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Abstract. In this paper we analyze the performance of a TCP-like flow control
mechanism. The transmission rate is considered to increase linearly in time until
the receipt of a congestion notification (via loss detection in context of TCP) where
the transmission rate is multiplicatively decreased. We introduce a general model
based on a multi-state Markov chain for the moments at which the congestion is
detected. With this model, we are able to account for correlation and burstiness in
congestion moments. Furthermore, we specify several simple versions of our general
model and then we identify their parameters from real TCP traces.

1 Introduction

We study in this paper the performance of an additive-increase multiplicative-
decrease flow control protocol. This is the kind of control used by TCP, the widely-
used transport protocol of the Internet [9]. TCP is used as a reference through
the present work, however we anticipate that our results will be also applicable for
other flow control mechanisms. A fluid approach is used to model the controlled
flow. The transmission rate of the source is assumed to grow linearly at a rate c.
In the case of TCP where the flow is controlled via a congestion window, the trans-
mission rate at any instant is equal to the window size divided by the Round Trip
Time of the connection. The growth of the transmission rate continues until the
source receives a notification of congestion from the network. In case of TCP, the
congestion is inferred from the loss of packets. It is an implicit notification com-
pared to the explicit notification used by other flow control protocols as the ABR
service in ATM or the ECN proposal in the Internet. We call the moment at which
the source reduces its transmission rate a loss moment. Upon detection of a loss,
the transmission rate is scaled down by a (possibly random) factor a € [0,1]. The
scaling factor depends on many factors as the version of TCP, the number of packet
losses in the congestion period and the way with which the loss is detected (e.g.
duplicate ACK or Timeout [12]). Note that by choosing in some instants a = 1 one
can introduce potential loss instants.
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Fig. 1. TCP window evolution

The study of the performance of a flow control mechanism requires a character-
ization of the moments at which the transmission rate is reduced. These moments
can be seen as a point process, where the appearance of a point corresponds to
the appearance of a congestion signal or a loss in the context of TCP, causing a
reduction in the transmission rate. Simple models as Poisson or iid models may not
work in some cases where losses present some kind of burstiness or correlation. For
example in Figure 1 one can observe a scenario where the moments of transmission
rate reduction are clustered together. This figure corresponds to the window size
evolution of a New Reno [5] TCP connection running between two sites at the tech-
nology park Sophia Antipolis. Normally in TCP, the window is divided by two upon
congestion detection, but we see in this figure a more severe reduction due to mul-
tiple consecutive division of the congestion window by two. In a previous paper [1],
we present a two-state Markovian model to account for burstiness of losses. In that
paper, we considered a lossy path with two states Good and Bad together with
potential loss moments. The transmission rate is reduced upon potential losses. A
potential loss can transform into a real loss with probability pe in the Good state
and with probability pp in the Bad state (pa < pgp). The time between potential
loss moments is assumed to be independently and identically distributed. Our main
contribution in [1] is to show that the throughput of the flow control mechanism
increases with the increase in burstiness of losses. However, we validated the model
only via simulations, but we did not provide any algorithm for the identification of
its parameters from real traces.

The present work is an extension of our previous work [1] to a multi-state
Markovian case. Being motivated by some experimentation results (e.g. Figure 1),
we allow the path of the connection to be in more than two states. The need for
more than two states for describing the channel is also motivated by modelling
results from [11,13] on mobile satellite channels, where it was shown that one needs
typically at least four states. In [1], the scaling factor a is a random variable equal
to either 0.5 (the potential loss becomes a real loss) or 1 (a potential loss is not



transformed into a real loss). Here we propose to study the scaling factor with a
general distribution that depends on the state of the path. We present then some
applications of our general model. These applications can be seen as different ways
to infer the parameters of the general model from a real TCP trace. In particular, we
provide a method for the parameter identification of our model in [1]. A comparison
between the different applications is provided to see which one is the most efficient
in predicting TCP performance.

