Message Drop and Scheduling in DTNs: Theory and Practice

Chadi BARAKAT, Ph.D.

INRIA Sophia Antipolis, France
Planète research group

Joint work with Amir Krifa, INRIA
Thrasyvoulos Spyropoulos, EURECOM

Email: Chadi.Barakat@sophia.inria.fr
WEB: http://www.inria.fr/planete/chadi
The DTN principle

- Rely on node mobility to route messages through disconnected networks
 - A node can be a human carrying a laptop or PDA, a bus, a car, a satellite, etc
 - Nodes carry messages of each other while moving

- At the opposite of existing networks, no end-to-end path is required during the communication
 - Hop-by-Hop networking compared to existing end-to-end paradigm
 - Message vs packet
 - Message replication and forwarding between DTN nodes
Many applications

- Space communication
 - Satellites move. Not always in sight of each other.
- Sensor network (e.g. zebranet)
 - Sensors that move and that need to send data to sinks.
 - Cars that communicate.
- Pocket switched networks:
 - PDAs and laptops that communicate.
- Internet to nomadic communities
 - Caravans, buses, boats, etc.
- etc
An important block: DTN routing

- The block that decides whether to replicate a msg or not
- An important tradeoff:
 - The more the copies the more the chance
 - But the more the load on the network
- Different options:
 - Global optimal: when routes are known a priori (the rural case)
 - Epidemic: give a copy to everyone
 - Utility-based: copy to those that have more chance to reach soon the destination (or that are good relays)
 - Spray-and-wait: Limit the number of copies in the network
Scheduling and Drop in DTNs
Another important component

- An intelligent routing limits the number of copies, but is not the final solution...

- Nodes’ buffers can still overflow due to many messages
 - Which message to drop in case of congestion?
 - Last In? First In? Oldest? Youngest? Other?

- Contact times can be shorter than what is needed to exchange messages between nodes
 - In there is a way to forward the most useful messages first?

- Two important and still open problems
Outline of the talk

- A analytical framework
- Optimal solution that requires global knowledge
- Distributed version that works in practice
- Validation by simulations and real traces
- Conclusions
Methodology

- Consider point-to-point communications (can be generalized)
- Suppose first global knowledge
- Take a global routing metric as the delay or delivery rate
- Find what is the best policy to drop and schedule
 - Drop locally (or schedule first) the message that leads to the best marginal gain in the considered global metric
 - Model this gain as a per-message utility
 - Our optimization is then local (or greedy)
- Try to estimate the global knowledge using global information BUT on old messages ...
Some notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K(t)$</td>
<td>Number of distinct messages in the network at time t,</td>
</tr>
<tr>
<td>TTL_i</td>
<td>Initial Time To Live for message i,</td>
</tr>
<tr>
<td>L</td>
<td>Number of nodes in the network,</td>
</tr>
<tr>
<td>R_i</td>
<td>Remaining Time To Live for message i,</td>
</tr>
<tr>
<td>$T_i = TTL_i - R_i$</td>
<td>Elapsed Time for message i. It measures the time since this message was generated by its source,</td>
</tr>
<tr>
<td>$n_i(T_i)$</td>
<td>Number of copies of message i in the network after elapsed time T_i,</td>
</tr>
<tr>
<td>$m_i(T_i)$</td>
<td>Number of nodes (excluding source) that have seen message i since its creation until elapsed time T_i.</td>
</tr>
<tr>
<td>λ</td>
<td>Meeting rate between two nodes $= 1 / \text{average meeting time}$</td>
</tr>
</tbody>
</table>
Case of delivery rate

- Suppose each message has limited lifetime (TTL)
 - Our framework is general enough to allow different TTLs
- Suppose global knowledge on the number of copies per message (estimators to be presented next)
- Global delivery rate at the time of congestion is then:

\[
DR = \sum_{i=1}^{K(t)} P_i = \sum_{i=1}^{K(t)} \left(1 - \frac{m_i(T_i)}{L-1}\right) \cdot \left(1 - \exp\left(-\lambda n_i(T_i)R_i\right)\right) + \frac{m_i(T_i)}{L-1}
\]

