## TCP in presence of bursty losses

#### Eitan Altman, Kostya Avrachenkov

#### INRIA Sophia Antipolis - France

Email : Chadi.Barakat@sophia.inria.fr
http://www.inria.fr/mistral/personnel/Chadi.Barakat

ACM SIGMETRICS Tuesday, June 20 2000



# Outline

- Introduction
  - What do we mean by bursty losses?
- Our models
  - A fluid model for rate evolution
  - A two-state Markovian model for losses
- Performance analysis
  - Moments and throughput calculation
- Model validation, conclusions and future work



## TCP and losses

- TCP
  - Internet widely used transport protocol
  - An additive-increase multiplicative-decrease strategy for congestion control
  - Packet losses for congestion detection (possibly ECN)
- Loss event (or congestion event)
  - An event that causes the reduction of the congestion window
  - Interpretation: Depends on the version of TCP
    - One packet loss for Reno
    - One lossy round trip-time for Tahoe, New-Reno and SACK



# Why bursty losses?

- TCP modeling requires a characterization of interlosses times
- Simple loss processes have been considered in the literature

(Deterministic e.g. [Mathis et al. 1997], Poisson e.g. [Misra et al. 1999])

- TCP throughput has been only expressed as a function of the average loss rate (e.g. p,  $\lambda$ )
- What happens if, for the same average loss rate, loss events tend to appear in bursts?



#### Our fluid model for TCP

- Consider a long TCP transfer with infinite data to send
- Denote by X(t) the rate of the connection at time t = W(t)/RTT
- Assume that losses are quickly detected (without long Timeout)





## Our Markovian model for losses

#### Potential loss moments

• Reduce the rate with a certain probability at some potential



Assumptions:  $\{D_n\}$  are i.i.d.,  $d=E[D_n] < \infty$ ,  $d^{(2)}=E[D_n^2] < \infty$ 



## Our Markovian model for losses

#### The Markov chain

- The path is in one of two states: **Bad** (B) or **Good** (G)
- Reduce the transmission rate (the window) at potential loss moments with different probabilities ( $p_G < p_B$ )
- Denote by Y(t) the state of the path
- Take  $\{Y_n\}$  as a two-state Markov chain (Gilbert model)



## Performance analysis

- Input parameters
  - The average loss rate  $R = \frac{p_G \pi_G + p_B \pi_B}{d}$
  - The burstiness of losses via b and g
- Output parameter
  - The throughput of the connection

$$\overline{x} = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} X(\tau) d\tau$$





# Stochastic difference equation

Let  $U_n$  (resp.  $V_n$ )  $\in \{0,1\}$  indicate whether or not the rate is reduced at  $t_n$  in the **Good** (resp. **Bad**) state

$$X_{n+1} = \left(1 - \frac{U_n}{2}\right) X_n 1\{Y_n = G\} + \left(1 - \frac{V_n}{2}\right) X_n 1\{Y_n = B\} + \alpha D_n$$

Using Theorem 2A in [Glasserman and Yao,1995], and the fact that the reduction factor is one half,  $d < \infty$ ,  $\{Y_n\}$  is ergodic, we proved

- The difference equation has a unique stationary solution  $X_n^*$
- $X_n$  converges to  $X_n^*$  for any initial state  $X_0$
- $\{X_n\}$  is an ergodic process



# Let $\chi_n = \begin{bmatrix} E[X_n 1\{Y_n = G\}] \\ E[X_n 1\{Y_n = B\}] \\ P(Y_n = G) \\ P(Y_n = B) \end{bmatrix}$

We can write  $\chi_{n+1} = \Pi \chi_n$  where  $\Pi$  is some matrix with only one eigenvalue equal to 1 and the others less than 1. Thus,  $\chi_n$  converges and we define

$$x_G = \lim_{n \to \infty} E[X_n 1\{Y_n = G\}]$$
$$x_B = \lim_{n \to \infty} E[X_n 1\{Y_n = B\}]$$



