

From network-level measurements to Quality of Experience: Estimating the quality of Internet access with ACQUA

Chadi.Barakat@inria.fr www-sop.inria.fr/members/Chadi.Barakat/

Joint work with D. Saucez, S. Afra, R. Cascella, A. Al Jalam

Context

- Quality of Internet access (Ethernet, ADSL, Mobile, Wifi, etc)
- □ Variety of measurements tools (bandwidth, delay, loss, topology, etc)
 - Network-level measurements
 - Very useful information, but requires knowledgeable people
 - Does not suit the new usage of the Internet centered around applications and services
- What about knowing more on the access performance?
 - Quality of applications (audio, streaming, etc)
 - Ex. Does/Should my streaming work? How well?
 - Does it have a sense to call someone now? Or shall I wait?
 - Quality of Experience (QoE) vs. Quality of Service (QoS)
 - Access profiling in terms of QoE, in addition to QoS

Some background on QoE

Subjective measurement (human perception)

- MOS: Mean Opinion Score
 - Have people live the experience and give a mark
 - Quality of an audio and video encoding for example
- In networking we need more: QoE vs. QoS
 - Have people live the experience and give a mark
 - (Lab or Crowdsourcing)
 - Measure corresponding QoS
 - Build a model linking QoE to QoS:
 - machine learning, neural networks, etc
 - Ex. Skype quality meter

QoE vs. QoS: Inband vs outband measurements

Inband QoS measurements (state of the art, ex. Skype, browser plugin)

Outband QoS measurements: ACQUA

- QoE prediction outside the modelled application (no need to run the application)
- New models are required to map directly QoE to network-level measurements

QoE vs. QoS in ACQUA

Model Calibration Phase

QoE Estimation/Prediction Phase

Network measurements in ACQUA

- Path-level metrics (bandwidth, delay and loss, upload and download)
- Measurement re-utilization among different application models
- Landmarks
 - Measurement servers
 - Aggregate observations to estimate metrics as:
 - Mean performance, Variance, Quantile
 - Expected QoE per server
 - Troubleshooting:
 - Percentage of low-quality paths (ITC paper)
 - Localization by elimination
 - A dozen of landmarks give satisfactory results

ACQUA in a nutshell

Chadi Barakat

The Skype use case

- Six network path metrics:
 - Bandwidth, delay and loss -
 - Both upload and download -
- QoE = Skype quality meter
- Controlled experimental setup
 - DummyNet at access point
 - Both ways -

One

configuration

(6 values)

- Local Skype traffic
- Quality vs. conditions

Sampling the space of parameters

- □ Fair coverage of the six-dimensional space
 - With random selection, the probability to pick a corner is as low as 10⁻⁶ !
- □ FAST: Fourier Amplitude Sensitivity Analysis
 - Virtual time
 - Each parameter is a sinusoid of virtual time, with different frequency
 - FAST provides sensitivity analysis for free
 - Energy of a parameter = Energy of the corresponding frequency in the output spectrum + its replicas
 - 538 experiments with repetitions

Download Bandwidth: [1-1000] kbps Upload Bandwidth: [1-1000] kbps Download Loss: [1-50] % Upload Loss: [1-50] % Download Delay: [1-1000] ms Upload Delay: [1-1000] ms

Download	Upload	Download	Upload Delay	Download	Upload	QoE
Bandwidth	Bandwidth	Delay		Loss	Loss	RESULT
1024 kbps	850 kbps	36ms	39 ms	1%	0 %	Excellent
550 kbps	400 kbps	136ms	130 ms	2 %	1%	Good
220 kbps	180 kbps	77ms	77 ms	5 %	3 %	Good
80 kbps	150 kbps	120ms	125 ms	10 %	5 %	Bad

Frequency of quality results

Decision Tree Building

Chosen for its efficiency, readability and ease of implementation

C4.5 algorithm:

- Numerical attributes and tree pruning
- Top down tree building
- Start with attributes providing the maximum information gain (best compression of the tree if attribute removed)
- Pruning: remove low frequency leafs

	Before Pruning	After Pruning		
Size of Tree	99 nodes	73 nodes		
Classification accuracy	85.7%	83.5%		

Skype tree sample

Rules

Rule = set of branches from root to leaf

- 20 rules (after pruning)
 - Rule 1: Download Bandwidth > 1078, Download Delay <= 94 → class "Excellent" [84.1%]
 - Rule 2: Upd Bandwidth > 1903, Dwn Bandwidth > 1078 → class "Excellent" [70.7%]
 - Rule 3: Dwn Bandwidth <= 1078, Dwn Delay <= 665, Upd Loss > 0, Upd Loss <= 2, Dwn Loss > 0, Dwn Loss <= 2 → class "Excellent" [66.2%]
 - Rule 4: Dwn Bandwidth <= 12 → class "No Call" [90.6%]
 - Rule 5: Upd Bandwidth <= 14, Upd Loss <= 27 → class "No Call" [75.7%]
 - Rule 6: Upd Delay <= 506, Upd Loss > 27, Upd Loss <= 46, Dwn Loss > 45 → class "No Call" [61.2%]

Skype can easily deal with one-way losses up to 50% one-way delay up tp 400ms

Default class: Good

ARQ/FEC

critical rate

12kbs

Sensitivity analysis (FAST)

Participation of each metric to the overall variability of the quality

PlanetLab experiments

- Dummynet is finally not reality
 - Real paths different than emulated ones
 - Metrics unknowns, to be measured
- PlanetLab-driven path conditions
 - Tunneling via PlanetLab instead of emulation
 - Running measurement tools
 - Almost same accuracy as in the lab

Node	Upd Band	Dwn Band	Upd Delay	Dwn Delay	Upd Loss	Dwn Loss	Exp QoE	Real QoE
France	7,818	734	29	29	0	0	Good	Excellent
Argentine	7,644	7,801	249	249	0	0	Excellent	Excellent
Belgium	7,483	7,583	42	45	0	0	Excellent	Excellent
England	14,666	2,305	1	1	0	0	Excellent	Excellent
Russia	1,805	4,090	182	184	0	0	Excellent	Excellent
Sweden	20,106	9,051	46	47	0	0	Excellent	Excellent
Australia	5,531	5,725	393	390	0	5	Excellent	Excellent
China	662	435	205	207	4	6	Bad	Bad
Korea	3,981	3,142	296	296	3	2	Excellent	Good
USA	1,709	10,436	147	147	0	0	Excellent	Excellent
India	1,500	750	190	192	2	3	Good	Good

PlanetLab nodes

Concluding remarks

- A new framework for QoE estimation/prediction starting from network-level measurements
- Methodology to be applied to other applications as well
 - Meters might not be present
- First calibration of models in the lab, then crowd sourcing for refinement
- Measurements themselves pose lot of problems:
 - How to perform them to reflect application traffic pattern?
 - Choice of measurement servers
 - Overhead of measurements
 - Collaboration of users and network
 - Tracking dynamicity of paths

Thank you

Chadi.Barakat@inria.fr

http://planete.inria.fr/acqua/

