
Centrum voor Wiskunde en Informatica

State-dependent M/G/1 type queueing analysis for congestion 
control in data networks

E. Altman, K. Avrachenkov, C. Barakat, R. Núñez Queija

Probability, Networks and Algorithms (PNA)

PNA-R0005 July 31, 2000



Report PNA-R0005
ISSN 1386-3711

CWI
P.O. Box 94079
1090 GB  Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB  Amsterdam (NL)

Kruislaan 413, 1098 SJ  Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



State�dependent M�G�� Type Queueing Analysis for Congestion

Control in Data Networks

Eitan Altman� Kostya Avrachenkov�� Chadi Barakat�

INRIA

����� route des Lucioles � B�P� �	� �
��� Sophia Antipolis� France

fEitan�Altman�K�Avrachenkov�Chadi�Barakatg�sophia�inria�fr

Rudesindo N�u�nez Queija�

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

sindo�cwi�nl

ABSTRACT
We study a TCP�like linear�increase multiplicative�decrease �ow control mecha�
nism� We consider congestion signals that arrive in batches according to a Poisson
process� We focus on the case when the transmission rate cannot exceed a certain
maximum value� The distribution of the transmission rate in steady state as well
as its moments are determined� Our model is particularly useful to study the
behavior of TCP� the congestion control mechanism in the Internet� Burstiness of
packet losses is captured by allowing congestion signals to arrive in batches� By a
simple transformation� the problem can be reformulated in terms of an equivalent
M�G�� queue� where the transmission rate in the original model corresponds to
the workload in the �dual	 queue� The service times in the queueing model are
not i�i�d�� and they depend on the workload in the system�
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� Introduction

In today	s high speed telecommunication networks� a large part of the tra�c is able to adapt
its rate to the congestion conditions in the network� Congestion control is typically designed
so as to allow the transmission rate to increase linearly in time in the absence of congestion
signals� whereas when congestion is detected� the rate decreases by a multiplicative factor�
This is both the case of the Available Bit Rate �ABR� service category in ATM��� �see
de�nition and use of RDF and RIF� as well as the Transmission Control Protocol �TCP� in
the Internet environment��� 
��� Congestion is detected by the source through signals� In
case of ABR� the congestion signals are RM �Resource Management� cells that have been
marked due to congestion information in some switch along the path of the connection�
In case of the Internet� the congestion signals are packet losses that are detected by the
source either through the expiration of a retransmission timer� or through some negative
acknowledgement mechanism �three duplicate ACKs �
���� There is also a proposal to add
some explicit congestion signaling to the Internet �the ECN proposal �����
The performance evaluation of congestion control mechanisms is an important issue for
network and protocol design� This evaluation requires a description of times between the
arrivals of consecutive congestion signals� Experimentations over the Internet ��� ��� have
shown that on long distance connections� the Poisson assumption about the times between
congestion signals is quite reasonable� This happens when the throughput of the studied
connection is small compared to the exogenous tra�c� and when the number of hops on the
path is large so that the superposition of the packet drops in routers leads to exponential
times between congestion signals� For local area networks� we noticed that the congestion
signals may arrive in bursts ���� However� the times between bursts correspond well to the
Poisson assumption� For this reason� we consider the case when congestion signals arrive
in batches according to a Poisson process� Batches contain a random number of congestion
signals and each such signal causes the division of the transmission rate by some constant ��
In the sequel� we also refer to a batch of congestion signals as a loss event�
We focus on the case when a certain limitation on the transmission rate exists� We deter�
mine the exact expression of the throughput under such a limitation� In the literature� only
simplistic approximations have been proposed ��� ��� so far� We study two possible scenarios
that lead to such a limitation

�i� Peak Rate limitation
 the limitation is not due to congestion in the network but rather
to some external agreement� In that case� when the transmission rate reaches a certain level
M � it remains constant until a loss event appears� For example in case of TCP� the window
cannot exceed the bu�er space available at the receiver �
��� In the ABR service of ATM�
the transmission rate cannot exceed the Peak Cell Rate imposed by the contract between
the user and the network� It is expected that such limitations on the transmission rate will
become more and more important as the capacity and the speed of the links in the network
grow� since it is then more likely that connections reach their maximum peak rate before
congestion in the network occurs� Of course� this is not the case if peak rates increase in
proportion with the speed of network links�
�ii� Congestion limitation
 the limitation on the transmission rate is due to congestion in
the network that occurs whenever the input rate reaches a level M � In that case we shall
have an extra batch of congestion signals when the level M is attained which also causes a
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decrease of the transmission rate by a random factor� A typical example of such limitation
is the available bandwidth in the network� Another example is the reserved bandwidth in a
Di�erentiated Services network ��� in cases where packets exceeding the reserved bandwidth
are dropped rather than injected into the network as low priority packets �
���
In the particular case in which the batches contain a single congestion signal� the peak rate

limitation model reduces to the one studied in ����� who already attempted at computing the
�rst two moments of the transmission rate� A remarkable observation is done in that reference
showing that the �ow control can be reformulated in terms of an equivalent M�G�� queue�
where the transmission rate is translated into the workload of the queue� The congestion
signals correspond to customers arriving at the queue according to a Poisson process� The
service times in the �dual	 queueing model are not i�i�d�� and they depend on the workload in
the system� This transformation is also valid in our more general setting� except that in our
model with congestion limitation� there is an additional arrival in the equivalent queueing
model �in addition to the Poisson arrival stream� that occurs whenever the queue empties�
We solve the Kolmogorov equations and obtain the exact probability distribution as well
as the moments of the transmission rate �of the window in case of TCP� for both problems�
In doing so� we correct an error� in �����
We brie�y mention some related results� Queueing analysis with service times that depend
on the workload or on the queue length have been also considered in �
� ��� ��� ���� Our
model is a special case of the one studied in ����� where an implicit characterization of the
steady state distribution is obtained �closed�form expressions were obtained for special cases
that do not cover our model�� In ���� an asymptotic approximation is used for solving state�
dependent GI�G�� queues in which both inter�arrival times� service requirements and the
service rate may depend on the workload� The peak rate limitation model is a special case
of the model with a general stationary and ergodic arrival process studied in ���� For that
model only bounds on the throughput were obtained� Exact expressions for the throughput
were obtained there for the case in which no limitation on the transmission rate exists �see
also ��� ��� ��� �����
The paper is structured as follows� In Section 
 we describe a general model of �ow control

with limitation on the transmission rate and we provide a preliminary analysis� The two
cases of peak rate limitation and congestion limitation are described separately in Sections