#### Calculation of moments

$$Z(s) = \begin{bmatrix} Z(s,G) & Z(s,B) \end{bmatrix} = \lim_{n \to \infty} \begin{bmatrix} E[e^{-sX_n} 1\{Y_n = G\}] & E[e^{-sX_n} 1\{Y_n = B\}] \end{bmatrix}$$

From the stochastic difference equation, conditioning on the state of the path, we get the following implicit LT equation

$$Z(s) = D^*(\alpha s)Z(s)P_1 + D^*(\alpha s)Z(s/2)P_2$$
$$P_1 = \begin{bmatrix} g(1-p_G) & \overline{g}(1-p_G) \\ \overline{b}(1-p_B) & b(1-p_B) \end{bmatrix} \qquad P_2 = \begin{bmatrix} gp_G & \overline{g}p_G \\ \overline{b}p_B & bp_B \end{bmatrix}$$

By taking derivatives and then setting s to 0, we can get all the moments of  $X_n^*$  as a function of d, g, b,  $p_G$  and  $p_B$ 







## Impact of burstiness

- Consider in the following the case  $p_G=0$ ,  $p_B=1$  (no losses in the **Good** state and always losses in the **Bad** state)
- Define  $\overline{x}_r$  as the throughput when losses are not bursty (a path with one state and with a loss probability  $\pi_B$ )

$$\overline{x} = \overline{x}_r + \alpha d\pi_G \left(\frac{1}{1-g} - \frac{1}{\pi_B}\right)$$

• The second term of the right-hand equation is always positive and **increases** with the burstiness (when g and b increase in a way that  $\pi_B$  and  $\pi_G$  remain constant)



## Case of rate limitation

• The transmission rate may not exceed a certain limit (the receiver window in case of TCP, the PCR in case of ABR)



• We use a heuristic similar to that in [Padhye et al. 1998] to approximate the throughput



# Throughput approximation

Divide the space of M into three regions



# Throughput approximation

Large M

• Use the expression of  $\overline{x}$  we found in case  $M = \infty$ 

Medium M

- Assume that during the **Good** state, the rate starts at  $x_0 = E[X_n | Y_n = G, Y_{n-1} = B]$ , reaches and stays at *M* until the next loss event where it drops
- Calculate the average rate during the Good state  $\overline{X}_G$
- Calculate the average rate during the Bad state  $\overline{x}_B$  using the expression of the throughput in case  $M=\infty$

$$\overline{x} = \pi_G \overline{x}_G + \pi_B \overline{x}_B$$



# Throughput approximation

#### Small M

- Take  $\overline{x}_G = M$
- Calculate  $\overline{x}_B$  using the assumption that the rate reaches *M* between two potential losses

$$\overline{x} = \pi_G \overline{x}_G + \pi_B \overline{x}_B = M - \frac{M^2 \pi_B}{8\alpha d}$$

#### **The set of the set of**

We obtain more refined bounds by taking into account the bursty occurrence of losses



## Model validation

Add our model for losses to the Error Model object of the ns simulator and attach it to a satellite link



• Packet size : 1000 bytes



## Variation of loss intensity

Fix g and b to 0.6 and change the inter-potential loss time



#### Variation of burstiness

Fix *d* to 5 s and change *b* and *g* in a way that  $\pi_G = \pi_B = 0.5$ 





## Variation of loss intensity

Fix g and b to 0.6 and change the inter-potential loss time



#### Conclusions

- A two-state Markovian model for TCP performance (or any other similar flow control mechanism) on bursty paths
- For the same average loss rate, the performance of TCP *increases* when loss events tend to appear in bursts
- Current formulas are conservative in a bursty environment



# Ongoing works

- Generalization of the model to multi-state paths
- Identification of the model parameters from real traces (uniformization technique)

E. Altman, K. Avrachenkov, C. Barakat, P. Dube, "TCP over a multistate Markovian path", under submission

• Study of TCP under a general (not only Markovian) loss process

E. Altman, K. Avrachenkov, C. Barakat, "A stochastic model of TCP/IP with stationary random losses", to appear at ACM SIGCOMM

