Analysis of packet sampling in the frequency domain

Alfredo Grieco

Chadi BARAKAT

Politecnico di Bari, Italy

INRIA Sophia Antipolis, France Planète research group

Email: Chadi.Barakat@sophia.inria.fr WEB: http://www.inria.fr/planete/chadi

Motivations

- Packet sampling, a technique to reduce the load on routers by monitoring a subset of packets then inverting sampled measurements
- □ Many papers have studied the problem with stochastic tools (Duffield et al, Veitch et al, Estan et al, Diot et al, Zseby et al)
 - A snapshot of traffic
 - Sampled randomly then measured
 - Inverted to reduce some error function e.g. MSE
 - Metrics: traffic volume, flow size distribution, heavy hitter statistics, flow counting, etc
- □ How does packet sampling impact the spectrum of the traffic?
 - What frequencies can we preserve for management applications?

Outline

- □ Models for traffic and spectrum
- □ Analysis of packet sampling
- □ Aliasing noise and its removal by low pass filtering
- □ The Filter-Bank solution
- $\hfill\square$ Simulation results and conclusions

Traffic model and spectrum

□ Traffic: A time series of packets of different sizes d_n

Measured traffic rate:

- Divide time into small bins
- Volume of bytes per bin divided by bin length T
- The larger the bin the coarser the measurement

□ Targeted traffic spectrum:

Analysis: No Sampling

 \Box Let D(f) be the spectrum of the original traffic

Analysis: No Sampling, With Binning

□ Binning equivalent to low pass filtering with band 0.445/T

Analysis: Sampling

- □ Traffic sampled with rate p < 1
- \Box Let $D_p(f)$ be the spectrum of the sampled traffic
 - Result: A replication of $D_0(f)$ with period p/t_0 in the band of interest

Analysis: Sampling, With Binning

□ By binning and scaling up by 1/p, one can recover the signal of interest

Aliasing for small sampling rates

 $\hfill \Box$ The smaller the sampling rate, the closer the replicas

INRIA

Aliasing in the baseband

Baseband component of $D_p(f)/p$: (a) p = 1; (b) p = 0.1; (c) p = 0.03; (d) p = 0.005.

Aliasing noise elimination

For a traffic of maximum frequency f_M in the baseband

Either increase the sampling rate to avoid the overlap of replicas in the band of interest

• Always work

 \Box Or increase the binning interval T

• Will not work if p/t₀ < f_M (sampling too much)

General result: Spectrum of the binned traffic rate is preserved upon traffic sampling if and only if

 $0,445 / T < p/t_0 - f_M$

Determining the bin to use

□ Fixing the sampling rate and changing the bin is not enough

• The energy changes with

• One has to fix the bin and change the sampling rate

• In practice, the traffic is already sampled, so downsampling is not possible. Only upsampling is possible.

□ Our solution: Filter-Bank to check Traffic Variance (Energy)

- Try different bin sizes.
- For each bin, further increase the sampling rate.
- If energy (variance) quickly increases, aliasing exists.
- If energy (variance) slowly increases, the bin size is fine.

Sampling rates vs bin sizes

□ Using traces from the Japanese MAWI project cut into pieces

Conclusions

□ An analysis of packet sampling in the frequency domain

- □ An expression relating:
 - Sampling rate
 - Maximum frequency in the baseband
 - Minimum binning interval

in order to avoid aliasing and sampling noise

□ Future plans:

- Estimate the amount of noise caused by aliasing
- Further study of traffic spectrum and the origins of its components

