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ABSTRACT
The remarkable growth of the Internet infrastructure, the
tremendous success of the Internet-based applications and
their rapidly changing characteristics have made the man-
agement and monitoring of ISP networks a complex pro-
cess. The design of a new monitoring system that takes
into account the requirements of multiple monitoring tasks
and variations in the traffic is becoming an inevitable trend.
In this paper, we propose a monitoring system that adap-
tively adjusts its configuration according to network condi-
tions and measurement accuracy. Our system relies on an
optimization method consisting of: (i) overhead prediction
to track short-term and long-term changes in the traffic, and
(ii) a global weighted utility function to deal with multiple
monitoring tasks. To assess the performance of our system,
we propose an exhaustive experimental methodology for the
evaluation of monitoring applications. We present our ex-
perimental platform and provide a global study of the oper-
ation of the proposed system and the impact of the different
parameters on its behavior.

1. INTRODUCTION
Recently, there has been an increasing interest in

passive monitoring and traffic analysis. In practice,
NetFlow is the most deployed monitoring tool. How-
ever, while this solution lowers the cost of processing
and storage resources, it clearly reduces the accuracy of
measurements and incurs a loss of information. Some
recent proposals try to find a solution to this discrep-
ancy by providing monitoring infrastructures that co-
ordinate monitoring responsibilities between different
monitors e.g. [11, 5]. However, despite these available
solutions, monitoring applications still present some short-
comings including the problem of overhead prediction
and that of improving accuracy of multiple tasks.
The optimization of monitoring applications requires
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the estimation of overhead in order to find the appro-
priate configuration that keeps the overhead within a
target value while providing the best possible accuracy.
The majority of existing solutions use information about
links’ load and define the overhead as being the total
number of packets that can be sampled in the entire
network. Clearly, such approach leads to an inefficient
use of resources since the load of links varies over time.
We argue that an advanced module for overhead predic-
tion can significantly increase the monitoring capabili-
ties of a network and cope with variations in the traffic.
Note that we define the overhead O as the total number
of flow reports that are exported in the entire network
(modeling processing and storage resources).
In this paper, we introduce an adaptive monitoring

system that adjusts its configuration according to net-
work conditions and measurement accuracy. Our sys-
tem consists of four design primitives: (i) a global es-
timator module to minimize the amplitude of estima-
tion errors, (ii) an overhead prediction based on an
Exponential Weighted Moving Average filter to track
long-term and short-term variations in the traffic, (iii)
a global weighted utility function to deal with multiple
monitoring tasks at the same time, and (iv) an opti-
mization algorithm that configures monitors to address
the tradeoff between resource consumption and accu-
racy of different tasks.
Given the lack of a universal experimental platform

for monitoring applications, we present our own plat-
form together with an exhaustive experimental method-
ology for the evaluation of our proposal. We have imple-
mented a real experimental platform for traffic sampling
and monitoring using real traffic traces and real moni-
toring tools. We have also carried out a global study of
the performance of the proposed system and the impact
of the different parameters on its behavior.
The rest of the paper is organized as follows. In Sec-

tion 2, we present some related work. Then we present
the system architecture in Section 3. A description of
the experimental platform is given in Section 4. Eval-
uation results are presented in Section 5. Finally, con-
clusions and future work are given in Section 6.



2. RELATED WORK
The interest in passive monitoring for the understand-

ing and diagnosis of core IP networks has grown at an
astonishing rate. Currently, NetFlow [6] is the most
widely deployed measurement solution by ISPs. How-
ever, this solution still presents some shortcomings, in
particular the problem of setting sampling rates to low
values to cope with the increasing trend in line speed.
Some recent proposals have explored ways to improve
NetFlow by providing network-wide monitoring infras-
tructures that distribute the work between different mon-
itors. For instance, the authors in [11] present a network-
wide approach that uses a hash-based flow selection
to eliminate duplicate measurements in the network
and a framework for distributing responsibilities across
routers. However, these solutions deal with a single
monitoring task and use a simple method to estimate
overhead. The authors in [5] use link load information
to configure the total number of packets that can be
sampled in the network. Our architecture provides a
solution to these problems that allows a further reduc-
tion of the load, while improving accuracy during the
traffic estimation phase.