Assumption: meeting times have an exponential tail (known to be a reasonable assumption after some mixing time)
Case of delivery rate

We differentiate:

\[\Delta(DR) = \sum_{i=1}^{k(t)} \frac{\partial P_i}{\partial n_i(T_i)} \Delta(n_i(T_i)) = \sum_{i=1}^{K(t)} \left(1 - \frac{m_i(T_i)}{L-1}\right) \lambda R_i \exp(-\lambda n_i(T_i) R_i) \Delta(n_i(T_i))\]

The best message to drop is the one having the \textbf{minimum} partial derivative:

\[\left(1 - \frac{m_i(T_i)}{L-1}\right) \lambda R_i \exp(-\lambda n_i(T_i) R_i)\]

And the message to schedule first is the one maximizing it.

This is a function of global information on message \(i\). We call it \textit{per-message utility relative to delivery rate}.

We call the resulting policy \textbf{GBSD} (Global knowledge based scheduling and drop).
Case of delivery delay

In the same way, one can find the per-message utility relative to the global delivery delay:

\[
\frac{1}{n_i^2(T_i)\lambda} \left(1 - \frac{m_i(T_i)}{L-1} \right)
\]

To minimize the global delivery delay:

- Drop the message having the smallest utility
- Schedule first the message having the largest utility

For more details:

Some observations

- The optimal decision is function of the number of copies of a message and its remaining lifetime

\[
1 - \frac{m_i(T_i)}{L-1} \lambda R_i \exp(-\lambda n_i(T_i)R_i)
\]

- Not equivalent to any simple policy: Drop Tail, Drop Front, Drop Youngest and Drop Oldest

- A node needs to know the global information on the messages present in its buffer

- Note that our policy does not make any assumption on the underlying routing protocol
Heterogeneous mobility

- Nodes might have different speeds or different interactions with each other
- They might meet at different rates λ
- The extension is straightforward

For Delivery Rate, per-message utility becomes

$$\left(1 - \frac{m_i(T_i)}{L-1}\right) \ln(\Gamma(R_i)).(\Gamma(R_i))^{n_i}$$

where $\Gamma(R_i)$ is the Laplace Transform of λ at point R_i
Optimality

- We are trying to solve the following optimization problem

 Best copy allocation that maximize global metric

 While satisfying storage resource constraint

- We don’t solve this problem at once

- But iteratively, with one step towards the optimum upon each contact between nodes

- We keep tracking any change in the optimal allocation

 - Because new messages arrive

 - And others are delivered
Distributed version: How to calculate n and m?

- \(n = \) number of copies of a message
- \(m = \) number of nodes that have seen the message

Flooding (like in RAPID by UMASS) does not work because it takes long time to converge

- The information is stale by the time it reaches everyone

Our solution:

- Still flood information on messages
- Estimate \(n \) and \(m \) from what happened to old messages at the same elapsed time
- Assuming of course a stationarity of the order of flooding time
Distributed version (ctd)

Requirements:

- Estimators are to be plugged in the utility expressions
- We want the global network performance to be preserved
 - Same average delivery delay and same average delivery rate

Suppose m and n follow two random variables M and N
Take for example the delivery rate. Estimators should satisfy:

\[
\text{mean delivery rate} = \text{estimated delivery rate}
\]

\[
E \left[\left(1 - \frac{M(T)}{L-1}\right) \times \left(1 - \exp(-\lambda N(T)R) \right) \right] + \frac{M(T)}{L-1} = \left(1 - \frac{\hat{m}(T)}{L-1}\right) \times \left(1 - \exp(-\lambda \hat{n}(T)R) \right) + \frac{\hat{m}(T)}{L-1}
\]
Distributed version (ctd)

- We set the estimator of m to its expectation (justified by a Gaussian distribution)
 - Another value can be used
- We solve the previous equation to get the estimator of n:

$$
\hat{n}(T) = -\frac{1}{\lambda R_i} \cdot \text{Ln} \left(\frac{E\left(1 - \frac{M(T)}{N-1}\right) \cdot \exp\left(-\lambda R_i N(T)\right)}{1 - \frac{\bar{m}(T)}{L-1}} \right)
$$

