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Abstract

In this paper we analyze the performance of a TCP-like flow control mechanism in a lossy environment. The transmission
rate in the control scheme that we consider has a linear growth rate; whenever a loss occurs, the transmission rate is halved.
This approximates the performance of several versions of TCP that divide their congestion window by two when a loss is
detected. We propose a mathematical model that allows to account for burstiness in the loss process. We compute the expected
transmission rate and its moments at some potential loss instants, and provide useful implicit and explicit expressions for
the Laplace Stieltjes transform. This allows us to compute explicitly the time average of the transmission rate as well as its
moments. We show that the time average of the transmission rate is indeed sensitive to the distribution of losses, and not just
to the average loss rate: for a given average loss rate, we show that the time average of the transmission rateincreaseswith
the burstiness of losses. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Flow control mechanisms in the Internet, particularly those of the transmission control protocol (TCP)
[19,24], use the loss of packets as an indication of network congestion. In general, the transmission
rate of the controlled flow is linearly increased until a loss occurs. The network is supposed here to be
congested and the transmission rate is multiplicatively decreased in order to alleviate this congestion.
In TCP as an example, the transmission rate is controlled via a congestion window which is increased
in absence of losses and decreased upon loss detection [24]. Another set of flow control mechanisms
recently introduced into multimedia applications consists in measuring the loss rate of packets and in
controlling the transmission rate in a way to be friendly with TCP transfers [15,16]. Explicit expressions
for TCP throughput for a given loss rate (e.g. [23]) are used for this purpose.

A good understanding of the impact of a loss process on the performance of a flow control mechanism
is required for a good network and protocol tuning. Several previous works have addressed the problem of
TCP performance as a function of data packet losses. The focus on TCP is due to the dominance of TCP

q This paper is an extended version of Altman et al., TCP in presence of bursty losses, ACM SIGMETRICS, June 2000.
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traffic in today’s Internet. Some of these works [14,20,21,23] have studied the impact of the intensity of
losses (or the average loss rate) on the performance. TCP packets are assumed to be lost independently
with the same probability. Explicit expressions for the throughput of the TCP connection are derived by
simply dividing the average number of packets transmitted between losses to the average time between
losses. No other parameter than the packet loss probability is used to characterize the distribution of loss
instants over time. As we will see in this paper, this will cause a wrong estimation of the throughput when
a certain burstiness of losses exists. Other works [6,10,11] have addressed the problem of burstiness of
packet losses but in the wireless environment context. It is known that due to multiple phenomena such as
multi-path fading [12], wireless links as those found in terrestrial wireless networks or satellite networks
present a certain degree of transmission error burstiness. The impact of consecutive packet losses on the
different versions of TCP is studied in these works [6,10,11]. They model losses with a two-state Markov
chain where small bursts of losses appear in an independent and uniform manner. They study then TCP
performance as a function of the average rate of bursts as well as the average burst size. But, the new
versions of TCP (New Reno, SACK) [13] are able to resist to consecutive packet losses and to reduce
the window once for all packet losses in the same round trip time (RTT) (i.e. from the same window of
data). This will result in these models becoming similar to the previous ones since they study the impact
on TCP performance of only the average rate at which the window is reduced.

In this paper we propose a completely different model for a TCP-like flow control protocol that, in
addition to the average rate of window reduction events, accounts for the burstiness of these events.
Rather than looking at the packet level and considering the probability that a packet is lost, we look at the
transmission rate level and consider the moments at which the transmission rate is reduced. We associate
then a loss process to these moments. A loss event is equivalent to a transmission rate reduction event.
This loss can be the result of a single packet loss or multiple consecutive packet losses from the same
window. This depends on the version of TCP and its reaction to packet losses. Our aim is to study the
impact of burstiness of this loss process on the throughput of the connection. We compute the expectation
of the transmission rate as well as expressions for its Laplace Stieltjis transform at some potential loss
instants. This allows us to compute the time average of the transmission rate which we call the throughput
of the transfer. We show that the throughput is indeed sensitive to the distribution of losses, and not just
to the average loss rate: for a given average loss rate, we show that the throughput increases with the
burstiness of losses. Our results are compared to simulations done with thens simulator developed at
LBNL [22] and a good match is reported.

The structure of the paper is as follows. In the next section, we present our model for losses and for the
controlled rate. Section 3 contains our analysis of the performance of the transmission rate in presence
of losses. At the end of this section, we give the general expression of the throughput. The throughput
in the case of an independent loss process having the same average loss rate as a bursty loss process is
defined. This latter throughput is then used as a reference to show the effect of burstiness. In Section 4,
we study the impact of the parameters of the loss process on the performance. The analytical results are
compared to simulation ones. The paper is concluded in Section 5.