3. SYSTEM ARCHITECTURE
Given a list of measurement tasks T and an overhead

constraint (Target Overhead T O), our system adap-
tively adjusts its configuration. A configuration is a
selection of packet sampling rates on the different inter-
faces of network routers (or monitors). This configura-
tion is periodically updated as a function of a prediction
of the overhead and in a way to optimize the accuracy
of the considered measurement tasks. In this section,
we present the architectural ideas behind our system.

3.1 Global estimator
To minimize the amplitude of estimation errors, we

implement a global estimator in the NetFlow collector.
For each monitoring task Ti ∈ T , this global estimator
takes as input the local estimations of Ti, (T̂ik)k∈R, cal-
culated from the reports sent to the collector by the dif-
ferent monitors; R is the set of monitors. Then, it con-
structs the global estimator of the task Ti as a weighted
sum of the different local estimators. This weighted
summation is known to be the best linear combination
in terms of mean square error [8],

T̂i =
∑
k

λkT̂ik with λk =

1
V ar(T̂ik)∑
l

1
V ar(T̂il)

. (1)

The weights λk are inversely proportional to the local
estimation errors, which in turn are inversely propor-
tional to the configured sampling rates. Thus, local es-
timates with smaller error variance have a larger impact
on the global estimator than those with larger errors.

3.2 Overhead prediction
To limit the overhead of collected reports within T O,

we should be able to write analytically the expression of
the overhead prediction during the period t+ 1, O(t+1)

as a function of the sampling rates (p
(t+1)
k ). Then, we

can use it as a constraint in the optimization algorithm.

Consider N
(t)
k , the number of 5-tuple flows crossing a

monitor k whose sampling rate is p
(t)
k during the period

t. Let s be the size of a given flow, then the probability

that this flow is sampled is equal to 1−(1−p
(t)
k )s, which

can be approximated by p
(t)
k .s for small p

(t)
k . The num-

ber of sampled flows M
(t)
k can then be approximated

by p
(t)
k .S

(t)
k .N

(t)
k , where S

(t)
k is the mean size of 5-tuple

flows. Hence, the number of flows crossing the monitor
k at the instant t can be estimated by:

N̂
(t)
k =

M
(t)
k

p
(t)
k .S

(t)
k

. (2)

This estimator of the number of 5-tuple flows only uses
the most recent observation while our objective is to
track short-term as well as long-term variations in the
traffic. To this end, we use the Exponentially Weighted
Moving Average (EWMA) which is a memoryless mov-
ing average whose weights are exponentially decreasing
from more recent historical samples to older ones.

Let N
(t)

k be the smoothed version of the number of
flows across monitor k during period t,

N
(t+1)

k = αN
(t)
k + (1− α)N

(t)

k , (3)

where N
(t)
k can be approximated by the estimator given

in equation (2). α = 2
(n+1) is the smoothing factor

where n is the window length over which we smooth the
traffic. This factor allows us to choose the time scale β
of tracking variations in the traffic. For instance, if we
want to track changes on hourly scale (i.e. β = 3600s),
we calculate the window length n = β

d , where d is the
period of configuration updates.

Let c
(t)
k be the total number of sampled packets in

monitor k at period t. The estimator of the total num-
ber of packets crossing the monitor k that maximizes

the likelihood is known to be: Ĉ
(t)
k =

c
(t)
k

p
(t)
k

. Hence, we

can derive a first estimation of the mean flow size cross-

ing the monitor k: Ŝ
(t)
k =

Ĉ
(t)
k

N̂
(t)
k

. The smoothed version

of the mean flow size using the EWMA is given by the
following equation:

S
(t+1)

k = αŜ
(t)
k + (1− α)S

(t)

k . (4)

Using equations (3) and (4), we can now give the ana-
lytical expression of the overhead prediction:

O
(t+1)
k = N

(t+1)

k .S
(t+1)

k .p
(t+1)
k . (5)



Figure 1: Overhead prediction method.

This overhead prediction is no other than the smoothed
version of the number of sampled flows.
The overhead prediction method works as follows.

