Performance of Short TCP Transfers

Chadi Barakat and **Eitan Altman** MISTRAL Team INRIA Sophia Antipolis, France

Email: {cbarakat,altman}@sophia.inria.fr http://www.inria.fr/mistral/personnel/Chadi.Barakat

Outline

- Studied problem: Burstiness of Slow Start.
- Questions:
 - How to increase the window during Slow Start?
 - How to set the Slow Start threshold?
- A model with some simulation results.
- A proposition that preserves the ACK clock.
- Conclusions.

An overview of TCP Start-Up

A quick increase of the window (by one segment for every new ACK) until reaching the Slow Start threshold (W_{th}) or filling the network pipe (W_{max}) .

TCP burstiness during Slow Start

- Caused by the ACK clock and the fast window increase (i.e. packets are transmitted in a burst upon ACK receipt).
- Results:
 - Early buffer overflow and under-estimation of the available bandwidth.
 - Prohibits a faster version of Slow Start required on long delay paths (e.g. satellite links).

Some questions

- How to dimension network buffers?
- How fast to increase the window?
- How to set the Slow Start threshold?
- Try to find a window increase policy that preserves the ACK clock.

Related works

- Byte Counting : Consider the number of bytes covered by an ACK while increasing the window. Proposed to recover from the impact of Delay ACK on satellite links.
- Set the Slow Start threshold at the beginning of the connection to the bandwidth-delay product. The flow of ACKs is used for inferring path parameters.

Define d as : W((n+1)T) = W(nT) + W(nT)/d

Problem: Find the window at which *B* overflows during Slow Start (W_B) assuming that W_{th} is set to infinity.

The overflow window W_B

$W_B = \min[(B + \mu T), B(d + 1)] = \min[W_{\max}, B(d + 1)]$

Corollaries

- Buffer size to be set to more than $\mu T/d$ in order for Slow Start to fill the network pipe.
- The Slow Start threshold to be set to just less than W_B in order to avoid losses.
- The window growth rate during Slow Start can be increased until *B* becomes less than

$$\frac{\min[W_{th}, W_{\max}]}{d+1}$$

A couple of simulations

- Simulator : ns
- TCP version : Reno
- MSS : 512 bytes

Impact of B on W_{th} choice

File size : 100 Kbytes.

 W_{th} less than the bandwidth-delay product (BDP).

Interaction between d and B

 W_{th} set to a large value. Plot the throughput as a function of the file size.

How to increase the window?

Let d_0 represent the maximum window increase rate.

Decreasing Byte Counting

- Let $d_0=1$ and set a value for d_{\max} (1,2,...).
- Upon ACK arrival at the source :
 - Standard TCP (d=2) : W + = 1
 - Limited Byte Counting (d=1) :

 $W + = \min(DataCovered, 2)$

- Decreasing Byte Counting (d=1 to d_{max}): $W + = \min(DataCovered, 2) \left(d_{\text{max}} + (1 - d_{\text{max}}) \times \frac{W - W_{th}}{1 - W_{th}} \right)^{-1}$

Simulation

Set W_{th} to the BDP. Take *B* such that d=2 is not aggressive and d=2 is.

Case of multiple connections

- Multiple connections of close RTT share the bottleneck.
- A new connection finds N packets in the network where $W_{\text{max}}/2 < N < W_{\text{max}}$.

The overflow window W_B

- Similarly to the case of a single connection $W_B = \min[W_{\max} - N, B(d+1)]$ $- W_B$ varies between 0 and W_B^{max} $W_B^{max} = \min[W_{max}/2, B(d+1)]$
 - The window growth rate during Slow Start can be increased as long as

$$B > \frac{\min[W_{th}, W_{\max} - N]}{d+1} \ge \frac{\min[W_{th}, W_{\max}]}{d+1}$$

NRIA

- Multiple transfers per source.
- File size chosen randomly between 100KB and 1MB.
- 50 simulations of 50 seconds each.

Validation of the model for W_B

Plot the average throughput as a function of W_{th} .

Decreasing Byte Counting

Set d_0 to 1, d_{max} to 2 and W_{th} to the BDP. Plot the average throughput as a function of *B*.

Decreasing Byte Counting

Plot the retransmission ratio as a function of *B*.

Conclusions and Perspectives

- A simple model for the study of Slow Start:
 - A problem of STCP in case of small buffers.
 - A limit on the window increase rate and thus on the duration of Slow Start.
- Decreasing Byte Counting: Reduce the burstiness as long as the window grows.
- Still have to investigate the other direction for Slow Start enhancement: *Packet Pacing*.