- Then we plug in the per-message utility expression

![Chart showing M(T) for different nodes with 25% TTL]
Distributed version: Message utility expressions

For the delivery rate:

\[\lambda R_i E \left[\left(1 - \frac{M(T)}{L-1} \right) \exp\left(-\lambda R_i N(T) \right) \right] \]

For the delivery delay:

\[E \left[\frac{(L-1-M(T))^2}{N(T)} \right] \frac{\lambda}{\lambda(L-1)(L-1-m(T))} \]

Expectation calculated by summing over old messages
Experimental results: Setup

<table>
<thead>
<tr>
<th>Mobility model</th>
<th>Random Waypoint</th>
<th>Traces du projet ZebraNet</th>
<th>Traces du projet Cabspotting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation duration (s):</td>
<td>5000</td>
<td>5000</td>
<td>36000</td>
</tr>
<tr>
<td>Simulated Surface (m²):</td>
<td>1000*1000</td>
<td>1500*1500</td>
<td>-</td>
</tr>
<tr>
<td>Number of nodes:</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Average speed (Km/h):</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TTL (s):</td>
<td>650</td>
<td>650</td>
<td>7200</td>
</tr>
<tr>
<td>Intervalle CBR (s):</td>
<td>200</td>
<td>200</td>
<td>2100</td>
</tr>
</tbody>
</table>

DTN architecture added to the ns-2 simulator
MAC = 802.11b, range=100m, CBR sources, random sources and destinations
Delivery Rate

Messages of 1Kbytes each (Random Way Point)

Very close

Almost 50% gain over DropTail
Delivery rate

Messages of 1Kbytes each (Real Traces)
Flooding vs. History

Messages of 1Kbytes each (Random Way Point)
Delivery Delay

Messages of 1Kbytes each (Random Way Point)

Again, almost 50% gain
Samples of utility functions

- The utility of an additional copy of a message at any time
- It solely reflects network conditions
- For a highly loaded network (complex function):
 - prefer younger ones
 - help the message over younger ones
 - penalize – help – penalize
Samples of utility functions

- For a lightly loaded network, it seems things are easier and simple policies can be applied:

Schedule Youngest First – Drop Oldest
Reducing the signaling load

- To build the history, nodes need info on past messages:
 - How many copies each message had in the network
 - And this is for each moment of its life (we bin the lifetime)
Reducing the signaling load

- Several optimizations:
 - **Binning**: Increase time granularity and hence reduce information
 - **Message sampling**: A node selects some messages and track them while moving (who got them and when)
 - **MUM**: Number of Messages Under Monitoring
 - **Updates’ filtering**: Nodes exchange information when they have something new to say on a message (new copy and drop)

- When a message TTL expires, move it to the history cache
- Signaling traffic can be limited to few KBytes per contact
Reducing the signaling load

- Volume of signaling traffic

The signaling traffic even decreases with the load !!
(the more the load the less the new events / message)

No pay in performance

Chadi BARAKAT
Implementation / Web page

- HBSD is available for the network simulator NS2
- And is also available for the DTN2 architecture as an external router (in C++)
- Code has been recently tested in the Scorpion testbed at the University of California Santa Cruz
- Code, papers, presentations are available at:

 http://planete.inria.fr/HBSD_DTN2/
Conclusions

- An analytical framework to better understand the scheduling and drop of messages in DTNs
- Two optimal policies for the cases of delivery rate and delay
- A distributed version of the optimal policies that WORK
- Validation with a synthetic mobility model and real traces

Next steps:
- Study the interaction with routing protocols
- Extension to a publish/subscribe scenario (> 1 dest)
Thanks for your attendance!

Email: Chadi.Barakat@sophia.inria.fr
WEB: http://www.inria.fr/planete/chadi
Message Drop in DTNs

B gives A a copy of message 5 but A’s buffer is full

Drop Last

Could be a bad decision if message 5 is a young message
Message scheduling in DTNs

B gives A the three missing messages in FIFO order, but A leaves before 9 is sent.

Could have been better to give message 9 first.