For each monitor k, first we look for initial values for the

number of flows N
(t)

k and the mean flow size S
(t)

k . To
do so, we can use values of the same period of the last
week or the last day. Then, we start using the collected
traffic to update estimators and predict the overhead.
For this we use the algorithm presented in Figure 1 and
implementing the EWMA filter for prediction accord-
ing to equation (5). The smoothing factor α plays a
crucial role in the overhead prediction. In fact, using
short time scale can disrupt the system with unneces-
sary details specific to a particular observation period
while the use of a large time scale can lead to the loss
of important changes in the traffic. We have to find the
suitable time scale that addresses the tradeoff between
these two extremes.

3.3 Optimization method
The optimization method is motivated by the need to

coordinate responsibilities across the different monitors
to improve the accuracy. This method is fed by the list
of tasks Ti, their associated weights γi, and the normal-
ized variance of the global estimation of each task T̂i,
V ar(T̂i). Our objective is to find the optimal sampling
rate vector that minimizes the utility function:

U =
∑
i

γiV ar(T̂i), (6)

under the following constraints:

O ≤ T O (7)

pk ≤ SRmax ; ∀k ∈ R (8)

pk ≥ SRmin ; ∀k ∈ R (9)

Figure 2: Optimization procedure.

SRmin and SRmax are respectively the minimum and
maximum sampling rate values.
To solve this constrained optimization problem we

define the corresponding Lagrangian:

L = U+δ(O−TO)+
∑
k

ak(pk−pmax)+
∑
k

bk(pmin−pk).

(δ, ak, bk) is the set of Lagrange multipliers that enforce
the satisfaction of the constraints (7), (8) and (9). We
solve this Lagrangian by an iterative procedure using
the Newton method (refer to [4], Chapter 9.5). The idea
of the method, summarized in Figure 2, is as follows.
We start with an initial guess of the optimal sampling
rate vector. Then, at each iteration, we use the New-
ton method to go into a better direction while using
a sophisticated line search algorithm to find the best
step value σb. We continue until, we either reach the
global minimum or we exceed the maximum number of
iterations.

4. EVALUATION METHODOLOGY
In order to evaluate the performance of our system,

we have developed our own experimental platform [9].
This platform has the following main features: (i) it is
fed by real traffic captured on a transit link then spread
and played over an emulated network topology, (ii) it
includes real NetFlow-like tool for traffic monitoring on
all router interfaces of the emulated topology, and (iii)
it implements the central unit as it should be in reality.

4.1 Experimental platform
As shown in Figure 3, our experimental platform, is

composed of three services: (i) the traffic emulation
service, (ii) the traffic monitoring and sampling ser-
vice, and (iii) the data collection and analysis service.
Routers can be either virtual nodes connected by virtual



Figure 3: Experimental platform.

links, or real routers connected by real links. The first
service is responsible of generating the emulated traffic
across the network routers. The second service imple-
ments packet sampling and flow monitoring a la Net-
Flow on each router interface. The later functionality is
provided by SoftFlowd [3], an open source free software
capable of NetFlow measurements in high speed net-
works. The third service mainly consists of the Flowd
tool in the SoftFlowd package.
SoftFlowd requires network traffic in the TcpDump

format. Unfortunately, obtaining real traffic data from
an entire backbone network is a hard issue. To cope
with this limitation, we proceed in the following way.
We first seek unsampled packet level traces collected on
high speed transit links. We consider for this study the
ones coming from the Japanese MAWI project [2]. We
parse the traces for the IP prefixes, and we dispatch
them over the Autonomous Systems (ASes) connected
to the edge routers of the emulated topology. The dis-
patching is done randomly according to some predefined
weights that determine the importance of each stub AS.
Our system allows to define the length of the prefix as
a function of the granularity of the dispatching we want
to achieve. For this work, we consider the /16 prefix as
the basic unit for IP address assignment to ASes.
Once addresses are allocated, the packets in the Tcp-

Dump trace are split accordingly between the differ-
ent ASes connected to the emulated topology. Shortest
routes are calculated, then packets in the TcpDump
trace are associated to the different monitors over their
respective paths across the emulated network with the
correct timestamps derived from the trace. SoftFlowd
instances sample then packets on each router interface,
form flows and send them back to the central collector.
This sampling and monitoring is done in parallel on all
network router interfaces.

