

Gestion de contenus dans les réseaux

par la qualité d’expérience (QoE) :

caching et transport

Othmane Belmoukadam
Université Côte d’Azur, Inria

Présentée en vue de l’obtention

du grade de docteur en INFORMATIQUE

d’Université Côte d’Azur

Dirigée par : Chadi BARAKAT

Soutenue le : 27 Septembre 2021

Devant le jury, composé de :

Jérôme LACAN, Professeur, Institut Supérieur de
l’aéronautique et de l’Espace
Yassine HADJAJ-AOUL, Maître de Conférences (HDR),
Université de Rennes
Remi BADONNEL, Maître de Conférences, Telecom Nancy
Pedro CASAS, Senior Scientist, Institut Autrichien de

Technologie

Guillaume URVOY-KELLER, Professeur, UCA
Chadi BARAKAT, Directeur de Recherche, Inria

THÈSE DE DOCTORAT

Gestion de contenus dans les réseaux

par la qualité d’expérience (QoE):

caching et transport

QoE-aware content management in the Internet: caching

and transport

Jury:

Rapporteurs

Jérôme Lacan, Professeur, Institut Supérieur de l’Aéronautique et de l’Espace

Yassine Hadjajd-Aoul, Mâıtre de Conférences (HDR), Université de Rennes

Examinateurs

Remi Badonnel, Mâıtre de Conférences, Telecom Nancy

Pedro Casas, Senior Scientist, Institut Autrichien de Technologie

Guillaume Urvoy-Keller, Professeur, Université Côte d’Azur

Directeur de thèse

Chadi Barakat, Directeur de Recherche, Inria

Abstract

The Internet has changed drastically in recent years; multiple novel applications and ser-

vices have emerged, all about consuming digital content. In parallel, users are no longer

satisfied by the Internet’s best effort service; instead, they expect a seamless service of

high quality from the side of the network. This has increased the pressure on Internet

Service Providers (ISP) to efficiently engineer their traffic and improve their end-users

Quality of Experience (QoE) rather than just monitoring the physical properties of their

networks. Furthermore, content providers from their side, and to protect the content of

their customers, have shifted towards end-to-end encryption (e.g., TLS/SSL), which has

complicated even further the task of ISPs in handling the traffic in their networks. To-

day, the challenge is notable, especially for video streaming since it is the most dominant

service and the primary source of pressure on the Internet infrastructure, imposing tight

constraints on the quality of service (QoS) provided by the network. Video streaming

relies on the dynamic adaptive streaming over HTTP (DASH) protocol which takes into

consideration the underlying network conditions (e.g., delay, loss rate, and throughput)

and the viewport capacity (e.g., viewport resolution) to improve the experience of the

end-user in the limit of the available network resources [1, 2]. Nevertheless, knowing

encrypted video traffic is of great help to ISPs as it allows taking appropriate network

management actions. Therefore, this thesis focuses on video streaming services and

video QoE to properly manage the enormous and diverse video content available on the

Internet. To that aim, one needs to understand the transmission process of dynamic

adaptive video streaming over HTTP (DASH) protocol, identify new metrics correlated

to video QoE, and propose solutions to infer and leverage such metrics for optimal

network resources management while maximizing the end-user QoE.

In the beginning, we question the efficiency of the DASH transmission in taking into

account the terminal characteristics, in particular the viewport, knowing that requesting

a resolution exceeding the viewport does not help much in increasing the video QoE [3].

The latter might result in a bandwidth waste, and it can either save money when the

user is on a pay-as-you-go data plane or steal bandwidth from other users who need it to

improve their Quality of Experience (QoE). To narrow the stats, we present a controlled

experimental framework that leverages the YouTube and Dailymotion video players and

the Chrome web request API to assess the impact of browser viewport on the observed

video resolution pattern [4–6]. In the first attempt of this kind, we use the observed

patterns to quantify the wasted bandwidth. Then, based on the viewport importance

and knowing that the Internet traffic is getting encrypted, we propose a methodology

based on controlled experimentation able to infer fine-grained video flow information

such as chunk sizes and viewport resolution from encrypted YouTube video traces. We

ii

leverage our dataset and supervised machine learning (ML) algorithms to train different

ML models to predict viewport classes with different granularity. Later, we formulate

a QoE-driven resource allocation problem to pinpoint the optimal bandwidth allocation

that maximizes the QoE (Quality of Experience) for users of a network service provider

located behind the same bottleneck link while accounting for the characteristics of the

screens they use for video playout (viewport). Moreover, for content providers oper-

ating at the network edge, we study a viewport aware caching optimization problem

for dynamic adaptive video streaming that appropriately considers the client viewport

resolution and access speed, the join time, and the characteristics of videos. We propose

a video content placement heuristic that balances minimal join time and maximal visual

experience, subject to the cache storage capacity.

Keywords: Quality of Experience, Quality of Service, video streaming, view-

port resolution, bandwidth waste, bandwidth allocation, caching, controlled

experimentation, network resource management, Machine Learning, Integer

Linear Programming, Non-Linear Programming

Résumé

L’Internet a radicalement changé ces dernières années, de multiples applications et ser-

vices novateurs ont vu le jour, tous au sujet de la consommation de contenu numérique.

En parallèle, les utilisateurs ne sont plus satisfaits du service ”meilleur effort” d’Internet,

mais s’attendent plutôt à un service transparent de haute qualité du côté du réseau.

Cela a accru la pression sur les fournisseurs d’accès Internet (FAI) dans leurs efforts

pour gérer d’une manière efficace leur trafic et améliorer la qualité d’expérience (QoE)

de leurs utilisateurs finaux plutôt que de simplement surveiller les propriétés physiques

de leur réseaux. Les fournisseurs de contenu de leur côté, et pour mieux protéger le con-

tenu de leurs clients, se sont tournés vers le chiffrement de bout en bout (par exemple,

TLS/SSL), ce qui a encore compliqué la tâche des ISP’s vis à vis la gestion du trafic

dans leurs réseaux.

Aujourd’hui, l’enjeu est notable, notamment pour le streaming vidéo qui est la catégorie

d’applications la plus dominante et la principale source de pression sur l’infrastructure

Internet, imposant ainsi de fortes contraintes sur la qualité de service (QoS) fournie par le

réseau. En gros, le streaming vidéo repose sur le protocole de diffusion en flux adaptatif

dynamique sur HTTP (DASH) qui prend en compte les conditions sous-jacentes du

réseau (par exemple, le retard, le taux de perte et le débit) et la capacité de la fenêtre sur

laquelle la vidéo est visualisée (par exemple, la résolution de la fenêtre d’affichage) pour

améliorer l’expérience des utilisateurs dans la limite des ressources réseaux disponibles.

Dans ce sens, la réalité du trafic vidéo chiffré est très importante pour les ISP’s et les

fournisseurs de contenu car cela leur permet d’être proactifs quand il s’agit de la gestion

des flux à travers leurs réseaux (par exemple, allocation des ressources et placement de

contenu). Dans cette thèse, nous nous concentrons sur les services de streaming vidéo et

sur la vidéo QoE afin d’assurer une gestion efficace de l’énorme et diverse contenu vidéo

disponible sur Internet. Par conséquent, il est nécessaire de comprendre le processus de

transmission vidéo, d’identifier des métriques clés corrélées à la QoE vidéo et de proposer

des solutions permettant de déduire ces métriques et de les exploiter afin de gérer d’une

manière optimale les ressources réseaux et de maximiser la QoE des utilisateurs.

Dans un premier temps, nous allons étudier l’efficacité de la transmission DASH en ten-

ant compte des caractéristiques du terminal, en particulier la résolution de la fenêtre

d’affichage, sachant que demander une résolution dépassant celle-ci entrâıne un gaspillage

de bande passante. Un tel gaspillage de bande passante, si prouvé et bien maitrisé,

peut économiser de l’argent lorsque l’utilisateur est sur un plan de données pay-as-

you-go, et être investi auprès d’autres utilisateurs qui en ont besoin pour améliorer leur

qualité d’expérience. Pour affiner les statistiques, nous présentons un cadre expérimental

contrôlé qui exploite les lecteurs vidéos YouTube et Dailymotion et l’API de requête

iv

Web du navigateur Chrome pour évaluer l’impact de la taille de la fenêtre d’affichage

(en pixels, soit taille d’écran en mode plein écran) du navigateur sur la succession de

résolutions vidéos observées. Dans une première tentative du genre, nous utilisons les

modèles observés pour quantifier la quantité de bande passante gaspillée. Ensuite, mo-

tivé par l’impact des caractéristiques de l’écran (résolution) et la réalité du trafic Internet

chiffré, nous proposons une méthodologie basée sur des expérimentations contrôlées ca-

pable de déduire des informations relatives au flux vidéo à granularité fine telles que la

taille des segments à partir de traces vidéos YouTube chiffrées. Ensuite, nous exploitons

l’ensemble de données collectées et des algorithmes d’apprentissage automatique super-

visé pour mettre en place différents modèles capables de prédire la classe de la fenêtre

d’affichage à partir des traces vidéos chiffrées. Plus tard, nous formulons un problème

d’allocation de ressources piloté par la QoE pour identifier l’allocation optimale de bande

passante qui maximise la QoE sur l’ensemble des utilisateurs d’un fournisseur de service

réseau situés derrière le même goulot d’étranglement, tout en tenant compte des car-

actéristiques des fenêtres d’affichage utilisées. De plus, pour les fournisseurs de service

opérant à la périphérie du réseau, nous proposons un problème d’optimisation pour la

mise en cache des vidéos visualisées qui est sensible à la fenêtre d’affichage, ce dernier

prend en compte la résolution de la fenêtre d’affichage des clients et la vitesse d’accès

et les caractéristiques des vidéos. Par ailleurs, nous proposons une solution identifiant

l’ensemble des vidéos et représentations à cacher qui assure un temps de démarrage du

streaming minimal et une expérience visuelle maximale, sous réserve de la capacité de

stockage du cache.

Mots-clés: Qualité de Service, Qualité d’Expérience, streaming vidéo,

résolution de la fenêtre d’affichage, gaspillage bande passante, allocation

bande passante, caching, expérimentation contrôlée, gestion des ressources

réseaux, Apprentissage Machine, Programmation entier linéaire, Program-

mation non-linéaire

Acknowledgements

This is the end; after a thrilling three years, I cannot even find words to express my

feelings and gratitude toward all those people who supported me during my Ph.D. First

of all, I thank God, he has graced my life with opportunities that I know are not of my

hand or any human hand. I particularly thank my supervisor, Professor Chadi Barakat,

for his unlimited help, guidance, and support on so many levels, without which I wouldn’t

have started a Ph.D. and accomplished it. Chadi is a great person, both personally and

professionally, he was always present to support me in my periods of stress. He helped

me work on topics that I like and pushed me to explore new ideas and tackle challenging

problems. Having the opportunity to work with him both in my Master’s degree and my

Ph.D. is a privilege that I will always be proud of. I thank the reviewers for dedicating

time to review my thesis and thank the examiners for accepting to be part of my defense

jury. A warm thanks to all the members of the DIANA team, for the unforgettable

moments at Inria Sophia Antipolis. In particular, Naoufel, Abdelhakim, Mohamed,

Jawad, Houssam, Anouar, Yanis and all the other fellow Ph.D. students I spent most

of the time drinking coffee discussing relevant and irrelevant topics; I will never forget

those moments.

I would also like to thank my family for the support they gave me throughout my Ph.D.

Without a doubt, whatever I am today is because of my beloved parents. They sacrificed

and endured difficult moments to provide everything so that I can pursue my dreams.

Their prayers, moral and material sacrifices remain the source of my success. To my

brothers, thank you for encouraging me to always go forward. To my uncles and close

friends, thank you for believing in me and providing guidance when needed. Moreover, I

am incredibly grateful to a particular person in my life, and I would like to thank her for

showing me the true meaning of care, support, and sacrifice despite the circumstances.

Finally, this Ph.D. was an unforgettable journey full of sweat, stress, laughter and tears.

On many occasions, I looked myself in the mirror and thought of quieting; luckily, for

all the above reasons, I made it through and learned that limits like fear are often just

an illusion.

v

Contents

Abstract i

Acknowledgements v

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Challenges AND Motivation . 4

1.1.1 Video transmission techniques . 4

1.1.2 Video QoE modeling . 5

1.1.3 Video traffic encryption . 6

1.1.4 QoE-aware resource management 7

1.2 Thesis Roadmap . 8

2 State of the Art 11

2.1 Video streaming background . 11

2.1.1 Video transmission techniques . 12

2.1.1.1 Non-HTTP based video delivery 13

2.1.1.2 HTTP-based video delivery 14

2.1.1.3 Adaptation BitRate (ABR) algorithms 16

2.2 Video QoE modeling . 17

2.2.1 Data Collection . 19

2.2.2 QoS input type . 20

2.2.2.1 Network-level QoS . 21

2.2.2.2 Application-level QoS . 21

2.2.3 The output QoE . 22

2.3 Video QoE and encrypted traffic . 25

2.4 QoE-aware resource management . 26

2.4.1 Network-level optimization . 26

2.4.2 Caching . 28

vii

viii CONTENTS

2.5 Novel contributions . 29

3 On the impact of the viewport resolution in adaptive video streaming 31

3.1 Introduction . 32

3.2 Video content overview . 35

3.2.1 From video resolution to bitrate 35

3.3 Experimental setup . 37

3.3.1 YouTube use case . 38

3.3.2 Dailymotion use case . 39

3.4 The impact of the browser viewport on the video resolution patterns . . . 40

3.4.1 YouTube chunk resolution pattern 41

3.4.1.1 Video resolution pattern 41

3.4.1.2 Chunk size analysis . 42

3.4.2 Dailymotion video resolution pattern 44

3.5 Quantifying the waste of bandwidth . 46

3.5.1 The estimated playback bitrate . 46

3.5.1.1 YouTube playback bitrate 46

3.5.1.2 Dailymotion playback bitrate 47

3.5.2 The estimated bandwidth waste 47

3.6 Conclusion . 49

4 From encrypted video traces to viewport classification 51

4.1 Introduction . 52

4.2 Experimental setup . 53

4.2.1 Overall experimental framework 54

4.3 Analysis of video streaming traffic . 54

4.3.1 Inferring video chunk sizes . 55

4.3.2 Audio chunk size distribution . 58

4.3.3 Threshold based audio/video chunk separation 58

4.3.4 Video resolution pattern . 59

4.4 Traffic correlation to viewport . 60

4.5 Viewport classification by machine learning 64

4.5.1 Viewport class classification . 64

4.5.2 Viewport resolution classification 67

4.5.3 Real-time viewport classification 69

4.6 Conclusion . 70

5 QoE-aware bandwidth sharing framework for adaptive video stream-
ing 73

5.1 Introduction . 74

5.2 Framework and system model . 76

5.2.1 Framework . 76

5.2.2 System model . 77

5.2.3 From QoS to QoE . 78

5.2.3.1 From throughput to QoE 79

5.2.3.2 From bitrate to QoE . 79

5.2.3.3 Curve fitting evaluation 80

CONTENTS ix

5.3 QoE-driven bandwidth sharing . 81

5.3.1 Problem description . 81

5.3.2 Problem formulation . 81

5.3.3 Gradient solution based on Lagrangian relaxation 82

5.3.4 QoE-fairness at the equilibrium . 84

5.4 Numerical simulations . 86

5.4.1 Simulation setup . 86

5.4.2 Bandwidth allocation and QoE . 87

5.4.3 Linear QoE . 91

5.5 Network simulation . 92

5.5.1 Simulating QoE-driven DASH . 93

5.5.2 Changing the backhaul capacity 97

5.6 Conclusion . 98

6 QoE-aware cache placement for adaptive video streaming 101

6.1 Introduction . 102

6.2 Framework and system model . 103

6.2.1 Framework . 103

6.2.2 System model . 104

6.2.3 QoE modeling . 105

6.2.3.1 From bitrate to QoE . 105

6.2.3.2 From join time to QoE 106

6.3 Viewport aware optimal cache placement 106

6.3.1 Utility function . 107

6.3.2 Problem formulation . 108

6.3.3 QoEscoreMax . 109

6.4 Performance evaluation . 111

6.4.1 Simulation settings . 112

6.4.2 Simulation results . 113

6.4.3 QoEscoreMax vs catalog size . 116

6.5 Sensitivity analysis . 116

6.5.1 Video bitrate over join time . 117

6.5.2 Join time over video bitrate . 117

6.6 Conclusion . 118

7 Conclusion and perspectives on future research 121

7.1 Conclusion . 121

7.2 Limitations . 122

7.3 Future works . 123

7.3.1 Studying video streaming in further contexts 123

7.3.2 Dynamic screen-aware bandwidth sharing 124

7.3.3 Collaborative video caching . 126

8 Publications 129

Bibliography 131

List of Figures

1.1 The main Internet milestones . 2

1.2 Mobile video traffic statistics, figure from [7] 3

2.1 HTTP-based and non-HTTP video delivery techniques 13

2.2 Media Presentation Description sample, figure from [8] 15

2.3 HTTP adaptive streaming in a nutshell 16

2.4 The video QoS-to-QoE modeling process 19

2.5 ACQUA objective QoE modeling . 23

3.1 YouTube catalogue overview per category 34

3.2 Video bitrate per resolution for YouTube and Dailymotion 37

3.3 Experimental framework description . 38

3.4 The YouTube chunk resolution playback rate as extracted from HTTP
request clear text . 42

3.5 Analysis of YouTube chunk sizes . 43

3.6 Chunk size violin plots, matching and exceeding resolutions, case of
640x360 and 1920x1080 viewports . 43

3.7 Video resolution pattern reported by Dailymotion player 45

3.8 CDF of 720p video resolution vs playback time for the FHD viewport
(1920x1080) . 45

3.9 Bandwidth waste . 48

4.1 Experimental framework description . 54

4.2 Audio/video clusters as produced by GMM 56

4.3 Chunk size CDF . 57

4.4 Audio bitrate distribution . 57

4.5 Threshold/GMM/HTTP inference of video chunks 58

4.6 Network and viewport impact on chunk sizes 60

4.7 Throughput per viewport for multiple network settings 61

4.8 Features correlation to viewport class . 62

4.9 20th chunk size percentile (most relevant chunk size percentile in Fig-
ure 4.8), SD (0), HD (1) . 63

4.10 70th downlink throughput percentile (most relevant throughput percentile
in Figure 4.8), SD (0), HD (1) . 63

4.11 Model accuracy vs enforced bandwidth . 65

xi

xii LIST OF FIGURES

4.12 ML algorithm comparison (no bandwidth limitation) 66

4.13 Viewport resolution classification . 68

4.14 Video duration distribution (seconds) . 70

4.15 Model accuracy vs video proportion considered 70

5.1 Framework overview . 76

5.2 Traffic generation according to our model 78

5.3 Fitting QoE function (5.1) using controlled experiments data from [9] . . 79

5.4 Fitting QoE function (5.1) using video quality expert group data [10] . . . 80

5.5 Comparison of allocation strategies with uniform screen probabilities
(dataset of [10]) . 87

5.6 Comparison of allocation strategies with different screen resolution dis-
tributions (dataset of [10]) . 88

5.7 Comparison of allocation strategies with different screen resolution dis-
tributions (dataset of [9]) . 90

5.8 Comparison of allocation strategies with uniform screen probabilities and
linear QoE function (dataset of [10]) . 91

5.9 Average download bitrate per simulation time for each screen resolution
over a shared link of capacity Cl = 30Mbps 93

5.10 Average QoE per simulation time for each screen resolution 94

5.11 Average number of resolution switches per simulation time for each screen
resolution . 95

5.12 Average number of video stalls per simulation time for each screen resolution 96

5.13 Average duration of video stalls per simulation time for each screen res-
olution . 96

5.14 Average overall QoE per simulation time for two backhaul capacities . . . 97

6.1 Framework description . 104

6.2 Distribution of devices’ viewport resolutions 111

6.3 Average QoE per request for fast internet accesses 114

6.4 Average QoE per request for poor/medium accesses 115

6.5 QoE vs catalog size . 116

6.6 QoE mainly based on video bitrate . 116

6.7 QoE mainly based on join time . 118

List of Tables

2.1 QoE and network sensing tools comparison 24

3.1 Standard video resolution with matching viewport 40

4.1 Random Forest case (precision/recall) . 67

4.2 Multi-class case: Precision/Recall & F1-score 68

5.1 Notations of our bandwidth sharing framework 77

5.2 Curve fitting evaluation . 81

xiii

Abbreviations

QoS Quality of Service

QoE Quality of Experience

ML Machine Learning

MOS Mean Opinion Score

RMSE Root Mean Squared Error

HAS HTTP Adaptive Streaming

DASH Dynamic Adaptive Streaming over HTTP

ABR Adaptation BitRate

ILP Integer Linear Problem

NLP Non Linear Problem

DPI Deep Packet Inspection

HD High Definition

SD Standard Definition

xv

Dedicated to my family and beloved ones

xvii

Chapter 1

Introduction

The Internet has seen tremendous structural changes throughout the years (Figure 1.1).

It started at the very beginning with the need to create a vast computer network.

Afterward, the (TCP/IP) technology was proposed, a resilient and robust protocol stack

able to link several networks together such that, if one network is down, the others do not

collapse [11]. Later, the Internet started providing essential services such as connecting

multiple hosts, sending emails, and sharing files. In the 90s, the Hypertext Markup

Language (HTML) was invented by the World Wide Web Consortium (W3C) and the

Web Hypertext Application Technology Working Group (WHATWG), giving birth to

the first incarnation of the World Wide Web [12]. After that, several companies started

infiltrating the market, with Microsoft launching Windows 95, Amazon, Yahoo, and

eBay launched, and Java created, thus allowing for animation on websites and opening

the door for new internet activity. Today, the Internet is revolutionizing people’s life,

from shopping to ordering food, sharing moments with family and friends, ending with

instant messaging. Everything is one click away from anybody anywhere on the globe.

Today, video traffic is unarguably the major contributor to global Internet traffic and

the main source of pressure on the Internet infrastructure. By 2023, video traffic is ex-

pected to account for 73% of the global mobile data traffic, compared with only 56% in

2015 (Figure 1.2) [7]. Moreover, due to the COVID-19 pandemic, sanitary confinement

forced people around the globe to restrict their mobility and increase their video traffic

for remote working, entertainment, and education. Recently, researchers have analyzed

data from ISPs, IXPs, and educational networks to show that video traffic has increased

by 15-20% almost within a week [13]. A statement by the European Union raised con-

cerns about the coronavirus lockdown putting strain on broadband delivery systems.

As a result, mainstream content video providers, such as Netflix, reduced their video

resolution to the standard definition during the pandemic [14]. Afterward, providers

1

2 Introduction

Figure 1.1: The main Internet milestones

started again to upgrade their services back to high definition [15]. The end-users from

their side expect the best quality and can be frustrated by any service interruption.

Statistics show that up to 90% of end-users abandon their operator after experiencing

network quality degradation without giving any feedback, resulting in substantial eco-

nomic losses. As a result, both operators and service providers feel more pressure to

be proactive and enhance their services as much as possible by assessing the end-user

Quality of Experience (QoE).

Quality of Experience (QoE) can be defined as the level of satisfaction of a customer’s

experiences with a service. It can be characterized by a set of factors, some are subjective

while others remain objective such as the network conditions and the terminal display

capacity [16]. By definition, the QoE is a subjective metric; however, it can be evaluated

by subjective, objective and hybrid methods. The subjective QoE evaluation requires

a panel of humans that will grade their experience after watching a set of videos. The

ITU-R BT.500-1 [17] is a standard method for conducting subjective video quality eval-

uations. On the other hand, the objective QoE evaluation methods leverage raw metrics

that can be computed with technical parameters collected from the network. We men-

tion Peak-Signal-to-Noise Ratio (PSNR), an objective QoE evaluation metric which is

defined as the Mean Squared Error (MSE) between an original frame and the distorted

frame [17]. The PSNR can be computed only when the image is downloaded by the

end-user, thus, limiting its usage in real-time scenarios. Meanwhile, Pseudo-Subjective

Quality Assessment (PSQA) is a hybrid QoE assessment approach, combining advan-

tages of both the objective and subjective schemes [18]. They call it hybrid because it

incorporates a subjective evaluation in its methodology performed only once to calibrate

a model that can be used many times as necessary to input the objective parameters.

In the context of video streaming over wireless networks, authors in [19], demonstrate

3

Figure 1.2: Mobile video traffic statistics, figure from [7]

that the PSQA approach out-perform the QoE estimation by the objective Peak-Signal-

to-Noise Ratio (PSNR) metric and gives a similar result comparing to subjective QoE

values given by real-users.

In this era where end devices such as mobile phones, tablets, and monitors, are dotted

with more advanced features (e.g., the viewport resolution), the device-related factors

(e.g., screen resolution) play a significant role in defining the visual experience. In plain,

the perceptual visual experience is highly affected by the screen display characteristics

(size and resolution) and human influence factors such as the viewer distance from the

screen and its visual acuity. The visual acuity measures the sharpness of vision so that

people with 20/20 vision can see clearly at 20 feet. On the other hand, people with

20/200 vision must be at 20 feet to see what a person with normal vision can see at 200

feet. Moreover, it has been proved that if the pixel size is inferior to the smallest visual

angle at which two separate objects can be discriminated (minimum separable angle), the

structure of the pixel is invisible and does not negatively affect image quality [20]. In this

context, and considering viewers of normal visual acuity (20/20), sitting at a standard

distance from the screen (not too close as the field of view gets wide, and not too far

as the field of view becomes fogy), the screen characteristics mainly its resolution plays

a significant role in defining the perceptual visual experience. With that being said,

we still need to understand the impact of the screen characteristics (e.g., resolution)

on adaptive video streaming. In particular, to what extent modern video transmission

techniques account for the screen resolution before deciding which video resolution to

request from the server. Such a study can also shed light on any form of bandwidth

waste related to downloading resolutions exceeding the screen resolution (i.e., a viewport

in full-screen mode). This waste can be of particular concern to end-users paying their

4 Introduction

subscription at the byte level and to operators who can invest it on other flows in need

of it.

Motivated by the increasing demand for video streaming services, video content diversity,

and the different display technologies in the market, we tackle three main challenges in

this thesis that can be summarized as follow:

1. The interaction between the video delivery and the end-user viewport resolution

in adaptive video streaming

2. The key features of the encrypted video traces that can be used to infer information

such as the viewport resolution

3. The management of video content by leveraging QoE models accounting for the

viewport resolution, both in terms of resource allocation (e.g., bandwidth sharing)

and caching (e.g., content placement)

In the next section, we discuss the challenges and briefly present the solutions proposed

in the thesis.

1.1 Challenges AND Motivation

1.1.1 Video transmission techniques

Today, and almost on every platform, video streaming is governed by the Dynamic Adap-

tive Streaming over HTTP (DASH) protocol. For DASH, the client player automatically

switches between video resolutions according to underlying network performance [1, 2].

The video chunk resolutions requested from the server are determined by the network

conditions estimated by the DASH client. They usually reflect the viewport resolution,

which is defined as the number of pixels, vertically and horizontally, on which the video is

displayed. In scenarios where bandwidth is scarce, either because of congestion or limited

bandwidth at the access, the impact of the screen is expected to be negligible. However,

when the network is in good conditions, the user’s fair share of bandwidth might exceeds

the viewport requirements, which raises the question of whether the players stick to the

viewport requirements or exceed it to download more than their needs. Downloading

any resolution exceeding the viewport will be automatically downsized, hence resulting

in a waste of bandwidth. This waste can go unnoticed in cases of abundant bandwidth,

however in cases when bandwidth is billed at the byte level (the pay-as-you-go data

planes) or network is saturated, understanding and controlling such waste can lead to a

Challenges AND Motivation 5

less economical loss for the end-user and improved Quality of Experience (QoE) for the

other users who are in need for it (e.g., users with large viewports).

The challenge is thus notable when studying the video transmission process from a de-

vice display perspective. First of all, we need to consider the diversity of video content

(slow motion, high motion, and static) and stream videos from different types and cat-

egories. Moreover, we need to account for different screen resolutions as the market

proposes plenty of technologies. To answer this challenge, we propose an experimental

framework to stream thousands of videos automatically from different types and cat-

egories on different viewport resolutions. Our framework leverages the YouTube and

Dailymotion media players and the Chrome web request API to assess the influence of

browser viewport on the observed video resolution pattern [4–6]. To the best of our

knowledge, this is the first experimental study highlighting how far the browsers to-

day consider the viewport resolution. Furthermore, we use this study to approximate

the bandwidth waste in video streaming applications, resulting from downloading video

resolutions exceeding the end-user display capacity.

1.1.2 Video QoE modeling

When addressing Quality of Experience in general, modern standards (e.g., ITU) fo-

cus on protocols or general classes of applications and not on specific Internet services.

Among these, most target application-level metrics, such as the number of interruptions

or the number of bitrate switches during a video playback [21, 22] or the signal degra-

dation within VoIP services [23]. For what concerns the network aspects and how they

affect the user Quality of Experience (QoE), standards give general recommendations

(e.g., consider only one parameter or define minimum thresholds to have service). For

specific Internet services (e.g., YouTube), researchers either focus on the application or

the network-level QoS metrics. For instance, Hoßfeld et al. study how the Youtube QoE

is affected by application-level QoS measurements [24]. YoMoApp [25], a video stream-

ing crowdsourcing application, targets the collection of Youtube’s QoS metrics and users’

feedback. Authors in [26] perform QoE forecasting using machine learning models taking

as input network-level QoS metrics (e.g., throughput and delay) collected by end-user

devices with the help of active measurements. Following the Pseudo-Subjective Quality

Assessment (PSQA) approach, Kandaraj et al. propose a QoE monitoring module which

uses Random Neural Networks (RNN) and estimates the QoE using statistics related to

video playout interruptions (e.g., number, average delay and maximal delay) along with

a quantization parameter that controls the amount of video compression [27].

6 Introduction

In a nutshell, researchers generally focus on the application-level QoS (e.g., stalls and

resolution switches) or the network-level QoS metrics (e.g., throughput, loss rate, and

delay) when addressing video QoE. However, the visual aspect of video QoE is also

vital to consider as it is mainly related to the device and human-related factors. From

our side, we enlighten the relationship between video QoE and the viewport resolution.

We use controlled experiments to study the impact of the viewport resolution on the

video resolution patterns. We also push the video QoE modeling of state of the art

by considering QoE models that reflect the trade-off between the screen resolution, the

video bitrate, and the video QoE. Our QoE models fit an exponential function that

maps QoS and QoE parameters. We follow the IQX hypothesis, an exponential inter-

dependency between QoE and QoS metrics, it takes as input network QoS parameters

to determine the QoE, and we extend it to different viewport resolutions corresponding

to watching modes supported by video providers [28].

1.1.3 Video traffic encryption

Nowadays, customers and even official governments raised many concerns about data

privacy. Following public demand, and to avoid sanctions, content providers have shifted

toward end-to-end encryption (e.g., TLS/SSL) with more than 50% of the Internet

traffic getting encrypted [29]. With little visibility on the Internet traffic, particularly

the video traffic traversing their network, Internet service providers cannot do much in

terms of QoE-aware resource management. Given both the encryption of video traffic

and the different metrics impacting video QoE, capturing the latter faithfully can be

very challenging. In this context, we decide to study the encrypted video traces, and

engineer features that hint inferring the end-user viewport resolution.

For the sake of clarity, and regardless of the encryption, we highlight different types of

QoS measurements related to video traffic:

• In-band features: this set includes features related to the video application

adaptation to the network conditions. For instance, the chunk sizes download and

its variation, which reflects the throughput or buffer size estimation by the DASH

client (depending on the rate adaption algorithm [30, 31]).

• Out-of-band features: this set includes features such as bandwidth, jitter, loss

rate, and delay. In a controlled environment, these measurements can be orches-

trated and reproduced based on previous traces. They can be emulated in the lab

by network emulators such as Linux traffic control (tc).

Challenges AND Motivation 7

In this thesis, we study encrypted video traces and mainly focus on the In-band network

features such as the chunk size, the throughput, and the packets’ inter-arrival time. We

are the first ones to propose a data-driven methodology based on controlled experimen-

tation and machine learning (ML) to produce ML models able to predict the viewport

resolution from the YouTube encrypted traces.