2. The model

Consider a flow control mechanism where the transmission rate grows linearly at a rateα per unit of
time. The growth continues until a loss occurs. The transmission rate is halved and the linear growth
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is then resumed. This model approximates the performance of several versions of TCP. Indeed, the
transmission rate of a TCP connection at any instant is equal to the window size divided by the RTT.
The window in turn increases by one packet for every window’s worth of acknowledgments (ACK) [19].
This results in a linear rate increase by a factorα = 1/RTT2 if ACKs are not delayed at the destination
andα = 1/2RTT2 if ACKs are delayed [24] (the linear growth is known to hold for TCP connections in
which the bandwidth-delay product is large in comparison with queueing delays, since in that case, RTT
is almost constant. If queueing delays are large, however, the actual growth is sub-linear, see [1]). This
linear window increase corresponds to the congestion avoidance mode of TCP. The slow start mode is
neglected in this paper due its fast exponential window increase. The model can also approximate any
additive-increase multiplicative-decrease flow control mechanism.

Let us propose a model which accounts for burstiness of losses. The Gilbert model is often used in this
context [12]. The path between the source and the destination called channel in the wireless terminology
is assumed to have two states:GoodandBad; losses are assumed to occur in the Bad state. The time
during which the channel is in a Good or in a Bad state is taken to be geometrically (or exponentially)
distributed. We propose an extension of this model in order to handle generally distributed periods of
Good and Bad states. Our model is related to the Markovian arrival process (MAP) process [18]. We
allow losses to occur both in the Good state as well as in the Bad state; the occurrence of losses in each
of these states is different. To that end, we define a series of potential losses. LetTn denote the time at
which thenth potential loss may occur. LetDn, n = 1, 2, . . . be the sequence of times between potential
losses:Dn = Tn+1 −Tn. Dn are assumed to be i.i.d. with expectationd, second momentd(2) and Laplace
Stieltjes transformD∗(s). Let Xn be the transmission rate just prior to the instant of thenth potential
loss.

Potential losses are transformed to real losses with a certain probability. This is similar to MAP processes
in which at each state transition an arrival can occur with a probability that depends on the state. LetYn be
the state of the path at thenth potential loss instant. We consider the statesB (for Bad) in which a potential
loss is transformed to a real loss with probabilitypB , andG (for Good) in which it is transformed with a
smaller probabilitypG. We shall assume throughout thatpG ≤ pB and thatpB > 0. We assume further
that the sequences{Yn} and{Dn} are independent.

The random process{Yn} is assumed to be a Markov chain with the following transition matrix
(Fig. 1):

P =
[

g ḡ

b̄ b

]
,

with ḡ = 1 − g andb̄ = 1 − b.

Fig. 1. The Markov chain associated to the path.
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State 1 (2) corresponds to the Good (Bad) state of the path. We shall assume throughout the paper that
g, b ∈ (0, 1). The Markov chain{Yn}+∞

n=1 is then ergodic with stationary probabilities

πG = 1 − b

2 − b − g
= b̄

b̄ + ḡ
, πB = 1 − g

2 − b − g
= ḡ

b̄ + ḡ
.

The average loss rate is given by

R = pGπG + pBπB

d
.

This is equal to the average number of times the source reduces its rate per unit of time.

3. Performance analysis

Define the two random variablesUn andVn describing the behavior of the transmission rate when a
potential loss occurs. They correspond to the two states of the path. A value 1 of these variables means
that the potential loss causes really a reduction in the transmission rate. A value 0 however means that
Xn is not affected (i.e. a real loss did not occur). We have

P(Un = 1) = pG, P (Un = 0) = 1 − pG, P (Vn = 1) = pB, P (Vn = 0) = 1 − pB.

The evolution of the transmission rate is the following:

Xn+1 = (1 − Un)Xn1{Yn = G} + Un
1
2Xn1{Yn = G} + (1 − Vn)Xn1{Yn = B}

+Vn
1
2Xn1{Yn = B} + αDn, (1)

Xn+1 = (1 − 1
2Un)Xn1{Yn = G} + (1 − 1

2Vn)Xn1{Yn = B} + αDn. (2)

1{A} is the indicator function which is equal to 1 if expressionA is true and to 0 otherwise. Define the
column vector

XXXn = (Xn1{Yn = G}, Xn1{Yn = B})T.

Define the matrix

Qn =
(

(1 − 1
2Un)1{Yn+1 = G} (1 − 1

2Vn)1{Yn+1 = G}
(1 − 1

2Un)1{Yn+1 = B} (1 − 1
2Vn)1{Yn+1 = B}

)
.

