Content Dissemination in Mobile Wireless Networks

Chadi Barakat
Email: Chadi.Barakat@inria.fr
http://planete.inria.fr/chadi/
Context / Objectives

- An activity running for couple of years, involving several people
 - Amir Krifa, Francisco Santos, Benjamin Ertl, Thierry Turletti
 - Thrasyvoulos Spyropoulos (Eurecom)

- To exchange data between mobile devices
 - Without infrastructure – disaster, censorship, etc
 - Multi-hop mode: I give you, you give the others, and so on
 - Often called Delay Tolerant Networks, Pocket switched Networks, etc

- Communication can be of different types
 - Point-to-point: I send a content/message to someone
 - Broadcast
 - Publish-subscribe: One publishes, others search and request
Difficulties

- Current Internet architecture does not work in this context
 - No end-to-end path, no TCP/IP
 - Network topology changes frequently
 - Opportunistic encounters

- Forwarding, replication and content-aware routing
 - Either give the content to encountered devices and get rid of it
 - Or simply give them a copy
 - How to know?
 - Several solutions in the literature: spray-and-wait, age-based routing, community-based routing, routing by social networks, etc

- Routing reduces the load, but does not provide explicit solutions in case of resource starvation
 - TCP and buffer management vs. IP routing
Our framework

- Transform the problem into a resource management problem
 - Set a global objective for the network
 - Maximize throughput, Minimize delay, being fair, etc
 - Devices take local decisions that push the network to its desirable global behavior (and keep it there)
 - Two main decisions:
 - When there is a need to drop some data, drop the least useful first
 - When there is a need to forward, forward the most useful first

- Control variable: The number of replicas …

- Control function: A utility per content
 - The marginal gain/loss upon drop/replication
Algorithm in a nutshell

Beforehand

- Write global objective as a function of number of replicas
- Differentiate with respect to number of replicas
- Get expression of utility U per content

Locally, on the fly

- Estimate Utility U for each content (ex. Gossiping)
- Pay attention to Bias
- Rank contents from most useful to least useful
- Drop from bottom
- Forward from top
HBSD: The point-to-point case

- History-Based Scheduling and Drop
 - http://planete.inria.fr/HBSD_DTN2/

- Contents/Messages appear at a device, try to find their way to some other destination device, then disappear

- Utility: A function of content age
 - By gossiping, HBSD finds this function by itself
 - Same function for all contents
 - Age of content indicates its utility

- Two variants: **Maximum delivery** and **Minimum delay**

For a lightly loaded network, utility decreases with age
- Best is to schedule youngest first and to drop oldest first
When the load increases, the shape of utilities changes
- Simple policies are no longer optimal
- HBSD can capture the optimal behavior whatever is the load

Samples of utility functions

Per-Content Utility
- Maximum delivery
 - prefer younger ones

Per-Content Utility
- Minimum Delay
 - help the content over younger ones
 - penalize – help – penalize
CODA: The publish-subscribe case (point-to-multipoint)

- Content Optimal Delivery Algorithm
 - http://hal.inria.fr/hal-00742734/
 - http://planete.inria.fr/Software/CODA/

- Developed within the CCN/NDN framework
 - Contents have universal names. Ex: \inria\team\diana\coda
 - Have different popularities (different request rates)
 - Users issue requests for contents, contents flow back, intermediate devices cache

- Again, control the number of replicas per content
 - Function of its popularity
 - Collaborative network-wide caching, taking mobility into account (vs. LRU, LFU)

- First solution that maximizes the number of satisfied requests (throughput)
 - Under some assumptions:

 \[\text{Utility} \approx \text{miss rate} = \text{popularity} – \text{delivery} \]

 Maximize Throughput = Equalize miss rate
CODA: The publish-subscribe case (point-to-multipoint)

- Observed 50% more throughput than LRU
- And better protection of non popular contents
- Global network performance can be easily tuned
Open issues

Future activity will build upon CODA and transform it into a general solution for storage management and scheduling in mobile content-centric networks

- Scalability of signaling
- Fairness vs. Throughput
- Convergence vs. Reactivity
- Collaboration enforcement
- Heterogeneity of devices (battery, storage, etc)
- Large scale experiments
merci

www.inria.fr