In the following section, we present the general multi-state multi-reduction
model for the flow control mechanism. This general model is analyzed in Section 3.
In Section 4, we provide several particular cases of the general model as well as their
application to TCP modelling. We conclude Section 4 by a comparison between the
different particular cases.

2 The model

Let X(t) be the transmission rate at time ¢. In case of TCP, it is equal to the
current window size divided by the Round Trip Time of the connection. Let K =
{1,2,..., N} be the set of possible states of the path. We allow losses to occur in
any of the NN states; the probability of the occurrence of losses in each of these states
may be different. To that end, we define a series of potential losses occurring with
a certain distribution of times between potential losses. Let 7). denote the time at
which the nth potential loss occurs and let X, denote the transmission rate just
prior to Tp. The pair {7}, X»} can be considered as a marked point process [3].
Let D,, n € Z be a sequence of times between potential losses: D,, = Th+1 — Th.
D,, are assumed to be i.i.d. with expectation d, second moment d® and Laplace
Stieltjes Transform D*(s) = E[e™*P"]. Let Y, be the state of the channel at the nth
potential loss instant. We assume further that the sequences {Y,} and {D,} are
independent. We assume that {Y,} is an ergodic Markov chain with the following
transition probabilities,

pij = P{Yos1 =j|Yn =i}, 1 <45 <N

Let P = {pi;}{;—1 and let m be the stationary distribution of the Markov chain
associated to the path. Next we define N random variables (discrete or continuous),
{Ai;1 < j < N}, which describe the behavior of the transmission rate when a
potential loss occurs: is it reduced and if so by how much. These variables {A{L; 1<
J < N} correspond to the N possible states of the model for losses. Each random
variable A%, 1 < j < N, takes values in the interval [0, 1]. It can take rational or real
values within this interval. The choice of the interval [0, 1] stems from the fact that
we are scaling down the transmission rate at the instant of losses. The set includes
1 since it corresponds to the case when a potential loss is not transformed into a
real loss and so the transmission rate is unaltered. 47,1 < j < N has a distribution
function F7(a) for all n € Z. That is, we take the distribution of A7 to be time
homogeneous. Denote

1 .
a; ::/ adF'(a), 1<i<N.
0



We assume that there is at least one i for which a; < 1. The dynamics of the system
can be given by the following stochastic recurrent equation

N
Xnt1 = ZA{Lan{Yn =j}+aD,. (1)

j=1

3 Performance Analysis

First we observe that equation (1) is a particular case of stochastic linear difference
equations of type Xn+1 = AnXn + Bn, where {A,, By} is a stationary and ergodic
processes (one can consider the Markov chain {Y,} in the stationary regime). It
follows from [4] and [8] that such equations have a stationary solution X, given by,

=S} 1
X, = Z( Ai)Bn__1.
=0 i=n—k

k=0 i=n—

n—

The stationary regime exists under the assumption that there is at least one 7 for
which a; < 1. Moreover, for any arbitrary starting point X, the sequence {X,}
will converge almost surely to this stationary regime, that is

lim | X, — X,.| =0, P-as.

n— oo

Therefore, we can assume without loss of generality that the process { X, } is in
the stationary regime in order to compute the limit distribution. Next we compute
the moments of X, in this regime. Let us denote,

2 = E[X,1{Y, =i}] 1 <i < N.
Obviously, the expectation of X, is given by,

E[X,] = Zx

To compute z;,1 < i < N, we use the Laplace Stieltjes Transform approach.
Namely, define the following Laplace Stieltjes Transforms:

W(s,i)=E [efsxnl{yn = i}] L 1<i<N,

where we assume that X, is in the stationary regime.
Theorem 1. The Laplace Stieltjes Transforms W (s,j),1 < 7 < N, are solutions

of the following implicit equations,

W (s,j) = D" (as) |:Zpij/0 Was,i)dFi(a)| 1<j< N (2)