Finally, define the column vector

DDDn = (Dn1{Yn+1 = G}, Dn1{Yn+1 = B})T.

Then it follows from (2)

XXXn+1 = QnXXXn + αDDDn. (3)

We begin by studying the convergence and stability of the processXXXn. The next result follows from [8]
or from Theorem 2A in [17]. (To show that the conditions of the theorem indeed hold, one may follow
the approach in the appendix in [2].)
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Theorem 1. Assume thatYn contains a single recurrent class and is initially in steady state. Consider
an arbitrary initial stateXXX0. Then,

XXX∗
n = α

∞∑
j=1


 n−1∏

i=n−j

Qi


DDDn−j−1 (4)

is the only solution of(3) and is ergodic. The sum on the right-hand side of(4) converges absolutely
almost surely. Furthermore,|XXXn −XXX∗

n| → 0 a.s. for allXXX0 on the same probability space as{(Qn,DDDn)}.
In particular, the distribution ofXXXn converges to that ofXXX∗

n asn → +∞.

Next, we study the existence of moments ofXn. We define for this purpose the following Laplace
Stieltjes transforms (LST):

Zn(s, G) = E[e−sXn1{Yn = G}], Zn(s, B) = E[e−sXn1{Yn = B}].
In addition, let us define

ZZZn(s) = [Zn(s, G) Zn(s, B)].

Theorem 2. The LSTZZZn(s) satisfies the following recurrent equation:

ZZZn+1(s) = D∗(αs)ZZZn(s)P1 + D∗(αs)ZZZn(
1
2s)P2, (5)

where

P1 =
[

g(1 − pG) ḡ(1 − pG)

b̄(1 − pB) b(1 − pB)

]
and P2 =

[
gpG ḡpG

b̄pB bpB

]
.

Proof. We write

E[e−sXn+11{Yn+1 = G}] = gE[exp(−s((1 − 1
2Un)Xn + αDn))1{Yn = G}]

+b̄E[exp(−s((1 − 1
2Vn)Xn + αDn))1{Yn = B}],

E[e−sXn+11{Yn+1 = B}] = ḡE[exp(−s((1 − 1
2Un)Xn + αDn))1{Yn = G}]

+bE[exp(−s((1 − 1
2Vn)Xn + αDn))1{Yn = B}].

Using the fact that

E[exp(−s(1 − 1
2Un)Xn)1{Yn = G}] = (1 − pG)Zn(s, G) + pGZn(

1
2s, G),

E[exp(−s(1 − 1
2Vn)Xn)1{Yn = B}] = (1 − pB)Zn(s, B) + pBZn(

1
2s, B),

we obtain the required relations.
Now with the help of recurrent equation (5) we can investigate the convergence of momentsE[Xk

n] for
an arbitrary initial stateX0. First, we define

xxx(k) = [x(k)
G x

(k)
B ],
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where

x
(k)
G = lim

n→∞E[Xk
n1{Yn = G}], x

(k)
B = lim

n→∞E[Xk
n1{Yn = B}]. (6)

Note that the convergence of the above moments implies the convergence ofE[Xk
n]. Furthermore,

x(k) = lim
n→∞E[Xk

n] = x
(k)
G + x

(k)
B .

In the next theorem we formulate conditions for existence of the limits in (6). �

Theorem 3. Let first k moments ofDn exist andpG or pB be positive. Then the momentsx
(k)
G andx

(k)
B

exist and can be calculated from the following recurrent relation:

xxx(k) =
k∑

i=1

Ci
kα

id(i)xxx(k−i)

[
P1 + 1

2k−i
P2

] [
I − P1 + 1

2k
P2

]−1

, (7)

wherexxx(0) = [πG πB ]. Finally, x(k) = x
(k)
G + x

(k)
B are also moments of the processXn in the stationary

regime.

Proof. We first differentiatek times the recurrent relation (5) with respect tos:

ZZZ
(k)
n+1(s) =

k∑
i=0

Ci
kαiD

∗(i)(αs)ZZZ(k−i)
n (s)P1 +

k∑
i=0

Ci
kαiD

∗(i)(αs)
1

2k−i
ZZZ(k−i)

n (1
2s)P2,

whereCi
k is the binomial coefficient. Then, we takes = 0 to get

ZZZ
(k)
n+1(0) =

k∑
i=0

Ci
kα

iD∗(i)(0)ZZZ(k−i)
n (0)

[
P1 + 1

2k−i
P2

]
. (8)

We recall that

ZZZ(k)
n (0) = (−1)k[E[Xk

n1{Yn = G}] E[Xk
n1{Yn = B}]] .

Let us introduce the following augmented vector:

Ξ(k)
n = [ZZZ(0)

n (0) ZZZ(1)
n (0) · · · ZZZ(k)

n (0)].

