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Abstract� In this paper we analyze the performance of a TCP�like �ow control
mechanism� The transmission rate is considered to increase linearly in time until
the receipt of a congestion noti�cation �via loss detection in context of TCP� where
the transmission rate is multiplicatively decreased� We introduce a general model
based on a multi�state Markov chain for the moments at which the congestion is
detected� With this model� we are able to account for correlation and burstiness in
congestion moments� Furthermore� we specify several simple versions of our general
model and then we identify their parameters from real TCP traces�

� Introduction

We study in this paper the performance of an additive�increase multiplicative�
decrease �ow control protocol� This is the kind of control used by TCP� the widely�
used transport protocol of the Internet ���� TCP is used as a reference through
the present work� however we anticipate that our results will be also applicable for
other �ow control mechanisms� A �uid approach is used to model the controlled
�ow� The transmission rate of the source is assumed to grow linearly at a rate ��
In the case of TCP where the �ow is controlled via a congestion window� the trans�
mission rate at any instant is equal to the window size divided by the Round Trip
Time of the connection� The growth of the transmission rate continues until the
source receives a noti�cation of congestion from the network� In case of TCP� the
congestion is inferred from the loss of packets� It is an implicit noti�cation com�
pared to the explicit noti�cation used by other �ow control protocols as the ABR
service in ATM or the ECN proposal in the Internet� We call the moment at which
the source reduces its transmission rate a loss moment� Upon detection of a loss�
the transmission rate is scaled down by a �possibly random� factor a � ��� ��� The
scaling factor depends on many factors as the version of TCP� the number of packet
losses in the congestion period and the way with which the loss is detected �e�g�
duplicate ACK or Timeout ������ Note that by choosing in some instants a � � one
can introduce potential loss instants�
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Fig� �� TCP window evolution

The study of the performance of a �ow control mechanism requires a character�
ization of the moments at which the transmission rate is reduced� These moments
can be seen as a point process� where the appearance of a point corresponds to
the appearance of a congestion signal or a loss in the context of TCP� causing a
reduction in the transmission rate� Simple models as Poisson or iid models may not
work in some cases where losses present some kind of burstiness or correlation� For
example in Figure � one can observe a scenario where the moments of transmission
rate reduction are clustered together� This �gure corresponds to the window size
evolution of a New Reno ��� TCP connection running between two sites at the tech�
nology park Sophia Antipolis� Normally in TCP� the window is divided by two upon
congestion detection� but we see in this �gure a more severe reduction due to mul�
tiple consecutive division of the congestion window by two� In a previous paper ����
we present a two�state Markovian model to account for burstiness of losses� In that
paper� we considered a lossy path with two states Good and Bad together with
potential loss moments� The transmission rate is reduced upon potential losses� A
potential loss can transform into a real loss with probability pG in the Good state
and with probability pB in the Bad state �pG � pB�� The time between potential
loss moments is assumed to be independently and identically distributed� Our main
contribution in ��� is to show that the throughput of the �ow control mechanism
increases with the increase in burstiness of losses� However� we validated the model
only via simulations� but we did not provide any algorithm for the identi�cation of
its parameters from real traces�

The present work is an extension of our previous work ��� to a multi�state
Markovian case� Being motivated by some experimentation results �e�g� Figure ���
we allow the path of the connection to be in more than two states� The need for
more than two states for describing the channel is also motivated by modelling
results from ������� on mobile satellite channels� where it was shown that one needs
typically at least four states� In ���� the scaling factor a is a random variable equal
to either ��� �the potential loss becomes a real loss� or � �a potential loss is not



transformed into a real loss�� Here we propose to study the scaling factor with a
general distribution that depends on the state of the path� We present then some
applications of our general model� These applications can be seen as di�erent ways
to infer the parameters of the general model from a real TCP trace� In particular� we
provide a method for the parameter identi�cation of our model in ���� A comparison
between the di�erent applications is provided to see which one is the most e�cient
in predicting TCP performance�

In the following section� we present the general multi�state multi�reduction
model for the �ow control mechanism� This general model is analyzed in Section ��
In Section �� we provide several particular cases of the general model as well as their
application to TCP modelling� We conclude Section � by a comparison between the
di�erent particular cases�

� The model

Let X�t� be the transmission rate at time t� In case of TCP� it is equal to the
current window size divided by the Round Trip Time of the connection� Let K �
f�� 	� � � � � Ng be the set of possible states of the path� We allow losses to occur in
any of the N states� the probability of the occurrence of losses in each of these states
may be di�erent� To that end� we de�ne a series of potential losses occurring with
a certain distribution of times between potential losses� Let Tn denote the time at
which the nth potential loss occurs and let Xn denote the transmission rate just
prior to Tn� The pair fTn� Xng can be considered as a marked point process ����
Let Dn� n � Z be a sequence of times between potential losses
 Dn � Tn�� � Tn�
Dn are assumed to be i�i�d� with expectation d� second moment d��� and Laplace
Stieltjes Transform D��s� � E�e�sDn �� Let Yn be the state of the channel at the nth
potential loss instant� We assume further that the sequences fYng and fDng are
independent� We assume that fYng is an ergodic Markov chain with the following
transition probabilities�

pij � PfYn�� � jjYn � ig� � � i� j � N

Let P � fpijg
N
i�j�� and let � be the stationary distribution of the Markov chain

associated to the path� Next we de�ne N random variables �discrete or continuous��
fAj

n
 � � j � Ng� which describe the behavior of the transmission rate when a
potential loss occurs
 is it reduced and if so by how much� These variables fAj

n
 � �
j � Ng correspond to the N possible states of the model for losses� Each random
variable Aj

n� � � j � N � takes values in the interval ��� ��� It can take rational or real
values within this interval� The choice of the interval ��� �� stems from the fact that
we are scaling down the transmission rate at the instant of losses� The set includes
� since it corresponds to the case when a potential loss is not transformed into a
real loss and so the transmission rate is unaltered� Aj

n� � � j � N has a distribution
function F j�a� for all n � Z� That is� we take the distribution of Aj

n to be time
homogeneous� Denote

ai ��

Z �

�

adF i�a�� � � i � N�



We assume that there is at least one i for which ai � �� The dynamics of the system
can be given by the following stochastic recurrent equation

Xn�� �
NX
j��

Aj
nXn�fYn � jg � �Dn� ���

� Performance Analysis

First we observe that equation ��� is a particular case of stochastic linear di�erence
equations of type Xn�� � AnXn�Bn� where fAn� Bng is a stationary and ergodic
processes �one can consider the Markov chain fYng in the stationary regime�� It
follows from ��� and ��� that such equations have a stationary solution X�n given by�

X�n �
�X
k��

�

n��Y
i�n�k

Ai�Bn�k���

The stationary regime exists under the assumption that there is at least one i for
which ai � �� Moreover� for any arbitrary starting point X�� the sequence fXng
will converge almost surely to this stationary regime� that is

lim
n��

jXn �X�nj � �� P�a�s�

Therefore� we can assume without loss of generality that the process fXng is in
the stationary regime in order to compute the limit distribution� Next we compute
the moments of Xn in this regime� Let us denote�

xi � E�Xn�fYn � ig� � � i � N�

Obviously� the expectation of Xn is given by�

E�Xn� �
NX
i��

xi�

To compute xi� � � i � N � we use the Laplace Stieltjes Transform approach�
Namely� de�ne the following Laplace Stieltjes Transforms


W �s� i� � E
h
e�sXn�fYn � ig

i
� � � i � N�

where we assume that Xn is in the stationary regime�

Theorem �� The Laplace Stieltjes Transforms W �s� j�� � � j � N � are solutions
of the following implicit equations�

W �s� j� � D���s�

�
NX
i��

pij

Z �

�

W �as� i�dF i�a�

�
� � j � N ���



Proof� We write for any j� � � j � N �

E�e�sXn���fYn�� � jg� �

NX
i��

E�e�sXn���fYn�� � jgjYn � igP �Yn � i�

�

NX
i��

E�e�sXn�� jYn � i�E��fYn�� � jgjYn � i�P �Yn � i�

�
NX
i��

E�e�s�A
i
n
Xn��Dn�jYn � i�pijP �Yn � i�

� D���s�
NX
i��

Z �

�

E�e�saXn jYn � i�dF i�a�pijP �Yn � i�

� D���s�
NX
i��

pij

Z �

�

E�e�saXn�fYn � ig�dF i�a�

This results in the implicit equations ���� ut
Although the Laplace Stieltjes Transforms in Theorem � are only given as solutions
of implicit equations� all moments of Xn�fYn � ig for � � i � N �in the stationary
regime� can be obtained explicitly� Note that