Proof: We write for any j, 1 <j < N,
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This results in the implicit equations (2). 0O
Although the Laplace Stieltjes Transforms in Theorem 1 are only given as solutions
of implicit equations, all moments of X, 1{Y,, =i} for 1 <¢ < N (in the stationary
regime) can be obtained explicitly. Note that

w dFW (s,1)

EXi{Yn =i} = (1) — &

s=0

We shall now proceed to the calculation of expressions for the first and second
moments of X,1{Y, = i} for 1 < i < N from the implicit expressions of the
Laplace Stieltjes transforms. Upon differentiating the implicit expressions (2) and
using the following relations,

W(0,i)=m, 1<i<N,

dD*(as)
ds
we get N linear equations in N unknowns:

D*(0) = 1,

|s:0 = —Oéd,

N
ac]-:Zpijai:ci—f-adﬂj 1<j<N. (3)
i=1
We shall now write the above N equations in matrix notation. Let x = [z1, z2, ..., zN]
and
ail 0...0
0as... O

A=

0 0 ...an



Then the equations (3) take the form
r=xAP + adm (4)

Recall that 0 < a; < 1 for all . Furthermore, we assume that there is at least one 7
for which a; < 1. The latter guarantees that the matrix AP is substochastic (there
is an i for which Zj.vzl pijai <3,y pij = 1). Recall that moduli of all eigenvalues
of a substochastic matrix are strictly less than one. Therefore, matrix I — AP has
no zero eigenvalue, and consequently, equation (4) has a unique solution. Thus we
can state the following result:

Theorem 2. Let X, be in the stationary regime. Then E[X,] is given by
E[X,] = e = adn(I — AP) e
where e is a vector of ones.
To compute the second moment of X,,, we first define

2 = B[X21{Y, =i}], 1<i<N.

Clearly,
N
BIX7) =3«
=1
Also let z® = [éBEQ), :vf), e ,x%)] and
@0 ...0
(2)
A 0 ay;’ ... 0O 7
@
0 0 San
where

1
al? = / a’dFi(a), 1<i<N.
0
Then in the next Theorem we give an explicit expression for E[X].

Theorem 3. Let {X,} be in the stationary regime and there is at least one i for
which a; < 1. Then E[X?] is given by

BIX2] = 2@ = (20d(2AP) + a2dPx) (1 - A P) .

Proof: Differentiating twice the implicit expressions (2), we obtain

d VZS(QS,]) = D" (as) |:sz1/0 d*W (as, Z)dF( )
+ %S(fs) [le] /0 W (as, i)dF" (a)
dD (aes) |:sz1/ dW (as, l)dFi(a)




Now evaluating the above derivatives at s = 0, we get

N N
acg.Z) = Zpijal@)x?) + 2ad Zpi]‘aixi + a2d(2)7rj.

i=1 =1

Next we rewrite the equations in matrix notation
2@ =2 AP P 4 20d(2 AP) + o*dP .

Solving for z(? we get

-1

2@ = (Zad(:cAP) + a2d(2)7r> (I-A®P)

. 1. . . .
The existence of (I — A® P)™" is guaranteed, because A® P is again substochastic
as the sum of the elements of the ith row of A P is Zj.vzl pi]-aj(?) < Zj.vzl pij = 1.
O
Observe that we computed the expectation of the transmission rate with respect to
loss instants. This expectation is also referred to as Palm expectation in the context
of marked point processes [3]. Of course, the most interesting is the calculation of
the expectation of the transmission rate at an arbitrary time moment. For ergodic
processes the latter expectation coincides with the following time average P-a.s.,

1 T
f:j}in;of/o X (t)dt

This is no other than the throughput of the transfer. It is the total volume of
transmitted data over the transfer time. We proceed to evaluate this throughput
by employing the concept of Palm probability.