The recursions (8) can be written in the following matrix form:

Ξ
(k)
n+1 = Ξ(k)

n Π,

where

Π =




P αd(1)P α2d(2)P · · · αkd(k)P

0 P1 + 1
2P2 2αd(1)[P1 + 1

2P2] · · · αk−1d(k−1)[P1 + 1
2P2]

0 0 P1 + 1
4P2 · · · αk−2d(k−2)[P1 + 1

4P2]
...

...
...

0 0 · · · P1 + 1
2k P2




.
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Note that ifpG > 0 or pB > 0, then all matrices [P1 + (1/2k)P2], k ≥ 1 are sub-stochastic and hence
they have eigenvalues with modulus less than 1.P is the transition matrix of ergodic Markov chain.
Therefore, it has only one eigenvalue equal to 1. Since the spectrum ofΠ is the union of spectrums of
diagonal sub-matrices [P1 + (1/2k)P2] andP , we conclude thatΠ has only one eigenvalue equal to 1
and the other eigenvalues with modulus less than 1. The latter implies that the powers ofΠ converge to
the eigenprojection corresponding to the eigenvalue one. Consequently, the momentsE[Xk

n1{Yn = G}]
andE[Xk

n1{Yn = B}] are also convergent.
Once the convergence is proven, we can letn go to infinity in (8) to obtain (7). The last statement of

the theorem follows immediately from the existence of limits (6) and Theorem 1. �

Corollary 4. LetE[Dn] < ∞ andpG or pB be positive. Then

xG = x
(1)
G = αd

γB(πB − b) + πG

1 − γBb − γGg + γBγG(g + b − 1)
,

xB = x
(1)
B = αd

γG(πG − g) + πB

1 − γBb − γGg + γBγG(g + b − 1)

with γG = 1 − 1
2pG, γB = 1 − 1

2pB .

If Xn is in the stationary regime, then the LSTZZZ(s) of its distribution function satisfy the following
implicit equation:

ZZZ(s) = D∗(αs)ZZZ(s)P1 + D∗(αs)ZZZ(1
2s)P2.

By repeated iterations, it is possible to writeZZZ(s) in an explicit form (fors such that Re(s) ≥ 0). To that
end, for any sequenceAn of square matrices of the same size, we shall use the following notation:

n∏
i=0

Ai := An × · · · × A1 × A0.

Assuming that we start initially at the stationary regime, we have

ZZZ(s) =ZZZ0(s) = ZZZ1(s) = D∗(αs)ZZZ(1
2s)P2[I − D∗(αs)P1]

−1 = ZZZ2(s)

= D∗(αs)D∗(1
2αs)ZZZ(1

4s)P2[I − D∗(1
2αs)P1]

−1P2[I − D∗(αs)P1]
−1 = . . .

=ZZZn+1(s) =
(

n∏
i=0

D∗
(αs

2i

))
ZZZ
( s

2n

) n∏
i=0

(
P2

[
I − D∗

(αs

2i

)
P1

]−1
)

.

Since this holds for anyn, we conclude that the following limit exists:

lim
n→∞ZZZ

( s

2n

) n∏
i=0

(
D∗

(αs

2i

)
P2

[
I − D∗

(αs

2i

)
P1

]−1
)

= ZZZ(s).

Since limn→∞ZZZ(s/2b) = (πG, πB), and since the product above is uniformly bounded inn (for
Re(s) ≥ 0), we further conclude that

ZZZ(s) = lim
n→∞(πG, πB)

n∏
i=0

(
D∗

(αs

2i

)
P2

[
I − D∗

(αs

2i

)
P1

]−1
)

,

where the above limit is well defined.
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3.1. Calculation of the throughput

Denote byx̄ the throughput of the transmission.

Theorem 5. LetE[Dn] < ∞ andE[D2
n] < ∞. Then, the throughput can be expressed as

x̄ := lim
t→+∞

1

t

∫ t

0
X(τ) dτ = γGxG + γBxB + 1

2
α

d(2)

d
,

wherexG andxB are given in Corollary4 and the second equality holds in the almost sure sense.