�� and 
�
� It is shown that a special case of the model with congestion limitation reduces
to that of the model with peak rate limitation� Therefore� in the following we �rst focus on
the case of peak rate limitation� In Section � we show that the model is dual to an M�G��
queueing model with services that depend on the total workload in the system� We then
derive the moments and the distribution of the transmission rate in Sections � and � in terms
of the probability that the transmission rate is at its maximum value� This quantity can
be determined using that the distribution function is non negative� but in order to derive a
computationally tractable expression for it� we pursue an alternative approach in Section ��
The results are speci�ed in Section � for an important particular case� that of one congestion
signal per batch and a reduction factor of 
� This case corresponds to long distance TCP
connections in today	s Internet where the congestion signals do not cluster signi�cantly� In
Section � we present the analysis for a more general model of congestion limitation than the

�In a private communication� the authors of ���� announced to replace the draft�
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one in Section 
�
� In the general case the model does not reduce to the peak rate limitation
model� The model with peak rate limitation is validated in Section �� By means of numerical
examples� Section ��� illustrates that our results lend themselves for computation of the
window �or� transmission rate� distribution and density functions� In Section ��
 we compare
the results of Section � to measurements from long distance TCP connections� Section ��
draws conclusions from the obtained results and indicates directions of further research�
Finally� the Appendix displays technical results needed in the mathematical analysis�

� Flow control with rate limitation� models and preliminary

analysis

In this section we present our model for the rate evolution of the �ow control mechanism�
In the sequel we adopt the usual terminology for TCP� the well known window�based con�
gestion control protocol of the Internet
 we shall work with the window size rather than the
transmission rate� The transmission rate of a window�based �ow control mechanism is at any
moment equal to the window size divided by the round�trip time �RTT� of the connection�
Let M denote the maximum window size� The limitation on the window size is either
due to a peak rate limitation or to a congestion limitation� In the following we explain the
similarities and the di�erences between the models in the two cases� While no congestion
signal is received and the window is smaller than M � the window of the protocol increases
linearly at rate � � �� In case of TCP� � � ���b �RTT � where b is the number of data packets
covered by an ACK �usually 
� see e�g����� 
����
We assume that batches containing a random number of congestion signals arrive according

to an independent Poisson process� We denote the sizes �i�e�� the numbers of congestion
signals� of consecutive batches by N�� N�� N�� � � � � and we assume that these constitute an

i�i�d� sequence� The size of an arbitrary batch is generically denoted by N
d
� Nk� The Poisson

process and the sequence Nk� k � �� 
� � � � � are independent of each other and independent of
the past evolution of the window� For each congestion signal received� the window is divided
by a factor � � � which is a �xed parameter� That is� if an arriving batch contains N � n
congestion signals� the window is multiplicatively decreased by a factor ��n� Immediately
after the multiplicative decrease� the window restarts its linear increase� In case of peak
rate limitation� the window stays constant at M when this maximum level is reached until
the next congestion signal is received� In case of congestion limitation� immediately upon
reaching M � a congestion signal is received and the window is decreased� We present the two
cases separately in Sections 
�� and 
�
� showing how the analysis of a particular case of the
congestion limitation model reduces to that of the peak rate limitation model� In Section �
we consider a more general model of congestion limitation�
First we introduce some further common notation� We denote the p�g�f� �probability gen�

erating function� of the distribution of N by

Q�z� 
� E
�
zN
�
�


�X
n��

znqn� jzj � �� �
���

Note that the peak rate limitation model with � � 
 and q� � � reduces to the model studied
in ����� where congestion signals appear according to a Poisson process and where the window
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is divided by two upon every congestion signal occurrence� By considering a general model�
we aim to account for a wide range of �ow control mechanisms other than TCP and for future
enhancements to TCP congestion control�
Let us denote the window size at time t � � by W �t� � ���M �� We have the following

stability result which follows from Theorem � in ���


Theorem ��� There exists a stationary process W ��t� such that W �t� converges to W ��t�
in distribution for any initial state� Moreover� we have P�a�s�

lim
t��
sup
s�t

jW �s��W ��s�j � �� �
�
�

Note that �
�
� implies that the stationary distribution of W �t� is unique� For x � ���M ��
denote the �time�average� distribution function by

F �x� 
� lim
T��

�

T

Z T

t��
P fW �t� � xg dt� �
���

It follows from Theorem 
�� that this limit is independent of W ��� and coincides with the
stationary distribution of W �t��
We �rst assume that F �x� is continuous in x � ���M� �in the case of peak rate limitation
it is clear from physical considerations that F �x� has an atom at x � M�� Under this
assumption we �nd a function F �x� which is an equilibrium distribution for the window size
and� hence� from its uniqueness it follows that it is the desired distribution� Instead of F �x�
it will be convenient to work with the complementary distribution function

F �x� � �� F �x� � P fW � xg � x � ���M ��

To di�erentiate between the cases of peak rate limitation and congestion limitation� in the
latter case we attach a superscript cl to the symbols introduced above� e�g�� the distribution
function is denoted by F cl�x�� Next we treat the two cases separately� We show how the
analysis of a special case of the model with congestion limitation reduces to that of the
model with peak rate limitation� The analysis of the general congestion limitation model is
presented in Section ��

��� Flow control with peak rate limitation

With peak rate limitation� when the window reaches the maximum level M � it stays there
until the next congestion signal is received� In Section � below we show that the window
size process W �t� can be related to the workload of an M�G�� queue �see also ������ The
workload of this state�dependent M�G�� queue can be seen to be a Markov process �e�g��
see ������ and hence the window size evolution W �t� is a Markov process as well� With this
in mind� we derive a steady�state Kolmogorov equation for F �x� � PfW � xg which is the
basis to our analysis� We use the following up and down crossing argument
 Assume that
the process is in equilibrium and consider a level x � ���M�� Whenever the window size
increases from less than or equal to x to more than x we say that an up crossing of the level x
has occurred� Similarly� if the window size decreases from more than x to less than or equal
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to x we say that a down crossing of the level x has occurred� Let �t� t ��� be a small time
interval� where t is a deterministic time moment� When the process is in equilibrium� the
probability of up�crossing

��� ���P fx� �� � W � xg� o���

is equal to the probability of down�crossing

��
�X
n��

qnP fx � W � min��nx�M�g� o����

After equating these� we pass � � �� Since we assumed that F �x� � P fW � xg is continuous
for x � M �see Remark ��� for a justi�cation of this assumption�� we conclude that the
derivative of F �x� exists and is continuous for all x except at x � M��n� when qn � �� For
x � ���M�nfM��ngn�������� we obtain the following steady�state Kolmogorov equation

�
d

dx
P fW � xg � �

�X
n��

qnP fx � W � min��nx�M�g �

or� equivalently�

��
d

dx
F �x� � �

�
F �x��

�X
n��

qnF �min��
nx�M��

�
� �
���

From this di�erential equation we shall determine F �x�� x � ���M�� in terms of the proba�
bility

PM 
� P fW �Mg � �� F �M�� � F �M���

In Section � we �rst use �
��� to determine the moments of the window size distribution
in terms of PM � Then we �nd the distribution function itself in Section �� The unknown
PM is then determined using the fact that F �x� is a complementary probability distribution
function �F ��� � ��� However� the expression obtained for PM in this way� does not lend
itself for computational purposes� Therefore we show an elegant alternative to determine PM
in Section �� which leads to an e�cient and numerically stable algorithm for computations�

��� Congestion limitation� a special case

When the maximum window sizeM is due to congestion limitation� immediately upon reach�
ing the level M a batch of congestion signals is generated� In this section we study the case
when the size of such a batch has the same distribution as the random variable N � In Section
� we present the analysis of the more general case when the number of congestion signals
that result from reaching M has a di�erent distribution than N � Similarly as in Section 
���

we can derive the following di�erential equation for F
cl
�x�� � � x � M 


��
d

dx
F

cl
�x� � �

�
F

cl
�x��

�X
n��

qnF
cl
�min��nx�M��

�

��gP

�
N �

ln�M�� ln�x�

ln���

�
� �
���
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with�

g 
� �
�

�

d

dy
F

cl
�y�

����
y�M�

�

The additional term� compared to �
���� comes from the fact that a down crossing of the
level x may be due to the fact that the level M is reached and that the rate is decreased by
a factor ��n with ��nM � x� Note that if F �x� is the unique complementary distribution
function satisfying �
��� then

F
cl
�x� 
�

F �x�� PM
�� PM

� � � x � M� �
���

is the unique complementary distribution function satisfying �
���� This follows immediately
by substituting �
��� into �
���� This relation has a simple geometric interpretation� Using the
fact that the Poisson process is memoryless� if we consider the model with peak rate limitation
only at moments when the window is less than M �i�e�� we cut out all periods where the
window equals M�� what we get is identical to the model with congestion limitation� Thus�
we can concentrate on �nding the distribution function F �x� for the peak rate limitation
model and then use �
��� or the equivalent


F cl�x� �
F �x�

�� PM
�

In particular� the moments of the window size in the two models are related by


E

�	
W cl


k�
�
E
�
W k

�
� PMMk

�� PM
� �
���

In Section � below we derive a recursive relation for E
�
W k

�
� Combined with �
���� this gives

a recursion on E
h�
W cl


ki
which we report at this point for completeness


E

�	
W cl


k�
�
k�E

h�
W cl


k��i
� ���Q���k��

�
PM
�� PM

Mk� �
���

Remark ��� We emphasize that in the congestion limitation model� the quantity PM has
no clear interpretation� In Section � we use the interpretation of this quantity in the peak
rate limitation model to compute it� If we were to analyze the congestion limitation model

without using �
���� then from �
��� we could express F
cl
�x�  using the same techniques as

in Section �  in terms of g instead of PM � Note that these two constants are related


g �
PM
�� PM

� �
���

The constant g can be determined using that F
cl
�x� is a complementary probability distri�

bution� see ����� below� Since from the analysis of Section � we obtain a more tractable
expression for PM �see Remark ��
 for a related discussion�� we will not further dwell on this
approach�
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� The dual queueing model

Before proceeding with determining the moments and the distribution of the window size�
we brie�y show how the problem can be related to an M�G�� queueing problem with service
depending on the system workload� see also ����� First we concentrate on peak rate limitation�
below we comment on congestion limitation� De�ne

U�t� �
M �W �t�

�
� �����

I�e�� U�t� is obtained by ��ipping	 W �t� around a horizontal line and then scaling by a factor
���� In particular� the area between W �t� and the maximum window size M �Figure ��
corresponds to the area below U�t�� Note that U�t� resembles the evolution in time of
the workload �or the virtual waiting time� in a queueing system� A window equal to M
corresponds to an empty queueing system� The linear increase in workload between arrivals
of congestion signals corresponds to the decrease in workload due to service in the queueing
model� The arrival of a batch of congestion signals in our model corresponds to an arrival
to the queue� The reduction of the window upon a loss event corresponds to the increase in
workload upon arrival in the equivalent queueing model� Given that the amount by which
the window is reduced depends on the current value of the window �and of course on the
number of congestion signals in the batch�� the service time in the dual queueing model is
dependent on the current workload there� We conclude that the dual model behaves indeed
as an M�G�� queue �in�nite bu�er capacity� one server and Poisson arrivals with intensity
�� with state�dependent service requirements� If Un is the workload seen by arrival n in the
M�G�� queue� then its service time xn is equal to

xn �

�
M

�
� Un

�
�

�
��

�

�Nn

�
�

where Nn is the number of congestion signals in the nth batch of congestion signals in the
original model� Instead of directly working with the congestion control model as we do
in this paper� one could analyze the queueing model and switch back to the �ow control
problem by using Equation ������ In particular� E

