

From network-level measurements to expected Quality of Experience

the Skype use case

2015 IEEE International Workshop on Measurements & Networking (M&N)

13 OCTOBER 2015

Quality of Experience of Internet Services

2015 IEEE International Workshop on Measurements & Networking (M&N)

Quality of Experience of Internet Services

"A measure of user performance based on both objective and subjective psychological measures of using an ICT service or product."

[ETSI TR 102 643 V1.0.1]

Quality of Experience

2015 IEEE International Workshop on Measurements & Networking (M&N)

Quality of Experience vs. Network Performance

2015 IEEE International Workshop on Measurements & Networking (M&N)

2015 IEEE International Workshop on Measurements & Networking (M&N)

2015 IEEE International Workshop on Measurements & Networking (M&N)

13 OCTOBER 2015 - 4

icons by: Javier Sánchez - javyliu from the Noun Project

Ínría

icons by: Javier Sánchez - javyliu from the Noun Project

icons by: Javier Sánchez - javyliu from the Noun Project

2015 IEEE International Workshop on Measurements & Networking (M&N)

(nría_

2015 IEEE International Workshop on Measurements & Networking (M&N)

13 OCTOBER 2015 - 4

icons by: Javier Sánchez - javyliu from the Noun Project

GOAL

Predict applications QoE without running them!

2015 IEEE International Workshop on Measurements & Networking (M&N)

POSSIBILITIES

- study network dimensioning
- understanding of application needs
- give user the ability to track its connectivity

Several contributions in the QoE domain

mostly

- limited scope / usage
- target single applications
- having application data
- passive measurements

nobody targets **prediction** of QoE

nobody aims to relate **QoS of connections** to the **QoE of multiple services**

ACQUA https://team.inria.fr/diana/acqua/

2015 IEEE International Workshop on Measurements & Networking (M&N)

ACQUA https://team.inria.fr/diana/acqua/

Monitoring platform for tracking QoE of Internet Services

starts with **active measurements** for detecting network conditions at the edges of the Internet

starts with **active measurements** for detecting network conditions at the edges of the Internet

predicts multiple applications' QoE with only one test

predicts multiple applications' QoE with only one test

predicts multiple applications' QoE with only one test

CHALLENGES

- find the right **metrics** for prediction
- define a robust methodology to collect data and create models (has to be applied on several services)
- **deploy** the framework

METHODOLOGY

Data Analytics

2015 IEEE International Workshop on Measurements & Networking (M&N)

METHODOLOGY

- create and analyze a data set
- see how to collect
 such data in
 real world scenarios
- compare performances of different classifiers derived from such data set

THIS CONTRIBUTION

focus on

2015 IEEE International Workshop on Measurements & Networking (M&N)

WHY SKYPE?

Skype gives us a feedback about the QoE during each call

2015 IEEE International Workshop on Measurements & Networking (M&N)

WHY SKYPE?

Skype gives us a feedback about the QoE during each call

2015 IEEE International Workshop on Measurements & Networking (M&N)

WHY SKYPE?

Skype gives us a feedback about the QoE during each call

Basically we will "reverse engineer" Skype QoE model

Measures obtained in a **controlled environment** collecting Skype's application feedback given

- latency
- throughput
- packet loss

Image from: Marta Carbone, Luigi Rizzo, An emulation tool for PlanetLab, Computer Communications, Elsevier, Oct. 2011, doi:10.1016/j.comcom.2011.06.004

Measures obtained in a **controlled environment** collecting Skype's application feedback given

- latency
- throughput
- packet loss

Image from: Marta Carbone, Luigi Rizzo, An emulation tool for PlanetLab, Computer Communications, Elsevier, Oct. 2011, doi:10.1016/j.comcom.2011.06.004

Measures obtained in a **controlled environment** collecting Skype's application feedback given

- latency
- throughput
- packet loss

Static Conditions

Image from: Marta Carbone, Luigi Rizzo, An emulation tool for PlanetLab, Computer Communications, Elsevier, Oct. 2011, doi:10.1016/j.comcom.2011.06.004

Composed by 5 input metrics + 1 output QoE label

- Round Trip Time (RTT)
- passing throughput
- packet loss rate

Composed by 5 input metrics + 1 output QoE label

- Round Trip Time (RTT)
- passing throughput
- packet loss rate

upload and download

Composed by 5 input metrics + 1 output QoE label

- Round Trip Time (RTT)
- passing throughput
 - upload and download
- packet loss rate
- QoE label ∈ {NoCall, Poor, Medium, Good}

DATA SET

FAST sampling (Fourier Amplitude Sensitivity Testing)

to cover the configuration space uniformly

DATA SET

538 entries (training)

2015 IEEE International Workshop on Measurements & Networking (M&N)

DATA SET

538 entries (training) + 100 entries (validation)

2015 IEEE International Workshop on Measurements & Networking (M&N)

MODEL GENERATION

Data-Driven Approach

- compare different ML techniques
 using the *Weka* toolkit
- check classifier
 - performances using independent test set
 - stability using Cross Validation

ML algorithm

Step 1: calibration

Step 2: validation

Step 3: deploy

Classifier

CONSIDERED TECHNIQUES

a classifier for each different family

- Decision Trees (C4.5) and Rule Inference (JRip, FURIA)
- Lazy Learners (kNN)
- Probability based (Naive Bayes, Neural Networks)
- Support Vector Machines (SVM)
- Random Forests
- Meta Techniques (Boosting, Bagging)

How to consider the effectiveness of a classifier?