Proof. From the last statement of Theorem 1 we conclude that{Xn} is ergodic Markov chain. Hence,
{Tn, Xn} is an ergodic marked point process. From [9, Chapter 4] it follows that the associated continuous
time process of the transmission rate evolutionX(t) is ergodic as well. The latter fact implies that the
throughput, that is, the time average transmission rate, is a.s. equal toE[X(t)], the expectation of the
transmission rate at arbitrary time moment. This expectation can be calculated by using the following
inversion formula of the Palm theory (see e.g. [7, Chapter 1, Section 4])

E[X(t)] = 1

d
E0

[∫ T1

0
X(t) dt

]
, (9)

whereE0[.] is an expectation associated with Palm distribution. In particular,P 0(T0 = 0) = 1. Using
(2) and (9), we write

x̄ = 1

d
E0

[∫ T1

0
((1 − 1

2U0)X01{Y0 = G} + (1 − 1
2V0)X01{Y0 = B} + αt) dt

]

= 1

d
E0[(1 − 1

2U0)X01{Y0 = G}D0 + (1 − 1
2V0)X01{Y0 = B}D0 + 1

2αD2
0]

= E0[(1 − 1
2U0)X01{Y0 = G}] + E0[(1 − 1

2V0)X01{Y0 = B}] + 1

2
α

d(2)

d

= γGxG + γBxB + 1

2
α

d(2)

d
�

3.2. The reference throughput

To study the effect of burstiness, we change in what follows the parameters of the Markov chain
(b and g) while keeping the average loss rate unchanged. The throughput in the bursty case is then
compared to the throughput when the path is subjected to a non-bursty loss process having the same
average loss rate. We denote this latter throughputx̄r and we use it as a reference to evaluate the impact
of burstiness. A non-bursty loss process is obtained when we have the same loss probabilities in the two
states. We call this probabilityp. To get the same average loss rate as in the bursty case,p must be equal
to

p = dR= pGπG + pBπB.
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Lemma 6. On a non-bursty path, the source achieves a throughput of

x̄r = 2 − p

p
αd + 1

2
α

d(2)

d
. (10)

Proof. This expression of̄xr can be easily obtained by substituting in the expression ofx̄ (Theorem 5),
γG andγB by their values as a function ofp, the loss probability in the two states. We have

γ = γG = γB = 1 − 1
2p.

The parameters of the Markov chain disappear and we get an expression of the reference throughput as
a function ofp and the distribution of potential losses. �

3.3. Comparison with previous works

Consider a particular case wherep = 1. In this case, all potential losses cause a reduction in the
transmission rate. This forms a loss process similar (even more general) to the one used in many previous
works [14,21,23]. These works suppose that in the stationary regime, TCP rate varies in a cyclic manner
between two valuesX and 2X. They consider that the time average transmission rate is about3

2X. Our
model shows well that in the presence of a non-bursty path withp = 1, the expectation of the transmission
rate just prior to a loss is equal to 2αd. The expectation of the transmission rate just after a real loss is
simply αd. Thus,αd in our model corresponds to theirX. However, our model does not give the same
throughput they found. In our expression for the throughput, we see the appearance of the second moment
of the time between lossesd(2). To get their result, the second moment of the time between losses must be
equal to the square of its average. This is only the case for a constant inter-loss time equal tod. Although
they use a probabilistic loss model, their works transform the loss process into a deterministic one which
results in the disappearance of the termd(2) in their analysis. The second moments ofXn andDn are
taken equal to the square of their average rates. The difference between these works and ours is that the
packet loss probability is used for the calculation of these quantities. This deterministic evolution of the
window can be seen as a normal result of the mutual independence that they assume between processes
{Xn} and{Dn}. Our model however, in addition to the consideration of the burstiness, proposes the exact
expression of the throughput. It shows that the average time between losses as well as the second moment
of this time must be considered otherwise the throughput will be underestimated. As an example, in the
case of exponentially distributed inter-loss times,d(2) is equal to 2d2 and the throughput is simply equal
to the average transmission rate just prior to lossesE[Xn].

4. A case study

In the sequel we consider the special case where,

pG = 0, γG = 1, pB = 1, γB = 1
2.

In other words we suppose that if the path is in the Bad state, each potential loss is transformed into a
real loss, and if it is in the Good state no real losses occur. This model is sufficiently general to allow
to vary both the average loss rate as well as the burstiness. Substituting in the expressions ofxG andxB
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(Corollary 4), we get

xB = 2αd, xG = αd
b̄ + πG

ḡ
(11)

The throughput is given by

x̄ = xG + 1

2
xB + 1

2
α

d(2)

d
. (12)

Remark. It may seem remarkable thatxB does not depend on the transition probabilities of the Markov
chain. This can easily be explained using the following argument. The mean time between losses is clearly
1/R = d/πB , so the mean increase in the transmission rate between two consecutive losses isαd/πB .
Since we assume that we are in the stationary regime, the mean decrease in the transmission rate between
losses should thus equal to the mean increase. But the mean decrease in the rate is half its mean value at
loss. Thus

E[Xn|Yn = B] = 2αd

πB

.

We conclude that indeed,

xB = E[Xn1{Yn = B}] = E[Xn|Yn = B]P(Yn = B) = 2αd.