�
W k

�
� E

�
�M � �U�k

�
� P fW � xg �

� � P fU � �M � x���g for x � M and PM is equal to the fraction of time that the dual
queue is empty�
In the case of congestion limitation� the only di�erence in the dual queueing model is that

we have an additional arrival once the system becomes empty� Thus� the arrival process
is the sum of a Poisson process of intensity � and another process that depends on the
workload of the system �it generates an immediate arrival when the queue becomes empty��
The de�nition of the service times in the dual queue and the transformation back to the �ow
control problem remain the same�

� Moments of the window size distribution

Now focus on the model with peak rate limitation �the results obtained can also directly be
used for the special case of congestion limitation described in Section 
�
�� In this section
we study the moments of the window size� The k�th moment of the transmission rate can be
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simply obtained by dividing the k�th moment of the window size by �RTT �k� Of particular
interest is the expectation of the transmission rate which coincides with the throughput of
the transfer or the time average of the transmission rate� Let X denote the throughput� We
have

X � lim
T��

�

T

Z T

�
X�t�dt �

E �W �

RTT
� �����

De�ne for Re�	� � � the LST �Laplace�Stieltjes Transform� of the window size distribution
by

!f�	� �

Z M�

x��
e��xdF �x��

Taking LTs �Laplace Transforms� in �
��� leads to


�
	
!f�	�� PMe

��M


� �
�� !f�	�

	
���
�

��
�X
n��

��nqn
�� !f���n	�

��n	
�

Note that ���
� holds in particular for M � �� i�e�� no limitation on the window size� in
which case PM � �� Using E

�
W k

�
�Mk� k � �� 
� � � � � we may write

!f�	� � � �

�X
k��

��	�k

k"
E
h
W k

i
�

�� !f���n	�

��n	
�

�X
k��

����n	�k

�k � ��"
E
h
W k��

i
�

Substituting this in ���
�� using the absolute convergence of the doubly�in�nite series to
interchange the order of summation and equating the coe�cients of equal powers of 	 we
get� for k � �� 
� � � � �

E
h
W k

i
�
k�
�
E
�
W k��

�
� PMMk��



� ���Q���k��

� �����

from which the moments of the window size distribution can be obtained recursively� In
particular we �nd for k � �� 



E �W � �
� ��� PM �

� ���Q������
� �����

E
�
W �

�
�

�
�
� ��� PM �� �PMM

�
��Q�����


�
�� ���Q������ ���Q������

� �����

These �rst two moments can also be obtained using direct arguments� see Remarks ��� and
��
 below� Such arguments were also used by Misra et al� ���� for the case � � 
 and N 	 ��
However� in their analysis an error appears which results in an additional equation besides
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Figure �
 Area associated with a single loss

����� and ����� from which they determine an incorrect expression for the probability PM
�see Remark ��
��

Remark ��� The mean window size can be obtained by considering the mean drift� The
upward drift of the window size is given by �P fW � Mg and the downward drift equals
�E �W �

�
��E

�
��N

�

� Equating these gives ������

We can further derive E
�
W �

�
applying an argument similar to Little	s law as was done by

Misra et al� ���� for the case � � 
 and N 	 �� The main idea is sketched in the following�
For the dual queueing model described in Section �� we can equate the mean workload E �U �
with � times the mean area below U�t� �induced by a single arrival	 �use that Poisson arrivals
see time averages
 PASTA�� Back in the original model� the �mean surface	 of the area above
W �t� in Figure � equals M � E �W �� We �nd an alternative expression for this area by
determining the surface of the area �induced	 by a loss event� This is also depicted in Figure
�� Suppose a loss occurs at window size W and the window is reduced by a factor ��N � We
can associate with this loss an area above the curve �the surface of the larger triangle minus
that of the smaller one� equal to

�


�

�
M � ��NW


�
�
�


�
�M �W �� �

Because of PASTA and the fact that N is independent of W � the expectation of the surface
of this area is

�


�

��
Q������ �



E
�
W �

�
� 
M

�
Q������ �



E �W �



�

The rate at which losses occur is �� and so


M �E �W � �
�


�

��
Q������ �



E
�
W �

�
� 
M

�
Q������ �



E �W �



� �����

Together with ����� this indeed gives ������



� Window size distribution function 		

Remark ��� For a special case of our model� yet another way is pursued in ���� to derive �����
and ������ However� there� the �nal result is incorrect due to a small error in an intermediate
step� De�ning PM �t� 
� P fW �t� �Mg� the �rst two moments of W �t� satisfy


d

dt
E �W �t�� � ��

�
��Q�����



E �W �t��

�� ��� PM �t�� �

d

dt
E
�
W �t��

�
� ��

�
��Q�����



E
�
W �t��

�
�
� �E �W �t���MPM �t�� �

In steady state we have E �W �t�� 	 E �W �� E
�
W �t��

�
	 E

�
W �

�
and PM �t� 	 PM � Substitu�

tion into ����� gives ����� and substitution into ����� gives


� � ��
�
��Q�����



E
�
W �

�
� 
� �E �W �� PMM� � �����

The latter is a linear combination of ����� and ����� and� hence� leads to ������ For the case
� � 
 and N 	 �� the formula given in ���� for E

�
W �

�
�below Formula ��� in that reference�

di�ers from ����� by a factor �� � ���RTT � This resulted in a third �incorrect� equation
which is independent of ����� and ����� from which PM was determined simultaneously with
E �W � and E