Theorem 4. The throughput, or the time-average transmission rate, is given by

N
_ 1 d® _ 1 d®
z=E[X(t)] = ;:1 aimi+§a7 :axT+§aT, (5)
where a = [a1,as,...,an]| and z is given in Theorem 2.

Proof: To compute E[X(¢)] one can use the following inversion formula (see e.g.,
[3] Ch.1 Sec.4)

PIX(1)] = 2B 0 " X(t)di] (6)

where E°[] is an expectation associated with Palm distribution. Thus we can write,

E[X()] = éEO[/ 1(2 AbXol{Yo = i} + at)d]



Because of the independence of X, and {Dp,k > n} and also because of the
independence of {D,} and {Y,} we can write,

EXO) = 31 (B oL {Y = 1Y) E°[Dul] + 25 E°[Df]
a 1 d® r 1 d®
= Z T + = a— =axr —+ 2a7

]
In the next theorem we evaluate the second moment of the transmission rate
at an arbitrary time instant.

Theorem 5. Let d® be the third moment of the time between potential losses. The
second moment of the input rate over a long time interval is equal to:

z? = thm —/ X

1 ,d® 1
= gO[QT + Ead(Q)axT + HOMON
where a® = [a?),agz), e ,ag\?)] and 2 is given in Theorem 3.

Proof: Again by the inversion formula from Palm probability,
2 oo M o
E[X°(t)] = EE [/ X7 (t)dt]
0

1 n(E ’
_ 0 i .
= EE /0 ( E AgXol{Yo =i} + at) dt

=1
1 a?D3 N N ;2
= EEO [ 3 St aDy Y AgXol{Yo =i} + Y (Ap) Xe1{Yo =i}Do

i=1 i=1

1 ,d® 1 al al
= 50&27 + Ead@) Z_;azxt + ZCLEZ)x?

(3)
= %aZdT + éad(Z)a:cT + a(Z)x(Z)T

O

Having obtained the expressions for the general case of N states we shall now focus
on some particular cases in the following sections. We show how the parameters of
our model can be inferred from a real trace of a TCP connection. Different possible
applications of the model to the same trace are presented and the results are then
compared to show which method is the most efficient. We will see in the sequel how
much the model is general and how multiple sub-models can be derived from it by
setting differently the parameters.



4 Specifications of the general model

In this section, we present different ways for the application of our general model to
predict the performance of a TCP-like flow control mechanism. We chose to work
with real loss processes. From the trace of a TCP connection, we determine the
moments of window reduction. We reconstruct then the evolution of TCP congestion
window over time under the assumption that the window increases linearly between
two consecutive losses. We call this reconstructed window evolution the Exact Fluid
Model and we use it below as a reference. We try then to derive simple closed
form expressions for the throughput of the exact fluid model, and therefore for the
throughput of TCP, using simple versions of our general model.

Our experimentation consists of a long-life New-Reno TCP connection running
between clope.inria.fr at INRIA and nessie.essi.fr at ESSI, both located in
the technology park Sophia Antipolis in France. The two machines are connected
to the same metropolitan network. The TCP connection is run eleven times for
approximately 20 minutes each at the most busy periods (between 10 am and 2
pm). The trace of the connection is captured at the source using the tcpdump tool
and a program is developed to analyze the traces in order to find the moments at
which the congestion window is divided by two. We noticed that most of the time,
the loss of packets is detected with the Fast Retransmit algorithm (3 Duplicate
ACKs) [12]. We noticed also that the maximum window advertised by the receiver
is rarely reached due to working at busy periods. Thus, we can expect that our
fluid model approximates correctly the behavior of the congestion window.