4.1. The deviation of̄x from x̄r

The non-bursty path that has the same average loss rate is obtained when taking a loss probabilityp

equal toπB in the two states. The reference throughput in the non-bursty case is then

x̄r = 2α

R
− αd + 1

2
α

d(2)

d
.

Given a certain average loss rate, we increase the burstiness by increasingb andg in such a way that their
ratio remains unchanged. This guarantees thatπB andπG, and therefore the average loss rateR, remain
the same. To study the deviation of the throughput from the non-bursty case, we expressx̄ as a function
of x̄r and the parameters of the Markov chain. We get

x̄ = x̄r + αdπG

[
1

ḡ
− 1

πB

]
. (13)

It is clear from this expression of̄x, that the non-bursty case is obtained whenḡ = b = πB . In our
particular case,̄g is the probability that the next potential loss causes a real loss given that we are in the
Good state.b is the probability that it causes a loss given that we are in the Bad state. In the non-bursty
case, these two probabilities must be equal. At the same time, they must be equal toπB , the probability
that the next potential loss causes a real loss independently of the current state.

4.2. Effect of the intensity and burstiness of losses

In this section, we study how the throughput varies as a function ofR and the burstiness (viad, b

andg). We shall show in particular that for a fixed loss rateR, the throughput increases when the burstiness
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increases. To facilitate the analysis, we suppose that the time between potential losses is exponentially
distributed.

First, we study the effect of an increase inR on the performance. An increase inR can be caused by an
increase in the number of potential losses per unit of time(1/d) or by an increase inπB . To study these
two cases, we writēx as

x̄ = αd

[
2 + b̄

ḡ
+ b̄

ḡ(b̄ + ḡ)

]
. (14)

It is clear that whend decreases, the throughput deteriorates. The increase inπB can be caused by an
increase in̄g or a decrease in̄b. The two cases result also in throughput deterioration.

Suppose now thatd is fixed as well asπB andπG. We increaseb andg in order to increase the burstiness.
The reference throughput remains constant given that it is only a function of the average loss rate. Eq. (13)
shows well that the average transmission rate improves when losses start to appear in bursts.

4.3. Impact of transmission rate limitation

Consider the case of TCP flow control. In the absence of losses on the link, the transmission rate
increases until reaching a maximum value given by the window advertised by the receiver [24]. Once this
window is reached, the transmission rate remains constant until the next loss occurs. Our model does not
account for this limitation. It works well when losses are frequent so that the maximum window is rarely
reached. We write first some conditions on the loss process to define the region where our previous model
works properly. Then, we present a simple approximate calculation to account for this window limitation.

Suppose that the transmission rate is bounded byXmax. The point where the transmission rate is most
likely to reach the maximal value corresponds to the Good state and it is just before the first potential loss
in a Bad state. This is the first reduction in the transmission rate after getting out of a Good state. For our
previous model to be correct, the expectation of the transmission rate at this point must be much smaller
than the upper bound. This condition can be written as

E[Xn|Yn = B, Yn−1 = G] � Xmax.

Taking into account that

E[Xn|Yn = B, Yn−1 = G] = E[Xn|Yn−1 = G] = E[Xn−1|Yn−1 = G] + αd = xG

πG

+ αd,

we get the following conditionxG/πG + αd � Xmax. The larger the average loss rate and the lower the
burstiness are, the more likely is that this condition holds. For a given loss rate, the increase in burstiness
stretches the duration of the Good state and makes it more likely that the transmission rate reaches the
upper bound.

Now, the closerE[Xn|Yn = B, Yn−1 = G] is to Xmax, the more important is the impact of the receiver
window. At the beginning, the receiver window starts to impact the transmission rate evolution only
during the Good state of the path. We can assume that during the Bad state, the transmission rate still
have the same evolution as that predicted by our previous model. The receiver window starts to impact
the two states once the expectation of the transmission rate just prior to losses in the Bad state becomes
larger thanXmax. This latter condition can be written as

E[Xn|Yn = B, Yn−1 = B] � Xmax, i.e.
1

2

xB

πB

+ αd � Xmax.
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Once the upper bound starts to impact a state, we make the assumption that during that state the transmis-
sion rate always reaches its maximal value. This is the kind of assumption made in [23]. Using the above
two conditions, we separate first the space into three regions. In the first region, the transmission rate is
not affected byXmax. In the second region, the Good state is affected. In the third region, both states are
affected. We use then the above assumption to calculate the throughput of the transfer during each state
of the path. Let

x̄G = E[X(t)|Y (t) = G], x̄B = E[X(t)|Y (t) = B],

where the expectation is with respect to the stationary probability. Thus, the throughput is simply equal
to

x̄ = πGx̄G + πBx̄B. (15)