�
W �

�
� In Section � we show how PM can be determined correctly and computed

e�ciently�

� Window size distribution function

In this section we determine the cumulative distribution function of the window size explicitly�
The distribution of the transmission rate can be simply obtained by rescaling the window axis
by ��RTT� We start with the case whereM ��� providing an expression of the distribution
function in the intervals �M��k�M��k��� with k � �� 
� � � � � Then� for the case M � �� we
give an expression of the distribution for any x � � as an in�nite sum of exponentials�

��� Window distribution for �nite M

For M�� � x � M � Equation �
��� reduces to


��
d

dx
F �x� � �F �x��

hence�

F �x� � PMe
�
�
�M�x��

M

�
� x � M� �����

To �nd the entire distribution we introduce� for k � �� 
� �� � � � �

F k�x� 
� F �x��
M

�k
� x �

M

�k��
� ���
�



� Window size distribution function 	�

Equation �
��� can now be written as


d

dx
F k�x� � �

�

�
F k�x� �

�

�

k��X
n��

qnF k�n��
nx�� �����

Since F �x� is continuous for � � x � M we have


F k�
M

�k��
� � F k���

M

�k��
�� k � 
� �� � � � � �����

F k is recursively given by

F k�x� � F k���M��k���e
�
�

�
M

�k��
�x

�

�
�

�
e�

�
�
x

Z M��k��

u�x
e
�
�
u
k��X
n��

qnF k�n��
nu�du�

We conclude from the above recursion that a solution to ����� and ����� has the following
form

F k�x� � PM

kX
i��

c
�k�
i e

� �
�
�i��x� k � �� 
� ��� �����

To determine the coe�cients c
�k�
i � we substitute ����� into ����� and change the order of

summation in the last term �
�

Pk��
n�� qnF k�n��

nx�


PM

kX
i��

c
�k�
i ��

�

�
�i���e�

�
�
�i��x� �

� �
�

�
PM

kX
i��

c
�k�
i e

� �
�
�i��x �

�

�
PM

k��X
i��

�
iX

n��

qnc
�k�n�
i�n��

�
e�

�
�
�ix

By equating the terms with the same exponents� we get the following recursive formula

c
�k�
i�� �

�

�� �i

iX
n��

qnc
�k�n�
i�n��� i � �� ���� k � �� �����

Once the coe�cients c
�k�
i � i � 
� ���� k are computed� the coe�cient c

�k�
� can be determined

from �����


c
�k�
� � e

�
�

M

�k��

�
k��X
i��

c
�k���
i e�

�
�
�i�kM �

kX
i��

c
�k�
i e

� �
�
�i�kM

�
� �����

Note that to compute the coe�cients c
�k�
i � we do not need PM � Hence� using that F �x� is a

complementary distribution function� PM is then determined by


� � F ��� � lim
k��

F k�M��k��� � PM

�
lim
k��

kX
i��

c
�k�
i e

� �
�
M��k�i

�
� �����



� Window size distribution function 	�

However� this relation is not suitable to compute PM � see Remark ��
 below�

Remark ��� With ���
� and ����� we have found an equilibrium distribution function F �x�
satisfying �
���� By Thm� 
�� it is the unique solution and� hence� the assumption that F �x�
is continuous for x � M is justi�ed�

Remark ��� Recursion ����� is suitable to determine the distribution function on an interval
M��k � x � M when k is not too large� For large k the recursion may become instable�
since it involves subtraction of numbers of the same order� Therefore ����� is not suitable to
compute PM � In Section � below we derive an alternative expression for PM � which leads to
a numerically stable and e�cient algorithm to compute PM �

Remark ��� One can alternatively show that the functions F k�x� are of the form �����
using Laplace Transform techniques� Note that by means of the di�erential equations ������
these functions can be extended beyond the intervals �M��k�M��k��� to the whole real line�
Of course� outside the intervals �M��k�M��k��� the functions F k�x� may �and will� be un�
equal to F � One may take Laplace Transforms in ������ solve the resulting recursion on k�
and invert the transforms after applying partial fraction expansion� This approach is used in
Sections ��
 and ��

��� Window distribution for in�nite M

In this case� the results derived in the previous subsection cannot be applied immediately by
letting M go to in�nity� However� we can derive the LST of the window size distribution by
similar arguments as before� When M ��� ���
� becomes

!f�	� � �
�

�

�
!f�	�

	
�

�X
n��

qn
!f���n	�

	

�
�

or� equivalently�

!f�	� �
�
�

	 � �
�

�X
n��

qn !f��
�n	�� �����

Substituting the above equation repeatedly into itself l times� applying partial fraction ex�
pansion at each step� and then taking l 
 �� we conclude that !f�	� can be expressed as
follows


!f�	� �

�X
i��

ci
��

��
i

	 � �
��

i
� ������

for certain coe�cients ci �this is formally justi�ed later�� To determine the constants ci� i �
�� �� ���� we substitute ������ into ����� and equate coe�cients multiplying the terms ���	 �



� The probability of maximum window size 	�

�
��

i�� This leads to the recursive formula

ci
c�
�

�

�� �i

iX
k��

qk
ci�k
c�

�

which determines the ratios ci�c� �it is for this reason that both sides contain a factor ��c���
The coe�cient c� follows from !f��� � �

P�
i�� ci � �


c� � ��� �

�X
i��

ci
c�
���� ������

Inversion of ������ back into the time domain gives


F �x� � C �

�X
i��

cie
� �
�
�ix� ����
�

with C � � �because F ��� � ��� Note that the above series is absolutely convergent for any
value of x � ������ Thus� it is the �unique"� solution to �
��� when M ��� For the case of
no window size limitation and N 	 �� �q� � ��� F �x� was already obtained in �����

� The probability of maximum window size

In Sections � and � we determined the window size distribution and its moments in terms of
PM � In this section we derive an expression for PM from which it can be computed e�ciently�
For this we introduce the random variable T �x� which is the time until the window size
returns to the value x� starting just after a loss event occurs with the window size being
equal to x � ���M �� We denote its expectation by E�x� 
� E �T �x��� x � ���M �� Then� from
elementary renewal theory�

PM 
� P fW �Mg �
���

����E�M�
� �����

We now proceed to �nd the function E�x�� A typical evolution of the window size is depicted
in Figure 
� For simplicity in the �gure only losses having N � � are depicted and the
times to recover from losses are partly cut out of the picture �denoted by the shaded areas��
Suppose for the moment that the initial loss �at the level x� was such that N � n �in the
�gure n � ��� Let Tn�x� be the time to get back at level x conditional on N � n and we
further write En�x� 
� E �Tn�x�� 
� E �T �x�jN � n�� Note that

E�x� �
�X
n��

qnEn�x�� ���
�

If no losses occur during the time Tn�x� then Tn�x� � �����n�x��� i�e�� the window size x is
reached in a straight line from the starting point at ��nx �in the �gure ���x�� Each time a
loss occurs at a level y � ���nx� x� it takes T �y� time units to get back at the level y� Because
of the memoryless property of the Poisson process� if we take out the shaded areas in Figure



� The probability of maximum window size 	�
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 and concatenate the non�shaded areas then the cut points �where the shaded areas used to
be� form a Poisson process on the straight line from ��nx to x� Thus if the cut points are
given by y�� y�� � � � � ym �in the �gure m � 
� then

En�x� �
��� ��n�x

�
�E�y�� �E�y�� � � � ��E�ym��

Since the loss process is a Poisson process� the mean number of cut points is ���� ��n�x��
and the position of each of the points yj is uniformly distributed over the interval ��

�nx� x��
see for instance �

� Thm� ��
���� Hence�

En�x� �
��� ��n�x

�
� �
��� ��n�x

�

Z x

y���nx

E�y�

��� ��n�x
dy

�
��� ��n�x

�
�
�

�

Z x

y���nx
E�y�dy� �����

Using �
��� and ���
� we now arrive at

E�x� �
���Q������x

�
�
�

�

�X
n��

qn

Z x

y���nx
E�y�dy� �����

Although in the �nite�window case �M ��� the above integral equation has only meaning
for � � x �M � it is well de�ned for all x � �� In the following we solve the integral equation
for all x � �� First we note that it has a unique solution� see Appendix A��� De�ne the LT
�Laplace Transform� of E�x�


!e�	� 
�

Z �

x��
e��xE�x�dx�



� The probability of maximum window size 	�

In Appendix A�
 it is shown that !e�	� �� for 	 � ���� Hence� for 	 large enough and using
that the qn and E�x� are non�negative to interchange the order of integration and summation
�twice�� we can rewrite ����� as


!e�	� �
��Q�����

�	�
�

�

�	

�
!e�	��

�X
n��

qn!e��
n	�

�
�

This gives

!e�	� �
�

�	 � �

�
��Q�����

	
� �

�X
n��

qn!e��
n	�

�
� �����

Substituting this equation repeatedly into itself� applying partial fraction expansion at each
step and using that !e��k	� � � as k 
� leads us to the following candidate solution


!e�	� �
��Q�����

	

�X
i��

ei
�i�	 � �

� �����

where the ei are constants to be determined� This representation will be justi�ed by showing
that it leads us to the �unique"� solutions to ����� and ������ Substituting ����� into �����
and equating the coe�cients multiplying the terms ����i�	 � �� leads to


ei
e�
�

�

�� ��i

iX
n��

��nqn
ei�n
e�

� i � �� 
� �� � � � � �����

e� �

��� � �X
n��

��nqn

�X
j��

ej�e�
�j�n � �

�A�� � �����

We note that the ratios ei�e� are non negative and can be computed recursively from ������
Then the normalizing constant e� � � can be computed from ������ From ����� it can be
shown �by induction on i� that

ei � ��ie�� i � �� 
� � � � � �����

i�e�� the ei decay exponentially fast in i as i 
 �� Therefore the right hand side of �����
certainly converges for 	 � ��� and� from its construction� ����� is the solution to ������ By
partial fraction ����� can be rewritten as


!e�	� �
��Q�����

�

�X
i��

ei

�
�

	 � ��i���
�
�

	

�
� ������

Inverting this LT gives


E�x� �
��Q�����

�

�X
i��

ei

	
e�
�i�����x � �



� ������



� Special case� single congestion signals and � � � 	�

Using this in ����� we have

PM �
���

����E�M�
�

�
� �

�
��Q�����


 �X
i��

ei

	
e�
�i�����M � �


���
� ����
�

Note that because of ����� and	
e�
�i�����M � �



� ��i�����M� i
��

PM can be computed e�ciently from ����
��

Remark ��� In particular cases we can �nd the coe�cients ei explicitly� For instance� when
the reduction of the TCP window is always by a constant factor �� i�e�� N 	 � �hence� q� � �
and Q�z� 	 z�� Note that with � � 
 we have TCP	s most common window decrease factor
�see Section � for more speci�c results in that case�� From ����� ���� we get

ei
e�
�

��iQi
j�� ��� ��j�

� i � �� 
� � � � � ������

e� �

�
� �

�X
i��

��i
ei
e�

���
� ������

In this case we could have obtained these coe�cients also in a direct way� without using ������
see Appendix A��� There it is also shown that in this case

�X
i��

ei �
�

�� ���
�

and� hence� from ����
�


PM �

��
�� ���


 �X
i��

eie
��i�����M

���
� ������

� Special case� single congestion signals and � � �

In this section we specify our results for the important particular case of TCP �ow control
with only one division of the window by a factor 
 at loss events� I�e�� we take � � 
 and
N 	 � �q� � �� and qn � �� n � 
� �� ���� in the model with peak rate limitation� see ����
for a similar model� In Section ��
 we compare the results from this particular case of our
model to measurements from the Internet� We worked with long distance connections where
congestion signals rarely appear in batches� From ����� and ����� we obtain the expressions
for the �rst two moments of the window size distribution