How to consider the effectiveness of a classifier?

ACCURACY = #Correctly Classified Instances #Instances

2015 IEEE International Workshop on Measurements & Networking (M&N)

Classifying all the instances as **medium**

2015 IEEE International Workshop on Measurements & Networking (M&N)

(nría_

2015 IEEE International Workshop on Measurements & Networking (M&N)

Not enough to have a global overview

2015 IEEE International Workshop on Measurements & Networking (M&N)

How to consider the effectiveness of a classifier?

- Accuracy

How to consider the effectiveness of a classifier?

- Accuracy

How to consider the effectiveness of a classifier?

- Accuracy
- Precision / Recall for each class

RECALL (completeness)

PRECISION (quality)

2015 IEEE International Workshop on Measurements & Networking (M&N)

(nría_

2015 IEEE International Workshop on Measurements & Networking (M&N)

RESULTS - Cross Validation

2015 IEEE International Workshop on Measurements & Networking (M&N)

RESULTS - Cross Validation

RESULTS - Cross Validation

2015 IEEE International Workshop on Measurements & Networking (M&N)

RESULTS - Validation

2015 IEEE International Workshop on Measurements & Networking (M&N)

RESULTS - Validation

RESULTS - Validation

Unbalanced training set could affect classification

Unbalanced training set → in redu could affect classification

⇒ inflate data to reduce bias

Unbalanced
training set
could affect
classification⇒ inflate data to
reduce bias⇒ shrink data
to reduce bias

Unbalanced
training set
could affect
classification⇒ inflate data to
reduce bias⇒ shrink data
to reduce bias

WORSE RESULTS

CAN WE GET MORE?

Data Set could be too small

CAN WE GET MORE?

Data Set could be too small

⇒ inflate data

CAN WE GET MORE?

Data Set could be too small

⇒ inflate data

WORSE RESULTS

FINAL ACCURACY

about **70%** of accuracy in general

CLUSTERED RESULTS

no outstanding performances of a single classifier

LIMITED ERROR SPREADING

93% of instances **classified correctly or** in the **adjacent classes** (C4.5 classifier)

ANALYSIS

12kbps minimum bandwidth to start a call

ANALYSIS

up to 800ms of RTT do not affect quality

FUTURE WORKS

Enrich our data set with crowd based feedbacks (Android application under development)

Currently applying an **extended methodology** to the video streaming domain

FUTURE WORKS

Deploy ACQUA framework

THANK YOU

Title

From network-level measurements to expected Quality of Experience: the Skype use case

Authors

Thierry Spetebroot (INRIA Sophia Antipolis, France) Salim Afra (University of Calgary, Canada) Nicolás Aguilera (NIC Chile Research Labs, Chile) Damien Saucez (INRIA Sophia Antipolis, France) Chadi Barakat (INRIA Sophia Antipolis, France)

BACKUP SLIDES

2015 IEEE International Workshop on Measurements & Networking (M&N)

DATA SET

Measures obtained in a **controlled environment** collecting Skype's application feedback given

- latency
- bandwidth
- packet loss

Image from: Marta Carbone, Luigi Rizzo, An emulation tool for PlanetLab, Computer Communications, Elsevier, Oct. 2011, doi:10.1016/j.comcom.2011.06.004

DATA SET

Composed by 6 input metrics + 1 output QoE label

- latency
- bandwidth
- packet loss rate

upload and download

- QoE label ∈ {NoCall, Poor, Medium, Good}

MEASUREMENT FEASIBILITY

In real world is difficult to measure

- One Way Delays clock synchronization is required
- Link Capacity due to link level losses

DATA SET PREPARATION

Adaptation of

- One Way Delays \rightarrow Round Trip Time (RTT) merging both delays
- Link Capacity \rightarrow Passing Throughput convolution of bandwidth with packet loss rate

FINAL DATA SET

Composed by 5 input metrics + 1 output QoE label

- Round Trip Time (RTT)
- passing throughput
- packet loss rate
- QoE label

TRAINING SET

13 OCTOBER 2015 - 90

TEST SET

100 random instances

2015 IEEE International Workshop on Measurements & Networking (M&N)

RESULTS - Cross Validation

2015 IEEE International Workshop on Measurements & Networking (M&N)

RESULTS - Cross Validation

2015 IEEE International Workshop on Measurements & Networking (M&N)

It could be due to the Data Set preparation process...

do we have information loss?

INFORMATION LOSS

INFORMATION LOSS

WHY?

It could be a Class Imbalance Problem

Where we have better results we have considerably more data

2015 IEEE International Workshop on Measurements & Networking (M&N)

CLASS IMBALANCE PROBLEM

Unbalanced training set could affect classification

- ⇒ inflate data to reduce bias
- replication
- interpolation

CLASS IMBALANCE PROBLEM

CLASS IMBALANCE PROBLEM

back

2015 IEEE International Workshop on Measurements & Networking (M&N)

CONCLUSIONS

Limited Error Spreading 93% of instances classified correctly or in the adjacent class

2015 IEEE International Workshop on Measurements & Networking (M&N)

2015 IEEE International Workshop on Measurements & Networking (M&N)