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Outline
• Introduction

– What do we mean by bursty losses?

• Our models
– A fluid model for rate evolution
– A two-state Markovian model for losses

• Performance analysis
– Moments and throughput calculation

• Model validation, conclusions and future work
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TCP and losses
• TCP

– Internet widely used transport protocol
– An additive-increase multiplicative-decrease strategy for 

congestion control
– Packet losses for congestion detection (possibly ECN)

• Loss event (or congestion event)
– An event that causes the reduction of the congestion window
– Interpretation: Depends on the version of TCP

• One packet loss for Reno
• One lossy round trip-time for Tahoe, New-Reno and SACK
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Why bursty losses?
• TCP modeling requires a characterization of inter-

losses times
• Simple loss processes have been considered in the 

literature 
(Deterministic e.g. [Mathis et al. 1997], Poisson e.g. [Misra et al. 1999])

• TCP throughput has been only expressed as a 
function of the average loss rate (e.g. p , λ)

• What happens if, for the same average loss rate, loss 
events tend to appear in bursts?
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Our fluid model for TCP
• Consider a long TCP transfer with infinite data to send
• Denote by X(t) the rate of the connection at time t (=W(t)/RTT )
• Assume that losses are quickly detected (without long Timeout)

X(t)

t

Linear increase at rate α Congestion detection
Multiplicative decrease (by    )

2
1



Tuesday, June 20 2000 6

Our Markovian model for losses
Potential loss moments

• Reduce the rate with a certain probability at some potential 
loss moments tn

X(t)

ttn tn+1 tn+2 tn+3 tn+4 tn+5

Dn Dn+1 Dn+3

Xn Xn+1

Xn+2

Xn+3

Assumptions: {Dn} are i.i.d., d=E[Dn] < ∞, d(2)=E[Dn
2] < ∞
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Our Markovian model for losses
The Markov chain

• The path is in one of two states: Bad (B) or Good (G)
• Reduce the transmission rate (the window) at potential 
loss moments with different probabilities (pG < pB)

• Denote by Y(t) the state of the path
• Take {Yn} as a two-state Markov chain (Gilbert model)

G B
g

b
g b

)1,0(, ∈gb
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Performance analysis

• Input parameters
– The average loss rate 
– The burstiness of losses via b and g

• Output parameter
– The throughput of the connection
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Stochastic difference equation
Let Un (resp. Vn) ∈ {0,1} indicate whether or not the rate is 
reduced at tn in the Good (resp. Bad) state
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Using Theorem 2A in [Glasserman and Yao,1995], and the fact 
that the reduction factor is one half, d < ∞, {Yn} is ergodic, we 
proved

• The difference equation has a unique stationary solution Xn*
• Xn converges to Xn* for any initial state X0
• {Xn} is an ergodic process
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Convergence of first moments
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We can write                         where Π is some matrix with only 
one eigenvalue equal to 1 and the others less than 1. Thus,          

converges and we define
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Calculation of moments
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From the stochastic difference equation, conditioning on the state 
of the path, we get the following implicit LT equation
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By taking derivatives and then setting s to 0, we can get all the 
moments of Xn* as a function of d, g, b, pG and pB
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Calculation of the throughput
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Impact of burstiness

• Consider in the following the case pG=0, pB=1 (no losses 
in the Good state and always losses in the Bad state)

• Define       as the throughput when losses are not bursty 
(a path with one state and with a loss probability πB)
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• The second term of the right-hand equation is always 
positive and increases with the burstiness (when g and b
increase in a way that πB and πG remain constant)
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Case of rate limitation
• The transmission rate may not exceed a certain limit (the 

receiver window in case of TCP, the PCR in case of ABR)

M

• We use a heuristic similar to that in [Padhye et al. 1998] to
approximate the throughput
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Throughput approximation
Divide the space of M into three regions

X(t)

t
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Rate evolution without limitation
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Throughput approximation
Large M

• Use the expression of      we found in case M=∞x
Medium M

• Assume that during the Good state, the rate starts at 
x0=E[Xn|Yn=G,Yn-1=B] , reaches and stays at M until 
the next loss event where it drops

• Calculate the average rate during the Good state 

• Calculate the average rate during the Bad state 
using the expression of the throughput in case M=∞
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Throughput approximation
Small M

• Take 
• Calculate      using the assumption that the rate 

reaches M between two potential losses

MxG =
Bx
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Difference from [Padhye et al. 1998]
We obtain more refined bounds by taking into 
account the bursty occurrence of losses
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Model validation
Add our model for losses to the Error Model object of the 
ns simulator and attach it to a satellite link

10 Mbps

30 ms

2 Mbps
250 msS B D

• A long ftp transfer (one hour)
• TCP version : SACK
• Packet size : 1000 bytes
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Variation of loss intensity
Fix g and b to 0.6 and change the inter-potential loss time

M=∞
Dn exponential
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Variation of burstiness
Fix d to 5 s and change b and g in a way that πG=πB=0.5

M=∞
Dn exponential
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b = P[ Yn+1=B | Yn=B ]
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Variation of loss intensity
Fix g and b to 0.6 and change the inter-potential loss time

M=BDP
Dn exponential
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Conclusions
• A two-state Markovian model for TCP 

performance (or any other similar flow 
control mechanism) on bursty paths

• For the same average loss rate, the 
performance of TCP increases when loss 
events tend to appear in bursts
Current formulas are conservative in a 
bursty environment
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Ongoing works

• Generalization of the model to multi-state paths
• Identification of the model parameters from real 

traces (uniformization technique)
E. Altman, K. Avrachenkov, C. Barakat, P. Dube, “TCP over a multi-
state Markovian path”, under submission

• Study of TCP under a general (not only 
Markovian) loss process
E. Altman, K. Avrachenkov, C. Barakat, “A stochastic model of 
TCP/IP with stationary random losses”, to appear at ACM SIGCOMM


