Analysis of packet sampling in the frequency domain

Alfredo Greco Chadi BARAKAT

Politecnico di Bari, Italy INRIA Sophia Antipolis, France
Planète research group

Email: Chadi.Barakat@sophia.inria.fr
WEB: http://www.inria.fr/planete/chadi
Motivations

- Packet sampling, a technique to reduce the load on routers by monitoring a subset of packets then inverting sampled measurements
- Many papers have studied the problem with stochastic tools (Duffield et al, Veitch et al, Estan et al, Diot et al, Zseby et al)
 - A snapshot of traffic
 - Sampled randomly then measured
 - Inverted to reduce some error function e.g. MSE
 - **Metrics**: traffic volume, flow size distribution, heavy hitter statistics, flow counting, etc
- How does packet sampling impact the spectrum of the traffic?
 - What frequencies can we preserve for management applications?
Outline

- Models for traffic and spectrum
- Analysis of packet sampling
- Aliasing noise and its removal by low pass filtering
- The Filter-Bank solution
- Simulation results and conclusions
Traffic model and spectrum

- **Traffic**: A time series of packets of different sizes d_n

- **Measured traffic rate**:
 - Divide time into small bins
 - Volume of bytes per bin divided by bin length T
 - The larger the bin the coarser the measurement

- **Targeted traffic spectrum**:
 - Spectrum of the binned traffic rate
 - Energy of different frequency components
Let $D(f)$ be the spectrum of the original traffic

- Traffic discretized in tiny time slots t_0
- Periodic spectrum of period $1/t_0$

$$D(f) = \sum D_0(f+n/t_0)$$

Suppose the existence of a maximum frequency f_M with $0 < f_M < 1/t_0$

An example of a real baseband
Analysis: No Sampling, With Binning

- Binning equivalent to low pass filtering with band 0.445/T

Convolution with a low pass filter of band 0.445/T

Energy of signal of interest
Analysis: Sampling

- Traffic sampled with rate $p < 1$

- Let $D_p(f)$ be the spectrum of the sampled traffic

 - Result: A replication of $D_0(f)$ with period p/t_0 in the band of interest

 - Scaled down by p

$$D_p(f) \approx p \sum D_0(f+n.p/t_0)$$
for $f \ll p/t_0$
Analysis: Sampling, With Binning

- By binning and scaling up by $1/p$, one can recover the signal of interest.
Aliasing for small sampling rates

- The smaller the sampling rate, the closer the replicas
 - There is a sampling rate below which they overlap

- If the binning is not coarse enough, aliasing occurs. We get a noisy signal.
Aliasing in the baseband

Baseband component of $D_p(f)/p$: (a) $p = 1$; (b) $p = 0.1$; (c) $p = 0.03$; (d) $p = 0.005$.
Aliasing noise elimination

For a traffic of maximum frequency f_M in the baseband

- Either increase the sampling rate to avoid the overlap of replicas in the band of interest
 - Always work

- Or increase the binning interval T
 - Will not work if $p/t_0 < f_M$ (sampling too much)

- General result: Spectrum of the binned traffic rate is preserved upon traffic sampling if and only if

$$0.445 / T < p/t_0 - f_M$$
Determining the bin to use

- Fixing the sampling rate and changing the bin is not enough
 - The energy changes with

- One has to fix the bin and change the sampling rate
 - In practice, the traffic is already sampled, so downsampling is not possible. Only upsampling is possible.

- Our solution: Filter-Bank to check Traffic Variance (Energy)
 - Try different bin sizes.
 - For each bin, further increase the sampling rate.
 - If energy (variance) quickly increases, aliasing exists.
 - If energy (variance) slowly increases, the bin size is fine.
Sampling rates vs bin sizes

- Using traces from the Japanese MAWI project cut into pieces
Conclusions

- An analysis of packet sampling in the frequency domain
- An expression relating:
 - Sampling rate
 - Maximum frequency in the baseband
 - Minimum binning interval
 in order to avoid aliasing and sampling noise
- Future plans:
 - Estimate the amount of noise caused by aliasing
 - Further study of traffic spectrum and the origins of its components