1.1.4 QoE-aware resource management

As mentioned earlier, mobile operators and network providers prioritize QoE as a met-

ric to assess users’ satisfaction and avoid any economic loss. For the same goal, 5G

networks promise high connectivity and huge transmission capacity aiming to take the

internet services and the corresponding user experience to the next level [32, 33]. More-

over, network slicing allows the Internet to host separately different services (e.g., video

streaming, smart city, and autonomous driving), each having its resource requirements

that need to be provisioned. As a result, the management of Internet resources is a very

interesting and challenging task to solve.

After studying the importance of the device’s display capacity regarding the transmitted

video chunks, consumed data, and video QoE, we propose a solution to infer the viewport

resolution from the video encrypted traces. Then, we work on QoE models that consider

both device-related and media or network-related factors. To complete the puzzle, we

leverage our QoE models to solve two main problems related to resource management

on the Internet:

1. Bandwidth sharing: given the problem of resource allocation for several video

flows sharing the same bottleneck, we develop an optimization framework to max-

imize the overall QoE by optimally sharing the available bandwidth while taking

into consideration terminal display capabilities (viewport resolution).

2. Caching: given the problem of cache placement in adaptive video streaming, we

develop an optimization framework that jointly accounts for the end-user display

capacity and video characteristics (e.g., encoding bitrate and popularity) in addi-

tion to the internet access speed to decide on the video content to cache at the edge

of the network. Our solution provides the set of video representations with the

optimal QoE gain and optimal policy for adding video representations if storage

is available.

8 Introduction

1.2 Thesis Roadmap

Here, we summarize the outline of this thesis:

1. In Chapter 2, we overview the literature on video streaming in terms of protocols

and transmission techniques. We revisit existing video QoE models and explain

the QoS to QoE modeling methodology. Then, we highlight the main contri-

butions related to video QoE inference from encrypted traffic. Finally, we discuss

how researchers have accounted for QoE models when performing resource-sharing

optimization.

2. In Chapter 3, we start by highlighting the diversity of video content in the Internet,

and we study the popularity and bitrate encoding of different video categories for

two video providers, YouTube and Dailymotion. Considering this video diversity,

we study video content delivery with the modern DASH protocol while focusing

on the impact of the end-user display capacity (viewport resolution). Our exper-

imental framework leverages the YouTube and Dailymotion video players along

with chrome browser API and a large set of videos from different types and cate-

gories [5]. We analyse the impact of the viewport resolution on the observed video

resolutions and use it to approximate the bandwidth waste related to downloading

resolutions exceeding the display capacity of the end-user device.

3. In Chapter 4, and given the importance of the viewport resolution, we propose an

experimental methodology based on controlled experiments and machine learning

to infer the viewport resolution from the YouTube encrypted video traces. Our

study highlights a strong correlation between the viewport resolution, the chunk

sizes, and the throughput. In plain, our approach starts with streaming thousands

of YouTube videos extracting features that correlate to the viewport resolution

(e.g., chunk size) from the passive video traces. It ends up with training/testing

machine learning models that can predict the viewport resolution with different

granularity using input statistics calculated over our set of In-band features.

4. In Chapter 5, we explain our methodology for building QoE models that account

for device, media and network-related factors. Our QoE models use open-source

datasets to fit an exponential QoE function and map either throughput or video

bitrate to a QoE level [9, 10] for a set of different viewport resolutions. Then,

we use these QoE models to solve a bandwidth sharing problem for a set of users

streaming videos over the same bottleneck link. Further, we develop a simple and

greedy heuristic based on Lagrangian multipliers and use ns-3 to implement it and

compare it to legacy solutions. The network simulations show that our solution

Thesis Roadmap 9

results in better overall QoE and enhances application-level QoS metrics such as

the average number of stalls and the average resolution switches.

5. In Chapter 6, we shift our interest to caching and content placement. We formulate

the optimal cache placement problem for adaptive video streaming in a way to allow

caching multiple representations of the same video. The proposed cache placement

algorithm leverages the users’ viewport resolution and decides on the videos and

the representations per video to cache based on an objective function reflecting the

QoE relation to the video content (bitrate), the application-level QoS (join time),

the viewport resolution, and the access speed distribution. Overall, we develop a

heuristic called QoEscoreMax that ranks video representations based on expected

QoE values and decides which one to cache. Further, our heuristic can help content

providers derive the optimal policy when caching multiple representations of the

same video.

6. In the last chapter, we conclude our work and present aspects that can be further

improved in future work.

Chapter 2

State of the Art

In this chapter, we discuss different aspects related to video streaming and video Quality

of Experience (QoE); starting with (i) the video transmission process in adaptive video

streaming, followed by (ii) the approach used to measure and model video QoE, up to

(iii) the inference of video QoE indicators from encrypted traffic, and ending with (iv)

the QoE-aware network resource management.

2.1 Video streaming background

As of 2020, the worldwide video streaming market size was estimated at 50 billion (USD).

The latter is projected to have a compound annual growth rate (CAGR) of 21% from

2021 to 2028 [34]. For this critical Internet service, the ecosystem is simple; the end-user

puts the URL of a streaming platform and click on the desired video to watch. Behind

the screen, content providers take charge of the delivery and storing of video content.

After clicking, the video starts downloading, and once a buffer threshold is reached, the

video starts playing. The end-user keeps downloading video parts while the previous

ones play out.

In the early 90s, Windows and Apple launched their Media player and Quick, respec-

tively, with reading and playing audio and video files. Later, companies like Netflix

started investing in video streaming through their DVD rental websites. At that time,

11

12 State of the Art

people were still relying on physical video rental stores like Blockbuster. In the early

2000s, the YouTube video streaming platform started, and Amazon initiated what is

now known as Amazon Prime. Later, with Google acquiring YouTube, Netflix Watch

Now, and Hulu debut, video content is one click away from anybody anywhere world-

wide. Recently, with the pandemic and mobility restrictions, the users’ demand for

video streaming services is as high as ever, and it exceeded all expectations. To that

aim, all stakeholders of the video entertainment industry and even service providers are

urging to create their streaming platforms starting with HBO streaming service owned

by AT&T and WarnerMedia, up to Disney+ the streaming platform hosting all Disney

content. For latter video streaming services, called Video on Demand (VoD), the

videos will be stored and organized by a media distribution system that allows users

to watch without any fixed broadcast schedule. Today, pre-payed VoD services such as

Netflix and Amazon prime are top trending services on the Internet. The latter allows

the purchase and even rental of video content. On the other hand, Live Streaming, is

when the video is streamed in real-time. Most social networking applications enable live

streaming to stream and interact with others; in this category, one can also find video

calls.

Most of today’s content providers support both VoD and Live streaming. In this work,

we consider the case of VoD through some of the leading video content providers, name

YouTube and Dailymotion.

2.1.1 Video transmission techniques

Nowadays, both content providers and network operators give high importance to video

streaming services. The Internet best effort, designed with non-real-time data trans-

mission considerations, raises several challenges regarding the delivery of video content

while preserving the best Quality of Experience (QoE). To overcome the high demand,

several approaches have been proposed through the years. The latter can be clustered

into two subsets, as one leverages the HTTP protocol and the other does not. We refer

to protocols and delivery paradigms that do not incorporate the features of the HTTP

Video streaming background 13

Figure 2.1: HTTP-based and non-HTTP video delivery techniques

protocol as non-HTTP. It follows that the other media delivery schemes will be named

HTTP-based1.

2.1.1.1 Non-HTTP based video delivery

For non-HTTP media delivery systems, the end-users receive audio or video content

from a media server using protocols such as the Real-Time Messaging Protocol (RTMP).

Historically, RTMP is the reason why live streaming is possible. It started as a tool to

transmit content between a video player and a server, referred to previously as RTMP

delivery. Lately, with HTTP Live Streaming (HLS) taken its place, RTMP became

responsible for transmitting video files from an encoder to a video hosting platform.

RTMP is connection-oriented as it relies on the Transmission Control Protocol (TCP)

(Figure 2.1). By default, it is secure and able to transmit multimedia on any mobile

device and web browser. Meanwhile, Real-Time Streaming Protocol (RTSP) surges

as an application-level protocol managing different data types delivery with real-time

properties. RTSP enables on-demand delivery of real-time data such as audio and video.

The sources of data can include both live data feeds and stored clips. This protocol is

originally maid for multiple data delivery sessions, and it can be supported by both

transport-level protocols TCP and UDP. It can also provide means for choosing delivery

mechanisms based upon RTP [36]. RTSP uses two connections, the TCP connection

handles the control messages, including the stream’s commands, while UDP handles the

1Figure 2.1, classification of some video delivery protocols and their main features [35].

14 State of the Art

data delivery (e.g., video and audio) (Figure 2.1). Despite the benefit of minimal delays

and fast transmission, using UDP might result in video frames distortion or dropping

due to packet losses.

2.1.1.2 HTTP-based video delivery

Meanwhile, almost every modern streaming system is using the HTTP protocol for deliv-

ering video content. The HTTP protocol is easy to deploy and secure, with the HTTPS

version ensuring data encryption when exchanging content between a web browser and

a website [37]. In terms of transport protocols, HTTP supports TCP as well as QUIC,

which means that video content over HTTP is reliably transferred to the client, and

there can be no frame dropping, hence, minimizing video distortion [37, 38]. This leads

to the discussion of video transmission over HTTP and its development through the

years; it started with videos downloaded completely by the clients before being played

out before streaming platforms started allowing progressive video delivery to the clients

at a fixed resolution. Later, progressive streaming over HTTP took place. In this

context, the video is divided into small pieces called segments or chunks. The end-user

clicks on the desired video to watch and automatically starts filling the buffer. This lat-

ter has two thresholds: the maximum one being the occupancy limit and the minimum

one being the threshold above which video starts playing out. If the clients experience

network condition degradation, eventually, the buffer will dry out, and interruption thus

occurs. We are technically below the minimum buffer threshold. The playback resumes

as soon as new video segments are downloaded.

Recently, HTTP adaptive streaming (HAS) has been widely adopted to automati-

cally tune the streamed video resolution as a function of the available network resources.

For instance, Dynamic Adaptive Streaming over HTTP (DASH) protocol [1, 2] allows

adapting the video quality to the available bandwidth and the client terminal character-

istics (e.g., viewport resolution). In plain, DASH divides the video into segments (e.g.,

2 - 10 seconds), with each segment available in different quality versions. Details on the

video availability at the server are stored in the Media Presentation Description (MPD)

template, which describes the video segments in terms of coding standard and bitrate

Video streaming background 15

Figure 2.2: Media Presentation Description sample, figure from [8]

and is shared with the client at the beginning of every video session. In Figure 2.2, we

illustrate in detail the hierarchy of the MPD file. At the top of the hierarchy, we find the

different periods with their corresponding identifiers and timestamps. For each period, a

set of adaptations is defined. These adaptations describe the different representations of

the media components with their bitrate encoding. They can correspond to video media

components or audio media components. For the same representation, the MPD file lists

the metadata of each of its segments, and such metadata contains the ID, the starting

time, and the location on a remote server [8]. The different segments can be downloaded

using the HTTP GET message with byte ranges (as highlighted in the HTTP clear text

messages in Chapter 4).

The choice between the different video representations is made by the DASH client,

with as objective the smoothest possible playout without excess bandwidth usage [35].

In Figure 2.3, we highlight this process briefly, with the DASH server hosting the dif-

ferent representations of each video. Each video has its specific MPD file. The DASH

client starts by downloading the MPD file and controls the choice of the next chunk to

download based on the client network conditions (i.e., bandwidth, delay, and loss) and

usually has to consider the characteristics of the displaying screen [8].

16 State of the Art

Figure 2.3: HTTP adaptive streaming in a nutshell

2.1.1.3 Adaptation BitRate (ABR) algorithms

As mentioned earlier, DASH divides the video into small pieces of equal duration, with

each piece available in different bitrates. The mechanism to select the following res-

olution to download is an essential tool to optimize the end-user QoE. The technique

to choose the appropriate chunk resolution that maximizes the video QoE in light of

the undergoing network conditions is called the ABR algorithm. Inventing algorithms

for optimal ABR is an active area of research, with multiple papers proposing different

approaches [38]. The rate adaptation algorithms remain the most common approach for

video QoE optimization, especially at the application-level. Other solutions operating

at the network-level or even at the edge of the network will be discussed in more detail

in subsection 2.4.

Next, we classify the ABR algorithms and discuss their main fundamentals:

1. Throughput-based ABR: the throughput-based ABR algorithm continuously

estimates the end-user throughput, from which the majority of variants derive

fixed rules regarding the bitrate of the next video chunk to download from the

server [39, 40].

2. Buffer-based ABR: due to throughput fluctuations over time, throughput-based

algorithms are more likely to cause video resolution switches. To overcome this

problem, researchers suggest using only the buffer size. In this context, the video

rate is based on the current buffer occupancy [41, 42].

Video QoE modeling 17

3. Hybrid ABR: the combination of both buffer and throughput feedback is an in-

teresting solution. The two signals complement each other as using simple capacity

estimation (based on immediate past throughput) can help enormously during the

startup phase, when the buffer itself is growing up from empty [43].

4. Learning based ABR: the main limitations of state-of-the-art ABR algorithms

can be summarized in adapting fixed control rules based on simplified models. As a

result, the previous approaches fail to achieve optimal performance across a broad

set of network conditions and QoE objectives. Learning-based solutions leverage

deep learning techniques to generate ABR algorithms. They learn to make bitrate

adaptation decisions through observations of the resulting performance of past

decisions [44].

Up to this point, we revisited the background on video streaming. We highlighted

the mechanisms of adaptive video streaming, mainly the different components of its

ecosystem and how they interact. To that aim, the user perception of this service needs

to be continuously monitored through the user perception of this service needs to be

continuously monitored through the Quality of Experience (QoE) of end-users. In the

next section, we walk through the different approaches addressing video QoE.

2.2 Video QoE modeling

As highlighted in the Introduction, the QoE is a subjective metric assessing the level of

users’ satisfaction regarding an application or a service. In particular, the video QoE

represents the viewer’s perception of a video streaming service. The subjective video

QoE evaluation is based on panels of actual users by explicitly rating their perceived

QoE either to classes with good/bad labels or via a rating on a continuous scale. In

the latter case, the score usually ranges from 1 to 5, where 1 corresponds to the lowest

perceived QoE and 5 to the highest perceived one. The average of all the collected

ratings is what we call the Mean Opinion Score (MOS), a QoE metric standardized by

the ITU-T P.910 recommendation [45].

18 State of the Art

The subjective evaluation methods have directly correlated the application-level QoS

metrics and the Mean Opinion Score (MOS). Several researchers managed to develop

MOS prediction models that map the QoS measurements to a MOS value based on

their findings. For instance, the IQX hypothesis highlights an exponential correlation

between Quality of Service (QoS) metrics and QoE [28]. Further, Hossfeld et al. use

the subjective approach and real-users to highlight a logarithmic impact of the join time

on the perceived QoE [46]. Authors in [24] highlight the same exponential relationship

this time for between the number and duration of video stalls (i.e., interruptions) and

the MOS is exponential. These models can be considered pseudo-subjective in the sense

that there is the human factor at a certain point, the subjective aspect can be either

at the modeling level through previous studies that have shown a specific pattern when

correlating QoS metrics to the MOS (i.e., exponential or logarithmic) or explicitly by

using real-user to calibrate the model once and then using it as many as necessary with

as input the objective metrics (i.e., the ITU P.1203 and ACQUA [22, 26]).

On the other hand, the objective video QoE evaluation does not incorporate the

human aspect, and it uses automated methods and technical indicators to evaluate the

video quality and emulate the human visual system (HVS). The Peak-signal-to-Noise

Ratio (PSNR) is the most common objective metric to evaluate the spatial quality of

videos, it consists of computing the level of distortion between the original, and the

received image [47]. The PSNR compares the maximum possible signal energy to the

noise energy image by image. Authors in [47], define a heuristic mappings the PSNR to

MOS value, as a PSNR of more than 37 (dB) and less than 20 (dB) result in A MOS of 5

and 1, respectively. Another objective video quality assessment metric is the Structural

SIMilarity (SSIM) index; the SSIM uses the sliding window approach to calculate the

structural distortion of an image instead of error-sensitivity-based metrics (i.e., PSNR).

The SSIM index does not require spatial or temporal filtering nor linear transformations,

it can be implemented in real-time schemes, and the image sampling rate can be tuned

to increase its speed [48]. The no-reference objective metrics analyze the test video and

do not need any information about the origin video, thus, more suitable for real-time

video quality assessment. Among the no-reference objective video metrics, we find the

blockiness, which evaluates the artifacts of compression methods such as MPEG [49].

Video QoE modeling 19

Figure 2.4: The video QoS-to-QoE modeling process

In general, the video QoS-to-QoE modeling consists of building the mapping between the

application-level or network-level QoS metrics and the video QoE. From our perspective,

this modeling process can be divided into three main steps; (i) the data collection as

most of the works related are data-driven, (ii) the QoS input type as the QoE of video

streaming is dependent on the application QoS metrics, which in turn are dependent on

the network QoS metrics, (iii) the evaluation method. In Figure 2.4, we summarize the

typical steps for video QoS-to-QoE evaluation. Each of the following subsections revisits

in detail the different steps and their corresponding sub-approaches.

2.2.1 Data Collection

As in the case of other data-driven approaches, robustness and preciseness require a

large pool of samples. The latter data can be collected either;

From the wild, crowdsourcing or panels, real-users give explicit satisfaction values

directly or via their end-devices or by using the measurements collected by service

providers. Recent mobile applications provide an easy and cost-efficient crowdsourc-

ing solution as they can reach a large group of people and collect much more data in

20 State of the Art

short time periods [25, 26, 50]. For instance, YoMoApp, an android application mon-

itoring passively the application-level video playout metrics (i.e., stalls and resolution

changes) for YouTube QoE from end-user smartphones [25].

From controlled experiments, the video is played out in a controlled environment

where the network conditions can be emulated. The controlled experiments enable video

streaming at a large scale in an automated manner that does not require the interfer-

ence of real-users. Authors in [51], use controlled experiments and play several videos

in different network conditions. They use this data to train Machine Learning (ML)

models able to predict the QoE of a video stream using as input the video characteris-

tics (i.e., video bitrate) and the network-level QoS measurements. Meanwhile, different

sampling methodologies exist to tune the network parameters and explore the ample

space of network conditions. Among these sampling approaches, we mention the default

random and uniform, which can be time-consuming, especially if working with different

network metrics (e.g., bandwidth, delay, and loss rate) [52]. Another standard sampling

methodology consists of reusing traces or what is called trace-driven sampling. Yitong

et al., illustrate a subjective video quality assessment with real-users under trace-driven

network emulations for adaptive video streaming sessions [53]. Recently, active learning

is a new methodology applied to QoS to QoE modeling, which samples the experimental

space intelligently to reduce the training cost [54].

In this thesis, we use controlled experiments to stream videos at a large scale while

considering the diversity of video content, different viewport resolutions, and multiple

network settings. From our side, in Chapter 4, we use random sampling along with video

bitrate traces to sample the bandwidth and enforce it using the Linux traffic controller

(tc) [55].

2.2.2 QoS input type

The QoS-to-QoE video models are calibrated to take the QoS input and turned it into

a QoE indicator describing the client’s level of satisfaction. The QoS input type can be

different from one model to another as the literature focus on two subsets:

Video QoE modeling 21

2.2.2.1 Network-level QoS

In this category, we find the network-level QoS metrics related to the in-band QoS

measurements that can be collected from the video traffic. The network-level QoS met-

rics such as the throughput are indeed responsible for the quality of the video chunks

requested (see throughput based ABR 2.1.1.3) and therefore impact the video resolution

quality. The packet loss, another metric impacting the playout metrics as higher packet

losses result in video distortions and therefore impacting the perceived user experience

heavily [26, 56, 57]. Generally, the Internet Service Providers (ISP) can access and

approximate these metrics and monitor the QoE of their end-users.

In the literature, several papers tweak these network parameters via controlled experi-

mentation and study the impact of the network conditions on the perceived application-

level QoS metrics. In [9], severe degradation of the throughput or loss rate can result in

several video interruptions and resolution switches, impacting the perceived QoE nega-

tively. Furthermore, authors in [58] present ML models that can infer the video playout

metrics such as the number of stalls and the resolution of the played video within a win-

dow of 10 seconds using the network and the transport level features of the encrypted

YouTube video traffic. The last study highlights the correlation between QoE indicators

that can be easily noticed by the viewers and the undergoing network conditions.

2.2.2.2 Application-level QoS

In this category, we define mainly QoE metrics related to the video playout. These

metrics manifest at the application-level, and end-users can notice them directly from

the video playback, which is not the case for the previous ones.

1. The video startup delay: also known as the join time, it can be defined as the

difference between the timestamp of the click on the video and the timestamp for

the beginning of the playout. The joining time is in tight correlation to the video

QoE; studies have shown its impact on user abandon rate. According to authors

in [59], users start abandoning the video session after 2 seconds of join time, and

80% of them leave the session when their join time exceeds 60 seconds.

22 State of the Art

2. The video stalls: the stalls or video interruptions happen when the buffer dries

out. In the literature, many papers discuss the impact of video interruptions in

terms of number, duration, and even localization over the video session. Authors in

[60] prove the link between large stalls duration and video QoE decrease. Moreover,

they show that end-users prefer one long stalling event over frequent short ones.

On the same topic, researchers have shown that video interruptions positioned at

the beginning of the playout have a lesser impact than those that occur later [61].

3. The video resolution switches: the adaptive video streaming is made to adapt

the video resolution to the network conditions. Meanwhile, a client can choose

a fixed low resolution to avoid interruptions in case of bad network conditions.

However, when relying on dynamic adaptive streaming, too many quality changes

can decrease video QoE [62]. Authors in [63] have shown that end users would

appreciate a video session at a low quality rather than a video session with high

quality but interrupted with many resolution switches.

2.2.3 The output QoE

The third aspect of the QoS-to-QoE modeling process is related to the output QoE

and the video QoE assessment methodology. After collecting the data and choosing the

QoS input type, the final step consists of labeling the data or aggregating the collected

metrics as an indicator that can approximate the perceived video QoE. At this stage,

researchers either set up panels of real-users that will watch videos in the sampled

network conditions and then grade their perceived video experience (i.e., MOS from 1

to 5) [17]. This approach is the closest to capture the human visual system (HVS) but

requires real users continuously, which is time-consuming and does not scale well given

the diversity of video content and the multiple combinations of network settings that we

can explore.

The pseudo-subjective method consists of using functions or models fitted with sub-

jective QoE data from real users. These models can map objective technical metrics

like the network-level QoS or the application-level QoS to a pseudo-subjective MOS at

Video QoE modeling 23

Figure 2.5: ACQUA objective QoE modeling

their final state. The ITU-T P.1203 is a parametric and automated model for audio-

visual quality assessment of adaptive video streaming calibrated with subjective Mean

Opinion Scores (MOS). Relying on MOS, the ITU-T P.1203 can be viewed as a pseudo-

subjective QoE evaluation method; it incorporates different blocks from the video quality

estimation module to the audio quality estimation module up to the quality integration

module. This model has different operation modes depending on the input features.

By default, the primary operation mode (i.e., 0) takes as input the metadata from the

video segments. Other modes require additional information on the frames and coding

standards [21]. The ACQUA application developed by the DIANA team at Inria Sophia

Antipolis is another example of pseudo-subjective QoE modeling tools. ACQUA relies

on active measurements to collect network QoS metrics from end-user devices. These

metrics are used to perform controlled experimentation and stream different videos, ob-

jective QoE metrics such as stalls and join time can be calculated and aggregated to

one QoE meter using the ITU-T P.1203 model. Then, ACQUA uses machine learning

models to link internet access conditions to an estimated QoE [26]. In Figure 2.5 we

highlight ACQUA’s QoE modeling process and the principle of QoE forecast. In general,

QoE forecasting consists of reusing the same network QoS input to get a QoE estimation

for different applications, each of which we find the video on demand through YouTube.

For the sake of completeness, in Table 2.1 we highlight a set of applications specialized in

network monitoring and QoE assessment, and we show their strengths and weaknesses.

Overall, most solutions available do not generally offer QoE insights but only focus on

the technical details (i.e., network QoS metrics). Moreover, popular applications in the

domain of network sensing and QoE assessment, e.g., [64–68], use similar methodology

24 State of the Art

to estimate the network conditions. These techniques leverage ICMP ping for delay and

loss measurements and TCP-based downloads/uploads for bandwidth measurements.

While being very practical and precise, these techniques, especially the TCP-based one,

consume tens of megabytes per measurement session. Thus, these applications usually

leave the user manually triggering each measurement and do not propose a periodic

measurement plane. Among all the approaches we found in state of the art, only Sen-

sorly [68] seems to be fully tailored for continuous mobile network sensing by allowing

users to perform network measurements in the background. While being adapted to this

use case, Sensorly uses TCP-based speed tests to estimate the bandwidth and consumes

a considerable amount of data when not in passive mode.

Tool Mobile Light QoE Active/passive Output

iPerf No No No Active Network QoS
SpeedTest Yes No No Active Network QoS
MobiPerf Yes No No Active Network QoS
Sensorly Yes No No Active Network QoS

Meteor Yes No Yes Active Multi-service QoE
RTR-NeTest Yes No Yes Active/Passive Friendly meters
YoMoapp Yes Yes Yes Passive YouTube QoE
QoE Docotr Yes Yes Yes Passive user latency
ACQUA Yes Yes Yes Active/Passive Multi-Service QoE

Table 2.1: QoE and network sensing tools comparison

To summarize, video QoE is an exciting and challenging topic. Many researchers have

shown its dependence on application-level QoS and network-level QoS metrics. Mean-

while, this era is characterized by multiple display technologies, which give the device

display capacity a more significant impact on the video QoE. The literature is still

missing an extensive study of the device display influence on the perceived watching

experience (through the video resolution patterns) and the data consumption. If this

impact is highlighted, the video QoE modeling methodology needs to account for the

device factors and the other exploited metrics. First, we propose a complete study based

on real experimentation to investigate how far the browsers today take into consideration

the display capacity and quantify the bandwidth waste in video streaming applications.

Video QoE and encrypted traffic 25

2.3 Video QoE and encrypted traffic

The traffic identification from encrypted traces is an active field of study. Methods

based on Deep Packet Inspection (DPI) offer solutions to inspect and take actions based

on the payload of the packets rather than just the packet header. Machine Learning

(ML) is widely exploited in the DPI field [69–71]. ML algorithms proved their efficiency,

learning from big data and statistical properties of the traffic flow. However, these al-

gorithms pass by a heavy training phase and might struggle in processing complexity

if run in real-time. Another well-known DPI technology is OpenDPI, which is freely

available and includes the latest DPI technology combined with other techniques mak-

ing it one of the most accurate classifiers nowadays [72]. Khalife et al. [73] attempt

to reduce the OpenDPI computational overhead by examining different sampling tech-

niques. Two sampling techniques are proposed and compared: (i) per-packet payload

sampling, and (ii) per-flow packet sampling. Enhancing DPI performance is as active

as inventing new DPI technologies, so several approaches have been proposed, includ-

ing behavioural [74], statistical [75], port-based [76] and DFI (Deep Flow Identification)

based approaches [77]. Other approaches apply software-based optimization focused on

enhancing DPI algorithms, e.g., [78], while other approaches rely on hardware-based

optimisation [79].

In the context of end-to-end encryption and knowing the reality behind video QoE,

researchers leverage encrypted traffic by passively monitoring the network and capturing

traffic statistics that are then transformed into video QoE. For instance, we find work on

inferring video interruptions, video quality, and quality variations by observing network-

level traffic statistics [80]. Others use a large number of video clips to identify specific

Netflix videos leveraging only the information provided by the TCP/IP headers [81].

Dimopoulos et al. [80] propose to use the size of video chunks as input to machine

learning. However, their method requires access to the end-user device to collect real

values about these chunks instead of inferring them from the encrypted packet traces.

They also provide the first heuristic to automatically extract chunk size information

from encrypted traffic based on identifying long inactivity periods along with the video

streaming session. Silhouette [82], a video classification method, uses Application Data

26 State of the Art

Units (ADUs) and network statistics to detect and infer properties about video flows.

The method leverages downlink/uplink packet characteristics to identify chunk requests

and corresponding information sent by the server (chunk size). It only incorporates

static thresholds making it unable to differentiate between video and audio chunks.

While effective in terms of video traffic identification, the cited contributions focus on in-

ferring the network or media-related video QoE indicators, yet they overlook the device-

related factors that can drastically impact the perceived video QoE. Within this limi-

tation, our experimental study of the screen resolution and its impact on the adaptive

video streaming process highlights further the importance of the display capacity in

terms of video resolution patterns and data consumption. To complement our work,

we propose a methodology to infer the end-user viewport resolution from the encrypted

traffic, which, together with the information on the video flow such as the streaming

resolution and the application-level QoS, can provide the ISP a fine-grained estimation

of the user QoE.

2.4 QoE-aware resource management

To manage the content available on the Internet properly and leverage the plethora of

QoE models provided by the research community, several researchers propose optimiza-

tion frameworks leveraging QoE models and promising the enhancement of the user

experience, yet, each approach operates on a different level:

2.4.1 Network-level optimization

The topic of QoE-driven resource sharing has already been investigated on several oc-

casions. For example, in terms of routing, neural networks have been used in wired and

wireless networks to optimize QoE. Previous works try to select the best path using

network-level QoS features as QoE replacement (e.g., loss rate, delay) [83, 84]. Mao et

al. propose using reinforcement learning (RL) to generates ABR agents. Their solu-

tion, called Pensieve, leverages observations collected by client video players to train a

neural network model that selects bitrates for future video chunks. The authors show

QoE-aware resource management 27

that Pensieve outperforms the best state-of-the-art schemes, with improvements in av-

erage QoE [44].

Quang et al. illustrate QoE-driven routing as a MILP problem by considering Pseudo-

Subjective Quality Assessment (PSQA) as a QoE model and propose a heuristic solu-

tion [85]. Moreover, Calvigioni et al. consider the HTTP adaptive streaming (HAS)

flow requirements and study them in conjunction with TCP. They use a linear QoE

function to express a joint routing and resource allocation problem and propose a dual

sub-gradient approach based on Lagrangian relaxation sub-problems to select a single

best path upon each request [86]. In another work [87], the authors express a rate

allocation problem to maximize a two-term power series model over three requested res-

olutions and under link capacity constraints. The optimal solution is implemented in

switches through weighted fair queuing and by using OpenFlow. However, the utility

function used depends on the characteristics of a test video that is too specific and less

generic since it requires a mapping per video at each resolution. Moreover, using the

Structural Similarity Index (SSIM) as a metric to assess quality requires particular state

sharing with the controller, which can be tricky giving the prevalence of encryption-

based delivery. In [88], the authors present another approach based on queuing, without

routing or any client modification. The latter paper proposes a controller able to track

the clients’ buffer states and prioritize queuing for the flow in danger of interruptions.

In MPEG-DASH SAND, one can find the coupling of network assistance with coordi-

nation from the client. The network has a general view and can provide bandwidth

reservation at routers; clients are in charge of the final decision and can receive rec-

ommendations [89][90][91]. However, studying the resource-sharing problem from an

end-device perspective and with trace-driven models for video QoE remains an open

and challenging problem. Therefore, we focus on video streaming and build QoE models

to capture the link between video bitrates or throughput and QoE for different viewport

resolutions (screen resolution in full-screen mode). We define a resource sharing problem

to maximize the sum of the non-linear QoE functions under linear constraints on the

screen resolution and the bottleneck link utilization. We also validate our model and

compare the different solutions with a realistic DASH implementation in ns-3.