4.1 The basic model

We consider here the very simple case where the path has a single state and where
the transmission rate is divided once by two at every potential loss moment. We
assume that the times between losses are iid. This gives the following expression
for the throughput,

(2)
BIX(0)] = ad + Lo (7)

Obviously, if times between losses are really iid, this model must give very close
result to the throughput of the exact fluid model. And indeed, in our experiments we
did not find a significant correlation between inter-loss times. Figure 2 confirms this
conclusion. The throughput given by formula (7) follows closely the one given by
the exact fluid model. However, to use formula (7) for the throughput calculation,
one must know the second moment of inter-loss times. Usually, this quantity is
difficult to find since it requires the knowledge of all inter-loss times for the modelled
connection. Note that, by contrast, d can be easily calculated by dividing the total
time of the connection by the number of losses. The number of losses in turn can be
calculated using the packet loss probability. One way to eliminate d® is to express
it as a function of d. For example, one can assume that inter-loss times form a
Poisson process and hence take d® = 2d%. The problem with this solution is that
it hides the impact of burstiness and expresses the throughput only as a function of



the average loss rate. Indeed in Figure 2, the throughput calculated according to the
Poisson assumption does not match well the throughput of the exact fluid model.
The reason for this mismatch is clearly explained by Figure 3 where we plot the
histogram of inter-loss times. This figure shows the deviation of the inter-loss time
distribution from the exponential shape. This deviation is caused by the appearance
of bursts of losses which causes the pulse of probability around the origin. Indeed,
we noticed from the real traces of a TCP connection that the congestion window
is divided multiple times by two when a congestion occurs and this due to the loss
of packets in multiple consecutive Round Trips (see also Figure 1). However, the
important notice we made from Figure 3 is that the time between bursts can still be
well approximated by the exponential distribution. Figure 4 shows the distribution
of times between losses after the elimination of the pulse around the origin. In the
next two sections, we will present two methods to account for this bursty behavior
of losses.

INRIA - ESSI
2400 . ‘ ‘ ‘
Exact Fluid Model —
1ID losses VA
Poisson losses K

2200 |-

N

=1

1S3

=3
T

1800

1600 |

TCP throughput (kbps)

1400 |-

10.5 11 11.5 12 125 13 135 14
Time (hours)

1200 L .

Fig. 2. Comparison of Poisson, iid and exact fluid models

4.2 The aggregate loss method

As was noticed in Figure 3, the inter-loss time distribution is a mixture of two dis-
tributions, one around the origin represents the time between losses within bursts
and another away from the origin represents the time between bursts. This prompts
us to aggregate the losses inside a burst into a single loss and to divide the transmis-
sion rate upon an aggregate loss occurrence (or a burst occurrence) by two power
the number of aggregated losses inside the burst. The aggregate loss process can
be considered now as a Poisson process. Upon the arrival of an aggregate loss, the
transmission rate is divided by a random factor that can be greater than two. The
question that one may ask here is how to characterize a burst, in other words how
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to decide that two consecutive losses are within the same burst or within two dif-
ferent bursts. In this section we use the following empirical method: we look at the
distribution of inter-loss times and to try to find a point which clearly separates the
two distributions. We zoom in Figure 5, the distribution of inter-loss times (Fig-
ure 3) around the origin. It is clear that two bursts are separated by approximately
6 =0.4s. We use this ¢ for the identification of bursts. In the following, we present
two different ways to describe the behavior of the random reduction factor. The
first way is to assume that it is iid. The second way is to model it with a Markov
chain.
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120 T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 5. Histogram of inter-loss times within bursts

First, let us consider the case of iid reduction factor. The evolution of the
transmission rate in this case is given by

Xn+1 = Aan + aDna

where the reduction factor A, has a distribution function F(a). D, is the time
between bursts which can be approximated by a Poisson process. Of course, this
can be viewed as a particular case of our general model where the path of the
connection has only one state. The general results of Section 2 can be specified for
the present case as follows,

ad

1—-a

E[X,] =

)

ada 1 d®
EIX(1)] = T—at3% (®)