E�W � �

�

�
��� PM ��



	 General congestion limitation model 	�

E�W �� �
���
��� � PM �� �PMM �

���
�

where PM is given by ������ with � � 
� The throughput of TCP can be obtained from
Equation ������ The distribution function itself or the complementary distribution function
F �x� is computed successively on the intervals �M�
k�M�
k���� k � �� 
� ��� using ����� with
� � 
� Recursion ����� reduces to

c
�k�
i�� �

c
�k���
i

�� 
i
� i � �� ���� k � ��

and c
�k�
� is given by ������ When M ��� the distribution function is given by ����
� with

ci �
�

�� 
i
ci��� i � �� 
� � � � �

and c� is given by �������

	 General congestion limitation model

In the case of congestion limitation it seems unrealistic to assume that the number of con�
gestion signals in the batch that is generated when reaching the maximum transmission rate
has the same distribution as the size of the batches generated by the Poisson process� Let us
therefore assume that the number of congestion signals that result from reaching the max�
imum transmission rate is distributed as the non negative discrete random variable N �M�

having p�g�f�

Q�M��z� �
�X
n��

znq�M�
n jzj � ��

Instead of �
��� we then have for � � x � M 
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d
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F
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�x� � �

�
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�x��

�X
n��

qnF
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�min��nx�M��

�
� �b�M�H�x�� �����

where

H�x� 
� P

�
N �M� �

ln�M�� ln�x�

ln���

�
�

b�M� 
� �
�

�

d

dy
F
cl
�y�

����
y�M�

�

Note that H�x� is a non negative� non decreasing step function of the variable x� constant
on the intervals ��kM � x � ��k��M � k � �� 
� � � � � with H�M� � �


H�x� � hk 
� P
n
N �M� � k

o
� ��kM � x � ��k��M�



	 General congestion limitation model 	�

��� The moments

Similar to Section � we �nd the following recursion on the moments after taking Laplace
Transforms in �����
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W cl


k�
�
k�E
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k��i
� b�M��Mk
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��Q�M����k�
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Note that if Q�M��z� � Q�z� this recursion indeed reduces to �
����

��� The distribution function

De�ning� for k � �� 
� � � � �
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we �nd by the same techniques as in Section �
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This leads to
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The coe�cients d
�k�
i are given by
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Note that the d
�k�
� are all non negative� but that the signs of the d

�k�
i for i � � alternate�




 Model validation �


��� The constant b�M�

Note that� similar to ����� we �nd from F
cl
��� � �


�
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� lim
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� ���
�

However� for computational purposes� we again prefer to translate the model into a peak
rate limitation type of model� Therefore� consider a peak rate limitation model in which
congestion signal batches arrive according to a Poisson process with rate � but� di�erent
from the model in Section 
��� with the distribution of the batch size depending on whether
the transmission rate is below or at the maximum level M � The batch size has p�g�f� Q�z� if
the rate is below M � otherwise it has p�g�f� Q�M��z�� Similar to �
��� we have


b�M� �
P

�M�
M

�� P
�M�
M

�

where P
�M�
M is the probability of being at the maximum transmission rateM � For � � x � M

�as we shall see it is convenient not to include x � M�� let the functions E�x� and En�x��
n � �� 
� � � � � be de�ned as in Section �� Note that as long as the process is below the
maximum level M � it behaves exactly as the ordinary peak rate limitation model of Section

��� Therefore� for � � x � M the functions E�x� and En�x� are exactly as we found in
Section �� see ������ and ������ This is not true for x � M and to avoid confusion we write
E�M��M� instead of E�M� for the return time to level M in the present model� Of course�

P
�M�
M �

�

� � �E�M��M�
�

Similar to ���
� we have


E�M��M� �
�X
n��

q�M�
n En�M��

And using ����� and ������ we �nd
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 Model validation

In this section we compare measurements from long distance and long life TCP connections
with the results of Section � �N 	 �� � � 
� peak rate limitation�� Comparison of real
measurements with the model with clustered �batch� arrivals of congestion signals is a topic
of current research� see also Section ���




 Model validation �	

Due to the large number of hops and the multiplexing of exogenous tra�c in network
routers� the Poisson loss process assumption is expected to hold on long distance connec�
tions ����� Our TCP receivers implement the delay ACK mechanisms and our TCP senders
increase their window in the congestion avoidance mode by approximately one packet every
window	s worth of ACKs� Thus� we take � equal to ���
RTT � ����� First� we show theoret�
ically how the window size is distributed in the stationary regime� Second� we compare our
results to measurements from the Internet�

	�� Numerical results

Consider the case of a long TCP connection with packets of size ���� bytes and a constant
RTT of one second� Using the results of Section �� we plot the cumulative distribution
function F �x� of the window size and its probability density function f�x� for a range of
values for the loss intensity � �or rather� for the mean inter�loss time s � ����� Two values
of M are considered� First� we let the congestion window be limited by a receiver window of
�
 kbytes� Then we consider the case where the window is not limited and therefore continues
to grow linearly until a loss occurs� The numerical results are presented in Figures �� �� �
and �� For the case M � �
 kbytes� we computed the distribution function successively for
the intervals �M�
�M �� �M���M�
� and so on� When computing PM we truncate the in�nite
series in ������� In the case of an unlimited window� we also truncate the in�nite series in
����
�� As discussed previously� these in�nite series converge fast� We choose the number of
terms of these series large enough to get a negligible error�
When M � �
 kbytes� the discontinuities of F �x� and f�x� at x � M and x � M�
�

respectively� are clearly illustrated in Figures � and �� The discontinuities are most noticeable
for large inter�loss times� The discontinuity of F �x� is also depicted in Figure � by plotting
a pulse for f�x� at x � M such that its area is equal to PM � When M � �� the density
function exhibits neither pulses nor discontinuities �Figure ���

	�� Experimental results

Our experimental testbed consists of a long life and long distance TCP connection between
INRIA Sophia Antipolis �France� and Michigan State University �US�� The TCP connection
is fed at INRIA by an in�nite amount of data� The New Reno version of TCP ��� is used for
data transfer� We change the socket bu�er at the receiver in order to account for di�erent
values of M � We considered three values of M 
 �
� �� and �� kbytes� For every value of
M � we ran the TCP connection for approximately one hour and we registered the trace of
the connection using the tcpdump tool of LBNL ��
�� We developed a tool that analyzes the
trace of the connection and that detects the times at which the window is reduced� This tool
gives also the average RTT of the connection and the statistics of the window per RTT� We
plotted for the three values of M � the distribution of the window size from measurements
and that given by our model� The results are plotted in Figures �� � and ��
WhenM is small� we observe a good match between the measured distribution and the one
resulting from our model� For larger values ofM � the di�erence between the two increases� In
particular� asM increases� the measured probability density concentrates around the average
window size� This deviation can be explained from the measured inter�loss time distribution�
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In Figure ��� we plot this distribution for M � �
� This distribution is in agreement with
an exponential law� resulting in a good match between the model and the measurements�
Figures �� and �
 show the measured distributions for the other two values ofM � We observe
that the loss process is no longer Poisson� but closer to a deterministic process� Small inter�
loss times are less frequent as M increases and the tail of the distribution also becomes less
important �although it still looks like the tail of an exponential distribution�� This results in
a degradation of the correspondence between our model and the measurements�
One explanation of the deviation of the loss process from a Poisson process for larger values

of M is the following� A true Poisson loss process implies that the time until the next loss
event is independent of the past� This is the case when the congestion of the network is
dominated by the exogenous tra�c and not dependent on the measured connection� I�e�� it
is the case when the measured connection	s share of the available bandwidth on the path is
small compared to that of the exogenous tra�c� A smallM limits the bandwidth share of our
connection and limits its impact on the network� resulting in a loss process close to Poisson�
However for large M � the measured connection achieves a larger share and thus contributes
more to the congestion of network routers� When it reduces its window� the state of the
network changes and becomes under�loaded� For a certain amount of time the occurrence
of a new congestion is less likely� When the network is again more heavily loaded the next
congestion signal is likely to appear soon� This explains why we observe a low density for
small inter�loss times �Figures �
�� then a peak in the middle followed by an exponential
decay�
In summary� our model leads to accurate results when the times between losses are expo�

nentially distributed� However� in situations where the congestion in the network is largely
due to the TCP connection under consideration� the loss process is close to a deterministic
process and a simple heuristic as that proposed in ��� ��� can be used to approximate the
achieved throughput�

�� Conclusions and future research

We studied additive�increase multiplicative�decrease �ow control mechanisms under the as�
sumption that congestion signals arrive in batches according to a Poisson process� As high�
lighted in ����� the model can be reformulated as an M�G�� queuing problem with service
time dependent on system workload� We tried to keep the model as general as possible in
order to account for a wide range of congestion control strategies� We derived closed form
expressions for the moments as well as the distribution of the transmission rate� For the
case of single congestion signals� we compared our results to measurements from TCP con�
nections over the Internet� From our experiments� we concluded that our model with single
congestion signals leads to accurate results when the times between losses are close to being
exponentially distributed�
Currently� we are working on the validation of our model with clustered congestion signals�

Internet measurements have shown that on some paths �especially short distance ones� the
loss process exhibits a high degree of burstiness� We also study the extension of the analysis
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to more general inter�loss processes� in particular to Markov Modulated Poisson Processes�
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Appendix

A�� Uniqueness of E�x�

If eE�x� is a second solution to ����� then D�x� 
� E�x�� eE�x� satis�es

D�x� �

�

�

�X
n��

qn

Z x

y���nx
D�y�dy� x � ��

hence�

jD�x�j �
�

�
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n��
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Z x
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De�ne the function h�x�� x � �� byZ x
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 e
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xh�x� � e
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Substitution into �A��� gives

d

dx
h�x� � ��

Obviously� from its de�nition above� h�x� � � and h��� � �� hence� h�x� � � for all x � ��
This proves that D�x� 	 ��

A�� Existence of �e���

Using that E�y� is non negative for y � � it follows from ����� that

E�x� �
���Q������x

�
�
�

�

Z x

y��
E�y�dy�

WritingZ x

y��
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 e

�
�
xh�x��



�� Conclusions and future research ��

gives

d

dx
h�x� �

���Q������x

�
e�

�
�
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hence�

� � h�x� �
��Q�����
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�	�
�


� 	
�� e�

�
�
x


�
�

�
xe�

�
�
x

�
�

Therefore !e�	� �� for 	 � ����

A�� Direct derivation of PM for single congestion signals

Consider the case where N 	 �� We show a direct approach to �nd the coe�cients ei without
using the �candidate	 ������ We shall need the following identities �which hold for � � ��
�

� �
�X
i��

���iQi
j�� ��� ��j�

���
�

�X
k��

��kQk
l�� ��� �l�

� �A�
�

kX
i��

�Qk�i
m�� ��� �m�

Qi
n�� ��� ��n�

� �� �A���

Equation ����� becomes


!e�	� �
�

�	 � �

�
�� ���

	
� �!e��	�

�
�

and substituting this equation repeatedly into itself we �nd


!e�	� �
�� ���

	

�X
k��

�������kQk
j�� ��

j�	 � ��
� �A���

Note that the in�nite sum converges absolutely for all 	 �� � and 	 �� ��j���� for j �
�� �� 
� � � � � because the k�th term is of the order of ��k

��� when k 
�� By partial fraction
expansion we have
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�By convention the empty product equals ��� Using the absolute convergence of the in�nite
series we have
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Using �A�
� we obtain the coe�cients ei in ������ and ������� If we use �A��� we can also
show that in this case

�X
i��

ei �
�

�� ���
�

and� hence� from ����
� we obtain �������
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