the case in the over-subscription case where
it provides a better performance. Except for the Three Color scheme, the other
schemes are useful in the first case. The Three Color scheme is useful in all the
cases since the priority it gives to OUT packets is less than that of IN packets.

References
1. E. Altman, K. Avratchenkov, and C. Barakat, ”A stochastic model for TCP/IP

with stationary random losses”, ACM SIGCOMM, Sep 2000.
2. A. Basu and Z. Wang,” A Comparative Study of Schemes for Differentiated Ser-

vices”, Bell labs Technical Report, Aug 1998.



0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s 
In

de
x

Round Trip Time Ratio (Source 1/Source2)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Fig. 7. Fairness index for a 100% total
reservation

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s 
In

de
x

Round Trip Time Ratio (Source 1/Source2)

Two Drop Priorities
Saw Tooth Marking
Three Drop Priorities
Window Division
Inverse Drop Probability

Fig. 8. Fairness index for a 150% total
reservation

3. D. Clark and W. Fang, “Explicit Allocation of Best Effort Packet Delivery Service”,
IEEE/ACM Transactions on Networking, Aug 1998.

4. K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and SACK
TCP”, Computer Communication Review, Jul 1996.

5. W. Feng, D. Kandlur, D. Saha, and K. Shin, “Understanding TCP Dynamics in
a Differentiated Services Internet”, IEEE/ACM Transactions on Networking, Apr
1998.

6. W. Feng, D. Kandlur, D. Saha, and K. Shin, “Adaptive Packet Marking for Provid-
ing Differentiated Services in the Internet”, International Conference on Network
Protocols, Oct 1998.

7. S. Floyd and V. Jacobson, “Random Early Detection gateways for Congestion
Avoidance”, IEEE/ACM Transactions on Networking, Aug 1993.

8. J. Heinanen, T. Finland, F. Baker, W. Weiss, and J. Wroclawski, ”Assured For-
warding PHB Group”, RFC 2597, Jun 1999.

9. J. Heinanen, T. Finland, and R. Guerin, “A Two Rate Three Color Marker”,
Internet Draft, May 1999.

10. V. Jacobson, “Congestion avoidance and control”, ACM SIGCOMM, Aug 1988.
11. V. Jacobson, K. Nichols, and K. Poduri, ”An Expedited Forwarding PHB”, RFC

2598, Jun 1999.
12. R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure Of Fairness And Dis-

crimination For Resource Allocation In Shared Computer Systems”, DEC Research
Report TR-301, Sep 1984.

13. T.V. Lakshman and U. Madhow, “The performance of TCP/IP for networks with
high bandwidth-delay products and random loss”, IEEE/ACM Transactions on
Networking, Jun 1997.

14. K. Nichols, V. Jacobson, and L. Zhang, ”A Two-bit Differentiated Services Ar-
chitecture for the Internet”, Internet Draft,¡draft-nichols-diff-svc-arch-00.txt¿, Nov
1997.

15. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Throughput: a
Simple Model and its Empirical Validation”, ACM SIGCOMM, Sep 1998.

16. W. Stevens, “TCP Slow-Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms”, RFC 2001, Jan 1997.

17. I. Yeom and A. Reddy, “Realizing throughput guarantees in Differentiated Services
Networks”, TAMU-ECE-9806, 1998.

18. I. Yeom and A. Reddy, “Modeling TCP behavior in a Differentiated-Services Net-
work”, TAMU ECE Technical Report, May 1999.