&1
I



where @ = fol adF(a). Here, the reduction factor A, is a discrete random variable
which takes the values multiple of 1/2. Thus, we calculated a as

m
a=>
i=1

where the probabilities p; are estimated from the TCP connection trace. Let n be
the total number of aggregate losses in the trace. We can write

| =

ipia

[\V]

n

pi=Y Yar=1/2"}/n

k=1

Note here that the main gain from aggregation, is that the second moment of
D, can now be taken as 2d?. Furthermore, from Figure 4, one can see that the
distribution of D, is a shifted exponential distribution given that the time between
two aggregate losses is always larger than 6. Thus, a more correct estimation for
the second moment is given by

d® = §% — 26d + 2d°.
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Fig. 6. Transitions of the multi-state Markov chain

Next we consider the case where the reduction factor is modelled using a Markov
chain. We associate a multi-state Markov chain to the path. The transitions of the
chain occur upon aggregate loss arrival. The state of the chain when an aggregate
loss arrives is equal to the number of losses within the burst. The Markov chain
determines then how many times the transmission rate is divided by two. Figure 6
explains how the transmission rate and the Markov chain change together. A inter-



val of 0.4s is used to identify the losses belonging to the same burst. The evolution
of the transmission rate in this case can be described as follows,

N
Xnt1 =) _a;l{Yn = j}Xu +aDn, )

i=1

where a; is constant equal to 1/2j and where Y, is the state of the Markov chain. D,,
again represents the time between bursts which can be approximated by a Poisson
process. As a corollary of Theorem 3, the throughput can be written as

ad®

F=EXM)] =) ajz;+ > (10)

i=1

The estimations of transition probabilities p;j,7,7 = 1,..., N, of the Markov chain
{Y%} are identified from the trace of the TCP connection as follows,

n—1 n—1
Big =3 1{Vier = j[Vi =i}/ > 1{Vi =1}
k=1 k=1

where the Markov chain state Yj corresponds to the number of transmission rate
reduction at the event of the kth aggregate loss and n is the total number of
aggregate loss events. If the number of rate reductions at the aggregate loss moment
is greater than N, we assume that the Markov chain is in the state V. Since N is
chosen so that it is unlikely to have the rate reduced more than N times during
a burst, this assumption should not cause any problem. In the following we take
N =4.

Using the maximum distance of 0.4s between losses within a burst (Figure 5),
we aggregate in bursts the moments at which the transmission is divided by two.
As before, we assume that the resulting aggregate loss process is Poisson. We ap-
proximate the throughput of the exact fluid model using equations (8) and (10).
Figure 7 shows the results. The iid batch model denotes the first case where the
number of losses in a burst is described by an iid random variable. The Markovian
batch model denotes the second case where this number is described by a Markov
chain. We notice that the two methods give approximately the same result which
means that the number of losses within a burst is really iid distributed. The result
is closer to that of the exact fluid model than the throughput calculated for the
Poisson model. However, it is not as good as we expected. The main reason is that
we are ignoring the length of a burst which is here comparable to the time between
bursts. Possibly, for other connections where losses are more clustered together, this
batch method will have a better performance. One may expect that the Markov
version of the batch model will perform better than the iid version on connections
where strong correlation exists between burst sizes. In the next subsection, we will
present a model that accounts for the time the connection spends during a burst.
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4.3 The two-state model

Consider a particular case of our general model where the path switches between
two different states. Namely, let N = 2 and let the state 1 corresponds to the Good
state of the path and the state 2 to the Bad state. We also denote the transition
probabilities of the Markov chain as follows: p11 =g, p1a =§ = 1—g, pa1 =b=1—b
and p22 = b. The stationary distribution of this chain are equal to,

b g

T ==, Ty = =—
1 b+g 2 b+g

The following results can be easily obtained as straightforward corollaries of the
theorems for the general N state model.

Corollary 1 The Laplace Stieltjes Transforms W (s,i),7 = 1,2, are the solutions
of the following implicit equalions,

W(s,1) = D*(as)[g/o W(as,1)dF1(a)]+D*(as)[5/0 W (as, 2)dF> ()],

W(s,2) = D" (ozs)[_(j‘/0 W(as,1)dF"(a)] + D* (as)[b/o W (as,2)dF?(a)].