28 State of the Art

2.4.2 Caching

The above approaches can only be adopted by network operators, who can prefer any-

thing but changing the core network. The idea of caching video content as close as

possible to the end-user has thus emerged as an attractive alternative solution for both

ISP’s and content providers. Mobile edge caching thus became a very active field of

study. Authors in [92] discuss thoroughly the benefits and limitations of caching con-

tent at the wireless edge and the needs to be considered for designing cache placement

strategies. They also introduce methods to predict the popularity distribution and user

preferences. Always in the wireless context, researchers have proposed the use of small

cells called “helpers” to add caching functionality at the cellular access. The femtocache

approach, for example, incorporates a wireless-distributed caching network that assists

the base station by handling requests of popular files that have been cached, thus min-

imizing the download delay of users [93]. The femtocache approach only considers the

video popularity and the network conditions. The work in [94] formulates a joint routing

and caching problem aiming to maximize the fraction of content requests served locally

by the deployed small base stations (SBS). In this reference, the joint optimization con-

siders the bandwidth capacity constraints of the small cell base stations. However, it

overlooks the video content characteristics. Sengupta et al. propose an architecture to

identify popular multimedia content by proactively pushing it close to the edge of the

wireless network, thereby alleviating backhaul load [95].

At the same time, adaptive video streaming is known to increase the challenge of edge

caching as each video can be available in multiple representations. In this scope, several

caching schemes have been proposed to leverage caching for dynamic video streaming.

Zhang et al. [96] propose a caching scheme to maximize the QoE for end-users under

a limited storage budget. To this end, a logarithmic model for the QoE was used,

leading to a constrained convex optimization problem. Authors in [97] propose iPac,

an integrated prefetching and caching proxy that maximizes the byte hit ratio in the

context of limited bandwidth between proxy and content server. The iPac proxy does

not require any modification to existing content servers and video clients. Jin et al. [98]

leverage the cloud and the assumption that end users can only access one edge server at

Novel contributions 29

a time to examine a three-way trade-off between caching, transcoding, and bandwidth

cost on each edge server in a way to reduce the total operational cost. In particular, they

analytically derive the closed-form solution of the optimal transcoding configuration and

caching space allocation for each edge server [98]. Gao et al. leverage users’ viewing

patterns and propose a cost-efficient transcoding scheme to balance transcoding and

cloud storage [99]. Last but not least, in [100], authors investigate the bitrate oscillations

resulting from the presence of a cache server on the path between the DASH client and

server. They propose an approach to reduce these oscillations by adaptive controlling

the rate at which the clients download video segments from the cache, resulting in a

smoother video playout.

To summarize, the information on the QoE is essential and has mainly been used to

cope with the exponential growth of Internet video traffic. However, the literature is still

missing a study that accounts for the viewport resolution and its heterogeneity across

the viewing users when it comes to video caching. Such heterogeneity, coupled with

the heterogeneity of the network access speed, and the fact that videos are available

in different bitrates, impact cache placement; choosing the representation(s) to cache

is still an open and interesting problem to solve. This constitutes the main focus of

Chapter 6.

2.5 Novel contributions

To the best of our knowledge, this thesis features the following novel contributions. First,

we present an experimental study highlighting the interplay between the device display

resolution and the video content delivery in adaptive video streaming. We show that

the DASH clients might request video resolutions exceeding the one of the viewport,

hence, resulting in a bandwidth waste with no significant impact on the perceived visual

experience. At a macro level, there is a negative correlation between the viewport

resolution and the bandwidth waste. Meanwhile, this waste might be different from a

content provider to another depending on their media player implementation.

30 State of the Art

We also present a controlled experimental framework that helped us identify features

incorporating the signature of the viewport resolution via only encrypted video traces.

We followed a data-driven approach with machine learning to classify the viewport

resolution using input statistics calculated over in-band network-level features inferred

from encrypted traces.

Lastly, we study Internet resource management with the help of QoE models while

accounting explicitly for the device-related factors, along with media-related (e.g., video

bitrate) and network-related factors (e.g., throughput). We leverage in particular QoE

models and viewport resolution to optimize the bandwidth sharing for a set of users

streaming videos over the same bottleneck link and propose heuristics to select the most

QoE rewarding video representations to cache in the case of adaptive streaming.

Chapter 3

On the impact of the viewport

resolution in adaptive video

streaming

Video streaming is, without a doubt, the most dominant application on the Internet.

Each time a video streaming platform (e.g., YouTube, Dailymotion, or Netflix) is re-

quested, the browser loads a web page, sets up the video player, retrieves and renders the

requested content. The video streaming transmission is based on the dynamic adaptive

streaming over HTTP (DASH), which considers the underlying network conditions (e.g.,

delay, loss rate, and throughput) to select the video resolution requested from the server.

We question in this chapter the efficiency of this transmission in taking into account the

terminal characteristics, the viewport resolution, in particular, knowing that requesting

a resolution exceeding the viewport results in a waste of bandwidth. The latter band-

width can either save money when the user is on a pay-as-you-go data plane or steal

bandwidth from other users who need it further to improve their Quality of Experience

(QoE). In the first attempt of this kind, we present a controlled experimental frame-

work that leverages the YouTube and Dailymotion video players and the Chrome web

request API to assess the impact of browser viewport resolution on the observed video

resolution pattern [4–6]. Later, we use the observed pattern to quantify the amount of

wasted bandwidth.

31

32 On the impact of the viewport resolution in adaptive video streaming

3.1 Introduction

Today, and almost on every platform, video streaming is governed by the DASH protocol.

For DASH, the client player automatically switches between video resolutions according

to underlying network performance [1, 2, 101–103]. As requested from the server, the

video resolution pattern is thus determined by the network conditions captured by the

DASH client. It has normally considered the viewport resolution, which is defined as the

number of pixels, both vertically and horizontally, on which the video is displayed. In

scenarios where bandwidth is scarce, either because of congestion or limited bandwidth

at the access, the impact of the screen is expected to be negligible. However, when the

network is in good conditions, the user’s fair share of bandwidth exceeds the viewport

requirements, which raises the question of whether the players stick to the viewport re-

quirements or exceed it to download more than their needs. Downloading any resolution

exceeding the viewport will be automatically downsized, hence resulting in a waste of

bandwidth. This waste can go unnoticed in cases of abundant bandwidth, however in

cases when bandwidth is billed at the byte level (the pay-as-you-go data planes) or net-

work is saturated, understanding and controlling such waste could lead to less economic

loss for the end-user and improved Quality of Experience (QoE) for the other users who

are in need for it (e.g., users with large viewports).

In terms of QoE, and as stated in Chapter 2, the video QoE is affected by video stalls,

join time, and resolution switches which are all related to the achieved bandwidth by the

video flow. Cermak et al. [10] answered the question concerning the bandwidth needs

for acceptable video experience on a set of screen resolutions partially. They show that

different screen resolutions have different bandwidth requirements for the same QoE

level. Other researchers have worked on QoE-driven network optimization, providing

solutions both at the network and the application-level [44, 85, 86]. For instance, and

among many other related work, routing of video flows is optimized in [85, 86] to improve

the QoE of end-users, whereas the adaptation of video streaming quality is optimized

in [44] using Deep Reinforcement Learning for smoother playout and improved end-user

QoE.

Introduction 33

To the best of our knowledge, we are the first to propose a complete study based on real

experimentation to investigate how far the browsers today consider the viewport reso-

lution and quantify the bandwidth waste in video streaming applications. For this, we

build web pages that embed video players for two main streaming platforms (YouTube

and Dailymotion). Every time called, the video player automatically gets a random

video ID and a specific viewport then starts playing the video while we collect measure-

ments from within the browser. We leverage the Chrome web request API to read the

HTTP explicit texts and record on a remote database the video chunks information [5].

We then use this information to derive models for the video resolution pattern on dif-

ferent viewports for both YouTube and Dailymotion and use these patterns to identify

the waste of network resources and estimate the amount of this waste. Overall, the

contributions of this chapter are:

• We provide an overview of today’s YouTube and Dailymotion video catalogs (e.g.,

popularity, video formats, and bitrate). To that aim, we rely on an open-source

dataset of YouTube video metadata [104]. For Dailymotion, we build our own

catalog of trending videos covering several categories, and we make it available to

the large public [105].

• We present a controlled experimental methodology to identify the video resolution

patterns on different viewports. Our methodology is general and can be used to

extend the work to streaming platforms other than YouTube and Dailymotion

as long as these platforms provide video player and data API. Moreover, our

framework accounts for the high variability of video content by considering a large

YouTube catalog and several Dailymotion playlists.

• We provide a detailed performance comparison for YouTube and Dailymotion play-

ers with a focus on the bandwidth waste on a set of viewports. For YouTube, we

collect the HTTP requests to highlight the chunk resolution pattern [4, 5]. For Dai-

lymotion, we propose a probabilistic methodology able to quantify the bandwidth

waste based on the real-time periodic player updates.

34 On the impact of the viewport resolution in adaptive video streaming

0
25

00
0

50
00

0
75

00
0

10
00

00

12
50

00

15
00

00

17
50

00

20
00

00

Total unique videos

Movies
Trailers
Shows

Nonprofits & Activism
Pets & Animals

Travel & Events
Comedy

Science & Technology
Education

Howto & Style
Gaming

Autos & Vehicles
Film & Animation

Music
News & Politics

Sports
People & Blogs
Entertainment

Ca
te

go
ry

(a) Cumulative number of videos per category

0 5 10 15 20 25
Cumulative duration(Million seconds)

Movies
Trailers
Shows

Nonprofits & Activism
Pets & Animals

Travel & Events
Comedy

Science & Technology
Education

Gaming
Howto & Style

Autos & Vehicles
Film & Animation

News & Politics
Music

Sports
People & Blogs
Entertainment

Ca
te

go
ry

(b) Cumulative video duration per category

0 20 40 60 80 10
0

12
0

Cumulative views(billion)

Movies
Trailers

Nonprofits & Activism
Travel & Events

Shows
Autos & Vehicles

News & Politics
Pets & Animals

Science & Technology
Howto & Style

Sports
Gaming

Education
People & Blogs

Comedy
Film & Animation

Entertainment
Music

Ca
te

go
ry

(c) Cumulative view count per category

Figure 3.1: YouTube catalogue overview per category

The rest of this chapter is organized as follows. In Section 3.2 we provide a descriptive

analysis of both catalogs used in our experiments. In Section 3.3 we discuss the architec-

ture of our framework for the two considered streaming platforms. Later in Section 3.4,

we discuss the data-driven video resolution patterns discovered using different Chrome

browser viewports for YouTube and Dailymotion. Then, in Section 3.5, we leverage the

underlying patterns to approximate the resulting bandwidth waste. Last, we summarize

the main contributions of this chapter.

Video content overview 35

3.2 Video content overview

We use an open-source YouTube catalog, the catalog was built using the YouTube

API, where YouTube was searched with specific keywords obtained from Google Top

Trends website. The authors of [9] rely on Google’s getvideoinfo API to return the video

metadata for each video identifier. The dataset includes around 1 Million unique video

identifiers. For Dailymotion, we fetch 200 trending videos from different categories.

Regarding the diversity of content in the dataset, we observe that the YouTube videos

belong to several categories: sports, entertainment, and gaming. In Figure 3.1, we plot

statistics regarding YouTube video categories. As can be seen in Figure 3.1(a), the

entertainment and people & blogs categories are the largest ones representing each more

than 200K unique videos, then followed by the sports category with almost 150K unique

videos. On the other hand, the least represented categories are movies and trailers with

less than 10K videos. In terms of duration, the people & blogs videos are the longest with

a cumulative duration of 8 Million seconds, followed by the entertainment category with

a total of 6 Million seconds (Figure 3.1(b)). At the bottom of the list, we find movies with

a cumulative duration of fewer than 1 Million seconds. We also evaluate the popularity

of each category in terms of the number of views. For this, we aggregate the total

views for videos belonging to the same category and show the results in Figure 3.1(c).

As highlighted in the figure, the entertainment and music videos are the most popular

with a cumulative number of views almost equal to 120 Billion each, followed by film &

animation with up to 60 Billion views. At the bottom of the list, one can find movies

and trailers with less than 1 Billion views each. Unfortunately, we couldn’t perform the

same study for Dailymotion because of the lack of the corresponding metadata and the

difficulty of measuring it at a large scale. However, to give an idea of trending categories

on Dailymotion, we refer to the statistics on most viewed channels available in [106].

3.2.1 From video resolution to bitrate

The adaptive video streaming requires different video resolutions, each characterized

by an encoding bitrate that differs from one video to another depending on its content

36 On the impact of the viewport resolution in adaptive video streaming

(high motion, slow motion, no motion or static, music video, . . .). It also differs from

one resolution to another for the same video. The video bitrate is an essential feature

in our study that allows estimating the bandwidth waste. In terms of video distribu-

tion per resolution, 99% and 60% of the videos featured by YouTube and Dailymotion,

respectively, support video resolutions up to 1080p. For YouTube, the remaining 1%

support higher resolutions (e.g., 2160p and 2880p). Due to the small proportion of the

latter resolutions, we limit our study to videos available in multiple resolutions up to

1080p. Thus, we study the bitrate distribution for main video resolutions, ranging from

144p to 1080p. In the YouTube catalog, videos are available in two major video types

encoded by the H.264 and Google’s VP9 standards[107, 108]. The individual video type

formats are ”mp4” and ”WebM”, respectively. By analyzing the catalog, we found that

82% of the videos are available in mp4 and WebM. The remaining 18% of videos are only

available in mp4. To study the difference between the two formats, we illustrate their

bitrate distribution using boxen plots, enhanced versions of box plots featuring several

quantiles, and offering more details while describing empirical distributions.

The overall distribution of the video bitrate w.r.t. the supported resolutions and video

types is given in Figure 3.2(a). The two video formats have slightly different bitrates for

the same resolution with an advantage for the WebM format, making it the preferred

format by Google to handle the video content bulk. Overall, and as expected, the

figures show a clear positive correlation between video resolution and the bitrate. On

the other hand, for Dailymotion, we use a video downloader to obtain the actual size of

all videos used in our experiments for every available resolution. We then calculate the

reference bitrate per resolution as being the video size divided by the video duration.

Note that our method does not distinguish between audio and video packets. They

both contribute to the video size. This can still be considered a good approximation

of the real video bitrate, especially given the low standard audio bitrate highlighted in

the Dailymotion official documentation [109]. We highlight in Figure 3.2(b) the bitrate

distribution w.r.t. video resolution for Dailymotion videos. In general, Dailymotion

shows the same macro behavior as YouTube, where the encoding bitrate increases with

the video resolution. These values highlighted in our study correlate with the results

mentioned in the Dailymotion official documentation [109]. By comparing the two plots

Experimental setup 37

14
4p

24
0p

36
0p

48
0p

72
0p

10
80

p

Video resolution

0
2
4
6
8

10
12
14
16

Bi
tra

te
 (M

bp
s)

Format
webm
mp4

(a) YouTube video bitrate (webm vs mp4)

14
4p

24
0p

36
0p

48
0p

72
0p

10
80

p

Video resolution

0
2
4
6
8

10
12
14
16

Bi
tra

te
 (M

bp
s)

(b) Dailymotion video bitrate (mp4)

Figure 3.2: Video bitrate per resolution for YouTube and Dailymotion

in Figure 3.2, we can see a clear difference in bitrate values between the two platforms,

especially for the 1080p resolution. Overall, YouTube features lower encoding bit rates

for high resolutions hence suggesting more efficient utilization of network resources for

videos of the same resolution. Such difference could be partially related to the encoding

parameters, such as the frame rate. Further, YouTube video encoding shows more

variability in the bitrate compared to the Dailymotion one.

For YouTube and the comparison between the WebM and mp4 video formats, our obser-

vations on the bitrate are in line with the prior study in [110] on the correlation between

the two formats for encoding multimedia content and the user experience. Indeed, the

authors in [110] compare the two formats from the perspective of the Mean Opinion

Score (MOS), highlighting an advantage of the H.264 (mp4) when the network condi-

tions are favorable, while the VP8 codec (WebM) behaves better in highly error-prone

networks.

3.3 Experimental setup

We plan on highlighting the video resolution pattern played on a given Chrome browser

viewport. Normally, this pattern is affected by the viewport, but also by the underplay-

ing network conditions [16, 60, 111]. As we are focusing in this study on the viewport

and the extent to which it is respected by the player, we exclude the network impact by

only experimenting with good network conditions able to support the best resolutions

38 On the impact of the viewport resolution in adaptive video streaming

Figure 3.3: Experimental framework description

available for each video. Regardless of the streaming platform, good network condi-

tions in our framework consist of a wired connection ensuring high download bandwidth

monitored to never go below 10 Mbps. This choice is also motivated by the bitrate dis-

tributions for both YouTube and Dailymotion (see Fig. 3.2). Our overall experimental

setup described in Figure 3.3 consists of a local mainController running on a MacBook

Air machine of 8 GB RAM. Videos are visualized on a Dell screen 27’ of 2560 x 1440

resolution. The local mainController stores the video catalogs and the viewport list and

provides a random combination of video ID and viewport for every new experiment.

We cover a large space of viewports by considering a list of default standard viewports

such as the current YouTube and Dailymotion small media player mode (400x225) along

with other default SD viewports (e.g., 240x144, 640x360, and 850x480). These latter

viewports represent the current player dimensions adopted by streaming platforms for

several watching modes. We also account for high definition viewports by considering

the 1280x720 and 1920x1080. In fact, as of March 2021, stats show that up to 70% of

desktop screens worldwide are of resolution less than or equal to 1920x1080 [112].

3.3.1 YouTube use case

For YouTube, and to study the chunk resolution pattern on a given viewport, we stream

up to 2000 YouTube videos covering different categories (e.g., sports, entertainment,

education) and a large span of video bitrates. First, we use the iframe player API to

embed a YouTube video player on our web page and control the player using JavaScript

functions [4]. While playing a video, the audio and video chunks are requested using

separate HTTP requests, each with a specific resolution. We leverage the Chrome web

Experimental setup 39

request API to extract the HTTP clear requests and get the chunk-related information

(e.g., itag). To interpret the chunk itags, we use the YouTube open documentation,

which is publicly available and which allows mapping itags to chunk resolution and

coding standard [113, 114].

3.3.2 Dailymotion use case

Along with YouTube, we consider the Dailymotion video-sharing application. Dailymo-

tion is available for Windows 10, Windows Phone, iOS, and Android mobile operating

systems, and most recently for the PlayStation 4 and Xbox One gaming consoles. From

one side, we aim at confronting YouTube to Dailymotion in terms of their video res-

olution pattern for different viewports and the amount of bandwidth wasted on each

viewport. From the other side, we will get to understand the particular interaction be-

tween the Dailymotion video player and today’s interactive web pages. While the HTTP

messages can be intercepted following the previous methodology applied for YouTube, no

documentation is available to shed light on the raw metadata included in the messages,

making it hard to interpret in terms of resolution and coding standard. To overcome this

limitation, we propose a probabilistic methodology to estimate video resolution patterns

using real-time updates from the Dailymotion player accessed through its own API. In

general, regardless of the streaming platform, the player API does not give access to

chunk resolutions neither chunk sizes. Instead, it can be used to access player properties

such as current playback time and resolution. The same API can be used to collect

application-level QoS features such as stalls and join time, which is very useful for QoE

monitoring.

So, we use the Dailymotion JavaScript SDK (Software Developer Kit) to embed their

video player in our web page and access all its features [115]. Among the features

available, we capture the real-time player updates on downloaded resolutions and export

them to our database, where they are stored for later processing. The mainController

highlighted in Figure 3.3 performs the main offline tasks of setting up the Dailymotion

player within a specific viewport (same viewport list as in YouTube experiments) and

launching the streaming of one of the considered videos. However, instead of intercepting

40 On the impact of the viewport resolution in adaptive video streaming

Video resolution Viewport (pixels)

1080p 1920x1080

720p 1280x720

480p 850x480

360p 640x360

240p 426x240

144p 240x144

Table 3.1: Standard video resolution with matching viewport

HTTP clear requests, as in the case of YouTube, we periodically report to our database

the player updates in a real-time fashion.

3.4 The impact of the browser viewport on the video res-

olution patterns

In this section, we leverage our controlled experimental framework (see Figure 3.3) to

conduct a data-driven analysis of video resolution patterns observed on different browser

viewports. We assume that each resolution results in the best visual experience when

displayed on the corresponding viewport (i.e., an equal number of pixels) without any

stall and with a reasonable start time [3]. To motivate this assumption further, we

leverage an ITU-T Rec. P.1203 standalone implementation with an open-source dataset

based on controlled experiments. The dataset maps network-level QoS to application-

level QoS [9, 116] and calculates the QoE according to the ITU-T recommendation.

For low throughput scenarios, video is downloaded using low resolution but still shows

higher QoE for small viewports compared to large ones. Moreover, authors of [10] show

that different screen resolutions have different bitrate requirements for the same MOS

level. For further information, we recall in Table 3.1 the recommended resolutions for

the set of viewports we consider in our experiments 1.

1https://support.google.com/youtube/answer/6375112

The impact of the browser viewport on the video resolution patterns 41

3.4.1 YouTube chunk resolution pattern

For YouTube, every experiment consists of one video ID and one specific viewport. Once

the player is ready, we start the video session and intercept the player’s requests for every

chunk during playback. Chunk requests include indicators such as video ID, chunk size,

and chunk itag that can be used to extract the chunk resolution and codec type. Overall,

we stream up to 2K unique YouTube videos using 6 standard viewports. For fairness,

we consider only videos available in at least 6 main streaming resolutions (from 144p

to 1080p). Our first analysis shows that 99% of the videos streamed were fetched in

the video/WebM format, which corresponds to the Google VP9 compression standard.

This result confirms the previous observation regarding the Google servers’ preference

for video/WebM format when serving content.

3.4.1.1 Video resolution pattern

For every chunk request, we leverage the itag, range and mime (Multi-purpose Internet

Mail Extensions) parameters to infer the corresponding resolution, the codec and the

size. To derive the rate of occurrence of each chunk resolution during the playback of a

video on a given viewport j, we use Equation (3.1), where CR(i, j) refers to the set of

chunks of resolution i encountered on viewport j. The same formula is used to calculate

the video resolution pattern overall videos:

ChunkResolutionRate(i, j) =
|CR(i, j)|∑
i
|CR(i, j)|

. (3.1)

The heatmap in Figure 3.4 illustrates the chunk resolution patterns in an easy and

interpretative manner. Overall, regardless of the browser viewport, the default start-

up chunk resolution is 360p even though lower resolutions matching the viewport are

available. Note that the DASH client can still ask for lower resolutions if the network

conditions degrade, but it seems that in our case of good network conditions, they are

not requested even though some of the viewports we consider require lower resolutions

than 360p. Moreover, small viewports such as 240x144, 400x225 and 640x360 form one

cluster characterized by the same overall pattern, starting with 360p and scaling up

42 On the impact of the viewport resolution in adaptive video streaming

144p
240p

360p
480p

720p
720p60

1080p
1080p60

240x144
400x225
640x360
850x480

1280x720
1920x1080

0.00 0.00 0.97 0.00 0.03 0.00 0.00 0.00

0.00 0.00 0.94 0.01 0.05 0.00 0.00 0.00

0.00 0.00 0.97 0.00 0.03 0.00 0.00 0.00

0.00 0.00 0.10 0.86 0.04 0.00 0.00 0.00

0.00 0.00 0.10 0.05 0.83 0.02 0.00 0.00

0.00 0.00 0.06 0.02 0.02 0.00 0.75 0.15
0.0

0.2

0.4

0.6

0.8

Chunk reoslution playback rate

Figure 3.4: The YouTube chunk resolution playback rate as extracted from HTTP
request clear text

toward higher chunk resolutions (up to 720p). In particular, for 400x225, which is the

official YouTube viewport for the small player mode, 94% of the chunks played out are

in 360p, only 1% are in 480p, and up to 5% of the chunks are in 720p. We note here that

neither the 720p resolution nor the 480p one can be displayed directly in the small player

mode. For that, they need to be downsized to match the viewport, thus resulting in

what we call bandwidth waste. Meanwhile, the HD and FHD viewports result in chunks

of higher frame rates such as 1080p60 and 720p60. As example, the 1920x1080 viewport

results in 15% of chunks at 1080p60, which corresponds to a 1080p resolution with 60

frames per second. The normal 1080p resolution from its side is 30 frames per second.

We can thus conclude that the first YouTube viewport, which is network friendly, i.e.,

minimum waste, is the 640x360 one, other smaller viewports exceed the required video

resolution.

3.4.1.2 Chunk size analysis

We use the chunk sizes observed in the clear text HTTP traces (from within the browser)

to understand the impact of the observed behavior on the bandwidth consumption. We

illustrate the results in Figure 3.5. In Figure 3.5(a), we plot the chunk size CDF per

resolution. As expected, the chunk size correlates with the chunk resolution, with higher

resolutions leading to larger chunks. Here, we make sure to include all encountered chunk

resolutions, even those rarely appearing, such as 1440p and 1440p60. Thanks to this

The impact of the browser viewport on the video resolution patterns 43

0

10
00

00
0

20
00

00
0

30
00

00
0

40
00

00
0

Chunk size(Byte)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1440p60
1440p
1080p60
1080p
720p60
720p
480p
360p

(a) Chunk size CDF per chunk resolution

0

50
00

00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

30
00

00
0

Chunk size(Byte)

240x144
400x225
640x360
850x480

1280x720
1920x1080

Vi
ew

po
rt

(b) Chunk size box plot per viewport

Figure 3.5: Analysis of YouTube chunk sizes

36
0p

72
0p

Chunk resolution

500000
0

500000
1000000
1500000
2000000
2500000

Ch
un

k
siz

e(
By

te
)

(a) Chunk size violin plot for 640x360 viewport

10
80

p

10
80

p6
0

14
40

p6
0

Chunk resolution

0
500000

1000000
1500000
2000000
2500000

Ch
un

k
siz

e(
By

te
)

(b) Chunk size violin plot for 1920x1080 viewport

Figure 3.6: Chunk size violin plots, matching and exceeding resolutions, case of
640x360 and 1920x1080 viewports

information on chunk sizes, we will later estimate the playback bitrate and bandwidth

waste given each viewport’s observed chunk resolution pattern. In Figure 3.5(b), we

plot the distribution of the chunk size per browser viewport. The figure shows that

the 240x144, 400x225, and 640x360 screen resolutions form one cluster and exhibit the

same chunk size distribution under good network conditions. Larger viewports tend

to download larger resolutions. In general, we shall confirm that the pattern of chunk

resolutions does carry a signature of the viewport size. In Figure 3.6, we compare the

distributions of the sizes of chunks (in Bytes) whose resolution matches or exceeds the

resolution of the 640x360 and 1920x1080 viewports (one small and one large). For the

640x360 viewport, the chunks exceeding this display capacity are characterized with a

higher median, and 50% of them vary in a larger size space ranging from 150K to 1.5M

Bytes. This already gives an idea of the order of bandwidth wasted on these viewports.

44 On the impact of the viewport resolution in adaptive video streaming

3.4.2 Dailymotion video resolution pattern

We perform controlled experiments with up to 200 unique Dailymotion videos on dif-

ferent viewports. To overcome the lack of assets to extract chunk information from raw

Dailymotion HTTP messages, we propose an alternative methodology that consists of

leveraging the periodic information provided by the Dailymotion API coupled with a

probabilistic approach. Instead of intercepting chunk requests as with YouTube, every

second our mainController receives player updates accessed through its API and stores

them in our local database, with every update including (i) the video identifier and title,

(ii) the viewport size, (iii) the video duration, (iv) the available video resolutions, (v) the

video resolution played out, and (vi) the buffer size occupancy. Later, we use this infor-

mation to estimate the video resolution playback rate by transforming resolutions into

bitrate using statistics on the Dailymotion codec (Figure 3.2(b)). Regarding the list of

streaming videos, and as we don’t have a public catalog of Dailymotion video metadata,

we work with a solution that consists of crawling up to 20 Dailymotion playlists covering

several trending categories (e.g., trailers, news, and sports), where every playlist includes

on average 10 videos of the same topic. In Figure 3.7, we illustrate the rate of occurrence

of video resolutions as reported by Dailymotion for the different considered viewports.

These rates are calculated according to Equation (3.2), where PU(i, j) denotes the set

of player updates of resolution i on viewport j:

V ideoResolutionRatio(i, j) =
|PU(i, j)|∑
i
|PU(i, j)|

. (3.2)

As can be noticed in Figure 3.7, the 240x144 viewport only requests the 240p resolution,

which is different from what we observed with YouTube. In general, for small viewports,

the Dailymotion player does not go high in requesting resolutions (e.g., 720p) even

though network conditions can support them. For the 640x360 viewport, Dailymotion

shows an interesting behavior, with the 480p resolution being the only one downloaded

overall video sessions even though the suitable 360p resolution is well present. One

reason could be that the Dailymotion encoder adapts a non-standard width encoding

for the 360p, which restricts its use to lower resolution viewports (with a height less than

The impact of the browser viewport on the video resolution patterns 45

144p
240p

360p
480p

720p
1080p

240x144
400x225
640x360
850x480

1280x720
1920x1080

0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.95 0.05 0.00

0.00 0.00 0.00 0.00 0.75 0.25

0.00 0.00 0.00 0.00 0.03 0.97
0.0

0.2

0.4

0.6

0.8

1.0

Video resolution playback rate

Figure 3.7: Video resolution pattern reported by Dailymotion player

0 2 4 6 8
Playback time(s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 3.8: CDF of 720p video resolution vs playback time for the FHD viewport
(1920x1080)

360 pixels). Another interesting behavior is highlighted by the HD viewport (1280x720),

where 25% of the reported video resolution updates appear to be 1080p. In other words,

for the HD viewport, the Dailymotion player tolerates downloading chunk resolutions

exceeding the viewport capacity. These chunks will be unfortunately downsized during

playback to match the viewport hence incurring waste of bandwidth. We can thus

conclude that for small viewports, the Dailymotion player is more restricted to the

viewport capacity than the YouTube player, whereas, for large viewports, it tends to

show opposite behavior.

For the 1920x1080 viewport, we can see some low resolutions occurring, as for the 3% of

the 720p resolution. We hypothesize that these low resolutions correspond to the start-

up phase where the network state is not well estimated. To validate our hypothesis, we

46 On the impact of the viewport resolution in adaptive video streaming

plot the CDF of the 720p video resolution w.r.t. its playback time for the 1920x1080

viewport. Indeed, Figure 3.8 confirms our intuition; all the 720p updates are seen at the

very beginning of the video before the 8-th second.

3.5 Quantifying the waste of bandwidth

In this section, we leverage the observed patterns to estimate the bandwidth waste

resulting from this behavior. In fact, downloading higher video resolutions than needed

does not necessarily contribute to a better QoE as it will be anyways downsized to match

the viewport resolution, hence resulting in what we call bandwidth waste. We extend

our data-driven analysis to approximate the level of this bandwidth waste.

3.5.1 The estimated playback bitrate

To derive the bandwidth waste for a video, we need its estimated playback rate together

with the reference playback rate for the best resolution suitable to the viewport (see

Table 3.1). In this subsection, following the results highlighted in Section 3.2, we explain

how we estimate the playback bitrate.

3.5.1.1 YouTube playback bitrate

We leverage the experimental results to estimate the real playback bitrate for every

video session. For that, we use the chunk size and the video duration. Overall, as in

Equation (3.3), the playback bitrate is set equal to the sum of chunk sizes of a video

session divided by the duration of the session.

playback bitrate =

∑
c∈video chunks

size(c)

video duration
(3.3)

Quantifying the waste of bandwidth 47

3.5.1.2 Dailymotion playback bitrate

As explained previously, we cannot infer chunk-related information such as resolution

and bitrate from Dailymotion HTTP requests as we did for YouTube. The reason is the

lack of open documentation to interpret the raw data embedded in the requests. Instead,

we resort to a discrete probabilistic approach that allows us to estimate the playback

bitrate of Dailymotion video sessions. Our solution relies on the resolution patterns and

the reference Dailymotion bitrate per video resolution. In practice, the playback bitrate

for a video session is derived according to the following equation:

playback bitrate =
∑
j∈S

αj ∗ bitrateref(j), (3.4)

where S is the set of unique video resolutions after video playback, αj refers to the video

resolution j playback ratio and bitrateref(j) represents the reference Dailymotion bitrate

for video resolution j (as in Figure 3.2(b)).