Let us define the three regions and calculatex̄G andx̄B for each of them.
E[Xn|Yn = B, Yn−1 = G] < Xmax: The transmission rate limitation in this case has no influence and

the throughput given by Eq. (12) can be considered.
E[Xn|Yn = B, Yn−1 = G] > Xmax but E[Xn|Yn = B, Yn−1 = B] < Xmax: During the Bad state,

the transmission rate limitation has no impact andx̄B can be simply approximated by takingp = 1 in
Eq. (10). This is the throughput obtained when the transmission rate is reduced at every potential loss,
which is the case for the Bad state. Thus,

x̄B = αd + 1

2
α

d(2)

d
.

During the Good state, however, another throughput is to be considered. In average, the transmission rate
at the beginning of the Good state is equal to

x0 = E[Xn|Yn = G, Yn−1 = B] = 1

2

xB

πB

+ αd.

The average duration of the Good state isd/ḡ. Using our assumption that the transmission rate during
the Good state always reachesXmax, we consider that the transmission rate grows first fromx0 to Xmax,
then stays atXmax until the beginning of the Bad state. We can find the following expression forx̄G:

x̄G = ḡ

d

(∫ (Xmax−x0)/α

0
(x0 + αt) dt +

∫ d/ḡ

(Xmax−x0)/α

Xmaxdt

)

= ḡ

d

(
X2

max − X2
0

2α
+ Xmax

(
d

ḡ
− Xmax − X0

α

))
.

Given x̄G andx̄B , the throughput can be calculated using Eq. (15).
E[Xn|Yn = B, Yn−1 = B] > Xmax: In this case we assume that the transmission rate always reaches

Xmax. The transmission rate just before the occurrence of a real loss can be taken equal toXmax, that is,
we can now takex0 = Xmax. Hence,

x̄G = Xmax, x̄B = 1

d

(∫ (Xmax/2α)

0
(1

2Xmax + αt) dt +
∫ d

(Xmax)/2α

Xmaxdt

)
= Xmax − X2

max

8αd
.
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and the total throughput is equal to

x̄ = πGx̄G + πBx̄B = Xmax − X2
maxπB

8αd
.

The difference between our calculation here and the calculation in [23] is that we benefit from the
use of a Markov chain, so we can introduce two refined conditions instead of one as in [23]. It was
assumed in [23] that only whenE[Xn] exceedsXmax, the transmission rate limitation starts to impact the
throughput.

4.4. Validation of the model

4.4.1. The simulation scenario
We validate our model using the TCP implementation in thens simulator [22]. We consider long TCP

transfers to eliminate the impact of the transient behavior at the beginning of the connection. Also, we use
the SACK version [13] of TCP since it is able to recover from losses quickly and with a low probability
of TimeOut and slow start. We suppose that the receiver acknowledges every data packet, so the window
increases by one packet every RTT. We suppose also that the receiver window is very large so that it does
not affect the transmission rate. Later, we will show that the estimations derived in this section well agree
with simulation results obtained in the case when the window evolution is limited by the receiver window.
We consider the TCP window size in packets as the transmission rate in our mathematical model since
this window varies linearly as a function of time and is divided by two upon loss detection. The different
rates in our model are then expressed in terms of packets and need to be divided by the RTT in order to
get the real rates.

The simulation scenario consists of a TCP connection crossing a 2 Mbps link. The RTT of the connection
is taken equal to 560 ms. TCP packets are of total size 1000 bytes. We add our loss model to the simulator
and we associate it to the 2 Mbps link. We account only for losses on the link and we study their impact
on the throughput. We chose the parameters of the simulation in a way to not get losses in the other parts
of the network. This clearly requires that losses are frequent so that the buffers in network routers do not
overflow. The first condition of Section 4.3 is always satisfied withXmax equal to the network capacity.
The purpose of the present paper is to create and to validate the model which takes into account the
burstiness of losses. Currently, we are working on how to infer the parameters of our model from a real
TCP trace [4].

The time between potential losses is taken to be exponentially distributed. Fig. 2 shows a typical variation
of the congestion window of the TCP connection. We see well how potential losses are transformed into
real losses and how real losses cause a reduction of the window by a factor of two. In what follows, we
run the connection for 1 h and then we calculate the values ofxG, xB andx̄. These simulation results are
then compared to those given by our analysis. When simulating,xG (resp.xB) is calculated by summing
the window sizes when a potential loss occurs and the link in the Good state (resp. in the Bad state),
then by dividing this sum by the total number of potential losses.x̄ is calculated as the throughput of
the connection over 1 h expressed in terms of packets per second times the RTT. This gives the time
average of the congestion window. First, we fix the parameters of the Markov chain of the link and we
vary the time between potential losses. Second, we vary the burstiness while fixing the average rate of
losses.
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Fig. 2. The variation ofX(t) vs. time.