We shall now proceed to obtain explicit expressions for the first and second
moments of the transmission rate at potential loss instants.

Corollary 2 The first moment of the transmission rale at a potential loss moment
s given by
E[Xn] = —+ T2,



a2(7r2 — b) +7T1
1—a2b—aig+aia(g+b—1)

(11)

ai(m —g) + m

12
1—a2b—aig+aia(g+b—1) (12)

o = ad

Corollary 3 The second moment of the transmission rate at a potential loss mo-
ment is given by
BX] = 2{? + 2",

where

L2 2ada1a22)x1(l —g—0b)+2ad(arr2g + a1z19) + a2d(2)(a22)7r2 +m - bagQ))
v 1—0a® _pa® _ 4@,@ (1 _,_
gay ) a;’ay (1 —g—0b)
(13)

RO 2ada§2)a2:p2(1 —g—0b)+2ad(a171g + azz2b) + a2d(2)(a§2)7r1 + Ty — ga?))
Y=

(1 — gagm — bagQ) — agmagm(l —g— b))

(14)

Corollary 4 The throughput, or the time-average of the transmission rate, is given

by
d®)
E[X(t)] = ai1x1 + azx2 + 5(17,

where 1 and xz are given in Equations (11) and (12).

Corollary 5 The second moment of the transmission rate at an arbitrary time
instant 1s given by

aixy + azxz) |1 »d®
ot

42
BEC 0] = e + ofaf?) 4 2010 3% a0

(2) (2)
1 2

where x1 and x> are given in Equations (11) and (12) and z;” and x5~ in Equations

(13) and (14) respectively.

Next we specialize the model further by taking A%, for j € {1,2} and Vn > 0, to
be discrete random variables with values in {0.5,1}. Note that A% = 0.5 represents
the case when a potential loss is transformed into a real loss, namely when it causes
a reduction in the transmission rate, whereas A%, = 1 represents the case when



the transmission rate is not reduced at the potential loss moment. We get here the
same model as that described in [1]. Note that in [1] we validate via simulation a
particular case of this two-state model that corresponds to pg =0, pg = 1. In the
present work, we show how to set the different parameters of the two-state model
in its general case. {Dn,} is the sequence of the times between potential losses. We
also denote pg := P{AL = 0.5} = 1 — P{AL = 1}, as the probability of the event
when a potential loss is transformed into a real loss in the Good state. Analogously,
we define the probability of a potential loss becoming a real loss in the Bad state
as pp 1= P{A2 = 0.5} = 1 — P{A2 = 1}. We assume that pg < pg. Clearly,

1 1
a1=1—5pg and azzl—EpB.

Next we demonstrate how the introduced above parameters as well as d and the
transition matrix P can be determined from the data in real TCP traces. First, we
obtain an estimation of the transition matrix for the Markov chain {Y;}. Recall
that this is the Markov chain obtained when looking at the state of the channel at
potential loss moments. Let {S.} be a sequence of inter-loss times measured from
a TCP trace. We need to determine when the path is in the “Good” state and when
it is in the “Bad” state. We use the following simple method. Choose some time
interval 7. We will explain later how to make this choice. If the inter-loss time S, is
less than 7 then the path is in the Bad state, otherwise the path is considered to be
in the Good state. If two or more inter-loss times correspond to the same state, we
will merge these intervals together and call the new interval L§ or Lf depending
on the state. Note that these new intervals represent the time during which the
path of the connection is either in the Good or in the Bad state. Denote ng (resp.
ng) the number of the time intervals S§ (resp. S¥) during the time interval that
we use for measurement. Then, the evolution of the path of the TCP connection
can be described by a two-state continuous time Markov process with the following
infinitesimal generator matrix,