3.5.2 The estimated bandwidth waste

We define the approximated bandwidth waste for a giving browser viewport as the differ-

ence between the estimated playback bitrate and its matching reference bitrate calculated

using the fixed resolution suitable to the viewport as highlighted in Table 3.1.

We plot in Figure 3.9 (red dashed line) the relative bandwidth waste in percent for both

YouTube and Dailymotion and different viewports. As a reference, we also plot the

average reference and playback rates of both platforms (blue ”x” and black ”o” lines,

respectively). Figure 3.9(a) is for Dailymotion and Figure 3.9(b) is for YouTube. Fig-

ure 3.9(c) compares them to each other using a bar plot. A first look at the results shows

that no player outperforms the other one for all viewports. Dailymotion comes first for

four viewports on six, but this result has to be tempered by the fact that Dailymotion’s

encoder produces higher bitrates than the YouTube one for the same resolution (see

Figure 3.2). We can notice that for small viewports, the Dailymotion player results in

less waste on average than YouTube; still, the waste of both players is around 50%. In

48 On the impact of the viewport resolution in adaptive video streaming

24
0x

14
4

40
0x

22
5

64
0x

36
0

85
0x

48
0

12
80

x7
20

19
20

x1
08

0

Viewport

0

2

4

6

Bi
tra

te
(M

bp
s)

Referenece bitrate
Playback bitrate

0

20

40

60

80

Re
la

tiv
e

wa
st

e(
%

)

(a) Dailymotion

24
0x

14
4

40
0x

22
5

64
0x

36
0

85
0x

48
0

12
80

x7
20

19
20

x1
08

0

Viewport

0.0

0.5

1.0

1.5

2.0

2.5

Bi
tra

te
(M

bp
s)

Referenece bitrate
Playback bitrate

20

40

60

80
Re

la
tiv

e
wa

st
e(

%
)

(b) YouTube

24
0x

14
4

40
0x

22
5

64
0x

36
0

85
0x

48
0

12
80

x7
20

19
20

x1
08

0

Viewport

0
10
20
30
40
50
60
70
80

BD
 re

la
tiv

e
wa

st
e(

%
) Application

DM
YT

(c) YouTube (YT) vs Dailymotion (DM)

Figure 3.9: Bandwidth waste

plain, for the small player mode of 400x225, YouTube and Dailymotion players result

in 58% and 50% bandwidth waste, respectively. For Dailymotion, the bandwidth waste

stays almost at the same level initially, then drops and can reach even 0% over the

1920x1080 viewport. For the 1280x720 viewport, the Dailymotion player reveals a poor

performance with 28% waste compared to 14% with YouTube. On the other hand, on

the 1920x1080 viewport, the YouTube player shows almost 20% bandwidth waste due

to the exceeding resolutions, compared to no waste for Dailymotion.

Overall, the good news comes from the fact that bandwidth waste is negatively cor-

related to the viewport size. Yet, even for large viewports, the amount of bandwidth

wasted cannot be neglected. We project that this waste will have a particular impact on

those users with limited data plans. From the side of the network, such debris can im-

prove network efficiency by reducing energy consumption and redistributing the excess

bandwidth to other flows in need for it in scenarios of bandwidth shortage.

Conclusion 49

3.6 Conclusion

To understand the impact of the viewport on the DASH transmission fully, we presented

a hybrid methodology combining controlled experiments and a probabilistic approach to

investigate the effect of the Chrome browser viewport on the streamed video resolution

patterns. To infer the video patterns, we followed two approaches, one for YouTube

that consisted of reversing the HTTP clear messages and the other for Dailymotion by

using its video player feedback seconded by a probabilistic estimation of playback rate.

Later, we reused the discovered patterns to approximate the bandwidth waste for the two

video streaming platforms. We also presented a descriptive analysis of an open-source

YouTube dataset of more than 1M videos metadata and statistics on the encoders used

by YouTube and Dailymotion. Even though the DASH algorithm is supposed to account

for the terminal characteristics, our experimental results showed a non-negligible waste

of network resources that can be of order 50% for small viewports and 20% for the large

ones.

In general, the bandwidth waste tends to decrease when the viewport size increases.

However, it remains considerable for operators and end-users to care about. We think

in particular about users with limited data plans. We also think about scenarios where

concurrent flows can use this excess bitrate, whether videos or other, for a better quality

of end-user experience. Reducing the bill of network energy consumption is an objective

we have in mind as well.

In the coming chapter, given the importance of the viewport size and the limitations

related to end-to-end Internet encryption, we study the correlation of the viewport size

with key inband network-level features and provide a methodology to infer them from

the encrypted video traces. The aim is to build machine learning models able to predict

the viewport size from the encrypted traces.

50 On the impact of the viewport resolution in adaptive video streaming

The contributions related to this chapter appeared in the following publica-

tions:

Othmane Belmoukadam, Muhammad Jawad Khokhar and Chadi Barakat: On ex-

cess bandwidth usage of video streaming: when video resolution mismatches

browser viewport. – 11th IEEE International Conference on Networks of the Future

(NOF) Octobre 2020, Bordeaux, France.

Chapter 4

From encrypted video traces to

viewport classification

In the previous chapter, we highlighted through experiments the importance of the view-

port resolution in terms of the observed video resolution patterns. Moreover, we could

leverage the data produced and quantify the bandwidth waste when the DASH client

does not respect the viewport resolution. With that being said, the viewport resolution

is an essential factor to be considered for the perceived video experience optimization.

Such optimization is of high importance to all stockholders, given the low tolerance level

from end-users regarding Internet services. From one side, Internet Service Providers

(ISP) engineer their traffic to improve their end-user experience and avoid economic

losses. On the other hand, Content providers, and to enforce customers’ privacy, have

shifted towards end-to-end encryption (e.g., TLS/SSL). For video streaming, and given

all the factors to be considered for optimization, the end-to-end encryption makes it a

much more challenging task to solve.

This chapter highlights an experimental framework to infer fine-grained video flow infor-

mation such as chunk sizes from encrypted YouTube video traces. It also features a novel

technique to separate video and audio chunks from encrypted traces based on Gaussian

Mixture Models (GMM). We leverage our data-driven approach to train models able to

predict the class of viewport (either SD or HD) per video session with an average of

51

52 From encrypted video traces to viewport classification

92% accuracy and 85% F1 score. The prediction of the exact viewport resolution is also

possible but shows a lower accuracy than the viewport class.

4.1 Introduction

Due to the increasing demand for video content and video services, Internet Service

Providers (ISPs) feel more pressure to optimize their networks and meet the expectations

of their end-users. They give high importance to video traffic engineering, which requires

the ability to infer the context of the video streaming, such as the characteristics of the

terminal on which the video is played out and the resolution of the streaming video.

However, this is getting more difficult because of the end-to-end encryption adopted

by major video streaming platforms (e.g., YouTube, Netflix, and Amazon) [29]. For

example, to prioritize or load balance video traffic efficiently, ISPs need information on

end-users ’ Quality of Experience (QoE) rather than just capturing the network Quality

of Service (QoS). But, video QoE is dependent on the content itself (the video bitrate

and resolution) and on the application-level QoS metrics such as start-up delay, duration

of stalls and resolution switches [16, 111, 117]. It also depends on the resolution of the

viewport on which the video is played out [10]. Unfortunately, all this information is

hard to obtain from encrypted video traffic, making its inference an important challenge

to surmount.

This chapter presents a data-driven methodology unveiling the end-user viewport res-

olution from YouTube encrypted video traces. To that aim, we leverage video chunk

sizes and inband network-level traffic features such as throughput and download/upload

packet inter-arrival times to train machine learning models able to distinguish between

HD and SD viewports and infer the resolution of the viewport. More specifically, our

contributions are the following:

• We present a controlled experimental framework to perform video streaming exper-

iments large-scale and collect YouTube video metadata. We leverage the Chrome

Web Request API to read the clear HTTP text messages [5] and obtain ground

truth on the video streams and the dynamics of their chunks.

Experimental setup 53

• We stream up to 5000 unique YouTube videos, collect encrypted traces and clear

HTTP messages, and show that chunk sizes and inband network-level traffic fea-

tures carry an interesting signature of the viewport resolution.

• We propose a novel approach to separate video and audio chunks from encrypted

video traces based on a Gaussian Mixture Model (GMM). Then, we validate our

work on inferring video chunk sizes by comparing similarities and differences con-

cerning the real video chunk size distribution derived from clear HTTP messages.

• We train different machine learning algorithms to classify the viewport resolution.

We prove the pertinence of this classification, taking as input video chunk statistics

and inband network-level traffic features that can be derived from passive captures

of encrypted video traffic.

Overall, this chapter is organized as follows. In Section 4.2, we present our experimental

framework, followed by a descriptive study of today’s video content based on an open-

source YouTube catalog. In Section 4.3, we present our methodology to extract video

chunk sizes from YouTube encrypted traces. Later, in Sections 4.4 and 4.5, we highlight

the viewport signature carried by a set of inband network traffic features and chunk size

statistics and train and evaluate a classifier able to classify the viewport resolution from

encrypted traces. Last, we conclude our work in section 4.6.

4.2 Experimental setup

We play different YouTube videos using different viewports and under various network

conditions emulated using Linux traffic control (tc). Each experiment consists of a

unique YouTube video, browser viewport, and enforced network bandwidth. We leverage

the Chrome Web Request API for every video session to read the clear HTTP text

messages and establish ground truth on the requested chunks and the application-level

quality of service. Moreover, we dump the encrypted client-server traffic to pcap files

using tcpdump.

54 From encrypted video traces to viewport classification

Figure 4.1: Experimental framework description

4.2.1 Overall experimental framework

Our overall experimental setup, described in Figure 4.1, is almost the same as what we

used for the bandwidth waste study (Section 3) with key differences related to network

emulation and traffic capture. To summarize again it consists of; (i) a local mainCon-

troller (MacBook Air machine of 8 GB RAM. Videos are visualized on a Dell screen

27’ of 2560 x 1440 resolution, a (ii) YouTube video catalog, and (iii) the viewport list as

illustrated in Figure 4.1. We consider a list of default standard viewports representing

current player dimensions adopted by streaming platforms for several watching modes.

Moreover, in this chapter, and since the video resolution pattern is a function of both

network conditions and terminal display capacity, we study the viewport importance

while degrading the network bandwidth. To that aim, we use Linux traffic control tc

and enforce different bandwidth settings such as 3, 6, 9, 15, and 20 Mbps. We also

stream with no bandwidth limitation on Ethernet to emulate the best-case scenario.

Moreover, we use tcpdump tool to dump the client-server traffic into pcap files.

4.3 Analysis of video streaming traffic

In adaptive video streaming, the client decides on the resolution of the next chunk to

download based on underlying network conditions and viewport characteristics. So each

viewport is supposed to exhibit a different video resolution pattern depending on the

available network resources; the pattern of chunk sizes is the main illustration of such

specific behavior. However, as most of the video traffic is encrypted, the information on

the viewport resolution is not visible to any entity between the client and the server.

Analysis of video streaming traffic 55

Our intuition is to exploit the specificity of the chunk size pattern, and other in-band

network features to infer the viewport resolution from encrypted traffic. The problem is

that when the bandwidth starts getting scarce either due to congestion or to in-network

shaping, clients are automatically forced by DASH to request lower video resolutions,

thus reducing the effect of the viewport and increasing the difficulty to infer its resolution.

To highlight these aspects, we investigate the extent to which screens impact the video

transmission pattern while varying the network bandwidth.

4.3.1 Inferring video chunk sizes

Overall, we stream up to 5K YouTube unique videos in series randomly selected from the

1 Million catalog in [104]. In general, chunks of a video are fetched using separate HTTP

requests. On the one hand, we infer the chunk sizes from the encrypted YouTube traces.

In parallel, we extract the real chunk sizes from the clear text HTTP messages accessed

from within the Chrome browser using the Chrome Web Request API [5]. Our chunk size

inference method is inspired by [9, 82] and works as follows. At first, we use the source

IP of our host and the list of destination IPs to isolate the different flows corresponding

to every video session (CDNs identified by the URLs ending with googlevideo.com).

The CDN identifiers can be collected from the clear HTTP text messages, and their

corresponding IP addresses can be resolved. Then, for each video streaming session

(source and destination already known), we look at the size of uplink packets. The large

size uplink packets correspond to chunk requests, while small packets correspond to

transport-level acknowledgments by TCP/QUIC. Instead of using thresholds as depicted

in [82], we use K-means clustering to segregate the uplink packet sizes into two clusters;

the first cluster represents the request packets, and the second cluster represents the

acknowledgment packets. Once the uplink request packets are identified, we sum up

the data downloaded between any two consecutive request packets and consider it equal

to the downloaded chunk size following the first request between the two. Overall, we

leverage clustering for the sake of generality and to make sure our approach can be

reused with other types of ACKs, mainly in the context of different transport protocols.

56 From encrypted video traces to viewport classification

Figure 4.2: Audio/video clusters as produced by GMM

Up to this point, and as the case for other existing methodologies, the calculated chunk

sizes mix between audio and video chunks, whereas we are only interested in the video

part. The chunks located between consecutive request packets can be either of the

two types, audio or video, and so need to be separated. To overcome this limitation,

we leverage Gaussian Mixture Models (GMM) applied to the chunk size. The GMM

clustering method is based on the maximum likelihood principle, finding clusters of

points in a dataset that share some common characteristics. Unlike K-means, the GMM

belongs to the soft clustering subset of unsupervised algorithms. It provides probabilities

that tell how much a data point is associated with a specific cluster. Another critical

property of GMM is that clusters do not need to be topologically separated as with

K-means. They can overlap and still be identified as long as they follow some Gaussian

property for the distribution of their points. In general, video chunks should have larger

sizes than audio chunks, and we rely on this property to identify the two Gaussian

distributions and classify the chunks between audio and video. Each distribution has

three unique values, mean γ, covariance
∑

modeling the spread around the mean, and

a probability π defining how big or small one cluster is compared to the other one, the

sum of probabilities of the two clusters is naturally equal to 1.

For our case, we fit a GMM of two components with the chunk sizes inferred according to

K-means. For a clear visual illustration, we plot in Figure 4.2 the two clusters rendered

by the GMM method over a 2D space of chunk sizes (MB) and download time (s). In

plain, the audio cluster (in blue) shows chunks smaller than 750 KBytes with no more

than 2 seconds of download time. Video chunks (in orange) can be of larger sizes and

download times compared to audio ones.

Analysis of video streaming traffic 57

Figure 4.3: Chunk size CDF

Figure 4.4: Audio bitrate distribution

Now we test the accuracy of our method by comparing its output to the ground truth col-

lected directly from within the browser by analyzing the explicit HTTP requests. These

requests include the itag, range and mime (Multi-purpose Internet Mail Extensions)

parameters, which can be then used to infer the corresponding resolution, the codec,

and the size of the chunk using open-source documentation [113]. We use this ground

truth to check whether our GMM method provides video chunk sizes that respect the

distribution of the size of real video chunks as seen in the browser. Figure 4.3 compares

the chunk sizes as estimated by our method from the encrypted traffic traces and the

chunk sizes obtained from the clear text HTTP traces for the same video sessions. The

overall distribution of the encrypted chunk sizes extracted using our method exhibits

the same shape as those obtained with HTTP requests. Further, the two distributions

produced by our method for audio and video chunks are very close to those of the HTTP

requests. We can also notice how the video chunks, understandably, have larger sizes

than the audio chunks. This helps better characterizing the video chunks within a trace

of encrypted video traffic, with this result particularly useful in our case to understand

further the interplay between viewport, network resources, and chunk resolution pattern.

58 From encrypted video traces to viewport classification

Figure 4.5: Threshold/GMM/HTTP inference of video chunks

4.3.2 Audio chunk size distribution

We illustrate in Figure 4.4 the audio chunk sizes accessed from within the Chrome

browser using the Chrome Web Request API [5] w.r.t. the viewport resolution considered

in the experiments. Overall, we notice that regardless of the viewport resolution, the

audio chunk size distribution is almost the same, which discards any impact of the

viewport and confirms the use of standard audio quality. In plain, the audio chunk size

distribution is characterized by a median encoding bitrate of 200 Kbytes. Moreover,

the audio chunk size variation is almost the same through all viewports, with the 25th

percentile and 75th percentile equal to 100 and 400 Kbytes, respectively.

4.3.3 Threshold based audio/video chunk separation

Above, we leveraged the GMM clustering to separate audio and video chunks from each

other. Another feasible solution easier to deploy would be to use static thresholds applied

to chunk size. Here, we compare clustering and threshold-based techniques for the sake

of chunk segregation efficiency.

We leverage the audio chunk size distribution illustrated in Figure 4.4 to derive threshold

values able to separate the two types of chunks based on their sizes. We use three

threshold values representing the 25th, 50th, and 75th percentiles of audio chunk sizes

in plain. For each threshold, the set of audio chunks include every chunk with a size

less than the threshold, while the others are considered video chunks. In Figure 4.5,

we plot the video chunk size distribution per different separation methods; (i) the three

variants of the threshold-based method, (ii) the video chunk sizes inferred using the

Analysis of video streaming traffic 59

GMM clustering, (iii) and the real video chunk size distribution as inferred from the

HTTP requests. We can observe that the overall distribution of the video chunk sizes

is well captured by both the threshold-based and the clustering-based methods, with as

expected, the higher the threshold, the more the shift of the distribution towards larger

video chunks. In plain, the 75th percentile threshold provides the closest distribution to

the real one, yet the GMM method using the maximum likelihood principle can capture

the real video chunk size distribution in a close manner. To note here that a main

advantage of the GMM clustering method is in its automatic learning property, which

prevents one from tuning the threshold value manually.

4.3.4 Video resolution pattern

The DASH client automatically switches between video resolutions according to the

viewport and underlying network performance. The video resolution pattern as re-

quested from the server is thus determined by the network conditions and normally has

to take into consideration the viewport resolution, which is defined as the number of pix-

els, both vertically and horizontally, on which the video is displayed. It is indisputable

that the network conditions, for instance, the bandwidth, reduce the screen’s impact in

scenarios of bandwidth shortage as DASH will download chunks of lower resolution than

the viewport capacity. In this section, we present experimental results supporting these

statements and highlight in particular, the reduction of the effect of the viewport as the

available bandwidth decreases.

We artificially change the available bandwidth (as highlighted in Section 4.2), and stream

for each bandwidth setting hundreds of YouTube videos using different viewports. Each

time, we use random sampling to select the video ID and the viewport. We plot in

Figure 4.6 the CDF of the video chunk size per viewport for three bandwidth settings:

3 Mbps, 15 Mbps, and no control. As expected, the video resolution pattern is driven

by the network bandwidth and the viewport resolution. In Figure 4.6(a), the bandwidth

is limited to 3 Mbps, and all viewports thus exhibit the same pattern by streaming the

same video resolution, which therefore results in the same cumulative distribution of

chunk sizes. However, in Figure 4.6(b), we set the bandwidth to 15Mbps, the effect of

60 From encrypted video traces to viewport classification

(a) Chunk size per viewport with a 3Mbps
bandwidth

(b) Chunk size per viewport with a 15Mbps
bandwidth

(c) Chunk sizes per viewport with unlimited
bandwidth

Figure 4.6: Network and viewport impact on chunk sizes

the viewport starts appearing as the distribution of chunk sizes differs from one screen to

another. However, and even at this high bandwidth, the two large viewports 1280x720

and 1920x1080 illustrate close distributions, which can be explained by the same reason

of bandwidth shortage. Finally, when no restriction is imposed on the bandwidth, a high-

definition viewport (1920x1080) starts differentiating itself from the others. We further

notice in Figure 4.6(c) that 40% of chunk requests on small screens (e.g., 240x144,

400x225 and 640x360) correspond to a chunk-size smaller than 200 KBytes compared to

300 KBytes for medium screens. For 1280x720 viewports (HD), chunk sizes are bigger,

with 40% of them smaller than 1 MBytes (resp. smaller than 1.6 MBytes for 1920x1080

Full HD viewports).

4.4 Traffic correlation to viewport

To illustrate this result further, we plot the network throughput as measured over the

encrypted traces and compare it to the available bandwidth for different viewports. For

each video, we get the CDN URL from the HTTP logs and use the DNS Lookup of

Traffic correlation to viewport 61

(a) Throughput per viewport for a 3Mbps
bandwidth

(b) Throughput per viewport for a 15Mbps
bandwidth

(c) Throughput per viewport for a unlim-
ited bandwidth

Figure 4.7: Throughput per viewport for multiple network settings

the CDN URL to identify the video flow corresponding to using the CDN IP. Then,

we leverage the downlink packet timestamps and a time bin of 1s to return a vector of

throughput values per video session. The vector is used to derive throughput statistics

(e.g., average, percentiles) per video session. In Figure 4.7, we plot the CDF of the

throughput values of the video sessions for different viewports with different bandwidth

settings. We notice that with an enforced bandwidth of 3 Mbps (Figure 4.7(a)), all

viewports end up experiencing the same throughput, which correlates with chunk size

results. Moreover, regardless of the available bandwidth, a subset of viewports form one

cluster exhibiting the same throughput pattern (e.g., 240x144, 400x225, and 640x360).

For each video session, we get an array of video chunk sizes over which we calculate dif-

ferent statistical features that we plan to use for viewport classification. We study here

the correlation between this array and the viewport. Our feature set contains the max-

imum, the average, and the standard deviation along with the 10th to 90th percentiles

(in steps of 10) of the chunk size array. This forms a set of 12 features describing the evo-

lution of chunk sizes over a video session statistically. In addition to chunk size-related

62 From encrypted video traces to viewport classification

Figure 4.8: Features correlation to viewport class

statistics, we also consider the same statistical features, but this time for the downlink

throughput (in bps, averaged over time bins of 1s) and the uplink and downlink packet

interarrival times (in seconds). We believe that we get a fine-grained description of the

DASH transmission process and capture any effect of viewport resolution with these fea-

tures. Overall, according to feature analysis, viewports such as 240x144, 640x360, and

850x480 are more likely to exhibit close chunk size and throughput distributions form-

ing one viewport class (SD). On the other hand, the 1280x720 and 1920x1080 represent

another cluster, called HD showing similar properties. To take advantage of this over-

lapping, we equally consider a relaxed definition of the viewport classification problem

to either SD or HD.

Before building our classifier, we illustrate the correlation between our feature set and

the viewport class. Figure 4.8 points to the most relevant features by ranking them

according to their Pearson correlation coefficient with the viewport class. The figure

shows only those features having a correlation coefficient at least equal to 0.4. The

x th csize represents the x th percentile of the video chunk size over a video session

and the y th dltp stands for the y th percentile of the downlink throughput. Overall,

the chunk size percentiles show a more critical correlation with the viewport capacity,

especially when it comes to lower percentiles. This is because the video resolution pattern

is not only influenced by the available network resources but also by the user display

capacity. Downlink throughput percentiles come in second place with a correlation

coefficient of more than 0.4.

Traffic correlation to viewport 63

Figure 4.9: 20th chunk size percentile (most relevant chunk size percentile in Fig-
ure 4.8), SD (0), HD (1)

Figure 4.10: 70th downlink throughput percentile (most relevant throughput per-
centile in Figure 4.8), SD (0), HD (1)

To shed further light on the previous results, we show boxplots of the essential traffic

features w.r.t. the two viewport classes. We plot in Figure 4.9 the distribution of the

20th chunk size percentile for all video sessions and both viewport classes. Overall, we

notice a small overlapping portion; the smaller the overlap, the easier it to differentiate

between SD and HD viewports. In plain, 50% of video sessions have their 20th chunk

size percentile less than or equal to 230 KBytes, whereas high definition viewports score

almost twice the value for the same percentile. In terms of downlink throughput, we

plot in Figure 4.10 the distribution of the 70th download throughput percentile for all

video sessions as it scores 0.46 in terms of the correlation coefficient. In general, and

as expected, larger screens are characterized by larger throughput values. Moreover,

the boxplots show that half of our video sessions have a 70th download throughput

percentile around 7 Mbps compared to 4 Mbps for small definition viewports. All these

results point to a correlation pattern between encrypted traffic features and viewport

64 From encrypted video traces to viewport classification

resolution at the client, a pattern that we will exploit next to build our classifier of

viewport resolution.

4.5 Viewport classification by machine learning

In this section, we discuss the performance of the ML model built using our dataset. We

start by predicting the viewport class (SD or HD) using inband network features and

chunk size stats (Finband+chunk) extracted from the YouTube encrypted traces. Later, we

highlight the performance of our methodology in the context of multi-label classification,

where the viewport resolution is precisely targeted. Our goal is to provide the ISP with a

means to infer viewport resolution insights despite the end-to-end encryption of the video

flows. Such inference can help the ISP get an idea about the bandwidth requirements

of their customers and their level of Quality of Experience (QoE) with the obtained

network service. The latter can enhance network management decisions (e.g., resource

allocation priority queuing) to improve such QoE.

We build a dataset matching Finband+chunk to viewport capacity and use it to train

different supervised ML classification algorithms. We randomly pick videos from the

catalog available in [104], then stream them under different network conditions emulated

locally using the Linux tc utility. Each experiment consists of enforcing the bandwidth,

playing out the selected video under the enforced QoS, collecting clear HTTP messages

using the Chrome Web Request API, and dumping the traffic in pcap files using tcpdump.

The pcap files are used to calculate the feature set Finband+chunk.

4.5.1 Viewport class classification

As we have seen before, the effect of the viewport is maximum in an unlimited band-

width scenario. As bandwidth decreases, the different viewports converge to the same

video resolution pattern. Therefore we expect any viewport inference model to become

less accurate as both classes (SD/HD) start overlapping. To assess the extent of such

limitation, we test our model in different scenarios, each featuring a different bandwidth

configuration. We use Random Forest (available in python Scikit-Learn library [118])

Viewport classification by machine learning 65

Figure 4.11: Model accuracy vs enforced bandwidth

because of its out-performance in our case compared to other classifiers such as Support

Vector Machine, Decision Tree, and Multi-Layer Perceptron. To find the best tuning

of the Random Forest algorithm, we apply at first a random search of the best hyper-

parameters values. Then after reducing the search space, we use a grid search to get a

fine-grained fitting of major parameters [119].

Figure 4.11 highlights the accuracy of two classification models trained with our dataset.

In plain, for each bandwidth setting on the x-axis, we highlight two Random Forest

models trained on two different datasets; the blue model is trained with video samples

conducted with one specific enforced bandwidth (the corresponding x-axis value), and

the orange model trained with the aggregate set of video sessions obtained overall exe-

cuted bandwidth values. The blue model varies from one x-axis value to another one,

whereas the orange model is the same overall x-axis values. We validate both models on

a test set of 200 videos specific to each bandwidth scenario. In general, regardless of the

training set, the model accuracy is coherent with our intuition and increases w.r.t. the

enforced bandwidth. For example, in the case of enforced bandwidth of 3Mbps, both

models show a low performance with a median accuracy of 62%. This is expected as for

such low bandwidth, viewports show similar distributions for most important features

(see Figure 4.6). One can expect an even lower accuracy if the exact viewport resolution

is predicted for such a low bandwidth value. Starting from 6 Mbps, both models show

a median accuracy exceeding 80%, with the model based on mixed conditions showing

better accuracy (in terms of both average and variance) than the model specific to the

enforced bandwidth value, which is a good property of the orange model given its gen-

erality over different bandwidth scenarios. We recall that the best performance for both

66 From encrypted video traces to viewport classification

Figure 4.12: ML algorithm comparison (no bandwidth limitation)

models is reached when no limitation is imposed on the network bandwidth with 92%

median accuracy.

The previous results present a general evaluation of the model, yet, we need to evaluate

the model per viewport class. Here, one can use metrics like precision and recall or

simply the F1 score, which is an average of both. To that aim, we benchmark a set

of well-known supervised machine learning algorithms, fit them on our dataset (for the

no bandwidth limitation case) and compare them per class using the F1 score. We

plot in Figure 4.12 the k-fold (k =10) validation results for the set of machine learning

algorithms we consider. According to this validation, the dataset is split into k folds, and

at each of the k iterations, a new fold is used as a validation set while the k - 1 remaining

folds form the training set. Average results are then calculated over the k iterations. In

plain, Random Forest seems to be the most relevant algorithm, as it shows an average

F1 score of 85%, while the other classification algorithms such as Linear Discriminant

Analysis and Decision Tree come second and third with average F1 scores of 80% and

78% respectively. The lowest performance is recorded for the Multi-Layer Perceptron

and Linear Regression classifiers with 72% and 68% F1 scores, respectively. Moreover,

we show in Table 4.1 the precision and recall values of a tree sample produced by our

Random Forest model. The model classifies correctly 85% of the total video sessions

issued from HD viewports and 93% of the sessions related to SD viewports. When our

model labels a video session as HD, it is correct in 87% of the cases and 89% of the cases

for SD.

Viewport classification by machine learning 67

Precision Recall F1

HD 0.87 0.85 0.86
SD 0.89 0.93 0.91

Table 4.1: Random Forest case (precision/recall)

4.5.2 Viewport resolution classification

The previous analysis highlights the performance of our model in a binary scenario of

SD/HD viewport classes. In this subsection, we illustrate the performance of our model

in a multiclass scenario, where we aim at predicting the exact viewport resolution as

used in the experimental setup (see Figure 4.1). We show the Random Forest model

results trained with video sessions conducted in the no bandwidth limitation scenario.

We leverage a heatmap to highlight the prediction accuracy of our model per viewport

resolution.

We plot in Figure 4.13 the confusion matrix of the predicted viewport resolutions. The

y-axis (rows) corresponds to the ground truth on viewport resolutions, while the x-

axis (columns) represents the predicted ones. The value in case (i, j) represents the

percentage of viewports of size i that are classified as of size j, the sum of elements in a

row is equal to 100%. The color intensity of a case increases with its value. According

to this heatmap, one can identify two regions, (i) small viewports mainly from 240x144

up to 850x480, and (ii) high definition viewports of sizes 1280x720 and 1920x1080.

The heatmap shows the difficulty of classifying video sessions on small viewports. For

instance, 44% and 37% of the video sessions on 400x240 and 640x360 viewports are

labeled as 240x144. On the other hand, for large viewports, most video sessions can

be classified correctly with our set of features, as 54% and 60% of video sessions on

1280x720 and 1920x1080 viewports are correctly labeled. In the middle, the 850x480

viewport is the one with the largest uncertainty in the classification between the two

viewport classes, with 28% of its video sessions labeled with low viewport resolutions

and 12% with superior viewport resolutions. It is for this reason that we decided to

consider viewports of this size as belonging to the SD class.

68 From encrypted video traces to viewport classification

Figure 4.13: Viewport resolution classification

Precision Recall F1

240x144 0.32 0.52 0.40
400x225 0.26 0.24 0.25
640x360 0.31 0.24 0.27
850x480 0.52 0.62 0.57
1280x720 0.59 0.52 0.55
1920x1080 0.70 0.54 0.61

Table 4.2: Multi-class case: Precision/Recall & F1-score

Following the same analysis for binary classification, we highlight in Table 4.2 the classi-

fication performance per class using the Precision/Recall and F1-score metrics. In plain,

for the 400x225 and 640x360 viewports, the F1-score is the lowest with 25% and 27%

respectively, hence highlighting the model’s confusion when it comes to video sessions

on small screens. The model performs better with an F1-score of 55% for the 1280x720

viewport and 61% for the 1920x1080. This relatively low accuracy of the classification

in the multiclass scenario is expected, as our analysis has pointed to two different sub-

sets of viewports (SD and HD) presenting close properties internally for their inband

network features and chunk size statistics. The result is a space of collision inside each

subset and confusion regions where the model is highly uncertain. Luckily the overlap

is less significant between the subsets leading to the good performance of the binary

classification case.

Viewport classification by machine learning 69

4.5.3 Real-time viewport classification

The statistics we used so far to train and test our model consider the entire video session.

