Bandwidth tradeoff between TCP and link-level FEC

Chadi Barakat & Eitan Altman

INRIA - Sophia Antipolis, France

International Conference on Networking

July 12, 2001

Colmar - France

Outline

Introduction:

- Problem of TCP over wireless links.
- **•** FEC as a promising solution.
- Bandwidth tradeoff between TCP and FEC.

Our analytical model:

- Memorlyess wireless links.
- Bursty wireless links.
- Numerical and simulation results.
- Concluding remarks.

TCP and FEC over wireless links

TCP suffers from transmission errors since it interprets them as congestion signals (unnecessary reduction of the transmission rate).

• TCP throughput known to be inv. prop. to $\sqrt{Packet Loss Rate}$

- Forward Error Correction shields TCP from transmission errors by correcting them locally without the intervention of TCP.
 - FEC is very promising since errors are corrected on runtime without any retransmission or disordering of packets. This eliminates any interferences with TCP congestion control mechanisms.

A model for FEC

Division of a TCP packet into K link-level units (e.g., ATM cells) and addition of R units of redundancy

N = K + R

Relative amount of FEC = N/K

Redundancy Original data

Internet

K

Server

R

Delivery of a packet to higher layers if at least K of its N linklevel units are correctly received.

Client

A TCP packet can now resist to the loss of up to R units without being discarded.

Bandwidth tradeoff

- The Addition of FEC reduces the loss rate and improves the throughput of TCP until a point where TCP is able to fully utilize the available bandwidth.
- Any addition of FEC beyond this point will deteriorate the performance of TCP.
- **Our objective:** Find the amount of FEC that leads to the best TCP throughput.
 - Optimize the amount of FEC when the wireless link is the bottleneck and when only one TCP connection is running.
 - The solution to this particular case will also be the solution to the most general case (multiple connections, non-congested wireless link).

The model

- $\mathbf{P} =$ Loss probability of a TCP packet on the wireless link.
- μ = Total bandwidth of the wireless link in terms of link-level units per second.
- $f(\mathbf{P},\mathbf{RTT}) = \text{TCP}$ throughput without bandwidth limitation (e.g., square root formula $\frac{1}{\text{RTT}}\sqrt{\frac{3}{2\text{P}}}$).

TCP throughput = min($f(P, RTT), \frac{K}{N}\mu$)

Problem: Calculate P as a function of the amount of FEC and the loss process of link-level units (two-state Gilbert model to account for burstiness).

The analysis

Non-bursty case (Bernouilli):

 $\mathbf{P} = \operatorname{Prob}\{\text{more than } \mathbb{R} \text{ losses in a frame of } \mathbb{N} \text{ units}\} = \sum_{i=0}^{K-1} \binom{N}{i} (1-p)^i p^{N-i}$

Bursty case:

- Only one burst of losses can hurt a packet at a time.
- The wireless link converges quickly to its stationary regime.

 $\mathbf{P} = \text{Prob}\{\text{a burst of more than } \mathbb{R} \text{ losses hurts somewhere the packet}\}$

 $\approx q^{N-K} L \left((1-q)K + q \right)$

with L being the average loss rate equal to p/(p+1-q)

Results: Non-bursty case (1)

Case study: Long-life TCP connection over a 1.5 Mbps wireless ATM link. All numerical results validated with ns simulations.

- TCP throughput increases with the amount of FEC until the optimal point, then starts to decrease.
- For the same amount of FEC, large frames (large packets) give better performance due to a faster TCP window increase.

Results: Non-bursty case (2)

Optimal amount of FEC for a rate of losses equal to 1% :

Amount of FEC (N/K)

Results: Non-bursty case (3)

The more the FEC, the better the resistance of TCP to an increase in the loss rate.

 The cost for a large amount of FEC is a smaller TCP throughput at low loss rates.

Log10 of the loss rate

Results: Non-bursty case (4)

Define the gain of a FEC scheme as:

Gain in TCP throughput Bandwidth consumed by FEC

 The gain decreases with the addition of FEC, with a high gain for low loss rates.

Amount of FEC N/K

Results: Non-bursty case (5)

Better gain can be obtained if we use a small amount of FEC and open many TCP connections to fully utilize the available bandwidth.

C = Number of TCP connections

Results: Bursty case (1)

For an average loss rate of 1%, we increase the burstiness of transmission errors:

 A large amount of FEC resists better to a clustering of losses, but at the expense of a smaller TCP throughput when transmission errors stop being clustered.

Burstiness of transmission errors

Results: Bursty case (2)

For the same amount of FEC, we study the impact of the frame size:

- A large frame size results in a better performance due to a faster window increase and a larger number of redundant units per TCP packet.
- The advantage of increasing the frame size is that we will not lose in performance when transmission errors stop being bursty.

Burstiness of transmission errors

Conclusions

Guidelines for the implementation of a 'TCP-friendly' FEC:

Choose first the maximum possible frame size.

Then, add FEC so that a single TCP connection is able to full utilize the available bandwidth (using for example the result of our model).

Future work:

- Study some kind of adaptive FEC scheme that permits to change the amount of redundancy as a function of the load and the burstiness of errors.
- Consider the needs of non-TCP flows (e.g., audio flows) in the optimization of FEC.