OB —O0OB

Q= [‘“G i ] (15)

where the rates og and op are calculated as follows:

- 1 na - 1 ng
G = = n ) B = = n .
E[SF] ™ R8¢ E[SP] T XRE, S

Note that on some paths, say a wireless link, this Markov chain is a priori known and
can be directly used without the need to look at the trace of the TCP connection.
In case it is not known, we need to define it using the parameter 7 as described
above. We present now two approaches for the determination of 7. The first one
is more empirical. We look at the histogram of the inter-loss times (Figure 3) and
we choose T as the time separating the two distributions it encloses (0.4s in the
figure). The second method is less empirical and was used in the context of Markov-
modulated Poisson processes [10]. In this second approach we define parameter 7
as the expectation of the inter-loss times, that is

1 n
7= B[S ~ ~ > Sk,
k=1



where n is the total number of inter-loss intervals we get from the trace. Given
the continuous time Markov chain associated to the channel, we can now extract
the parameters of the discrete time Markov chain embedded at the potential loss
moments. We use for this purpose the uniformization technique [14]. Let us choose
the potential loss process {D,} as a Poisson process with intensity 1/d higher
than both o and op. For example, a reasonable choice of d is the estimation of
the average Round Trip Time of the connection. According to the uniformization
technique [14], the state of the path described by the Markov process (15) and
sampled at the moments of potential losses can be equivalently given by a discrete
time Markov chain with the following transition matrix,

1 —dog dog

P= dop 1—dog

Having chosen d and calculated og and op from the trace, we can easily deduce
the parameters b and g of the loss model. Namely, § = dog and b = dog. Now we
determine pg and pp. Let wf (wf) be the number of real losses in the time interval
S¢ (resp. in SP). Then the probabilities pe and pp are given by

_ Py 1‘*’!? de 1wk >orZ 1wk de 1Wk
rc =
SRS Sg/d T YoRE, SE SR, SE/d - YRE S

1/Ag and 1/Ap represent the average time between window reductions in the Good
and in the Bad state respectively. For the same eleven traces obtained in our exper-
iments, we calculated the parameters of the model. We use 7 = § =0.4s to separate
the Bad state from the Good state. In Figure 7, we compare the result with that
of the exact fluid model. A close match is noticed. In addition to the good results
and the closed form expression it provides, this model has the advantage of having
simple parameters. All what we need to approximate the throughput is the para-
meters of the two-state Markov chain associated to the path and the intensity of
losses in both states. Concerning the parameter d, it is enough to choose in a way
that the intensity of potential losses 1/d is higher than the intensity of losses in the
Bad state \g.

=d\g, pp= = d)\p.

5 Concluding Remarks

We considered in this paper a multi-state Markov path for describing the loss
process experienced by a connection that has a linear window increase between
losses, and multiplicative decrease upon a loss event. The modelling of some chan-
nels using a Markov chain with more than two states have long been advocated,
see e.g. [11,13].

Using an approach based on the Laplace Stieltjes Transform, we derived explicit
expressions for the two first moments of the transmission rate of the connection just
prior to losses, as well as the two first moments of the steady state throughput. We
note that the expression for the second moment of the throughput could be useful
in designing TCP friendly protocols for real time applications [6] in which other
parameters of the linear increase and multiplicative decrease are chosen so as to
maintain the same expected throughput (as a function of the loss process and
of the round-trip time) as the original TCP protocol. (The latter requirement on



the expected throughput stmes from fairness arguments.) Such applications (e.g.
interactive voice or video connections) typically require a smaller variance of the
throughput than the one of the original TCP in order to ensure a reasonable quality
of service.

We have recently succeeded also in analysing non Markovian channels [2], and

obtain similar performance measures using a completely different approach (that
relies on some covariance functions of the interloss times). The approach obtained
here, in contrast, leads to formulae that involve only a finite and small number of
parameters that can be easily computed. In addition, we proposed here methods
for the identification of such parameters.
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