This requires waiting until the end of the session to collect the features and predict the

viewport, limiting the usability of the method in practice by preventing from taking

real-time traffic engineering actions. One needs to perform the classification as soon as

the video starts playing out, thus allowing for mechanisms such as weighted fair queuing

and load balancing to take place. So here we study the goodness of our model for

viewport classification on the fly, which instead of using as input aggregated statistics

on the entire video session, calculates features on the early part of the session.

We stream a total of 104 hours (4 days) and 70 hours (almost 3 days) of random YouTube

videos using different SD and HD viewports, respectively. We highlight in Figure 4.14

the video duration distribution per viewport class. As expected, the two distributions

look the same, with half of the videos requested from SD and HD viewports having a

median duration of 120 seconds. We split this dataset into training and test sets. In the

training set, we compute the features by considering the entire video session. On the

other hand, we use a specific proportion of the video starting from its beginning and test

over it for the test set. For instance, an input on the first 20% will consider a feature

set Finband+chunk calculated over the first 20% of the video, and so on. To represent the

proportions in seconds and give them a practical meaning, we consider the median video

duration (120s) as reference duration, so proportions of 20% and 40% would correspond

to the first 24 and 48 seconds of a video session.

We plot in Figure 4.15 the F1 score w.r.t. the proportion used as input for the test.

With no surprise, the more significant the considered proportion of video sessions is,

the higher the accuracy of the model becomes. This makes sense as the model gets

more relevant input than those used for the training. More importantly, the model still

works with few seconds as input and provides good classification accuracy exceeding

80% on average. This confirms that the first few seconds of a video session carry an

important signature of viewport class, for example, the first 24 seconds (assuming a

median duration of 120 seconds), allowing a median F1 score of 80% (more than 78% in

75% of the cases). We recall that considering the complete video data leads to an 85%

70 From encrypted video traces to viewport classification

Figure 4.14: Video duration distribution (seconds)

Figure 4.15: Model accuracy vs video proportion considered

median F1 score. We shall thus confirm the feasibility of our approach for pseudo-real-

time viewport classification.

4.6 Conclusion

In this chapter, we presented our methodology for building viewport classification models

from YouTube encrypted video traces using controlled experimentation and machine

learning. Our models infer the end-user viewport resolution from statistical features

calculated over the encrypted video packets, fully or partially. Such information on the

viewport can help the ISPs plan better traffic engineering actions for a more efficient

network management and QoE optimization. Our methodology starts by inferring chunk

sizes, then relies on Gaussian Mixture Models (GMM) to separate video chunks from

audio chunks. Statistics on video chunks are then used to train machine learning models

for viewport classification. In a binary scenario of SD and HD viewports, our models

showed classification accuracy that improves with the available network bandwidth and

can go up to 92% in its median. The median F1 score can go up to 85%. Limiting the

classification to the first few seconds of the video decreases its accuracy but still leads

Conclusion 71

to acceptable levels of F1 score. The inference of the exact viewport resolution showed

a lower accuracy, as a subset of viewports presents similar statistical features, making

the prediction more challenging to realize.

In the rest of the thesis, we will explain how to bridge the gap between video QoE

optimization and viewport resolution. For that, we will study a resource allocation

problem using a QoE function that considers the viewport resolution along with other

metrics to allocate bandwidth and cache content intelligently.

The contributions related to this chapter appeared in the following publica-

tions:

• Othmane Belmoukadam and Chadi Barakat: From encrypted video traces to

viewport classification. – 16th International Conference on Network and Ser-

vice Management (CNSM), November 2020, Virtual Conference - BEST PAPER

AWARD

• Othmane Belmoukadam and Chadi Barakat: From encrypted video traces to

viewport classification. – The World of Industrial Mathematics MOMI2021,

March 2021, Virtual Workshop - BEST POSTER AWARD

• Othmane Belmoukadam and Chadi Barakat: Unveiling the end-user viewport

resolution from encrypted video traces. – IEEE Transactions on Network

and Service Management, May 2021.

Chapter 5

QoE-aware bandwidth sharing

framework for adaptive video

streaming

Up to this point, we were able to enlighten the impact of the viewport resolution on the

video resolution patterns and data consumption. We highlighted the correlation of the

viewport resolution to key inband network-level features (e.g., chunk size) and proposed

a data-driven solution to infer this viewport from encrypted traffic traces. At this stage,

we reuse this information to bridge the gap with video QoE models. Furthermore,

we incorporate our models to solve problems related to Internet resource management.

In a nutshell, in this chapter, we define a QoE-aware resource allocation problem to

pinpoint the optimal bandwidth allocation that maximizes the QoE overall users of a

network service provider located behind the same bottleneck link while accounting for

the characteristics of the screens they use for video playout. For validation, we use ns-3

and show that our solution can increase the overall QoE compared to an allocation with

a TCP look-alike strategy.

73

74 QoE-aware bandwidth sharing framework for adaptive video streaming

5.1 Introduction

In light of video traffic growth and equipment diversity, video traffic engineering is a very

challenging task to solve. The difficulty stems in particular from the different require-

ments of viewports from the side of the network. Previous studies linked the MOS (Mean

Opinion Score) to the video bitrate for different screen types (e.g., Common Intermedi-

ate Format (CIF), Quarter Common Intermediate Format (QCIF), and High Definition

(HD)). They show that small screens scale faster to higher MOS levels even when dis-

playing videos of limited resolution, suggesting different media-related requirements for

the same QoE level [10].

Generally speaking, for QoE models insinuating the IQX hypothesis [28], i.e., exponential

mapping between QoE and QoS metrics, the QoE variation resulting from a change of

a QoS metric depends on the current QoE level. Within this hypothesis, if displaying

a low video resolution on a small definition screen results in a good QoE level, a slight

degradation of the QoS (e.g., bandwidth) will not impact the perceived QoE drastically.

However, displaying the exact low video resolution on a large definition screen will result

in a low QoE level so that the same QoS degradation will have a more severe impact on

the QoE. This justifies the need for differentiated treatment of screen resolutions inside

the network. Unfortunately, this differentiation is challenging to in-store for several

reasons; (i) despite the importance of the viewport resolution, little is known when it

comes to incorporate this important variable, when allocating network resources (e.g.,

bandwidth) and (ii) the allocation is often left to the HAS and TCP protocols, which in

case of multiple flows sharing a bottleneck link, converges to a fair split of the available

bandwidth. For different screen resolutions or different viewports in general, this latter

allocation does not lead to a fair QoE allocation nor an optimal overall QoE.

To that aim, motivated by the previous results and previous studies, we formulate a

QoE-driven resource allocation problem to pinpoint the optimal allocation strategy that

maximizes the total QoE over a set of users located behind the same bottleneck link. We

do that while accounting for the characteristics of the screens they use for video playout.

Our QoE functions were built using curve-fitting on datasets capturing the relationship

Introduction 75

between QoE, screen characteristics, and content-related metrics (Bitrate). For this

purpose, we use two datasets that link throughput [9] or video bitrate [10] to a QoE level.

Using these QoE functions, we propose a simple heuristic based on Lagrangian relaxation

and KKT (Karush Kuhn Tucker) conditions to solve the optimization problem efficiently.

Our network simulations using ns-3 show that the proposed heuristic can increase overall

QoE compared to an allocation with a TCP look-alike strategy implementing max-min

fairness.

Our contributions can be summarized as follows:

• We formulate an optimization problem for network resource allocation, which is

based on QoE and where QoE functions are built using datasets linking (through-

put or bitrate) to MOS.

• We present a relaxation of our problem to a non-linear problem by considering

continuous video bitrates. Under this relaxation, we develop a simple and greedy

heuristic based on Lagrangian multipliers and KKT conditions and prove that our

heuristic converges to a state where all gradients are either equal or constraints on

the bitrate reached.

• We use the network simulator ns-3 [120] and an open source implementation of

DASH to validate our approach and to propose an implementation of the optimal

solution that limits the subset of visible video representations by a player according

to the resolution of its viewport.

The rest of this chapter is organized as follows. In Section 5.2 and 5.3 we present our

framework and formulate our optimization problem. Section 5.4 shows numerical results

and evaluates the gain of the proposed solution compared to other allocation strategies.

In Section 5.5 we illustrate our experimental results using the network simulator ns-3,

and evaluate the gain in terms of overall QoE for both the optimal solution and practi-

cal implementation that limits the video bitrate as a function of the client’s viewport.

Finally, we conclude our study highlighting the main results.

76 QoE-aware bandwidth sharing framework for adaptive video streaming

Figure 5.1: Framework overview

5.2 Framework and system model

5.2.1 Framework

Consider a set of users with different screen resolutions (alternatively viewports) stream-

ing videos from a server as illustrated in Figure 5.1. Videos on the server are encoded

into M different representations (i.e., bitrates or resolutions). We assume users are not

limited by their access links and are thus able to download any video representation

available on the server. We presume the system’s bottleneck to be the backhaul link

located between the gateway and the video server. Such a backhaul link can be one

of the current wireless networks or the peering link of a network access provider whose

users are connected to the Internet by high-speed optical fibers.

In this study, we focus on the problem of QoE-driven bandwidth sharing on the back-

haul link and do not consider the presence of any caching functionality at the gateway.

Caching would add another interesting dimension to our problem, and would undoubt-

edly interact with bandwidth sharing on the backhaul, so we differ its joint study with

bandwidth allocation to a future work dedicated to the topic. For now, one can see our

work as specific to those videos that are not cached. The study of caching is the subject

of the following chapter.

Framework and system model 77

5.2.2 System model

We now describe in more detail the model that we consider and introduce our notation.

Let F denote the set of video files in our catalog (server) offered to the users. Any

video file f ∈ F is encoded into a set of M representations with fm being the m-th

representation of video f , having an encoding bitrate equal to Bfm and corresponding

to a particular video resolution. For the sake of simplicity and without loss of generality,

we suppose all videos to have the same duration T . Further, we suppose that ∀f ∈ F

and ∀m ∈ [1, . . . ,M], the video bitrates Bfm’s are the same (i.e., which can be seen as

the average overall videos of the catalog for representation m). Finally, let S be the

vector of distinct screen resolutions.

Notation Representation

F Set of videos
M Number of video representations (resolutions) on the server
S Set of screen resolutions
λf Request rate per Video f
λf,s Request rate per video f and screen resolution s
α Parameter of the popularity Zipf distribution
Cl Backhaul link capacity
BM,s Upper bound on bitrate for s ∈ S
X Bandwidth allocation vector

Table 5.1: Notations of our bandwidth sharing framework

For every f ∈ F we assign a request rate λf (i.e., popularity) according to a Zipf distri-

bution of parameter α. This request rate is the total over the different screen resolutions.

Each request to a video f is supposed to originate from a particular screen resolution

according to a given probability distribution over S. In practice, a network operator

can obtain such information on the originated screen resolution by using the IMEI (In-

ternational Mobile Equipment Identity) of the end-user device or by collaborating with

the video content provider. Multiplied by λf , this probability gives the request rate

per video f and per screen resolution s that we denote λf,s. We have λf =
∑

s∈S λf,s.

Table 5.1 summarizes the notation used in our framework, while Figure 5.2 illustrates

the process of generating requests for the case |S| = 5 screens (most common screen

resolutions in the mobile market).

78 QoE-aware bandwidth sharing framework for adaptive video streaming

Figure 5.2: Traffic generation according to our model

5.2.3 From QoS to QoE

As per prior subjective studies, the QoE of video streaming is a function of application

layer QoS features that are either dependent on the video content (e.g., video bitrate)

or the playout metrics (e.g., the initial startup delay) [121, 122]; the playout metrics

further depend on the underlying network conditions such as the network throughput

or delay. In this thesis, we consider building QoE functions that take as input the

network throughput or the video bitrate and differ to a future work considering other

factors that might also impact the QoE. To build these QoE functions, we rely on two

publicly available datasets that map the QoS to the QoE. The first dataset is produced

by controlled experiments and links the network throughput to the QoE level according

to ITU P.1203 recommendation [9], while the second dataset is based on the work of

the Video Quality Experts Group (VQEG) [10] and maps the video bitrate to the MOS.

On these datasets, we apply curve fitting methods (e.g., non-linear least squares) with

the canonical function given in Equation (5.1) to build our target QoE functions, taking

each time as input the network throughput and the video bitrate, respectively. In this

Equation (5.1), x stands for the network throughput or the video bitrate, while index s

stands for the screen resolution. Constant β is the fitted parameter that determines the

shape of the QoE function:

QoEs =
exp

QoEmax(1− e−βsx). (5.1)

Framework and system model 79

Figure 5.3: Fitting QoE function (5.1) using controlled experiments data from [9]

5.2.3.1 From throughput to QoE

The dataset for this model is built by controlled experiments in the lab [9]. The idea

behind this dataset is to link the MOS of video streaming to the available bandwidth

inside the network. The dataset consists of 100k unique YouTube video playouts under

different trace-driven emulated network conditions. This dataset maps the network QoS

features such as throughput, delay, and packet loss to application-level measurements

such as join time, stalls, and video resolutions. The measured application QoS allows

calculating the ITU-T P.1203 subjective MOS 3 for different screen resolutions. We

use curve fitting based on Equation (5.1) to establish the relation between the MOS

computed according to ITU standard with respect to the sole network throughput for

the different screen resolutions as shown in Figure 5.3. The screen resolutions given in

the figure correspond to the available video resolutions in the traces of the experiments

carried out in [9].

5.2.3.2 From bitrate to QoE

Here we use another dataset to calibrate the QoE function in Equation (5.1), but this

time as a function of the video bitrate. Cermak et al. [10] studied the relationship

between the video quality, the screen resolution, and the video bitrate using the VQEG

datasets. The authors show that for screen resolutions such as CIF, QCIF, and HD,

different video bitrates are needed to achieve a certain MOS level (see Figure 5 in [10]).

For the main mobile screen resolutions, typically from 426x240 up to 1920x1080, we

3The ITU-T P.1203 model is a standardized model that takes as input the application QoS to estimate
the subjective MOS.

80 QoE-aware bandwidth sharing framework for adaptive video streaming

Figure 5.4: Fitting QoE function (5.1) using video quality expert group data [10]

extrapolate a vector Z where each entry has two values (zBR , zMOS), then we use curve

fitting with Equation (5.1). In Figure 5.4, we plot the fitted curves for four main screen

resolutions. These curves, therefore, map the bitrate to the QoE level based on the

Video Quality Expert Group (VQEG) data highlighted in [10].

Note that according to [10], the video bitrates take discrete values, thus making the

resource allocation problem an INLP (Integer Non-Linear). To counter this difficulty,

we relax the problem to make the bitrate take any real value between its minimum and

maximum values given by [10], which can transform the resource allocation problem into

an NLP (Non-Linear), hence easing the solution. We believe that video content varies

considerably in real scenarios, making the bitrate take more diverse values than the ones

in [10].

5.2.3.3 Curve fitting evaluation

As highlighted earlier, we rely on two public datasets to map the QoS to the QoE [9, 10].

For each, we use the non-linear least squares method to estimate the parameter β of

Equation (5.1) for every screen resolution. We rely on three metrics to estimate the

goodness-of-fit of the obtained model: the root mean square error (RMSE), the mean

absolute error (MAE), and the R² score a.k.a coefficient of determination [123]. In par-

ticular, the R² score can be seen as the percentage of the prediction value’s variance that

the model can explain. The closer the R² score is to 1, the better the model represents

the variance of the dataset. We show in Table 5.2 the estimated parameter β, the mean

absolute error, the RMSE, and the R² score for every screen resolution using each of the

datasets. We note how for curve fitting using the YouTube controlled experiments data,

QoE-driven bandwidth sharing 81

the RMSE varies between 0.15 and 0.24 on a scale from 1 to 5, indicating high accuracy

of the exponential model in Equation (5.1). This good performance of the model is also

confirmed for the VQEG data with even lower values for the MAE and the RMSE.

Fitted data
Screen

resolution s
Estimated

parameter β
MAE RMSE R²

YouTube experiments 426x240 8.17 0.10 0.15 0.91
640x360 3.73 0.12 0.16 0.92
850x480 2.75 0.13 0.17 0.92
1280x720 1.89 0.17 0.24 0.89

VQEG 426x240 3.79 0.13 0.25 0.93
640x360 1.96 0.02 0.05 0.94
850x480 1.18 0.07 0.13 0.92
1280x720 0.72 0.12 0.23 0.93

Table 5.2: Curve fitting evaluation

5.3 QoE-driven bandwidth sharing

5.3.1 Problem description

Our problem can be described as follows. Given the different representations of videos,

the distribution of screen resolutions, and the backhaul link capacity (denoted Cl), we

seek how to share the bandwidth of the backhaul link between the multiple video sessions

so that the total system utility, modeled as the overall QoE, is maximized. We want this

maximization to account for the screen resolutions and the constraint on the capacity of

the backhaul link. Note here that the best we can hope for, from TCP and DASH, is a

fair split of the available Cl overall flows except if the client is configured not to download

resolutions above some threshold depending on the screen. The optimal allocation is

not straightforward, as fairness at the resource level does not necessarily imply fairness

at the QoE level. The fact that small screens require lower bitrates than large screens

for the same level of QoE is a good illustration.

5.3.2 Problem formulation

Let’s introduce the vector X = (xs), s ∈ S, where the s-th element denotes the band-

width allocated to each of the users with screen resolution s. The QoE-driven bandwidth

82 QoE-aware bandwidth sharing framework for adaptive video streaming

allocation for optimal video quality improvement can be formulated as a nonlinear pro-

gram (NLP) as follows:

max
X

U(X) =
∑
s∈S

λsQoEs(xs) (5.2a)

s.t.∑
s∈S

λsTxs ≤ Cl (5.2b)

xs ≤ BM,s, s ∈ S (5.2c)

xs ≥ 0, s ∈ S (5.2d)

The global utility function of the system is defined as the sum of weighted QoE functions

defined and calibrated in Section 5.2.3.1 and 5.2.3.2. To do so, we aggregate users with

the same screen resolution as they are supposed to obtain the same bandwidth allocation

(λs =
∑

f∈F λf,s). Constraint (5.2b) accounts for the backhaul capacity limitation,

whereas constraint (5.2c) upper bounds the allocation for every screen resolution based

on the bitrate or throughput needed for excellent video quality at this screen resolution

according to the datasets we are using. Note here that this upper bound can be removed

as it is accounted for indirectly by the QoE functions (i.e., the QoE is at its maximum

value for any allocation greater than this upper bound), but we decided to keep it for

clarity of the presentation.

5.3.3 Gradient solution based on Lagrangian relaxation

For the QoE function we consider (Equation (5.1)), our problem is convex and thus

possesses a unique solution. One can use well-known heuristics such as Sequential Least

Squares [124] to get an approximation of the optimal allocation. The Sequential Least

Squares method, part of successive quadratic programming, solves a sequence of opti-

mization sub-problems. For every sub-problem, Sequential Least Squares optimizes a

quadratic model of the objective subject to a linearization of the constraints (linear in

our case). Given the particular shape of our QoE functions (i.e., mono-variate) and

QoE-driven bandwidth sharing 83

constraints, and to help to get further insights on the optimal solution, we propose a

simple greedy heuristic that helps to approximate the non-linear objective function and

efficiently maximizing it. The proposed greedy heuristic considers KKT (Karush Kuhn

Tucker) conditions to check if a feasible solution is optimal. We start by writing the

partial Lagrangian function obtained by relaxing constraints (5.2c) and (5.2d):

L(X, γ) = U(X)− γ(
∑
s∈S

(λsTxs)− Cl). (5.3)

Constant γ is the Lagrangian multiplier associated to constraint (5.2b). By supposing

constraint (5.2b) to be set to equality at the optimal solution (otherwise the system is

under-utilized), and by differentiating the Lagrangian L(X, γ) with respect to allocation

vector X, we can prove that a first possible solution could be the one that equalizes all

gradients of the QoE functions:

∂QoEi(xi)

∂xi
=
∂QoEj(xj)

∂xj
,∀(i, j) ∈ S. (5.4)

This, together with
∑
s∈S

(λsTxs) − Cl) = 0, gives a system of equations that we denote

W and that we can solve to find our first bid on the optimal allocation vector. This

first bid is the optimal allocation if the two other constraints (5.2c) and (5.2d) are not

violated, otherwise, our vector is not the optimal vector and has to be updated. We

use the information on the violated constraints to reshape the search space, i.e., we

take those violated constraints one by one, and at each step, we set the corresponding

allocation either to zero or to the upper bound, then we replace them in the Lagrangian

(5.3) and repeat the previous process until converging to an allocation that satisfies all

constraints while nullifying the gradient of the Lagrangian. The following algorithm

provides further details on our approach.

84 QoE-aware bandwidth sharing framework for adaptive video streaming

Algorithm 1: Compute allocation vector

Output: Optimal value of X = (xs), s ∈ S

Input: λs, QoEs, BM,s, Cl

Initialize X from (W)


∂QoEi

∂xi
=

∂QoEj

∂xj
∀(i, j) ∈ S

(
∑
s∈S

(λsTxs)− Cl)) = 0

while either (5.2c) or (5.2d) false do

if ∃ xi ∈ X, such that xi < 0 then

Set Min(xi ∈ X| xi < 0) = 0 for (X,W);

Solve (W);

Continue;

end

if ∃ xi ∈ X, such that xi > BM,i then

Set Max(xi ∈ X| xi > BM,i) = BM,i for (X,W);

Solve (W);

Continue;

end

end

5.3.4 QoE-fairness at the equilibrium

In this section we discuss the QoE-fairness at the equilibrium, as ensured by our optimal

solution. We always consider the case when the QoE is modeled using an exponential

function, even though the method hereafter applies to other functions. The optimal QoE-

aware bandwidth allocation is reached when the gradients of QoE are equal (see Equation

(5.4)). Let’s consider two screen resolutions (i) and (j), and let’s use Equation (5.4) and

the QoE definition in Equation (5.1) to derive the relation between the QoE achieved

by the two screen resolutions at the equilibrium. After differentiation and substitution

of the exponential term by its value as a function of QoEmax and (QoEi, QoEj), we get

the following equality at optimal allocation:

QoE-driven bandwidth sharing 85

βi(QoEmax −QoEi) = βj(QoEmax −QoEj), ∀i, j, 0 < xi < BM,i, 0 < xj < BM,j .

(5.5)

Note that for this, we suppose that the constraint on the maximum bitrate is not reached.

The constraint on the impossibility of a negative bitrate is naturally not reached at

optimal allocation. In case the former constraint is reached for some screen resolutions,

those screens will be at their maximum QoE, and the equality will only hold for the

other screens for which the QoE maximum is still not reached. The above equality

implies that for the optimal solution of QoE-aware bandwidth allocation, the difference

between the maximum QoE and the achieved QoE is inversely proportional to the β

value of the corresponding screen resolution. An example of these β values can be found

in Table 5.2. This can be written as:

(QoEmax −QoEi) ∝
1

βi
. (5.6)

We can thus conclude that the slower the convergence of the QoE function with the

bitrate (i.e., case of large screens), the smaller the β and the smaller the QoE value.

On the other hand, the faster the convergence of the QoE function (i.e., case of small

screens), the larger the β and the better the QoE value. Small screens thus achieve better

QoE than large screens, but the latter ones don’t starve either. They still achieve an

acceptable QoE level, with the distance to the maximum QoE level inversely proportional

to their β value. For example, by referring to Table 5.2, screen resolution 1280x720 is

only at twice the distance from maximum QoE than screen resolution 640x360. Note

here that it is only the distance to maximum QoE that goes inversely proportional to

the β parameter at the optimal allocation of backhaul bandwidth, not the absolute value

of the QoE itself.

86 QoE-aware bandwidth sharing framework for adaptive video streaming

5.4 Numerical simulations

5.4.1 Simulation setup

We consider a network where a set of users have different screen resolutions distributed

uniformly over S. We consider S to include the five standard screen resolutions depicted

in Figure 5.2. Videos are of equal duration, and the allocation vector X, in this case, is

proportional to the number of bytes each video would require from the network.

As reference allocations, we consider two max-min allocations, which model the existing

solutions based on TCP and DASH. The first allocation is called max-min fair which

consists of video flows sharing equally the available bandwidth independently of the

characteristics of their screens (i.e., a flow can get more than it can play out). The

second allocation is called max-min screen based where bandwidth is fairly shared but

in the limit of maximum supported bitrate per screen (denoted BM,s according to our

notation). This consists of a video flow of screen resolution s fighting for the bandwidth

and sharing it fairly with the others as long as the maximum bitrate BM,s is not reached.

Once reached, the flow (i.e., DASH) does not ask for higher bitrates even if bandwidth

is available in the network. This control can be either implemented at the client or at

the server if the information on the screen (or viewport) is made available to it.

In addition to these reference allocations, we use our heuristic to derive the best band-

width allocation that maximizes the sum of QoE functions over all flows. We show

results for the exponential QoE function in Equation (5.1), but we also discuss an ex-

treme case where QoE grows linearly with the throughput or the bitrate. Note that

the optimization with a linear QoE function cannot be solved with our heuristic as it

corresponds to a linear program. We solve it instead with CPLEX [125] and provide an

intuitive interpretation of the results. Note also that we focus on a snapshot problem

where we perform the optimization only once before assigning the resources.

Numerical simulations 87

0 20 40 60 80 100
Backhaul capacity (%)

0

1

2

3

4

Q
oE

Optimal solution
Max-min screen based
Max-min fair

(a) QoE per allocation strategy

0 20 40 60 80 100
Backhaul capacity (%)

0
2
4
6
8

10
12
14
16

G
ai

n
(%

)

Optimal solution
Max-min screen based

(b) Relative gain, uniform screen probabilities

Figure 5.5: Comparison of allocation strategies with uniform screen probabilities
(dataset of [10])

5.4.2 Bandwidth allocation and QoE

We compare the previous allocation strategies in terms of the overall QoE while vary-

ing the backhaul capacity. We start by considering the dataset available in [10] (see

Section 5.2.3.2) to calibrate our QoE functions. We express the backhaul capacity as

a percentage of the worst-case scenario where the operator over-dimensions its network

to deliver the maximum bitrate to all users independently of their screen resolutions.

Figure 5.5 shows the overall QoE as a function of the backhaul capacity Cl. It also shows

the relative gain of the two strategies optimal and max-min screen based with respect

to the baseline strategy max-min fair. We notice how leveraging the QoE function with

very limited backhaul capacity can achieve a QoE gain up to 16% over the baseline

strategy. Furthermore, the optimal and the max-min screen based strategies manage to

reach the maximum possible QoE earlier than max-min fair, while increasing the back-

haul capacity. For small backhaul capacity (below 20%), max-min fair and max-min

screen based lead to the same result (i.e., zero gain) as the maximum bitrate per screen

is not reached, which is not the case of the optimal strategy which still delivers a better

result. We recall that this result is obtained for screen resolutions of equal popularity

over the set S.

To check for the impact of screen popularity, we apply other distributions of screen

resolutions over S and find that our approach works well for other scenarios. Moreover,

we point to cases where the gain can actually be up to 20% compared to a simple, fair

split of the available backhaul capacity.

88 QoE-aware bandwidth sharing framework for adaptive video streaming

0 20 40 60 80 100
Backhaul capacity (%)

0

1

2

3

4
Q

oE

Optimal solution
Max-min screen based
Max-min fair

(a) QoE per allocation strategy, 426x240 and
1920x1080

0 20 40 60 80 100
Backhaul capacity (%)

0

5

10

15

20

G
ai

n
(%

)

Optimal solution
Max-min screen based

(b) Relative gain, 426x240 and 1920x1080

(c) Relative gain, distribution increasing to-
ward 1920x1080

(d) Relative gain, distribution increasing to-
ward 426x240

Figure 5.6: Comparison of allocation strategies with different screen resolution
distributions (dataset of [10])

Indeed, we compare in Figure 5.6 the different allocation strategies for different scenarios.

Figures 5.6(a and b) consider the scenario of a bi-modal screen resolution distribution

with only two screen resolutions of equal probabilities, 426x240 (small) and 1920x1080

(large). The other two figures, Figures 5.6(c and d), consider a distribution where

popularity either increases or decreases with the screen resolution. For example, in

Figure 5.6(c), the distribution simulated is 45% of 1920x1080, 35% of 1280x720, 10% of

854x480 and 5% for each of 640x360 and 426x240 screen resolutions. This distribution is

then reversed for the simulation highlighted in Figure 5.6(d). We make sure to consider

general scenarios and also reflect in some of them the reality of the mobile devices market,

where 80% of today’s mobile devices have a screen resolution of at least 720p [126] (i.e.,

the height of the screen or viewport in pixels).

In Figure 5.6(b), we notice how the gain improves and can go above 20%. In this case,

we end up with two equal subsets of users, greedy users (large screens) and users easy

to satisfy (small screens). In such a scenario, the baseline strategy divides the available

Numerical simulations 89

bandwidth fairly among all users, which is insufficient, especially when Cl is small, as

large screens cannot get to an acceptable QoE level with the given allocation while small

screens get more than needed. However, in Figure 5.6(c and d), we notice that both

max min fair and max min screen based strategies result in almost the same allocation

giving approximately the same overall QoE (i.e., the blue line near zero). These two

latter figures correspond to scenarios where all screen resolutions are present, but in the

first case, the popularity increases with the screen resolution, and in the second case,

the popularity decreases with the screen resolution. In the first case, where the larger

the screen, the more its popularity, the majority of users are greedy, making it hard for

the max min screen based strategy to serve all of them even though we are restricting

the allocation of small screens. The screen based strategy thus behaves approximately

as the max min fair one. For the second distribution, where the larger the screen, the

less popular it is, we end up with many users using small screens and asking for fewer

resources. Even though the overall QoE is expected to be better in this case, the fact

that the demand is more homogeneous makes the behavior of the max min fair strategy

again close to the max min screen based one. We can notice how for the latter case when

the backhaul capacity gets above 40%, small screens reach their upper limit so that the

larger screens can get more resources leading to an improved gain. The optimal strategy

keeps its good performance over the different scenarios we consider for screen resolution

distribution.

We repeat the same numerical simulation but this time using QoE functions fitted on the

controlled experiments data in [9] (see Section 5.2.3.1). Figure 5.7 includes a comparison

of the different strategies for the four distributions of screen resolutions: (a) the uniform

one, (b) the bi-modal small/large one, (c) the one biased toward large screens, and (d)

the one biased toward small screens. We can notice how the gain for these QoE functions

drawn according to ITU-T P.1203 standard spans smaller ranges while maintaining the

same shape as with QoE functions fitted using the dataset of [10]. In particular, for

Figure 5.7(a), where all screen resolutions are uniformly present, our approach results

in a gain in overall QoE up to 7% compared to the baseline TCP fair split (max-min

fair). On the other hand, max-min screen based is only 1% better compared to the

baseline. Moreover, when 50% of requests come from 426x240 devices and the rest

90 QoE-aware bandwidth sharing framework for adaptive video streaming

0 20 40 60 80 100
Backhaul capacity (%)

0

1

2

3

4

5

6

7
G

ai
n

(%
)

Optimal solution
Max-min screen based

(a) Relative gain, uniform distribution

0 20 40 60 80 100
Backhaul capacity (%)

0

2

4

6

8

10

G
ai

n
(%

)

Optimal solution
Max-min screen based

(b) Relative gain, 426x240 and 1920x1080

(c) Relative gain, distribution increasing toward
1920x1080

(d) Relative gain, distribution increasing to-
ward 426x240

Figure 5.7: Comparison of allocation strategies with different screen resolution
distributions (dataset of [9])

from 1920x1080 devices, the optimal allocation (Figure 5.7(b)) results in a gain of 11%

compared to baseline allocation. Again we notice that for small Cl, the max-min screen

based strategy and the max-min fair one result in almost the same allocation leading

to the same QoE. In Figures 5.7(c and d), we highlight the same behaviour explained

earlier, the max min fair and the max min screen based strategies give close results.

The optimal strategy gives better performance, especially for a backhaul capacity of less

than 20%.