4.4.2. Impact of the average loss rate
In our first set of simulations,d is varied between 1 and 10 s.b andg are however taken equal to 0.6.

Our analysis predicts a linear variation of the three quantitiesxG, xB andx̄ (Eqs. (11) and (14)). Figs. 3–5
show well the match between simulation and analytical results.

We shall give some details about the way the losses are generated and then explain the small deviations
from the analytical results. We see that the slope of the line given by simulation is slightly smaller than
the one given by analysis. The simulated model consists of individual packets that are sent in bursts on
the link. The lossy link may not be carrying TCP packets when a potential loss has to be transformed into
a real loss. At smalld, losses are frequent and the window is most of the time of small size. When the
window is very small and an event of loss is simulated, there might not be an actual packet on the link to

Fig. 3. The variation ofxB vs.d.
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Fig. 4. The variation ofxG vs.d.

which this loss corresponds. This results in many real losses considered by the analytical model but not
considered by the simulation. Now, whend increases, the window becomes larger and the probability that
the link is not carrying TCP packets when a potential loss occurs becomes smaller. Thus, the simulation
line becomes closer to the analytical line.

To overcome the above problem, we simulate a loss as an event that causes the loss of all the packets
that cross the lossy link during a certain time interval (100 ms in our simulations). By taking a large time
interval to represent potential losses, we solve the problem of small windows. However, large windows
see a large number of lost packets which causes sometimes a TimeOut and a slow start. For this reason,
we see that the simulation results fall below the analytical ones at larged.

Fig. 5. The variation of̄x vs.d.
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Fig. 6. The variation ofxB vs.d.

4.4.3. The impact of burstiness
We fix here the average time between potential losses to 5 s and we change the transition probabilities

b andg while keepingb = g. This results inπG = πB = 0.5 which guarantees that the average loss
rate remains constant. Our analysis shows thatxB must not change (Eq. (11)).xG andx̄ must however
increase as a result of the increase in burstiness (Eqs. (11) and (14)). Figs. 6–8 validate our analytical
results. In particular, it is clear from Fig. 8 that by increasingb from 0.1 to 0.8, the average throughput
increases by around 60% even though the average loss rate remains unchanged. This confirms our result
concerning the improvement in performance when losses become clustered.

Fig. 7. The variation ofxG vs.d.
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Fig. 8. The variation of̄x vs.d.

4.4.4. Case of a limitation on the transmission rate
We now consider a case where the receiver window is set to a finite value so that it limits the evolution

of the congestion window. We setb andg to 0.6 and we take an exponential time between potential losses
of average 5 s. We reduce the RTT of the connection to 250 ms and we set the receiver window to the
bandwidth-delay product. We changed from 1 to 10. By simple calculation, we see that in this setting, we
cross the three regions we defined in Section 4.3 while introducing the limitation on the transmission rate
for our model. Fig. 9 shows how our approximation correctly estimates the real throughput. The model
without limitation on the transmission rate leads to a clear overestimation of the real throughput in this
scenario.

Fig. 9. x̄ vs.d with a limitation onX(t).
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5. Conclusions

In this paper we evaluate the impact of burstiness of losses on the performance of a TCP-like flow
control protocol. We define a model for losses using potential losses and a two-state Markov chain. We
then calculate the throughput and the moments of the transmission rate at some potential loss instants.
The throughput is compared to the one achieved when operating over a non-bursty path having the same
average loss rate. Our main result is that for a given loss rate, the performance improves when losses tend
to appear in bursts. We conduct a set of simulations withns to validate the analytical results. A good
match between simulation and analysis has been noticed.

Our current and future work on TCP modeling will be devoted to extend the Markov model of the
path to more than two states [4] and to study non-Markovian models as well [3]. We shall focus also on
the identification of the parameters of the Markov model of the path [4] and try to compute the exact
expression of the throughput in case of limitation on the transmission rate (which renders the model for
the transmission rate increase non-linear) [5]. We need also to extend our model to account for losses
detected via a conservative TimeOut mechanism [3]. In case of these losses, the source stays idle for a
certain time between the occurrence of the loss (i.e. the stop of the ACK clock) and the resumption of the
transmission. Our assumption that the transmission rate resumes its linear increase directly after the loss
will not be valid. These type of losses have been shown to be frequent on long delay connections [23].
Our experiments [3] have validated this conclusion. On short delay connections, we noticed [3] that the
TimeOut phenomenon is rare and can be neglected.
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