4.2 Scenario description
Our platform requires the definition of a network topol-

ogy over which it dispatches and replays a real traffic.
We chose to study the performance of our system by
emulating Geant, the European Research network [1].
As target, we consider two accounting applications or

tasks: (i) traffic matrix estimation (T1) which consists
in jointly estimating edge-to-edge flow sizes. A flow Fi
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Figure 4: Resulting overhead vs. time using two
time scales to track variations in the traffic.

is the set of 5-tuple flows that share the same AS source
and AS destination; (ii) large AS traffic estimation (T2)
where we aim to estimate the volume of the greediest
ASes (those contributing to more than some percent-
age of the total traffic, we take 7% as example). Except
when explicitly mentioned, we assign to these tasks re-
spectively the equal weights γ1 = γ2 = 0.5.

5. VALIDATION RESULTS
In this section, we study the efficiency of our adaptive

solution. We then provide a global sensitivity analysis
to study the importance of the different parameters.

5.1 System efficiency
In this section, we aim to address the performance

of our system using real experiments over our plat-
form. For this experiment, we set the update period
d to 5 minutes, the time scale β to 3600s, the minimum
sampling rate SRmin to 0.0005 and the maximum one
SRmax to 1. The T O is set to 300 NetFlow-records/s.
In order to evaluate the performance of the overhead

prediction method, we plot in Figure 4 the evolution
of the measured overhead (exported NetFlow records)
over time. We observe that the system profits from the
available resources to provide the best possible accu-
racy. For the two considered time scale values, the sys-
tem maintains the overhead around the T O. The use
of a small time scale (β = 900s) leads to an oscillating
behavior of the overhead since the system tracks more
details and fine-grained changes in the traffic. On the
contrary and because of a coarser aggregation of Net-
Flow reports, tracking changes on hourly scale leads to
a more stable behavior of the overhead.
Figure 5 shows the value of the average mean relative

error for different T O values. We notice the impact
of the T O on the global estimation accuracy. There
is a clear reduction of the overall measurement error
when the target overhead increases. The error drops
from 0.284 for a T O equal to 100 NetFlow-records/s,
to 0.0279 for a T O equal to 400 NetFlow-records/s.
Indeed, the system tries to provide the best possible ac-
curacy given a monitoring constraint (T O). Allowing
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the weight γ1.

more overhead (resources) gives the system the possibil-
ity to increase some sampling rates and to collect and
export more data looking for better estimation. The
main strength of our system is that it is able to cope
with any T O value and provides for this value the best
configuration of monitors.
Now, we want to study the performance of this global

optimization as a function of the weights assigned to
each task Ti. We run experimentations using two tasks
T1 and T2 while changing their assigned weights (γ1 and
γ2 = 1−γ1). We plot in Figure 6 the average mean rel-
ative error of T1 as a function of its assigned weight γ1.
As expected, γ1 has a clear impact on the accuracy of
T1. The mean relative error varies between 0.0296 and
0.18 for different values of γ1. For instance, setting γ1
at a large value (i.e. setting γ2 at a low value) gives
more importance to T1 in the optimization procedure
and decreases the impact of the estimation error of T2

on the global accuracy. In this manner, the optimal
solution that maximizes the global accuracy is the one
that satisfies especially the accuracy of T1. This result
confirms the flexibility of our method where the opera-
tor can set the weights according to the importance of
tasks. By setting the weights to different values, one
can achieve high accurate measurements for important
tasks at the expense of less important ones.

5.2 Global sensitivity analysis
In the previous part, we have studied the performance

of our system and the influence of some parameters on
results. Yet, we use global sensitivity analysis to char-
acterize, qualitatively or quantitatively, what impact an
input parameter has on the system output and how
it compares with the impact of the other parameters.
Fourier Amplitude Sensitivity Test(FAST) [7] is consid-
ered to be one of the most efficient methods in sensitiv-
ity analysis. Among its advantages are: fast implemen-
tation, possibility to deal with nonmonotonic models,
arbitrary large variations in input parameters, and no
need for the knowledge of the mathematical model.
The main idea of FAST is to assign to each parameter

a distinct integer frequency (characteristic frequency).
Then, for a specific parameter, the variance contribu-
tion can be singled out of the model output with the
help of the Fourier transformation. Specifically, let us
consider a nonlinear model y = f(x1, x2, ..., xn) where
xn are parameters. The search function must let the pa-
rameter xi to oscillate with frequency ωi. For instance,
the authors of [10] have proposed the search function
xi =