The above results highlight the interest in the QoE-based approach and show that QoE

unaware allocations lead to the best overall QoE neither in restricted backhaul capac-

ity nor in scenarios of homogeneous screen resolutions. Upper limiting the bitrate to

the screen resolution works in scenarios of high bandwidth. However, when the band-

width becomes scarce, it provides close results as the simple screen unaware max-min

allocation, thus urging the need for an optimal QoE approach. Finally, we note that

even though not considered in this work, our observations will probably apply to larger

Numerical simulations 91

0 20 40 60 80 100
Backhaul capacity (%)

0

1

2

3

4

Q
oE

Optimal solution
Max-min screen based
Max-min fair

(a) QoE per allocation strategy

0 20 40 60 80 100
Backhaul capacity (%)

0

20

40

60

80

100

120

140

G
ai

n
(%

)

Optimal solution
Max-min screen based

(b) Relative gain, uniform screen probabilities

Figure 5.8: Comparison of allocation strategies with uniform screen probabilities
and linear QoE function (dataset of [10])

screens of 2k and more, especially when mixed between each other and with screens of

lower resolutions.

5.4.3 Linear QoE

Instead of exponential QoE function, one can imagine an extreme case where QoE grows

linearly with the network throughput or the video bitrate, within the range [0, BM,s] for

screen resolution s. Even though not realistic, this type of QoE function is interesting

because of its implication on the optimal allocation and the way it can be implemented.

We add it for completeness of the study, knowing very well that it might not exist in

practice. Indeed, in this case, the sum of linear QoE functions transforms the NLP

problem into an LP problem that can no longer be solved with our heuristic. Instead,

one can use CPLEX to solve it [125]. In such a case, we found that more important gains

can be reached. More interestingly, and because slopes of QoE functions are constant

but no longer the same for all screens (fast slopes for small screens, slow slops for large

screens), the optimal allocation would simply consist of giving full bandwidth priority

to small screens on large screens. So small screens are served first in the limit of their

BM,S , then larger screens, and so on until all screens are served if resources are available.

Such allocation, as it requires full priority, cannot be simply implemented on an end-to-

end basis (i.e., by limiting the maximum video resolution, for example) but requires the

intervention of the network operator as well.

92 QoE-aware bandwidth sharing framework for adaptive video streaming

To highlight the above observations, we plot in Figure 5.8 the resulting QoE for the

different strategies discussed earlier w.r.t. the percentage of backhaul capacity. Overall,

the max min fair and max min screen based are identical as expected for small backhaul

capacity. However, the optimal strategy is giving much more pronounced gains up to

120% compared to the baseline max-min fair strategy.

5.5 Network simulation

For the validation of our numerical results, we use the simulation software ns-3 [120]. We

work with an implementation of MPEG/DASH proposed by [102, 127] that supports the

Smooth Video Adaptation Algorithm (SVAA) designed in [101]. DASH being a standard

issued by MPEG in 2012 for HAS, different rate adaptation algorithms are proposed in

the literature to figure out the resolution of the next segment to download so as to

minimize the number of switches and stalls. The SVAA algorithm we consider has

shown its efficiency in preventing resolution switches and interruptions [102, 127].

Our simulation setup consists of multiple terminals (15 in total) acting as DASH clients

and streaming videos parallel from a DASH server. Clients are connected to a router

via access links of 5Mbps and 2ms delay simulating ADSL access links. Their traffic

is routed toward the central server through a wired link of fixed capacity 30Mbps and

fixed delay 6ms. In terms of video content, we use an animated YouTube video called

the Elephants Dream. The video is divided into segments of 2 seconds, produced using

the H.264 compression standard with a maximum frame rate of 24 f/s. Moreover, the

chunk bitrate is varying from 46Kbps up to 4.3Mbps using traces from [128].

In addition to the standard implementation of DASH/SVAA, we propose two other

implementations illustrating the different aspects of our approach. To simulate the opti-

mal solution (see Section 5.3.3), we find the optimal allocation of a video flow using our

heuristic then limit the view of the client to video representations not exceeding this al-

location. Moreover, we implement screen-based max-min by changing the DASH/SVAA

client so that the maximum downloadable representation is the ceil of the maximum

bitrate for which the given screen resolution attains the maximum QoE ([10]).

Network simulation 93

50 100 150
Simulation time (s)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

D
ow

nl
oa

d
bi

tra
te

 (M
bp

s)

426x240
640x360
854x480
1280x720
1920x1080

(a) The legacy DASH

50 100 150
Simulation time (s)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

D
ow

nl
oa

d
bi

tra
te

 (M
bp

s)
426x240
640x360
854x480
1280x720
1920x1080

(b) The QoE based DASH

Figure 5.9: Average download bitrate per simulation time for each screen resolution
over a shared link of capacity Cl = 30Mbps

5.5.1 Simulating QoE-driven DASH

We assign to our fifteen devices screen resolutions from a subset of five major mobile

screen resolutions (e.g., from 426x240 to 1920x1080) using a uniform probability distri-

bution. The bandwidth allocation itself is calculated at the beginning of the simulation

and is maintained constant through the simulation time before being recalculated for

the following simulation based on its new configuration. We simulate the users’ behavior

with each of the described DASH implementations, then we plot the average attainable

download bitrate over the shared link per screen resolution and calculate the total corre-

sponding QoE using the functions fitted in Section 5.2.3.2. We repeat every simulation

at most 20 times and average outputs to reduce the bias effect and smooth the results.

For every average result, the 90% confidence intervals are plotted to help assess their

convergence.

Figure 5.9(b) illustrates the effect of QoE-based DASH, where we can see the attainable

download bitrate proportional to the screen resolution as needed for good video quality.

This is contrary to Figure 5.9(a), where all users grab approximately the same share of

94 QoE-aware bandwidth sharing framework for adaptive video streaming

50 100 150
Simulation time (s)

0

1

2

3

4

Q
oE

426x240
640x360
854x480
1280x720
1920x1080

(a) The legacy DASH

50 100 150
Simulation time (s)

0

1

2

3

4

Q
oE

426x240
640x360
854x480
1280x720
1920x1080

(b) The QoE based DASH

Figure 5.10: Average QoE per simulation time for each screen resolution

the available capacity as expected with a simple max-min allocation delivered by legacy

DASH and TCP.

In Figure 5.10 we compute the average QoE per screen resolution for two implementa-

tions: (a) legacy DASH and (b) QoE based DASH. We notice through the figures how

the QoE is rearranged in between the different screen resolutions. Thanks to screen

resolution consideration, we manage to enhance the average QoE for greedy users (big

screen resolution) while maintaining a good QoE level for the others, all this without

exceeding the backhaul budget.

We also compare the different implementations in terms of main application-level QoS

factors (e.g., stalls, resolution switches) that could impact the subjective QoE [121, 122].

In Figure 5.11, we focus on the quality switches as they appear because of the DASH

dynamics. We can see in Figure 5.11(b) how QoE-based DASH manages to reduce the

number of switches per screen resolution during a watching session compared to legacy

DASH (Figure 5.11(a)). The reduction can be particularly noted for small screens that

are now limited at the application level and thus have enough margin at the TCP level to

further increase their download rate if needed by fast-moving chunks. This margin does

Network simulation 95

50 100 150
Simulation time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
um

be
r o

f r
es

ol
ut

io
n

sw
itc

he
s 426x240

640x360
854x480
1280x720
1920x1080

(a) The legacy DASH

50 100 150
Simulation time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
um

be
r o

f r
es

ol
ut

io
n

sw
itc

he
s 426x240

640x360
854x480
1280x720
1920x1080

(b) The QoE based DASH

Figure 5.11: Average number of resolution switches per simulation time for each
screen resolution

not exist for large screens that are throttled by TCP because for their high bitrate, they

still achieve fewer resolution switches than in the case of legacy DASH. We also plot the

average number of stalls per screen resolution for both the legacy and the QoE-based

DASH. In Figure 5.12 we can make the same observation as with resolution switches,

the QoE approach reduces the number of video stalls per screen resolution, making

the video experience smoother and more satisfying for both small and large screens.

At last, we plot in Figure 5.13 the average duration of stalls for the different screen

resolutions considered. We include the duration of stalls as prior QoE studies give high

interest to user engagement and the ability to tolerate a certain duration of stalls before

abandoning the video session. In general, the QoE-based DASH is able to reduce the

average duration of stalls, which can be noticed for all screens, in particular, high screen

resolutions.

96 QoE-aware bandwidth sharing framework for adaptive video streaming

50 100 150
Simulation time (s)

0

2

4

6

8

10

12

14

N
um

be
r o

f s
ta

lls

426x240
640x360
854x480
1280x720
1920x1080

(a) The legacy DASH

50 100 150

Simulation time (s)

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

s
ta

lls

(b) The QoE based DASH

Figure 5.12: Average number of video stalls per simulation time for each screen
resolution

50 100 150
Simulation Time (s)

0

1

2

3

4

5

6

S
ta

lls
 d

ur
at

io
n

(s
)

426x240
640x360
854x480
1280x720
1920x1080

(a) The legacy DASH

50 100 150
Simulation Time (s)

0

1

2

3

4

5

6

S
ta

lls
 d

ur
at

io
n

(s
)

426x240
640x360
854x480
1280x720
1920x1080

(b) The QoE based DASH

Figure 5.13: Average duration of video stalls per simulation time for each screen
resolution

Network simulation 97

50 100 150
Simulation time (s)

3.25

3.30

3.35

3.40

3.45

3.50

A
ve

ra
ge

 Q
oE

QoE based DASH
Screen based DASH
Legacy DASH

(a) Average overall QoE for Cl = 30Mbps

50 100 150
Simulation time (s)

1.7

1.8

1.9

2.0

2.1

2.2

A
ve

ra
ge

 Q
oE

QoE based DASH
Screen based DASH
Legacy DASH

(b) Average overall QoE for Cl = 10Mbps

Figure 5.14: Average overall QoE per simulation time for two backhaul capacities

5.5.2 Changing the backhaul capacity

From the above results, max-min screen-based allocation seems to be an efficient alloca-

tion easy to implement and to provides close gain to the optimal allocation. The latter

strategy can be implemented, as modifications can be done at the dash.js to limit the

maximum downloadable video representation to the maximum screen capacity. However,

we expect such allocation to deviate from the optimal when the stress on the backhaul

link increases (either more traffic or less bandwidth). Indeed, for more congested scenar-

ios, the fair share of bandwidth of a flow of some screen resolution s becomes likely less

than the maximum bitrate for that resolution BM,s, which makes the limit on the bi-

trate driven by the screen resolution less effective. We expect therefore max-min screen

based to be closer to max-min fair and farther from optimal. To illustrate this observa-

tion, we redo the above ns-3 simulations using a shared capacity of Cl = 10Mbps while

maintaining the delay to 6ms. Figure 5.14 shows the total QoE for the two cases: (a)

Cl = 30Mbps and (b) Cl = 10Mbps, and this is for the different allocation strategies.

In addition, we show 90% confidence intervals for the observed results. In both cases,

QoE-based DASH outperforms the other implementations achieving higher overall QoE.

98 QoE-aware bandwidth sharing framework for adaptive video streaming

However, for limited backhaul capacity (Figure 5.14(b)) and as expected, screen-based

DASH gives approximately the same results as legacy DASH. The results confirm our

intuition that allocating based on QoE always helps to shape boundaries of bandwidth

space and to improve overall QoE regardless of the available capacity, which is not the

case of the other two allocations.

5.6 Conclusion

In this chapter, we studied the problem of bandwidth allocation for multiple video

streaming sessions over a shared link. The goal was to maximize the average QoE

(Quality of Experience) by leveraging screen resolution. In the first place, we revisited

previous studies, able to link either video bitrate [10] or throughput [9] to QoE level for a

given screen resolution. We then formulated an optimization problem trying to maximize

the overall QoE under linear constraints. To that aim, we proposed a Lagrangian-based

solution to approximate the optimal allocation. Later, we showed through numerical

and network simulations how leveraging screen characteristics leads to overall QoE im-

provement in the context of a QoE-driven bandwidth allocation framework. In addition,

accounting for screen resolution reduced both switches and interruptions over a watching

session.

In the next chapter, we will be studying another aspect of video content management

on the Internet, which video caching at the edge. The caching part will validate further

the importance of the viewport resolution and the end-users QoE in choosing the video

content and video representations to cache.

The contributions related to this chapter appeared in the following publica-

tions:

• Othmane Belmoukadam, Muhammad Jawad Khokhar and Chadi Barakat: On ac-

counting for screen resolution in adaptive video streaming: QoE-driven

bandwidth sharing framework. – 15th International Conference on Network

and Service Management (CNSM) October 2019, Halifax, Canada

Conclusion 99

• Othmane Belmoukadam, Muhammad Jawad Khokhar and Chadi Barakat: On ac-

counting for screen resolution in adaptive video streaming: QoE-driven

bandwidth sharing framework. – International Journal of Network Manage-

ment, Wiley, May 2020.

Chapter 6

QoE-aware cache placement for

adaptive video streaming

In the previous chapter, we proposed QoE models that account for the viewport resolu-

tion and use them to reshape the bandwidth allocation and maximize the overall QoE

for a set of users streaming videos over the same bottleneck link. In parallel, and to

handle the increasing demand for video streaming, service providers resort to deploying

edge servers to reduce the rush on their servers, balance the load between them and over

the network, and smooth out the traffic variability. The challenge is how to cache video

content that maximizes the overall QoE of end-users while accounting for the diversity

of their screen resolutions.

Here, we study the viewport aware caching optimization problem for dynamic adaptive

video streaming. First, we formulate the proposed optimization problem as an Integer

Linear Program (ILP) that balances minimal join time and maximal visual experience,

subject to the cache storage capacity. Then, we develop a greedy algorithm to decide

on the content to cache using the optimal solution’s footprint.

101

102 QoE-aware cache placement for adaptive video streaming

6.1 Introduction

To prioritize or load balance traffic efficiently, caching is a promising solution emerging

through the surface, pushing the content to the network edge. In particular, mobile

edge caching (MEC) leverages storage capacity within the network to host popular

multimedia content, easing video traffic delivery, smoothing its variability, and reducing

congestion and access delay [129, 130]. A challenging task is selecting the appropriate

video to cache to maximize the overall users’ QoE without exceeding the cache storage

capacity. In adaptive video streaming, several representations of different and even of

the same video will be in competition to be stored, making the selection problem more

challenging to solve.

Therefore, we propose a new cache placement optimization framework for adaptive video

streaming that accounts for the impact of end-user display capacity and video charac-

teristics (e.g., encoding bitrate and popularity) in addition to the internet access speed.

We formulate the optimal cache placement problem as an Integer Linear Program (ILP)

aiming to maximize the average QoE over a set of users with the cache storage capacity

as a constraint. The optimal solution, using CPLEX [125], can find a selection of videos

and representations to cache, ensuring minimal join time and maximal visual experience.

Further, we develop a practical greedy caching heuristic using the optimal placement’s

footprint, offering a near-optimal performance in terms of average QoE per request.

Through extensive simulations and different settings, we show that our heuristic outper-

forms the state of the art caching strategies, which do not account for the device display

factors through the placement process. Overall, the main contributions of this chapter

can be summarized as follows:

• We formulate the optimal cache placement problem for adaptive streaming in a way

to allow caching multiple representations of the same video. The proposed cache

placement leverages the users’ viewport resolution heterogeneity and allocates the

cache size storage based on an objective function reflecting the QoE relation to

the video content (bitrate), the application-level QoS (join time), the viewport

resolution, and the access speed distribution.

Framework and system model 103

• We propose a near-optimal heuristic called QoEscoreMax to solve the opti-

mization problem in a greedy way. The proposed heuristic uses a metric called

QoEscore to rank video representations and decide about caching them or not.

This metric incorporates the expected QoE reward resulting from caching a par-

ticular representation of a certain video.

• We conduct extensive simulations with multiple settings and show that our heuris-

tic outperforms legacy caching strategies in multiple scenarios in terms of QoE

gain, while efficiently exploiting the available cache storage.

The rest of this chapter is organized as follows. In Section 6.2 we present our framework

and the notation we used. Then, in Section 6.3, we formulate the optimization problem

and highlight the main components of our heuristic. Later, in Section 6.4, we illustrate

simulation results for multiple network scenarios and evaluate the gain achieved in terms

of overall QoE for different caching strategies. In Section 6.5, we provide a sensitivity

analysis of the optimal cache placement w.r.t. join time and encoding bitrate. Finally,

we conclude our work.

6.2 Framework and system model

6.2.1 Framework

We consider a single edge cache scenario as depicted in Figure 6.1. The origin server

stores a catalog of F video files, each of which is encoded into M different representa-

tions. We have an edge server able to prefetch video files and cache them in advance.

The origin server pushes popular content to the network edge during the off-peak hours,

reducing the load on the origin server and resulting in more optimized delay and a more

convenient user experience. Usually, content providers put in place several edge servers

to be as close as possible to different end-users, and one user can connect to several edge

servers at a time. However, in this first study and to confirm the sound of our approach,

we consider the case of one edge server. This assumption is similar to considering end-

users able to connect to one edge server [98], which is also equivalent to optimize for

104 QoE-aware cache placement for adaptive video streaming

Figure 6.1: Framework description

each edge server individually. The case of cross-optimization among edge servers is left

for a future study.

In our context, whenever a client wants to play a video, it sends via its DASH client a

request to the origin server, which gets redirected to the closest edge server, delivering

back the highest video representation available and supported by the client network

connection. In case multiple representations of the requested video are available, the

edge server will deliver back the one affordable by the client connection and terminal

display capacity. Usually, when no representation is found on the edge server, the

user request is served directly by the origin server, which will deliver the best video

representation affordable by the bottleneck link between the end-user and the origin

server.

6.2.2 System model

Here, we discuss in detail the system model and notation used. We consider a catalog

of F video files available on the origin server. Each video f ∈ F is available in M

representations, such that ∀ m ∈ M and ∀ f ∈ F , Bf,m is the encoding bitrate of

the representation r of video f . Moreover, we consider the M representations of each

video to be ranked in increasing order of bitrates such that Bf,m−1 ≤ Bf,m, 1 < m ≤

|M|. We will also assume that all videos have the same duration T . This assumption

has often been adopted in the literature for the sake of simplicity and with no loss of

Framework and system model 105

generality [98, 131]. Let Ec be the cache of the edge server, and let Sc be its available

cache storage capacity in Bytes. On the other hand, let D denote the set of users’ devices

that request videos and that are eligible to communicate with Ec. Each d ∈ D reaches

Ec with a download rate capacity equal to cd which we assume to be fully dedicated to

the video streaming of the device. Moreover, we denote by vd the viewport resolution of

device d. As for content popularity distribution, we assume it to be stationary over the

optimization period, and we consider requests to be independent of each other following

the well-known Independent Reference Model. We denote by Pf the popularity of video

f and we normalize it in such a way that it becomes equal to the probability that any

request issued by any device d ∈ D hits video f independently of the other requests [98].

We aim for a cache placement decision to be made by the origin server, or any other

controller, in a discrete-time manner. In plain, the problem can be viewed as an on/off

process, where during the off periods, the origin server decides about the content to push

based on the inferred characteristics from the previous periods (e.g., video popularity and

viewport resolution distribution). In terms of end-user viewport resolution (vd), content

providers have access to this information as it is communicated between the DASH client

and the DASH server. Moreover, in this thesis, particularly in Chapter 4, we proposed

a machine learning and deep packet inspection solution to get such information with

different granularity using features calculated on the encrypted video traffic.

6.2.3 QoE modeling

As depicted in Chapter 2, video QoE models in the literature focus mainly on application-

level QoS metrics. However, the viewport resolution is also crucial to the perceived visual

experience.

6.2.3.1 From bitrate to QoE

First, we capture the relationship between the viewport resolution and the selected video

resolution (e.g., encoding bitrate) and the latter’s impact on the QoE. As explained in

Chapter 5 (Section 5.2.2), we leverage the same exponential QoE function calibrated

106 QoE-aware cache placement for adaptive video streaming

offline using an open-source dataset [10]. This model maps the encoding bitrate, zBR,

with the perceived user experience, zMOS , for a set of standard viewport resolutions

supported by main streaming platforms, typically from 426x240 up to 1920x1080.

QoEvd =
exp

QoEmax(1− e−βvdx). (6.1)

6.2.3.2 From join time to QoE

We also account for the join time, which is the time it takes the video to start playing

out. Such metric has been largely studied, and its impact on the perceived QoE is

well documented in the literature (see Chapter 2). We consider a logarithmic model for

the impact of the join time on the QoE as proposed in [46]. Equation (6.2) provides a

version of this model fitted by the authors using a crowd-sourced dataset of YouTube

video streaming. In this equation, joind is the join time experienced by device d, which

can be set to the time needed to fill up the playout buffer on the device. Equation (6.3)

provides an estimation of this time using the encoding bitrate of the representation m

of video f , Bf,m, the playout buffer size in seconds, δT , and the user connection speed

cd.

QoEjoind
= −0.963 ∗ log(joind + 5.381) + 5, (6.2)

joind =
δT ∗Bf,m

cd
. (6.3)

6.3 Viewport aware optimal cache placement

The viewport aware cache placement problem for adaptive video streaming can be de-

scribed as follows. Given a catalog of videos and the different representations available,

the video popularity distribution, the end-user maximum download speed, and most im-

portantly, the end-user viewport resolution, select a set of video representations worthy

Viewport aware optimal cache placement 107

of being cached such that the total system utility is maximized while respecting the

cache storage capacity constraint. We recall here that the main novelty of our approach

is in jointly considering all these factors, in particular, the viewport resolution and the

existence of multiple representations per video.

6.3.1 Utility function

For simplicity and without loss of generality, we consider a caching system where a

representation of a video file is either fully cached or not cached at all. We assume that

any representation can be played out on any viewport, bringing different satisfaction

levels at each time. Devices from their side might have different viewport resolutions

and different connection speeds. Further, all representations exceeding the resolution of

the viewport bring the maximum level of QoE. In this context, which represents better

the reality, the decision on the best representations to cache becomes more complex to

solve. To reach an optimal solution, we first start by introducing a binary variable αf,m

for the action of caching a representation or not. We then complement it with another

binary variable per device d called γdf,m that specifies which representation of video f

is served by the cache to device d in case one or more representations of the video are

available in the cache. Otherwise, the request is served by the origin server.

αf,m =


1, if file(f,m) cached

0, otherwise

(6.4)

γdf,m =


1, if file(f,m) served to d

0, otherwise

(6.5)

We define the QoE-driven utility function for a request issued by device d as the average

QoE reward overall videos of the catalog while conditioning on the viewport resolution

and the device’s connection speed d. We write it as a weighted sum of the two QoE

108 QoE-aware cache placement for adaptive video streaming

functions defined in Section 6.2.3:

Qgaind =
∑
f∈F

Pf
∑
m∈M

γdf,m ∗ (a ∗QoEvd + b ∗QoEjoind
). (6.6)

(a, b) are system parameters that can be tuned to adjust the importance of each QoE

aspect. In plain, one can choose a ≥ b if the visual aspect is more important than the

start-up delay and vice versa. In our validation later, we make sure to stress test such

parameter so as to asses the impact of each QoE aspect and to understand the extent

to which it can modify the behavior of the optimal solution.

6.3.2 Problem formulation

The QoE-driven cache placement problem for adaptive streaming can be formulated as

an Integer Linear Program (ILP) in the following way:

max
α,γ

∑
d∈D

Qgaind (6.7)

subject to:
∑
f∈F

∑
m∈M

αf,m ∗Bf,m ∗ T ≤ Sc, (6.8)

∑
m∈M

γdf,m ≤ 1, ∀f ∈ F , ∀d ∈ D, (6.9)

γdf,m ≤ αf,m, ∀f ∈ F , ∀m ∈M, ∀d ∈ D, (6.10)

αf,m ∈ {0, 1}, (6.11)

γdf,m ∈ {0, 1}. (6.12)

In this problem formulation, the objective is to maximize the overall QoE reward

summed over the set of devices as defined in (6.7) and (6.6), while considering the

network conditions, the video characteristics (e.g., popularity and encoding bitrate) and

the end-user viewport resolution. The constraint in (6.8) represents the cache size con-

straint, with Bf,m ∗ T being the part of the cache occupied if we cache file (f,m). The

constraint in (6.9) makes sure that each device can only download one representation

Viewport aware optimal cache placement 109

per cached video. The constraint in (6.10) establishes the relationship between the two

decision variables such that a video representation can be served if it is cached. Finally,

the constraints in (6.11) and (6.12) define the binary decisions of caching and serving,

respectively.

6.3.3 QoEscoreMax

The optimal solution can be derived using a solver (e.g., CPLEX [125]). However, the

underlying ILP can be seen as a knapsack problem which is known to be NP-hard. This

leads to an exponential computation complexity with a long execution time when the

space for the decision variables, particularly the number of videos and representations,

becomes significant. To efficiently solve the ILP, we present a greedy heuristic named

QoEscoreMax based on the notion of QoEscore. The QoEscore is a new metric we

introduce to calculate for each video representation the QoE gain that would result

from caching it, summed over the set of devices. Following the same reasoning as in

Equation (6.6), we write:

QoEscoref,m =
∑
d∈D

Pf ∗ (a ∗QoEvd + b ∗QoEjoind
).

QoEd = a ∗QoEvd + b ∗QoEjoind

The QoEscoreMax algorithm caches files having the highest QoEscore in the limit of

the cache storage. To further account for the cache space occupied by the video file,

we normalize the score by the square of its volume in Bytes, Bf,m ∗ T 1. We use the

normalized score to rank representations in decreasing order of QoE gain.

By studying the footprint of the optimal solution as solved by CPLEX, we found out

that depending on the network conditions and the viewport resolution distribution. We

might only need one representation to hit the optimal. However, when the distance

between access link speeds increases, the choice is no longer straightforward, and one

1The normalization by the square of the volume was shown empirically to provide better results than
the normalization by the volume itself.

110 QoE-aware cache placement for adaptive video streaming

representation cannot be enough to satisfy everyone. In this scenario, the optimal adds

another representation, giving priority to the most popular videos first. Following this

optimal footprint, we update QoEscoreMax to limit the number of representations per

video. Overall, we iterate over the QoEscore ranked list with three possible options:

either replacing, adding, or simply skipping. For instance, for file (f,m), if we don’t

have the previous representation cached (e.g., cachedf,m−1 = 0), we add the (f,m)

representation directly to the cache while increasing the cache occupancy, otherwise, a

delatQoEgain is computed between the two cache states: (1) the new representation

replaces the previous one, and (2) the new representation is skipped. A positive value

of delatQoEgain means that replacing the previous representation is beneficial and so

is taken. Otherwise, no action is taken until the following representation of video f is

found in the ranked list of QoEscore. This heuristic is detailed in Algorithm 2.

Algorithm 2: QoEscoreMax

Result: Cached − binary placement list (F ,M)

QoEscore(F ,R), Sc, cacheocc, T, B (F ,R)

while B(f,m) ∗ T + cacheocc ≤ Sc do

if cached(f,m−1) = 0 then

cached(f,m) = 1

cacheocc = cacheocc +B(f,m) ∗ T

else

if deltaQoEgain(file(f,m), file(f,m-1)) ≥ 0 then

cached(f,m) = 1

cached(f,m−1) = 0

cacheocc = cacheocc −B(f,m−1) ∗ T

cacheocc = cacheocc +B(f,m) ∗ T

end

end

(f,m) =QoEscore.nextkey

end

Performance evaluation 111

(a) Small viewports dominant (b) Uniform distribution

(c) Large viewports dominant

Figure 6.2: Distribution of devices’ viewport resolutions

6.4 Performance evaluation

In this section, we evaluate the performance of our caching framework. To assess the

efficiency of our approach, we compare it to a state of the art approaches such as

popularity-based caching, which takes into consideration the video popularity [98, 132]

and Femtocaching which minimizes the average download delay of video content [93].

Beside our heuristic QoEscoreMax, we study different variants of our optimal solution,

in particular we show results for (i) ScreenCache which does not put any limit on

the number of cached representations per video, and (ii) 1 − rep − ScreenCache and

2 − rep − ScreenCache which limit the number of cached representations per video

to a maximum of 1 (i.e.
∑

m∈M
αf,m ≤ 1) and 2 (i.e.

∑
m∈M

αf,m ≤ 2) representa-

tions, respectively. For popularity-based caching, we implement a greedy version called

PopularityCache that cache representations in increasing bitrate order using the popu-

larity ranking. For FemtoCache, we use CPLEX to get its optimal solution leveraging

the video popularity and the network conditions.

112 QoE-aware cache placement for adaptive video streaming

6.4.1 Simulation settings

We develop a numerical simulator in Python where videos are cached and QoE calculated

according to Equation (6.1), (6.2) and (6.3). We consider a network of 20 devices and

sample the devices’ viewports over a set of standard viewport resolutions (420x240,

640x360, 850x480, 1280x720, 1920x1080), following three main scenarios (Figure 6.2); (1)

small viewports dominant, (2) uniform viewports distribution, and (3) large viewports

dominant. In terms of network access, we consider two scenarios depicting a case where

users have either high download rates (from 10 to 18 Mbps) or poor/medium download

rates (from 1 to 7 Mbps). As for video content, we consider a catalog of 20 videos

of same duration T = 60s, each video is encoded in 7 representations with encoding

bitrates (0.25, 0.55, 0.95, 1.5, 2.6, 5, 8 Mbps). We further assume that the popularity

of the videos follows a Zipf distribution with parameter 0.56 [131]. Last, the storage

capacity is varied as multiple of the average size of a video representation.

At this stage, we consider a = b = 0.5 in Equation (6.6), such that the encoding bitrate

and the join time have the same importance on the user experience. To compare the

different caching strategies, we use the metric AverageQoE/request, representing the

average perceived QoE over the set of devices and videos. Each request targeting a

random video in the catalog will be potentially served by the cache given the selection

of cached representations and following the process described in Section 6.2. This metric,

between 0 and 4.5 (maximum QoE), also includes the notion of hit/miss, as the cache

misses will result in zero contribution to the QoEgain. A higher AverageQoE/request

means that a large proportion of requests result in a cache hit and that the perceived

QoE of each hit is relatively good. We don’t consider the QoE of downloading from

the origin server in case of a miss because we aim at optimizing the cache behavior

independently of what provides the internet backbone as download performance.

Performance evaluation 113

6.4.2 Simulation results

We start with the scenario of high access rates. In Figure 6.3, we plot the

AverageQoE/request vs. the cache capacity for the three different viewport distri-

butions. In plain, Figure 6.3 (a), most devices are sampled with small viewports.

Here, the optimal ScreenCache derived by the CPLEX results in the same QoE as

1− rep−ScreenCache and 2− rep−ScreenCache, suggesting that the optimal can be

achieved with only one representation per video. On the other hand, FemtoCache

and PopularityCache perform similarly, and below the optimal, the reason is that

PopularityCache by proceeding in increasing order of bitrates ends up giving prior-

ity to the smallest representations, which result in almost the same behavior as the

FemtoCache scheme which tries to minimize the average file download delay. Mean-

while, QoEscoreMax outperforms the previous two caching strategies and highlights a

near-optimal performance. Thanks to using the QoEscore metric, QoEscoreMax pri-

oritizes the most rewarding representations making possible the caching of other than

the lowest representation if needed by some viewports and some access links. The lack

of viewport resolution notion in FemtoCache and PopularityCache downgrades their

performance, especially when the cache size increases as there will be more space to

invest in better quality representations to enhance the QoE further.

In Figures 6.3 (b) and 6.3 (c), the same behavior is recorded; however, the average QoE

per request is decreasing to 3.75 and 3.5, respectively. The increase in the viewport

resolution can explain this. For example, in Figure 6.3 (c), we end up with mostly

large viewports. This requires higher representations to scale up the QoE level, which

is difficult to achieve at comparable cache sizes. Moreover, moving toward populations

watching on large screens, a slight difference between the optimal and QoEscoreMax

starts to appear, but most importantly, the gap between optimal and FemtoCache and

PopularityCache gets larger. Large screens with good internet access make schemes

focusing on low representations or minimizing the file download delay less efficient than

the optimal that cache directly those representations providing the maximum QoE gain.

