Simulation-based study of link-level hybrid FEC/ARQ-SR for wireless links and long-lived TCP traffic

Chadi BARAKAT
joint work with Alaeddine AL FAWAL

INRIA Sophia Antipolis, France
PLANETE group

WiOpt'03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks
March 4, 2003
TCP and wireless links

- Wireless links: WLAN, GSM, GPRS, UMTS, satellite, etc.
- Characterized by a high bit error rate compared to wired links (non-congestion losses):
 - Different sources: Signal attenuation, interference, multi-path fading, shadowing, rain, handoff, etc.
- Negative impact on TCP performance:
 - TCP considers the loss of a packet as a congestion signal and reduces its window unnecessarily.
 - TCP throughput is known to be inversely proportional to the square root of the packet loss rate.
Overview of solutions

- Clean links by correcting non-congestion losses locally:
 - Use of link-level FEC, ARQ, hybrid FEC/ARQ, more power, etc.
 - Achieve a TCP friendly network where packets are only lost in routers.

- Help TCP to distinguish non-congestion losses:
 - ELN, loss predictors, Vegas, ECN, etc.

- Split the TCP connection, isolate the noisy link, and transmit data over the noisy link using an optimized transport protocol:
 - I-TCP, MTCP, Snoop protocol, STP, etc.

Our work focuses on the link-level FEC/ARQ-SR solution ...
FEC: pros and cons

- **FEC incomes:**
 - Reduces the packet loss rate.
 - Correct packets on the fly, which eliminates any interaction with TCP retransmission timer as in the case of ARQ.
 - FEC is of particular interest on long delay links and at high loss rates.

- **FEC cost:**
 - Processing overhead, delay, maximum bit rate.
 - The redundant information consumes bandwidth, which may reduce the throughput of TCP if added in large amounts.

- **What is the amount of FEC that leads to the best TCP throughput?**
ARQ: pros and cons

- ARQ is interesting on short delay links and at low loss rate:
 - **Incomes:** Bandwidth is only wasted when packets are lost.
 - **ARQ cost:**
 - Introduce jitter, which is harmful for real time applications.
 - Introduce burstiness when an in-order delivery is supported.
 - Introduce reordering when an out-order delivery is supported.
 - Interfere with TCP timeout mechanism when persistency is high.
 - **ARQ Selective Repeat:**
 - Complex compared to Stop-And-Wait and Go-Back-N.
 - But, allows higher utilization of the available link capacity.
FEC/ARQ-SR: objective of the study

- By combining FEC, ARQ-SR and an in-order delivery of packets at the output of the wireless link, better performance can be achieved.

- **Objective of the study:** How to optimize such an error recovery mechanism to obtain the best TCP throughput?
 - Main focus on the amount of FEC and the persistency of ARQ.

- **Outline:**
 - Model of the study.
 - Simulation-based study using the NS simulator.
 - Conclusions, perspectives.
FEC/ARQ-SR model

Server

Internet

Client

IP Packet

ARQ-SR

X Link Level Frames

IP Level

FEC

N - K

K

N L.L. Units

Link Level

Original Data

Redundant Data

Chadi BARAKAT - March 4, 2003
FEC/ARQ-SR model

- **FEC:** Erasure block code, a frame is recovered if the number of erroneous units is less than \((N - K)\), \(K/N\) being the code rate.

- **ARQ-SR:**
 - A TCP/IP packet is divided into \(X\) frames.
 - If a frame is not recovered by FEC, it is retransmitted by ARQ-SR.
 - The maximum number of retransmissions is \(\delta\) (persistence of ARQ).
 - A link-level NACK is sent for each erroneous frame. The frame is quickly retransmitted and given priority over all frames.
 - A packet is discarded when FEC and ARQ-SR fail to recover one of its frames.
 - Packets are delivered in-order at the output of the wireless link.
Simulation scenario

- Long-lived TCP connections.
- The wireless link is the bottleneck for the TCP connections:
 - No congestion losses before the full utilization of the wireless link.
- Errors are assumed to be Bernoulli without memory:
 - Link-level units are dropped with the same probability p.
- Without loss of generality: $X = 6$, packets = 1500 Bytes, units = 25 Bytes, $K = 10$.

Chadi BARAKAT - March 4, 2003
FEC alone

- Performance improves with FEC then deteriorates (there is an optimum).
- More FEC is needed when the delay is large (same thing for loss rate).
- Performance always improves with δ (even in the extreme case of large delay)!
- At large delay, the in-order delivery of packets is essential for good performance.
And if we combine both?

- The best performance can always be achieved with ARQ alone.
- For small values of d, some units of redundancy are needed for a full utilization.
ARQ is even more interesting in less challenging scenarios
And if we take less connections?

- The same result holds for one connection (advantage of ARQ-SR over FEC).
- Intuitively, more effort is needed to clean the wireless link.
Discussions

- **Counter-intuitive result: ARQ-SR almost better than FEC!**
 - The decrease in the packet loss rate with ARQ-SR is much more important than the increase in the end-to-end delay.
 - TCP adapts its Timeout value to the delay caused by ARQ.

- **Same results obtained with an analytical model:**

- **If there is a lesson:**
 - Choose first the maximum possible persistency level for ARQ-SR.
 - Then add FEC to correct the remaining errors.
 - FEC has to be adapted, ARQ-SR is adaptive by nature!
Future research

- What happens when we use a more realistic model for the traffic?
 - ARQ may be harmful for short TCP connections since they do not have enough time to adapt their timeouts.
 - And what about multimedia applications?
 - What about a QoS-aware tuning of FEC/ARQ-SR (use of DiffServ classes?)

- What happens when losses are bursty? The channel is dynamic? And how to adapt?