1
2 + 1

π arcsin(sin(ωis)), which is a particular case
of a more general search function

xi = F−1
i

(
1

2
+

1

π
arcsin(sin(ωis))

)
, (10)

where F−1
i (·) is the inverse cumulative distribution func-

tion for xi. To make more efficient use of the model
evaluations, the authors of [10] have suggested the fol-
lowing modification

xi =
1

2
+

1

π
arcsin(sin(ωis+ φi)), (11)

where φi is a random phase-shift chosen uniformly in
the interval [0, 2π]. The model output becomes a peri-
odic function with period 2π. Thus, we can represent
the model with a Fourier series,

y = f(x1, x2, ..., xn) = A0+
∞∑
k=1

[Ak cos(ks)+Bk sin(ks)].

If we denote a sample of size N as S = {s1, s2, ..., sN},
then, using either (10) or (11) as a search function,
we can obtain the sampled values of the parameters
Xi = {xi1, xi2, ..., xiN}, and the discrete Fourier trans-

form coefficients A0 = 1
N

∑N
j=1 f(sj),

Ak =
2

N

N∑
j=1

f(sj) cos(sjk) and Bk =
2

N

N∑
j=1

f(sj) sin(sjk),

where f(sj) = f(x1j , ..., xnj) and k = 1, ..., (N − 1)/2.
The variance of the model output can be decomposed

into variance components at the integer frequencies,

V =
1

2

(N−1)/2∑
k=1

[A2
k +B2

k],



Table 1: Parameters of the experiment.
Parameter symbol range impact

Target Overhead T O [20, 500] 0.431
Time scale β [60s, 7200s] 0.1147

Computation period d [60s, 300s] 0.0234
Min sampling rate SRmin [0, 0.01] 0.0876
Max sampling rate SRmax [0.01, 1] 0.0935

By summing the spectrum values Λk = [A2
k + B2

k]/2
for the characteristic frequencies ωi and their higher
harmonics, the partial variance in model output arising
from the uncertainty of parameter xi, Vi, can be esti-
mated by Vi =

∑
p Λpωi, where pωi ≤ (N − 1)/2. The

ration Vi/V measures the contribution of parameter xi.
This ratio is also referred to as the first-order sensitiv-
ity index [12]. Because the characteristic frequencies
are integers, there will be an aliasing effect if one fre-
quency is a linear combination of the others. Therefore,
a frequency set is free of interferences to an order M if

n∑
i=1

aiωi ̸= 0,
n∑

i=1

|ai| ≤ M + 1,

where ai is an integer and M is a design integer (usu-
ally 4 or 6). In order to avoid the interference effect
the maximal value of p in calculating Vi should be M .
In [7] the authors have proposed the following empiri-
cal formula for calculating the characteristic frequencies
free of interference up to order M = 4: ω1 = Ωn, and
ωi = ωi−1 + dn+1−i, i = 2, ..., n.. The parameters Ωn

and dk can be found in a table provided in [7].
We have applied the method FAST to our system to

characterize the impact of the different parameters used
in experimentations on results. Table 1 summarizes the
different evaluated parameters with their ranges. The
last column presents the impact of each parameter on
the system output. It is immediately noticed that the
parameter having most important impact on the sys-
tem output is the target overhead T O. In our system,
the T O is a monitoring constraint set by the operator
and can be changed to achieve a given accuracy. We
also observe the important impact of the time scale β
parameter. Thus, it is so important to set this param-
eter at a suitable value in order to address the tradeoff
between the long-term and short-term variations and
to improve results. The other parameters have a light
impact on the behavior of the system (less than 10%).

6. CONCLUSIONS
In this paper, we have presented an adaptive monitor-

ing system that coordinates responsibilities between the
different monitors in order to achieve the best possible
accuracy while respecting monitoring constraints. We
have developed an experimental platform to evaluate

our system. Results proved the ability of our system
to keep the resulting overhead around a target value.
We also demonstrated that our system is practical: it
provides an efficient method to achieve multiple moni-
toring objectives using a weighted utility function and
it relies on a flexible method to track variations in the
traffic according to an adaptable time scale. Moreover,
we provided a global study of the impact of the different
parameters on the behavior of the system. Our ongoing
work is centered on the validation of our system with
more applications and on the distribution of the control.
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