In a second scenario, we consider devices with poor to medium internet access (i.e.,

114 QoE-aware cache placement for adaptive video streaming

(a) Small viewports dominant

(b) Uniformly distributed viewports

(c) Large viewports dominant

Figure 6.3: Average QoE per request for fast internet accesses

part of devices cannot accommodate all representations). This scenario is more chal-

lenging as it requires caching a mix of representations depending on the access speed

and the viewport. Here, one can expect 1 − rep − ScreenCache to diverge from un-

limited ScreenCache as the cache size increases. In Figure 6.4, we show results for

the three viewport distributions. As we can observe, regardless of the viewport distri-

bution, the 1 − rep − ScreenCache scheme starts diverging from the optimal as the

cache size increases. The task of finding one representation per video that approxi-

mates well the optimal for all viewports is no longer possible as some accesses are slow

and cannot accommodate high-quality representations. However, we can see that the

2− rep− ScreenCache keeps up and shows almost the same behavior as the unlimited

optimal. To further understand this behavior, we analyze the footprint of ScreenCache

Performance evaluation 115

(a) Small viewports dominant

(b) Uniformly distributed viewports

(c) Large viewports dominant

Figure 6.4: Average QoE per request for poor/medium accesses

to find out that in our setup, the optimal considers two representations for popular

videos while keeping the least popular videos with only one representation of low quality.

QoEscoreMax sustains its good performance through the different viewport distribu-

tions and outperforms the 1− rep−ScreenCache scheme for large cache sizes thanks to

its capacity to consider the caching of different representations for popular videos, i.e.,

Algorithm 2. FemtoCache and PopularityCache fall behind the optimal, with the gap

now reduced because of the increased importance of low representations in this scenario.

116 QoE-aware cache placement for adaptive video streaming

Figure 6.5: QoE vs catalog size

Figure 6.6: QoE mainly based on video bitrate

6.4.3 QoEscoreMax vs catalog size

We test the behavior of our solution for a larger video catalog. We plot in Figure 6.5 the

average QoE per request for the scenario of good network conditions and large viewports

dominant. We scale the catalog size at a fixed cache size (i.e., 10∗Avg(Bf,m)∗T Mbits).

Overall, the QoE value is negatively correlated with the catalog size for all caching

strategies, making sense since the storage capacity remains the same and the pressure

on the cache increases. However, the decline of ScreenCache and QoEscoreMax is

slower than FemtoCache and PopularityCache as the former can better utilize the

available storage by caching the most rewarding content directly in terms of QoE rather

than wasting storage on caching low-quality videos from unpopular content.

6.5 Sensitivity analysis

This section evaluates the impact of the parameters used to model the QoE on the cache

placement strategy. In particular, the QoE model, in Section 6.3 is composed of two

Sensitivity analysis 117

components with different weights; (i) bitrate to QoE (Equation (6.1)) and (ii) join

time to QoE (Equation (6.2)). Here, we study the impact of this balance between the

bitrate and the join time. For space constraints, we only show results for good network

conditions and uniform viewport distribution as highlighted in Figure 6.2(b).

6.5.1 Video bitrate over join time

In this part, we give more importance to QoEvd linking the bitrate to the QoE, with

a = 0.9 and b = 0.1. We plot in Figure 6.6 the average QoE per request (plus its standard

deviation) for different viewport resolutions and different caching schemes. These results

are calculated over the set of cache sizes shown in Figure 6.3. Overall, we observe that

the QoE decreases as we move toward larger viewports. Between the caching schemes,

ScreenCache and QoEscoreMax result in almost the same QoE level per viewport

resolution, while FemtoCache and PopularityCache fall behind, especially for large

screens. This result is in line with what we have observed so far.

6.5.2 Join time over video bitrate

Now, we study the case where the QoE model in Equation (6.6) is mostly based on the

join time by considering a = 0.1 and b = 0.9. Since QoEjoind
is negatively correlated

with joind (see Equation (6.2) and (6.3)), one would expect the optimal solution to

be selecting representations with smallest encoding rate as they reduce the join time.

The model now largely prefers the smoothness of the playout on the quality of the

rendered resolution, which is closer in mind to existing placement schemes that seek to

minimize the file download delay by caching first the low representations. We illustrate

the obtained results in Figure 6.7. Regardless of the viewport resolution, the different

caching schemes converge to almost the same QoE level, confirming the selection of the

same representations. Overall, this sensitivity analysis validates our approach and shows

its good performance and generality when accounting for different aspects of QoE. When

the QoE is very sensitive to the join time, it behaves similarly to state of the art schemes

by privileging the caching of popular videos of low volume. However, in cases where the

QoE is a balanced function of both resolution and join time, state of the art schemes

118 QoE-aware cache placement for adaptive video streaming

Figure 6.7: QoE mainly based on join time

overlook the need to cache high-quality representations for popular content, especially

when the viewports are large and the internet accesses are fast enough to accommodate

them.

6.6 Conclusion

This chapter studied a QoE-driven cache placement optimization for adaptive video

streaming while accounting for the end-user display (viewport resolution). We formu-

lated the problem as an ILP and derived the optimal selection of videos and representa-

tions to be cached for different internet accesses and viewport resolution distributions.

We also presented QoescoreMax, a practical caching heuristic with near-optimal perfor-

mance. Simulation results showed that our solution strikes the trade-off between optimal

QoE and efficient storage management. Moreover, they provided insights on the way

to cache the different representations of video content. In good network conditions, one

representation can lead to optimal QoE. However, for mild network conditions, the se-

lection process is more challenging as it has to account for the video’s popularity before

deciding to add a second representation from a video. Meanwhile, based on the impor-

tance of the balance between join time and video bitrate, we highlighted rules to select

video representations for optimal QoE. Overall, the viewport feedback hints at a more

efficient network resource utilization while maximizing the end-user perceived QoE.

The contributions related to this chapter appeared in the following publica-

tions:

Conclusion 119

Othmane Belmoukadam, and Chadi Barakat: QoE-driven cache placement for

adaptive video streaming: minding the viewport. – IEEE International Mediter-

ranean Conference on Communications and Networking, September 2021, Athene,

Greece, Hybrid: In-Person and Virtual Conference

Chapter 7

Conclusion and perspectives on

future research

7.1 Conclusion

In this thesis, we were mainly interested in understanding video streaming traffic and

adequately managing the Internet resources to meet end-user expectations. In a nutshell,

we presented an experimental setup and a set of new methodologies to incorporate the

end-user viewport resolution in video content management for Internet video streaming.

First, we demonstrated in Chapter 3, through controlled experiments, the importance

of the viewport resolution and its impact on the observed video resolution patterns

and the consumed data budget. Then, in Chapter 4, we proposed a methodology to

infer the viewport resolution from the encrypted YouTube video traces using in-band

network features such as the chunk size and the throughput. Later, we built a QoE

model involving the device, media, and network-related factors (e.g., viewport, encoding

bitrate, or throughput). Finally, we used the latter models to formulate and solve a

bandwidth sharing problem that maximizes the QoE for a set of users streaming over

the same bottleneck link (Chapter 5). Moreover, we invested our approach to study a

QoE-driven cache placement optimization for adaptive video streaming. In this context,

we presented QoescoreMax, a practical caching heuristic with near-optimal performance

121

122 Conclusion and perspectives on future research

that highlights the set of video representations worth of caching resulting in maximum

QoE reward.

7.2 Limitations

The experimental study highlighted in Chapter 3 on bandwidth waste quantification is

related to experiments conducted in good network conditions. In fact, sufficient resource

provisioning enables a smooth video playout while supporting higher video resolutions.

Our experiments in such a scenario are thus meant to investigate how far the end-user

display is considered in video content delivery. However, as shown in Chapter 4, when the

network throughput decreases, the impact of the viewport size also decreases, therefore

reducing the likelihood of observing a bandwidth waste.

Our methodology for inferring the viewport class and resolution from the YouTube

encrypted traces (see Chapter 4) was validated with YouTube encrypted video traces.

To that aim, we used tools and open-source documentation provided by YouTube and

compatible with the Chrome browser. However, and as our future work suggests, more

work can be done to investigate the applicability for other streaming platforms (e.g.,

Netflix and Dailymotion).

Finally, our QoE modelling highlighted in the Chapter 5, leverages a mono-variate expo-

nential function in line with the IQX hypothesis advanced in [28]. Therefore, it takes as

input a QoS parameter related to the media (i.e., bitrate) or the network (i.e., through-

put) to determine the QoE. The fact that our exponential function is concave and our

constraints are linear (thus convex), we are sure that the considered KKT (Karush Kuhn

Tucker) conditions lead to a feasible and unique optimal solution. Furthermore, for our

particular case of a single bottleneck link, the analytic study showed that a feasible solu-

tion can be obtained by equalizing the gradients of all flows and checking the constraints

on the positivity of the allocated bandwidth. This heuristic will have to defined in case

of networks of several bottlenecks as the equality of the gradients will not hold overall,

but on a network path basis.

Future works 123

7.3 Future works

7.3.1 Studying video streaming in further contexts

We highlighted in Chapter 3 and 4 the importance of the end-user viewport resolution

in terms of the observed video resolution patterns and the ability to correlated to in-

band features. However, when it comes to viewport inference from encrypted video

traces, one can extend the work to cover other streaming platforms such as Netflix and

Amazon Prime. The latter prepaid services give high importance to privacy and remain

very discrete in terms of development kits and assets available for developers seeking

to embed their solutions and conduct experiments with their video players. Meanwhile,

our approach remains applicable to any streaming platform that provides video player

API, data API, and open-source documentation to read the HTTP text messages and

derive chunk-related information.

Another direction to extend and validate our work on the viewport is to leverage screens

with finer display capacity, such as 4K and 8K. Such a new study can stress test our

results with more complex and higher video resolutions. On the other hand, since all our

experiments were conducted on desktops and a Chrome browser, an important direction

of future work could be to test the same approach and methodology on mobile phones

and tablets. According to global statistics provided by the StatCounter website, mobile

phones consist of half of the Desktop vs. Mobile vs. Tablet market share worldwide.

From this proportion, tech companies like Samsung secured up to 28% followed by Apple

with up to 26%. The latter companies equip their mobiles with more and more advanced

technologies at each new release. However, working with mobile phones will add another

layer of complexity with the end-users mobility and the ability to adapt to cell changes

while guarantying a satisfactory user experience. On top of that, mobile phones might

have different implementations when it comes to video delivery. The interaction with

mobiles and tablets towards experimentation automation and traffic collection is another

challenging task.

124 Conclusion and perspectives on future research

7.3.2 Dynamic screen-aware bandwidth sharing

In Chapter 5, we proposed and evaluated a framework for optimal allocation of network

resources tailored to video streaming applications that allows to maximize the sum of

Quality of Experience over all users located behind the same bottleneck link. The

particularity of our framework is that it leverages the heterogeneity of screen resolutions

to redistribute the network resources, the bandwidth in particular, in a more social

way. We carried out an evaluation of our framework both numerically and with ns-3

simulations. Up to now, the optimal allocation was obtained by solving analytically

the optimization problem using the heuristic we proposed to this end. For the ns-3

simulations, we proposed an implementation of the optimal solution that upper limits

the subset of video representations visible at the players based on the allocation derived

from the optimization problem. However, in a real scenario where network traffic is

dynamic, and where network traffic not necessarily known beforehand, we would like to

reach a level where the network and/or video flows know by themselves their fair share

of the available network resources and limit themselves to this fair share. Differently

speaking, we will be seeking a distributed implementation of our optimal framework.

Such distributed implementation cannot be unfortunately done without the collaboration

of the network, as it is the only entity that knows about the actual situation of the traffic

and that can send a clear feedback to video clients and video servers to guide them in

their search for the equilibrium point. The information about the screen size or the

viewport is available at the player, it has to be communicated somehow to the network

and the video server on the other side to shape the video streaming traffic. We discuss

next our idea about this distributed implementation.

As shown in the problem formulation and the proposed solution, the optimal is the state

that equalizes the first degree gradients of all QoE functions. We can thus leverage this

property of the optimal solution and imagine a scenario where gradients are transformed

into traffic priority, and the network is instructed to treat the video traffic differently

based on this priority, in a way to reach equilibrium between the different video flows

where their priorities are steered to be equal. By an appropriate binning of the QoE

function derivative, we can thus reach levels of QoE that can be used by the network

Future works 125

to penalize clients that are already in low derivative regions meaning they are already

having a high QoE. We give priority to clients with high QoE derivative, shifting them

up in terms of QoE level. This way, one can see the QoE first order derivative as the

marginal gain in terms of QoE for every additional unit of resources allocated by the

network to a video flow. This way, the network will help those with high potential gain

compared to those with low potential gain, knowing that if a video flow is helped by

the network, it will increase its throughput thanks to DASH and TCP, and will then

move to a low priority region. Overall, this action should lead to a regime where first

derivatives, a.k.a. marginal gains, oscillate around the same value, which is the stable

regime we are looking at.

According to our idea, the action taken by the network can be based on priority tags

carried by the video packets in their IP packet header. The TOS field of the IP header

can be used for this purpose. An efficient way of tagging could be done on the server

where the distribution of users and screen resolutions can be tracked in an online fashion

without requiring major changes on the client side. Once the server gets the chunk re-

quest for some resolution, it labels packets by leveraging the chunk resolution requested,

the history of past chunks delivered and the QoE function corresponding to the screen

resolution at the client. Labelling could be done by the client as well, but it has to

be echoed back by the server, as it has to be carried by data packets in the direction

server to client. Now at the network level, packets can be intercepted and treated ac-

cording to their priority tags by means of mechanisms such as weighted RED [133]. In

this case low priority packets will be more affected by the packet drop which latter can

be interpreted by the client as a sign of congestion, making it requesting lower chunk

resolutions thanks to the closed loop of DASH and TCP. We are currently exploring

this venue and studying in particular the interaction between the different control levels

that are involved in it. We believe it has sound as a possible implementation of our QoE

driven optimization framework.

126 Conclusion and perspectives on future research

7.3.3 Collaborative video caching

In Chapter 6, we presented QoescoreMax, a caching heuristic with near-optimal perfor-

mance. The latter solution based its decision on several metrics, including (i) the video

bitrate, (ii) the application-level QoS (e.g., stalls and join time), and (iii) the end-user

display capacity and (iv) access speed distribution. As highlighted earlier, our solution

is optimized for different edge caches separately and does not incorporate any collabora-

tion between caches, whereas today, CDN providers optimize jointly for the entire edge

servers.

For future work, one interesting direction is to extend our solution to a cooperative

scenario enabling coordination between multiple edge servers orchestrated by a central

controller mainly in the context of new network architectures such as Software Defined

Networks (SDN) [134]. Today, SDN and network function virtualization (NFV) are at

the center of trending networking architectures, as both use network abstractions and

softwarization for more flexible network management. The SDN approach centralizes

the control and programmability of the network and by default separates the control

plane and data forwarding plane. The NFV proposes to virtualize functions like routing

and load balancing by transmitting network functions to virtual servers.

We imagine a deployment of our heuristic in a collaborative edge scenario combining

both NFV and SDN. An orchestrator, a controller in SDN architectures, performs the

video content selection and updates its edge servers’ content. To do so, the controller

receives periodical updates, and the updates include the information that used in our

optimization problem. The end-users connect to the closest edge server and look for

the video representation resulting in a maximum QoE reward; if this representation is

not there, the edge server will send a request to the controller asking for a redirection

to the closest edge server able to answer. The video request will then be redirected to

the favorable destination or toward the origin server. The latter edge server keeps a

short memory of these misses and where they were forwarded if a similar request arrives

and avoids going back to the controller. In SDN, a miss in the match tables triggers a

PacketIn message similar to what we are trying to achieve with cache misses [135].

Future works 127

On the edge servers, generally owned by service providers, the storage space is precious

and the bill can be heavily affected even though the booked resources might not be

fully utilized. In this context, NFV can transform the caching functionality to a virtual

function hosted on a server with its virtual cache size. Here, NFV makes the caching

functionality more flexible as the virtual cache size can be augmented or reduced based

on the load, and the cache instance (i.e., virtual machine) can be migrated from one edge

server to another easily. As for forwarding tables, each cache instance will store a table

listing the different hosted content with corresponding information like the number of

hits per representation. The virtualization of the cache functionality can reduce the bill

of content providers and help service providers to benefit from their servers by hosting

other network functionalities like load balancing or traffic filtering. Overall, using NFV

with the SDN approach eliminates the problems of large and diverse video catalogs.

Each edge server does not need to know the closest neighbor nor its content. Instead,

it turns to the controller, which aggregates the information forwarded and has a clear

vision of the network topology (closest neighbors) and their content.

Chapter 8

Publications

Journal Articles

• Othmane Belmoukadam, Muhammad Jawad Khokhar and Chadi Barakat: On ac-

counting for screen resolution in adaptive video streaming: QoE-driven

bandwidth sharing framework. – International Journal of Network Manage-

ment, Wiley, May 2020.

• Othmane Belmoukadam and Chadi Barakat: Unveiling the end-user viewport

resolution from encrypted video traces. – IEEE Transactions on Network

and Service Management, May 2021.

Conference Papers

• Othmane Belmoukadam, Thierry Spetebroot and Chadi Barakat: ACQUA: A

user friendly platform for lightweight network monitoring and QoE fore-

casting. – 22nd Conference on Innovation in Clouds, Internet and Networks and

Workshops (ICIN), February 2019, Paris, France

• Othmane Belmoukadam, Muhammad Jawad Khokhar and Chadi Barakat: On ac-

counting for screen resolution in adaptive video streaming: QoE-driven

bandwidth sharing framework. – 15th International Conference on Network

and Service Management (CNSM) October 2019, Halifax, Canada

129

130 Publications

• Othmane Belmoukadam, Muhammad Jawad Khokhar and Chadi Barakat: On

excess bandwidth usage of video streaming: when video resolution mis-

matches browser viewport. – 11th IEEE International Conference on Net-

works of the Future (NOF) Octobre 2020, Bordeaux, France.

• Othmane Belmoukadam and Chadi Barakat: From encrypted video traces to

viewport classification. – 16th International Conference on Network and Ser-

vice Management (CNSM), November 2020, Virtual Conference - BEST PAPER

AWARD

• Othmane Belmoukadam, and Chadi Barakat: QoE-driven cache placement

for adaptive video streaming: minding the viewport. – IEEE International

Mediterranean Conference on Communications and Networking, September 2021,

Athene, Greece, Hybrid: In-Person and Virtual Conference

Posters

• Othmane Belmoukadam and Chadi Barakat: From encrypted video traces to

viewport classification. – The World of Industrial Mathematics MOMI2021,

March 2021, Virtual Workshop - BEST POSTER AWARD

Bibliography

[1] Christopher Müller and Christian Timmerer. A vlc media player plugin enabling

dynamic adaptive streaming over http. In Proceedings of the 19th ACM In-

ternational Conference on Multimedia, MM ’11, page 723–726, New York, NY,

USA, 2011. Association for Computing Machinery. ISBN 9781450306164. doi:

10.1145/2072298.2072429. URL https://doi.org/10.1145/2072298.2072429.

[2] Thomas Stockhammer. Dynamic adaptive streaming over http –: Standards and

design principles. In Proceedings of the Second Annual ACM Conference on Multi-

media Systems, MMSys ’11, page 133–144, New York, NY, USA, 2011. Association

for Computing Machinery. ISBN 9781450305181. doi: 10.1145/1943552.1943572.

URL https://doi.org/10.1145/1943552.1943572.

[3] Ahmed Mansy, Marwan Fayed, and Mostafa Ammar. Network-layer fairness for

adaptive video streams. In 2015 IFIP Networking Conference (IFIP Networking),

pages 1–9, 2015. doi: 10.1109/IFIPNetworking.2015.7145310.

[4] YouTube. IFrame player API. https://developers.google.com/youtube/

iframe_api_reference, 2020.

[5] Google. Chrome Web Request Extension. https://developer.chrome.com/

extensions/webRequest, 2020.

[6] Dailymotion. JavaScript SDK. https://github.com/dailymotion/

dailymotion-sdk-js, 2020.

[7] Ericsson. Ericsson Mobility Report, June 2018. https://www.

ericsson.com/assets/local/mobility-report/documents/2018/

ericsson-mobility-report-june-2018.pdf, 2018.

131

https://doi.org/10.1145/2072298.2072429
https://doi.org/10.1145/1943552.1943572
https://developers.google.com/youtube/iframe_api_reference
https://developers.google.com/youtube/iframe_api_reference
https://developer.chrome.com/extensions/webRequest
https://developer.chrome.com/extensions/webRequest
https://github.com/dailymotion/dailymotion-sdk-js
https://github.com/dailymotion/dailymotion-sdk-js
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf

132 BIBLIOGRAPHY

[8] Iraj Sodagar. The mpeg-dash standard for multimedia streaming over the internet.

IEEE MultiMedia, 18(4):62–67, 2011. doi: 10.1109/MMUL.2011.71.

[9] Muhammad Jawad Khokhar, Thibaut Ehlinger, and Chadi Barakat. From net-

work traffic measurements to qoe for internet video. In 2019 IFIP Networking

Conference (IFIP Networking), pages 1–9, 2019. doi: 10.23919/IFIPNetworking.

2019.8816854.

[10] G. Cermak, M. Pinson, and S. Wolf. The relationship among video quality, screen

resolution, and bit rate. IEEE Transactions on Broadcasting, 57(2):258–262, 2011.

doi: 10.1109/TBC.2011.2121650.

[11] IETF. A TCP/IP Tutorial. https://datatracker.ietf.org/doc/html/

rfc1180, 2021.

[12] HTML. Living Standard. https://html.spec.whatwg.org/multipage/, 2021.

[13] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese,

Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo

Vallina-Rodriguez, and et al. The lockdown effect. Proceedings of the ACM In-

ternet Measurement Conference, Oct 2020. doi: 10.1145/3419394.3423658. URL

http://dx.doi.org/10.1145/3419394.3423658.

[14] European Commission. Commission and European regulators calls

on streaming services, operators and users to prevent network con-

gestion. https://ec.europa.eu/digital-single-market/en/news/

commission-and-european-regulators-calls-streaming-services-/

operators-and-users-prevent-network, 2020.

[15] Forbes. Netflix Starts To Lift Its Coronavirus Streaming Restric-

tions. https://www.forbes.com/sites/johnarcher/2020/05/12/

netflix-starts-to-liftits-coronavirus-streaming-restrictions/

#7bcba5bf4738, 2020.

[16] Anush Krishna Moorthy, Lark Kwon Choi, Alan Conrad Bovik, and Gustavo

de Veciana. Video quality assessment on mobile devices: Subjective, behavioral

https://datatracker.ietf.org/doc/html/rfc1180
https://datatracker.ietf.org/doc/html/rfc1180
https://html.spec.whatwg.org/multipage/
http://dx.doi.org/10.1145/3419394.3423658
https://ec.europa.eu/digital-single-market/en/news/commission-and-european-regulators-calls-streaming-services-/operators-and-users-prevent-network
https://ec.europa.eu/digital-single-market/en/news/commission-and-european-regulators-calls-streaming-services-/operators-and-users-prevent-network
https://ec.europa.eu/digital-single-market/en/news/commission-and-european-regulators-calls-streaming-services-/operators-and-users-prevent-network
https://www.forbes.com/sites/johnarcher/2020/05/12/netflix-starts-to-liftits-coronavirus-streaming-restrictions/#7bcba5bf4738
https://www.forbes.com/sites/johnarcher/2020/05/12/netflix-starts-to-liftits-coronavirus-streaming-restrictions/#7bcba5bf4738
https://www.forbes.com/sites/johnarcher/2020/05/12/netflix-starts-to-liftits-coronavirus-streaming-restrictions/#7bcba5bf4738

BIBLIOGRAPHY 133

and objective studies. IEEE Journal of Selected Topics in Signal Processing, 6(6):

652–671, 2012. doi: 10.1109/JSTSP.2012.2212417.

[17] Itu-r recommendation bt.500-11. methodology for the subjective assessment of the

quality of television pictures., 2021. https://www.itu.int/dms_pubrec/itu-r/

rec/bt/R-REC-BT.500-11-200206-S!!PDF-E.pdf.

[18] G. rubino, “the psqa project,” inria rennes-bretagne atlantique, 2021. http://

www.irisa.fr/armor/lesmembres/Rubino/myPages/psqa.html.

[19] Kandaraj Piamrat, Cesar Viho, Jean-Marie Bonnin, and Adlen Ksentini. Qual-

ity of experience measurements for video streaming over wireless networks. In

2009 Sixth International Conference on Information Technology: New Genera-

tions, pages 1184–1189, 2009. doi: 10.1109/ITNG.2009.121.

[20] Kenichiro Masaoka, Takahiro Niida, Miya Murakami, Kenji Suzuki, Masayuki

Sugawara, and Yuji Nojiri. Perceptual limit to display resolution of images as

per visual acuity. In Bernice E. Rogowitz and Thrasyvoulos N. Pappas, ed-

itors, Human Vision and Electronic Imaging XIII, volume 6806, pages 527 –

535. International Society for Optics and Photonics, SPIE, 2008. URL https:

//doi.org/10.1117/12.767143.

[21] Werner Robitza, Steve Göring, Alexander Raake, David Lindegren, Gunnar

Heikkilä, Jörgen Gustafsson, Peter List, Bernhard Feiten, Ulf Wüstenhagen,

Marie-Neige Garcia, Kazuhisa Yamagishi, and Simon Broom. Http adaptive

streaming qoe estimation with itu-t rec. p. 1203: Open databases and soft-

ware. In Proceedings of the 9th ACM Multimedia Systems Conference, MM-

Sys ’18, page 466–471, New York, NY, USA, 2018. Association for Comput-

ing Machinery. ISBN 9781450351928. doi: 10.1145/3204949.3208124. URL

https://doi.org/10.1145/3204949.3208124.

[22] Alexander Raake, Marie-Neige Garcia, Werner Robitza, Peter List, Steve Göring,

and Bernhard Feiten. A bitstream-based, scalable video-quality model for http

adaptive streaming: Itu-t p.1203.1. In 2017 Ninth International Conference on

https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.500-11-200206-S!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.500-11-200206-S!!PDF-E.pdf
http://www.irisa.fr/armor/lesmembres/Rubino/myPages/psqa.html
http://www.irisa.fr/armor/lesmembres/Rubino/myPages/psqa.html
https://doi.org/10.1117/12.767143
https://doi.org/10.1117/12.767143
https://doi.org/10.1145/3204949.3208124

134 BIBLIOGRAPHY

Quality of Multimedia Experience (QoMEX), pages 1–6, 2017. doi: 10.1109/

QoMEX.2017.7965631.

[23] A.W. Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra. Perceptual evaluation

of speech quality (pesq)-a new method for speech quality assessment of telephone

networks and codecs. In 2001 IEEE International Conference on Acoustics, Speech,

and Signal Processing. Proceedings (Cat. No.01CH37221), volume 2, pages 749–

752 vol.2, 2001. doi: 10.1109/ICASSP.2001.941023.

[24] Tobias Hoßfeld, Michael Seufert, Matthias Hirth, Thomas Zinner, Phuoc Tran-

Gia, and Raimund Schatz. Quantification of youtube qoe via crowdsourcing. In

2011 IEEE International Symposium on Multimedia, pages 494–499, 2011. doi:

10.1109/ISM.2011.87.

[25] Florian Wamser, Michael Seufert, Pedro Casas, Ralf Irmer, Phuoc Tran-Gia, and

Raimund Schatz. Yomoapp: A tool for analyzing qoe of youtube http adap-

tive streaming in mobile networks. In 2015 European Conference on Networks

and Communications (EuCNC), pages 239–243, 2015. doi: 10.1109/EuCNC.2015.

7194076.

[26] Othmane Belmoukadam, Thierry Spetebroot, and Chadi Barakat. Acqua: A user

friendly platform for lightweight network monitoring and qoe forecasting. In 2019

22nd Conference on Innovation in Clouds, Internet and Networks and Workshops

(ICIN), pages 88–93, 2019. doi: 10.1109/ICIN.2019.8685878.

[27] Kamal Deep Singh, Yassine Hadjadj-Aoul, and Gerardo Rubino. Quality of expe-

rience estimation for adaptive http/tcp video streaming using h.264/avc. In 2012

IEEE Consumer Communications and Networking Conference (CCNC), pages

127–131, 2012. doi: 10.1109/CCNC.2012.6181070.

[28] Markus Fiedler, Tobias Hossfeld, and Phuoc Tran-Gia. A generic quantitative

relationship between quality of experience and quality of service. IEEE Network,

24(2):36–41, 2010. doi: 10.1109/MNET.2010.5430142.

BIBLIOGRAPHY 135

[29] sandvine. The Global Internet Phenomena Report, October 2018. https://www.

sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf,

2018.

[30] Duy Nguyen, J. J. Garcia-Luna-Aceves, and Cedric Westphal. Throughput en-

abled rate adaptation in wireless networks. In 2013 International Conference on

Computing, Networking and Communications (ICNC), pages 1173–1178, 2013.

doi: 10.1109/ICCNC.2013.6504259.

[31] Ahmed O. El Meligy, Mohamed S. Hassan, and Taha Landolsi. A buffer-based rate

adaptation approach for video streaming over http. In 2020 Wireless Telecommu-

nications Symposium (WTS), pages 1–5, 2020. doi: 10.1109/WTS48268.2020.

9198728.

[32] M. Giordani and M. Mezzavilla and S. Rangan and M. Zorzi. Multi-connectivity

in 5g mmwave cellular networks. Mediterranean Ad Hoc Networking Workshop,

2016.

[33] M. Polese and M. Giordani and M. Mezzavilla and S. Rangan and M. Zorzi. Im-

proved handover through dual connectivity in 5g mmwave mobile networks. IEEE

Journal on Selected Areas in Communications, 2017.

[34] Video streaming, global market growth, 2021. https://www.grandviewresearch.

com/industry-analysis/video-streaming-market.

[35] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger

Zimmermann. A survey on bitrate adaptation schemes for streaming media over

http. IEEE Communications Surveys Tutorials, 21(1):562–585, 2019. doi: 10.

1109/COMST.2018.2862938.

[36] IETF. Real time streaming protocol (RTSP). https://tools.ietf.org/html/

rfc2326, 2021.

[37] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. An experimental evalu-

ation of rate-adaptation algorithms in adaptive streaming over http. In Proceedings

of the Second Annual ACM Conference on Multimedia Systems, MMSys ’11, pages

https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf
https://www.grandviewresearch.com/industry-analysis/video-streaming-market
https://www.grandviewresearch.com/industry-analysis/video-streaming-market
https://tools.ietf.org/html/rfc2326
https://tools.ietf.org/html/rfc2326

136 BIBLIOGRAPHY

157–168, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0518-1. doi: 10.1145/

1943552.1943574. URL http://doi.acm.org/10.1145/1943552.1943574.

[38] Y. Sani, A. Mauthe, and C. Edwards. Adaptive bitrate selection: A survey. IEEE

Communications Surveys Tutorials, 19(4):2985–3014, Fourthquarter 2017. ISSN

1553-877X. doi: 10.1109/COMST.2017.2725241.

[39] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency, and

stability in http-based adaptive video streaming with festive. In Proceedings of

the 8th International Conference on Emerging Networking Experiments and Tech-

nologies, CoNEXT ’12, page 97–108, New York, NY, USA, 2012. Association for

Computing Machinery. ISBN 9781450317757. doi: 10.1145/2413176.2413189. URL

https://doi.org/10.1145/2413176.2413189.

[40] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang,

Tao Liu, and Bruno Sinopoli. Cs2p: Improving video bitrate selection and

adaptation with data-driven throughput prediction. In Proceedings of the 2016

ACM SIGCOMM Conference, SIGCOMM ’16, page 272–285, New York, NY,

USA, 2016. Association for Computing Machinery. ISBN 9781450341936. doi:

10.1145/2934872.2934898. URL https://doi.org/10.1145/2934872.2934898.

[41] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark

Watson. A buffer-based approach to rate adaptation: Evidence from a large video

streaming service. In Proceedings of the 2014 ACM Conference on SIGCOMM,

SIGCOMM ’14, page 187–198, New York, NY, USA, 2014. Association for Com-

puting Machinery. ISBN 9781450328364. doi: 10.1145/2619239.2626296. URL

https://doi.org/10.1145/2619239.2626296.

[42] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. Bola: Near-optimal

bitrate adaptation for online videos. In IEEE INFOCOM 2016 - The 35th Annual

IEEE International Conference on Computer Communications, pages 1–9, 2016.

doi: 10.1109/INFOCOM.2016.7524428.

[43] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C. Begen, and David

Oran. Probe and adapt: Rate adaptation for http video streaming at scale. IEEE

http://doi.acm.org/10.1145/1943552.1943574
https://doi.org/10.1145/2413176.2413189
https://doi.org/10.1145/2934872.2934898
https://doi.org/10.1145/2619239.2626296

BIBLIOGRAPHY 137

Journal on Selected Areas in Communications, 32(4):719–733, Apr 2014. ISSN

0733-8716. doi: 10.1109/jsac.2014.140405. URL http://dx.doi.org/10.1109/

JSAC.2014.140405.

[44] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video

streaming with pensieve. In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication, SIGCOMM ’17, page 197–210, New York,

NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346535. doi:

10.1145/3098822.3098843. URL https://doi.org/10.1145/3098822.3098843.

[45] ITU-T. Subjective video quality assessment methods for multimedia applications.

ITU-T Recommendation P.910, 2008.

[46] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen. Initial

delay vs. interruptions: Between the devil and the deep blue sea. In 2012 Fourth

International Workshop on Quality of Multimedia Experience, 2012.

[47] J Gross, J Klaue, H Karl, and A Wolisz. Cross-layer optimization of ofdm trans-

mission systems for mpeg-4 video streaming. Computer Communications, 27

(11):1044–1055, 2004. ISSN 0140-3664. doi: https://doi.org/10.1016/j.comcom.

2004.01.010. URL https://www.sciencedirect.com/science/article/pii/

S0140366404000246. Applications and Services in Wireless Networks.

[48] Zhou Wang, Ligang Lu, and A. Bovik. Video quality assessment based on struc-

tural distortion measurement. Signal Process. Image Commun., 19:121–132, 2004.

[49] Fahad Fazal Elahi Guraya, Ali Shariq Imran, Yubing Tong, and Faouzi Alaya

Cheikh. A non-reference perceptual quality metric based on visual attention

model for videos. In 10th International Conference on Information Science, Sig-

nal Processing and their Applications (ISSPA 2010), pages 361–364, 2010. doi:

10.1109/ISSPA.2010.5605523.

[50] Parikshit Juluri, Louis Plissonneau, and Deep Medhi. Pytomo: A tool for ana-

lyzing playback quality of youtube videos. In 2011 23rd International Teletraffic

Congress (ITC), pages 304–305, 2011.

http://dx.doi.org/10.1109/JSAC.2014.140405
http://dx.doi.org/10.1109/JSAC.2014.140405
https://doi.org/10.1145/3098822.3098843
https://www.sciencedirect.com/science/article/pii/S0140366404000246
https://www.sciencedirect.com/science/article/pii/S0140366404000246

138 BIBLIOGRAPHY

[51] Muhammad Jawad Khokhar, Thierry Spetebroot, and Chadi Barakat. A method-

ology for performance benchmarking of mobile networks for internet video stream-

ing. In Proceedings of the 21st ACM International Conference on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, MSWIM ’18, page

217–225, New York, NY, USA, 2018. Association for Computing Machinery. ISBN

9781450359603. doi: 10.1145/3242102.3242128. URL https://doi.org/10.1145/

3242102.3242128.

[52] Ricky K. P. Mok, Edmond W. W. Chan, and Rocky K. C. Chang. Measuring the

quality of experience of http video streaming. In 12th IFIP/IEEE International

Symposium on Integrated Network Management (IM 2011) and Workshops, pages

485–492, 2011. doi: 10.1109/INM.2011.5990550.

[53] Liu Yitong, Shen Yun, Mao Yinian, Liu Jing, Lin Qi, and Yang Dacheng. A study

on quality of experience for adaptive streaming service. In 2013 IEEE International

Conference on Communications Workshops (ICC), pages 682–686, June 2013. doi:

10.1109/ICCW.2013.6649320.

[54] Muhammad Jawad Khokhar, Nawfal Abbassi Saber, Thierry Spetebroot, and

Chadi Barakat. On active sampling of controlled experiments for qoe model-

ing. In Proceedings of the Workshop on QoE-Based Analysis and Management of

Data Communication Networks, Internet QoE ’17, page 31–36, New York, NY,

USA, 2017. Association for Computing Machinery. ISBN 9781450350563. doi:

10.1145/3098603.3098609. URL https://doi.org/10.1145/3098603.3098609.

[55] Linux Traffic Control, 2018. http://lartc.org/.

[56] Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov. A ma-

chine learning approach to classifying youtube qoe based on encrypted network

traffic. Multimedia Tools Appl., 76(21):22267–22301, November 2017. ISSN

1380-7501. doi: 10.1007/s11042-017-4728-4. URL https://doi.org/10.1007/

s11042-017-4728-4.

[57] Ricky K. P. Mok, Edmond W. W. Chan, and Rocky K. C. Chang. Measuring the

quality of experience of http video streaming. In 12th IFIP/IEEE International

https://doi.org/10.1145/3242102.3242128
https://doi.org/10.1145/3242102.3242128
https://doi.org/10.1145/3098603.3098609
http://lartc.org/
https://doi.org/10.1007/s11042-017-4728-4
https://doi.org/10.1007/s11042-017-4728-4

BIBLIOGRAPHY 139

Symposium on Integrated Network Management (IM 2011) and Workshops, pages

485–492, 2011. doi: 10.1109/INM.2011.5990550.

[58] M. H. Mazhar and Z. Shafiq. Real-time video quality of experience monitoring

for https and quic. In IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications, April 2018.

[59] S. Shunmuga Krishnan and Ramesh K. Sitaraman. Video stream quality impacts

viewer behavior: Inferring causality using quasi-experimental designs. In Pro-

ceedings of the 2012 Internet Measurement Conference, IMC ’12, page 211–224,

New York, NY, USA, 2012. Association for Computing Machinery. ISBN

9781450317054. doi: 10.1145/2398776.2398799. URL https://doi.org/10.1145/

2398776.2398799.

[60] Yining Qi and Mingyuan Dai. The effect of frame freezing and frame skipping on

video quality. In 2006 International Conference on Intelligent Information Hiding

and Multimedia, pages 423–426, 2006. doi: 10.1109/IIH-MSP.2006.265032.

[61] Tahir Nawaz Minhas and Markus Fiedler. Impact of disturbance locations on

video quality of experience. EuroITV 2011 Workshop: Quality of Experience for

Multimedia Content Sharing, 2011.

[62] B. Lewcio, B. Belmudez, A. Mehmood, M. Wältermann, and S. Möller. Video qual-

ity in next generation mobile networks — perception of time-varying transmission.

In 2011 IEEE International Workshop Technical Committee on Communications

Quality and Reliability (CQR), pages 1–6, May 2011. doi: 10.1109/CQR.2011.

5996089.

[63] Pengpeng Ni, Ragnhild Eg, Alexander Eichhorn, Carsten Griwodz, and P̊al

Halvorsen. Flicker effects in adaptive video streaming to handheld devices. In Pro-

ceedings of the 19th ACM International Conference on Multimedia, MM ’11, pages

463–472, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0616-4. doi: 10.1145/

2072298.2072359. URL http://doi.acm.org/10.1145/2072298.2072359.

[64] Meteor: Free internet speed & app performance test, 2018. https://meteor.

opensignal.com/.

https://doi.org/10.1145/2398776.2398799
https://doi.org/10.1145/2398776.2398799
http://doi.acm.org/10.1145/2072298.2072359
https://meteor.opensignal.com/
https://meteor.opensignal.com/

140 BIBLIOGRAPHY

[65] Rtr-nettest, 2018. https://www.netztest.at/en/.

[66] Ookla. speedtest.net., 2020. http://www.speedtest.net/.

[67] Junxian Huang, Cheng Chen, Yutong Pei, Zhaoguang Wang, Zhiyun Qian, Feng

Qian, Birjodh Tiwana, Qiang Xu, Z Mao, Ming Zhang, et al. Mobiperf: Mobile

network measurement system. http://www.mobiperf.com/, 2011.

[68] Sensorly - unbiased, real-world mobile coverage, 2020. https://www.sensorly.

com/.

[69] Thuy T. T. Nguyen, Grenville Armitage, Philip Branch, and Sebastian Zan-

der. Timely and continuous machine-learning-based classification for interactive

ip traffic. IEEE/ACM Transactions on Networking, 20(6):1880–1894, 2012. doi:

10.1109/TNET.2012.2187305.

[70] Ratanang Thupae, Bassey Isong, Naison Gasela, and Adnan Abu-Mahfouz. Ma-

chine learning techniques for traffic identification and classification in sdwsn: A

survey. In IECON 2018 - 44th Annual Conference of the IEEE Industrial Elec-

tronics Society, 2018.

[71] Jun Zhang, Chao Chen, Yang Xiang, Wanlei Zhou, and Yong Xiang. Internet

traffic classification by aggregating correlated naive bayes predictions. In IEEE

Transactions on Information Forensics and Security, 2013.

[72] Opendpi. . http://www.opendpi.org/, 2012.

[73] Jawad Khalife, A. Hajjar, and Jesús Esteban Dı́az Verdejo. Performance of opendpi

in identifying sampled network traffic. J. Networks, 8:71–81, 2013.

[74] LiJuan Zhang, DongMing Li, Jing Shi, and JunNan Wang. P2p-based weighted

behavioral characteristics of deep packet inspection algorithm. In International

Conference on Computer, Mechatronics, Control and Electronic Engineering, 2010.

[75] F. Dehghani, N. Movahhedinia, M. R. Khayyambashi, and S. Kianian. Real-time

traffic classification based on statistical and payload content features. In 2nd

International Workshop on Intelligent Systems and Applications, 2010.

https://www.netztest.at/en/
http://www.speedtest.net/
https://www.sensorly.com/
https://www.sensorly.com/
http://www.opendpi.org/

BIBLIOGRAPHY 141

[76] G. Aceto, A. Dainotti, W. de Donato, and A. Pescape. Portload: Taking the

best of two worlds in traffic classification. In INFOCOM IEEE Conference on

Computer Communications Workshops, 2010.

[77] Chunzhi Wang, Xin Zhou, Fangping You, and Hongwei Chen. Design of p2p traffic

identification based on dpi and dfi. In 2009 International Symposium on Computer

Network and Multimedia Technology, pages 1–4, 2009. doi: 10.1109/CNMT.2009.

5374577.

[78] Gianluca La Mantia, D. Rossi, A. Finamore, M. Mellia, and M. Meo. Stochastic

packet inspection for tcp traffic. 2010 IEEE International Conference on Commu-

nications, pages 1–6, 2010.

[79] A. Rao and P. Udupa. A hardware accelerated system for deep packet inspec-

tion. In ACM/IEEE International Conference on Formal Methods and Models for

Codesign (MEMOCODE), 2010.

[80] Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, and Konstantina Papa-

giannaki. Measuring video qoe from encrypted traffic. In Proceedings of the

2016 Internet Measurement Conference, IMC ’16, page 513–526, New York, NY,

USA, 2016. Association for Computing Machinery. ISBN 9781450345262. doi:

10.1145/2987443.2987459. URL https://doi.org/10.1145/2987443.2987459.

[81] Andrew Reed and Michael Kranch. Identifying https-protected netflix videos in

real-time. In Proceedings of the Seventh ACM on Conference on Data and Ap-

plication Security and Privacy, CODASPY ’17, page 361–368, New York, NY,

USA, 2017. Association for Computing Machinery. ISBN 9781450345231. doi:

10.1145/3029806.3029821. URL https://doi.org/10.1145/3029806.3029821.

[82] Feng Li, Jae Won Chung, and Mark Claypool. Silhouette: Identifying youtube

video flows from encrypted traffic. In Proceedings of the 28th ACM SIGMM Work-

shop on Network and Operating Systems Support for Digital Audio and Video,

NOSSDAV ’18, page 19–24, New York, NY, USA, 2018. Association for Com-

puting Machinery. ISBN 9781450357722. doi: 10.1145/3210445.3210448. URL

https://doi.org/10.1145/3210445.3210448.

https://doi.org/10.1145/2987443.2987459
https://doi.org/10.1145/3029806.3029821
https://doi.org/10.1145/3210445.3210448

142 BIBLIOGRAPHY

[83] Ricardo Matos, Nuno Coutinho, Carlos Marques, Susana Sargento, Jacob

Chakareski, and Andreas Kassler. Quality of experience-based routing in multi-

service wireless mesh networks. In 2012 IEEE International Conference on Com-

munications (ICC), pages 7060–7065, 2012. doi: 10.1109/ICC.2012.6364944.

[84] Sebastiaan Laga, Thomas Van Cleemput, Filip Van Raemdonck, Felix Van-

houtte, Niels Bouten, Maxim Claeys, and Filip De Turck. Optimizing scal-

able video delivery through openflow layer-based routing. In 2014 IEEE Net-

work Operations and Management Symposium (NOMS), pages 1–4, 2014. doi:

10.1109/NOMS.2014.6838378.

[85] Pham Tran Anh Quang, Kandaraj Piamrat, Kamal Deep Singh, and César Viho.

Video streaming over ad hoc networks: A qoe-based optimal routing solution.

IEEE Transactions on Vehicular Technology, 66(2):1533–1546, 2017. doi: 10.

1109/TVT.2016.2552041.

[86] Giacomo Calvigioni, Ramon Aparicio-Pardo, Lucile Sassatelli, Jeremie Leguay,

Paolo Medagliani, and Stefano Paris. Quality of experience-based routing of video

traffic for overlay and isp networks. In IEEE INFOCOM 2018 - IEEE Conference

on Computer Communications, pages 935–943, 2018. doi: 10.1109/INFOCOM.

2018.8485954.

[87] Panagiotis Georgopoulos, Yehia Elkhatib, Matthew Broadbent, Mu Mu, and

Nicholas Race. Towards network-wide qoe fairness using openflow-assisted adap-

tive video streaming. New York, NY, USA, 2013. Association for Comput-

ing Machinery. ISBN 9781450321839. doi: 10.1145/2491172.2491181. URL

https://doi.org/10.1145/2491172.2491181.

[88] Stefano Petrangeli, Tim Wauters, Rafael Huysegems, Tom Bostoen, and Filip

DeundefinedTurck. Software-defined network-based prioritization to avoid video

freezes in http adaptive streaming. Netw., 26(4):248–268, July 2016. ISSN 0028-

3045. doi: 10.1002/nem.1931. URL https://doi.org/10.1002/nem.1931.

https://doi.org/10.1145/2491172.2491181
https://doi.org/10.1002/nem.1931

BIBLIOGRAPHY 143

[89] A. Bentaleb and A.C. Begen and R. Zimmermann. Sdndash: Improving qoe of

http adaptive streaming using software defined networking. ACM Multimedia,

2016.

[90] Jan Willem Kleinrouweler, Britta Meixner, and Pablo Cesar. Improving video

quality in crowded networks using a dane. In Proceedings of the 27th Work-

shop on Network and Operating Systems Support for Digital Audio and Video,

NOSSDAV’17, page 73–78, New York, NY, USA, 2017. Association for Com-

puting Machinery. ISBN 9781450350037. doi: 10.1145/3083165.3083167. URL

https://doi.org/10.1145/3083165.3083167.

[91] Stefano D’Aronco, Laura Toni, and Pascal Frossard. Price-based controller for

quality-fair http adaptive streaming. In 2016 IEEE International Symposium on

Multimedia (ISM), pages 113–118, 2016. doi: 10.1109/ISM.2016.0030.

[92] Dong Liu, Binqiang Chen, Chenyang Yang, and Andreas F. Molisch. Caching

at the wireless edge: design aspects, challenges, and future directions. IEEE

Communications Magazine, 54(9):22–28, Sep 2016. ISSN 0163-6804. doi: 10.1109/

mcom.2016.7565183. URL http://dx.doi.org/10.1109/MCOM.2016.7565183.

[93] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire. Fem-

tocaching: Wireless content delivery through distributed caching helpers. IEEE

Transactions on Information Theory, 59(12):8402–8413, 2013. doi: 10.1109/TIT.

2013.2281606.

[94] Konstantinos Poularakis, George Iosifidis, and Leandros Tassiulas. Approximation

algorithms for mobile data caching in small cell networks. IEEE Transactions on

Communications, 62(10):3665–3677, 2014. doi: 10.1109/TCOMM.2014.2351796.

[95] A. Sengupta, R. Tandon, and O. Simeone. Cache aided wireless networks: Trade-

offs between storage and latency. 2016 Annual Conference on Information Science

and Systems (CISS), pages 320–325, 2016.

[96] W. Zhang, Y. Wen, Z. Chen, and A. Khisti. Qoe-driven cache management for

http adaptive bit rate streaming over wireless networks. IEEE Transactions on

Multimedia, 15(6):1431–1445, 2013. doi: 10.1109/TMM.2013.2247583.

https://doi.org/10.1145/3083165.3083167
http://dx.doi.org/10.1109/MCOM.2016.7565183

144 BIBLIOGRAPHY

[97] Ke Liang, Jia Hao, Roger Zimmermann, and David K. Y. Yau. Integrated prefetch-

ing and caching for adaptive video streaming over http: An online approach. In

Proceedings of the 6th ACM Multimedia Systems Conference, 2015.

[98] Yichao Jin, Yonggang Wen, and Cedric Westphal. Optimal transcoding and

caching for adaptive streaming in media cloud: an analytical approach. IEEE

Transactions on Circuits and Systems for Video Technology, 25(12):1914–1925,

2015. doi: 10.1109/TCSVT.2015.2402892.

[99] Guanyu Gao, Weiwen Zhang, Yonggang Wen, Zhi Wang, and Wenwu Zhu. To-

wards cost-efficient video transcoding in media cloud: Insights learned from user

viewing patterns. IEEE Transactions on Multimedia, 17(8):1286–1296, 2015. doi:

10.1109/TMM.2015.2438713.

[100] Danny H. Lee, Constantine Dovrolis, and Ali C. Begen. Caching in http adaptive

streaming: Friend or foe? In Proceedings of Network and Operating System Support

on Digital Audio and Video Workshop, NOSSDAV ’14, page 31–36, New York, NY,

USA, 2014. Association for Computing Machinery. ISBN 9781450327060. doi:

10.1145/2597176.2578270. URL https://doi.org/10.1145/2597176.2578270.

[101] Guibin Tian and Yong Liu. Towards agile and smooth video adaptation in dynamic

http streaming. In Proceedings of the 8th International Conference on Emerging

Networking Experiments and Technologies, CoNEXT ’12, page 109–120, New York,

NY, USA, 2012. Association for Computing Machinery. ISBN 9781450317757. doi:

10.1145/2413176.2413190. URL https://doi.org/10.1145/2413176.2413190.

[102] Dimitrios J. Vergados, Angelos Michalas, Aggeliki Sgora, Dimitrios D. Vergados,

and Periklis Chatzimisios. Fdash: A fuzzy-based mpeg/dash adaptation algorithm.

IEEE Systems Journal, 10(2):859–868, 2016. doi: 10.1109/JSYST.2015.2478879.

[103] Chenghao Liu, Imed Bouazizi, M. Hannuksela, and M. Gabbouj. Rate adaptation

for dynamic adaptive streaming over http in content distribution network. Signal

Process. Image Commun., 27:288–311, 2012.

[104] YouTube. Video Catalogue. https://drive.google.com/open?id=

1tu0sBInt8xJ9Zn32IDlh6DW_ju2FhEou, 2020.

https://doi.org/10.1145/2597176.2578270
https://doi.org/10.1145/2413176.2413190
https://drive.google.com/open?id=1tu0sBInt8xJ9Zn32IDlh6DW_ju2FhEou
https://drive.google.com/open?id=1tu0sBInt8xJ9Zn32IDlh6DW_ju2FhEou

BIBLIOGRAPHY 145

[105] Dailymotion. video catalogue. https://github.com/asap-code/

Dailymotion-video-catalogue.git, 2020.

[106] Social blade. Dailymotion top viewed channels. https://socialblade.com/

dailymotion/top/category/news, 2020.

[107] D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu, and

R. Bultje. The latest open-source video codec vp9 - an overview and preliminary

results. Picture Coding Symposium (PCS), 2013.

[108] Walter Fischer. Video coding (mpeg-2, mpeg-4/avc, hevc). Signals and Commu-

nication Technology book series (SCT), 2020.

[109] Dailymotion. Dailymotion video encoding recommendation. https://faq.

dailymotion.com/hc/en-us/articles/203655666-Encoding-parameters,

2020.

[110] Omer Nawaz, Tahir Nawaz Minhas, and Markus Fiedler. Qoe based comparison of

h.264/avc and webm/vp8 in an error-prone wireless network. In 2017 IFIP/IEEE

Symposium on Integrated Network and Service Management (IM), pages 1005–

1010, 2017. doi: 10.23919/INM.2017.7987426.

[111] R. R. Pastrana-Vidal, J. C. Gicquel, C. Colomes, and H. Cherifi. Sporadic frame

dropping impact on quality perception. Proc. SPIE 5292, Human Vision and

Electronic Imaging IX, 2004.

[112] Statcounter. Desktop screen resolution stats worldwide, 2021. https://gs.

statcounter.com/screen-resolution-stats/desktop/worldwide.

[113] YouTube. Itag documentation. https://www.genyt.xyz/

formats-resolution-youtube-videos.html, 2020.

[114] YouTube. Itag Git catalogue. https://gist.github.com/sidneys/

7095afe4da4ae58694d128b1034e01e2, 2020.

[115] Dailymotion. JavaScript SDK. https://github.com/dailymotion/

dailymotion-sdk-js, 2020.

https://github.com/asap-code/Dailymotion-video-catalogue.git
https://github.com/asap-code/Dailymotion-video-catalogue.git
https://socialblade.com/dailymotion/top/category/news
https://socialblade.com/dailymotion/top/category/news
https://faq.dailymotion.com/hc/en-us/articles/203655666-Encoding-parameters
https://faq.dailymotion.com/hc/en-us/articles/203655666-Encoding-parameters
https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide
https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide
https://www.genyt.xyz/formats-resolution-youtube-videos.html
https://www.genyt.xyz/formats-resolution-youtube-videos.html
https://gist.github.com/sidneys/7095afe4da4ae58694d128b1034e01e2
https://gist.github.com/sidneys/7095afe4da4ae58694d128b1034e01e2
https://github.com/dailymotion/dailymotion-sdk-js
https://github.com/dailymotion/dailymotion-sdk-js

146 BIBLIOGRAPHY

[116] ITU-T Rec. P.1203 Standalone Implementation. https://github.com/

itu-p1203/itu-p1203, 2020.

[117] Ricardo R. Pastrana-Vidal, Jean Charles Gicquel, Catherine Colomes, and Hocine

Cherifi. Sporadic frame dropping impact on quality perception. In Bernice E.

Rogowitz and Thrasyvoulos N. Pappas, editors, Human Vision and Electronic

Imaging IX, volume 5292, pages 182 – 193. International Society for Optics and

Photonics, SPIE, 2004. doi: 10.1117/12.525746. URL https://doi.org/10.

1117/12.525746.

[118] Python. Random Forest classifier. https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestClassifier.html, 2020.

[119] Meduim blog. Hyperparameter Tuning the Random Forest in Python. https:

//towardsdatascience.com/, 2020.

[120] ns3. network simulation. http://www.nsnam.org, 2020.

[121] Muhammad Jawad Khokhar, Nawfal Abbassi Saber, Thierry Spetebroot, and

Chadi Barakat. An Intelligent Sampling Framework for Controlled Experimen-

tation and QoE Modeling. Computer Networks, 147:246–261, December 2018. doi:

10.1016/j.comnet.2018.10.011. URL https://hal.inria.fr/hal-01906145.

[122] Avşar Asan, Werner Robitza, Is-haka Mkwawa, Lingfen Sun, Emmanuel Ifeachor,

and Alexander Raake. Impact of video resolution changes on qoe for adaptive

video streaming. In 2017 IEEE International Conference on Multimedia and Expo

(ICME), pages 499–504, 2017. doi: 10.1109/ICME.2017.8019297.

[123] Python. Curve fit evaluation. https://scikit-learn.org/stable/modules/

modelevaluation.html, accessed 2021.

[124] Python. Sequential least squares. https://docs.scipy.org/doc/scipy-0.18.

1/reference/optimize.minimize-slsqp.html#optimize-minimize-slsqp, ac-

cessed 2021.

[125] IBM. Cplex. https://www.ibm.com/products/

ilog-cplex-optimization-studio, accessed 2021.

https://github.com/itu-p1203/itu-p1203
https://github.com/itu-p1203/itu-p1203
https://doi.org/10.1117/12.525746
https://doi.org/10.1117/12.525746
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://towardsdatascience.com/
https://towardsdatascience.com/
http://www.nsnam.org
https://hal.inria.fr/hal-01906145
https://scikit-learn.org/stable/modules/modelevaluation.html
https://scikit-learn.org/stable/modules/modelevaluation.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/optimize.minimize-slsqp.html#optimize-minimize-slsqp
https://docs.scipy.org/doc/scipy-0.18.1/reference/optimize.minimize-slsqp.html#optimize-minimize-slsqp
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

BIBLIOGRAPHY 147

[126] DeviceAtlas. The mobile web intelligence. https://discover.deviceatlas.com/

1145767/thank-you/, accessed 2021.

[127] Dimitrios J. Vergados, Angelos Michalas, Aggeliki Sgora, and Dimitrios D. Ver-

gados. A control-based algorithm for rate adaption in mpeg-dash. In IISA 2014,

The 5th International Conference on Information, Intelligence, Systems and Ap-

plications, pages 438–442, 2014. doi: 10.1109/IISA.2014.6878834.

[128] Video traces. http://www-itec.uni-klu.ac.at/ftp/datasets/

DASHDataset2014/ElephantsDream/, accessed 2021.

[129] M. A. Maddah-Ali and U. Niesen. Fundamental limits of caching. IEEE Trans-

actions on Information Theory, 60(5):2856–2867, 2014. doi: 10.1109/TIT.2014.

2306938.

[130] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie. Mobile edge computing: A

survey. IEEE Internet of Things Journal, 5(1):450–465, 2018. doi: 10.1109/JIOT.

2017.2750180.

[131] Chenglin Li, Laura Toni, Junni Zou, Hongkai Xiong, and Pascal Frossard. Qoe-

driven mobile edge caching placement for adaptive video streaming. IEEE Trans-

actions on Multimedia, PP:1–1, 09 2017. doi: 10.1109/TMM.2017.2757761.

[132] Wenjie Li, Sharief M. A. Oteafy, and Hossam S. Hassanein. Streamcache:

Popularity-based caching for adaptive streaming over information-centric net-

works. In 2016 IEEE International Conference on Communications (ICC), pages

1–6, 2016. doi: 10.1109/ICC.2016.7511583.

[133] IETF. Weighted random early detection(wred). https://tools.ietf.org/html/

rfc2309, accessed 2021.

[134] Sanjeev Singh and Rakesh Kumar Jha. A survey on software defined network-

ing: Architecture for next generation network. Journal of Network and Sys-

tems Management, 25(2):321–374, Sep 2016. ISSN 1573-7705. doi: 10.1007/

s10922-016-9393-9. URL http://dx.doi.org/10.1007/s10922-016-9393-9.

https://discover.deviceatlas.com/1145767/thank-you/
https://discover.deviceatlas.com/1145767/thank-you/
http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/ElephantsDream/
http://www-itec.uni-klu.ac.at/ftp/datasets/DASHDataset2014/ElephantsDream/
https://tools.ietf.org/html/rfc2309
https://tools.ietf.org/html/rfc2309
http://dx.doi.org/10.1007/s10922-016-9393-9

148 BIBLIOGRAPHY

[135] Flowgrammable, improving adoption of software-defined networks and networking,

2021. http://flowgrammable.org/sdn/openflow/message-layer/packetin/.

http://flowgrammable.org/sdn/openflow/message-layer/packetin/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Challenges AND Motivation
	1.1.1 Video transmission techniques
	1.1.2 Video QoE modeling
	1.1.3 Video traffic encryption
	1.1.4 QoE-aware resource management

	1.2 Thesis Roadmap

	2 State of the Art
	2.1 Video streaming background
	2.1.1 Video transmission techniques
	2.1.1.1 Non-HTTP based video delivery
	2.1.1.2 HTTP-based video delivery
	2.1.1.3 Adaptation BitRate (ABR) algorithms

	2.2 Video QoE modeling
	2.2.1 Data Collection
	2.2.2 QoS input type
	2.2.2.1 Network-level QoS
	2.2.2.2 Application-level QoS

	2.2.3 The output QoE

	2.3 Video QoE and encrypted traffic
	2.4 QoE-aware resource management
	2.4.1 Network-level optimization
	2.4.2 Caching

	2.5 Novel contributions

	3 On the impact of the viewport resolution in adaptive video streaming
	3.1 Introduction
	3.2 Video content overview
	3.2.1 From video resolution to bitrate

	3.3 Experimental setup
	3.3.1 YouTube use case
	3.3.2 Dailymotion use case

	3.4 The impact of the browser viewport on the video resolution patterns
	3.4.1 YouTube chunk resolution pattern
	3.4.1.1 Video resolution pattern
	3.4.1.2 Chunk size analysis

	3.4.2 Dailymotion video resolution pattern

	3.5 Quantifying the waste of bandwidth
	3.5.1 The estimated playback bitrate
	3.5.1.1 YouTube playback bitrate
	3.5.1.2 Dailymotion playback bitrate

	3.5.2 The estimated bandwidth waste

	3.6 Conclusion

	4 From encrypted video traces to viewport classification
	4.1 Introduction
	4.2 Experimental setup
	4.2.1 Overall experimental framework

	4.3 Analysis of video streaming traffic
	4.3.1 Inferring video chunk sizes
	4.3.2 Audio chunk size distribution
	4.3.3 Threshold based audio/video chunk separation
	4.3.4 Video resolution pattern

	4.4 Traffic correlation to viewport
	4.5 Viewport classification by machine learning
	4.5.1 Viewport class classification
	4.5.2 Viewport resolution classification
	4.5.3 Real-time viewport classification

	4.6 Conclusion

	5 QoE-aware bandwidth sharing framework for adaptive video streaming
	5.1 Introduction
	5.2 Framework and system model
	5.2.1 Framework
	5.2.2 System model
	5.2.3 From QoS to QoE
	5.2.3.1 From throughput to QoE
	5.2.3.2 From bitrate to QoE
	5.2.3.3 Curve fitting evaluation

	5.3 QoE-driven bandwidth sharing
	5.3.1 Problem description
	5.3.2 Problem formulation
	5.3.3 Gradient solution based on Lagrangian relaxation
	5.3.4 QoE-fairness at the equilibrium

	5.4 Numerical simulations
	5.4.1 Simulation setup
	5.4.2 Bandwidth allocation and QoE
	5.4.3 Linear QoE

	5.5 Network simulation
	5.5.1 Simulating QoE-driven DASH
	5.5.2 Changing the backhaul capacity

	5.6 Conclusion

	6 QoE-aware cache placement for adaptive video streaming
	6.1 Introduction
	6.2 Framework and system model
	6.2.1 Framework
	6.2.2 System model
	6.2.3 QoE modeling
	6.2.3.1 From bitrate to QoE
	6.2.3.2 From join time to QoE

	6.3 Viewport aware optimal cache placement
	6.3.1 Utility function
	6.3.2 Problem formulation
	6.3.3 QoEscoreMax

	6.4 Performance evaluation
	6.4.1 Simulation settings
	6.4.2 Simulation results
	6.4.3 QoEscoreMax vs catalog size

	6.5 Sensitivity analysis
	6.5.1 Video bitrate over join time
	6.5.2 Join time over video bitrate

	6.6 Conclusion

	7 Conclusion and perspectives on future research
	7.1 Conclusion
	7.2 Limitations
	7.3 Future works
	7.3.1 Studying video streaming in further contexts
	7.3.2 Dynamic screen-aware bandwidth sharing
	7.3.3 Collaborative video caching

	8 Publications
	Bibliography