E�Xk
n�fYn � ig� � ����k

dkW �s� i�

dsk

����
s��

�

We shall now proceed to the calculation of expressions for the �rst and second
moments of Xn�fYn � ig for � � i � N from the implicit expressions of the
Laplace Stieltjes transforms� Upon di�erentiating the implicit expressions ��� and
using the following relations�

W ��� i� � �i� � � i � N�

D���� � ��
dD���s�

ds
js�� � ��d�

we get N linear equations in N unknowns


xj �

NX
i��

pijaixi � �d�j � � j � N� ���

We shall now write the aboveN equations in matrix notation� Let x � �x�� x�� � � � � xN �
and

A �

�
����
a� � � � � �
� a� � � � �
���

���
� � �

���
� � � � � aN

�
			
 �



Then the equations ��� take the form

x � xAP � �d� ���

Recall that � � ai � � for all i� Furthermore� we assume that there is at least one i
for which ai � �� The latter guarantees that the matrix AP is substochastic �there
is an i for which

PN

j�� pijai �
P

j�� pij � ��� Recall that moduli of all eigenvalues
of a substochastic matrix are strictly less than one� Therefore� matrix I � AP has
no zero eigenvalue� and consequently� equation ��� has a unique solution� Thus we
can state the following result


Theorem �� Let Xn be in the stationary regime� Then E�Xn� is given by

E�Xn� � xe � �d��I �AP ���e

where e is a vector of ones�

To compute the second moment of Xn� we �rst de�ne

x
���
i � E�X�

n�fYn � ig�� � � i � N�

Clearly�

E�X�
n� �

NX
i��

x
���
i �

Also let x��� � �x
���
� � x

���
� � � � � � x

���
N � and

A��� �

�
�����
a
���
� � � � � �

� a
���
� � � � �

���
���

� � �
���

� � � � � a
���
N

�
				
 �

where

a
���
i �

Z �

�

a�dF i�a�� � � i � N�

Then in the next Theorem we give an explicit expression for E�X�
n��

Theorem �� Let fXng be in the stationary regime and there is at least one i for
which ai � �� Then E�X�� is given by

E�X�
n� � x���e �

�
	�d�xAP � � ��d����

�
�I �A���P �

��
e�

Proof� Di�erentiating twice the implicit expressions ���� we obtain

d�W �s� j�

ds�
� D���s�

�
NX
i��

pij

Z �

�

d�W �as� i�

ds�
dF i�a�

�

�
d�D���s�

ds�

�
NX
i��

pij

Z �

�

W �as� i�dF i�a�

�

� 	
dD���s�

ds

�
NX
i��

pij

Z �

�

dW �as� i�

ds
dF i�a�

�



Now evaluating the above derivatives at s � �� we get

x
���
j �

NX
i��

pija
���
i x

���
i � 	�d

NX
i��

pijaixi � ��d����j �

Next we rewrite the equations in matrix notation

x��� � x���A���P � 	�d�xAP � � ��d�����

Solving for x���� we get

x��� �
�
	�d�xAP � � ��d����

�
�I �A���P �

��

The existence of �I �A���P �
��

is guaranteed� because A���P is again substochastic

as the sum of the elements of the ith row of A���P is
PN

j�� pija
���
j �

PN

j�� pij � ��
ut
Observe that we computed the expectation of the transmission rate with respect to
loss instants� This expectation is also referred to as Palm expectation in the context
of marked point processes ���� Of course� the most interesting is the calculation of
the expectation of the transmission rate at an arbitrary time moment� For ergodic
processes the latter expectation coincides with the following time average P�a�s��


x � lim
T��

�

T

Z T

�

X�t�dt

This is no other than the throughput of the transfer� It is the total volume of
transmitted data over the transfer time� We proceed to evaluate this throughput
by employing the concept of Palm probability�

Theorem �� The throughput� or the time�average transmission rate� is given by


x � E�X�t�� �
NX
i��

aixi �
�

	
�
d���

d
� 
axT �

�

	
�
d���

d
� ���

where a � �a�� a�� � � � � aN � and x is given in Theorem ��

Proof� To compute E�X�t�� one can use the following inversion formula �see e�g��
��� Ch�� Sec���

E�X�t�� �
�

d
E��

Z T�

�

X�t�dt� �	�

where E���� is an expectation associated with Palm distribution� Thus we can write�

E�X�t�� �
�

d
E��

Z T�

�

�

NX
i��

Ai
�X��fY� � ig� �t�dt�



Because of the independence of Xn and fDk� k � ng and also because of the
independence of fDng and fYng we can write�

E�X�t�� �
�

d
�
NX
i��

�
E��Ai

��E
��X��fY� � ig�

�
E��D��� �

�

	d
E��D�

� �

�
NX
i��

aixi �
�

	
�
d���

d
� axT �

�

	
�
d���

d

ut
In the next theorem we evaluate the second moment of the transmission rate

at an arbitrary time instant�

Theorem �� Let d��� be the third moment of the time between potential losses� The
second moment of the input rate over a long time interval is equal to�


x��� � lim
t��

�

t

Z t

�

X��t�dt

�
�

�
��

d���

d
�

�

d
�d���axT � a���x���

T

where a��� � �a
���
� � a

���
� � � � � � a

���
N � and x��� is given in Theorem ��

Proof� Again by the inversion formula from Palm probability�

E�X��t�� �
�

d
E��

Z T�

�

X��t�dt�

�
�

d
E�

�
�Z T�

�



NX
i��

Ai
�X��fY� � ig� �t

��

dt

�



�
�

d
E�

�
��D�

�

�
� �D�

�

NX
i��

Ai
�X��fY� � ig�

NX
i��

�Ai
��
�
X�
��fY� � igD�

�

�
�

�
��

d���

d
�

�

d
�d���

NX
i��

aixi �

NX
i��

a
���
i x�i

�
�

�
��

d���

d
�

�

d
�d���axT � a���x���

T

ut
Having obtained the expressions for the general case of N states we shall now focus
on some particular cases in the following sections� We show how the parameters of
our model can be inferred from a real trace of a TCP connection� Di�erent possible
applications of the model to the same trace are presented and the results are then
compared to show which method is the most e�cient� We will see in the sequel how
much the model is general and how multiple sub�models can be derived from it by
setting di�erently the parameters�



� Speci�cations of the general model

In this section� we present di�erent ways for the application of our general model to
predict the performance of a TCP�like �ow control mechanism� We chose to work
with real loss processes� From the trace of a TCP connection� we determine the
moments of window reduction� We reconstruct then the evolution of TCP congestion
window over time under the assumption that the window increases linearly between
two consecutive losses� We call this reconstructed window evolution the Exact Fluid
Model and we use it below as a reference� We try then to derive simple closed
form expressions for the throughput of the exact �uid model� and therefore for the
throughput of TCP� using simple versions of our general model�

Our experimentation consists of a long�life New�Reno TCP connection running
between clope�inria�fr at INRIA and nessie�essi�fr at ESSI� both located in
the technology park Sophia Antipolis in France� The two machines are connected
to the same metropolitan network� The TCP connection is run eleven times for
approximately �� minutes each at the most busy periods �between �� am and �
pm�� The trace of the connection is captured at the source using the tcpdump tool
and a program is developed to analyze the traces in order to �nd the moments at
which the congestion window is divided by two� We noticed that most of the time�
the loss of packets is detected with the Fast Retransmit algorithm �� Duplicate
ACKs� ����� We noticed also that the maximum window advertised by the receiver
is rarely reached due to working at busy periods� Thus� we can expect that our
�uid model approximates correctly the behavior of the congestion window�

��� The basic model

We consider here the very simple case where the path has a single state and where
the transmission rate is divided once by two at every potential loss moment� We
assume that the times between losses are iid� This gives the following expression
for the throughput�

E�X�t�� � �d�
�

	
�
d���

d
� ���

Obviously� if times between losses are really iid� this model must give very close
result to the throughput of the exact �uid model� And indeed� in our experiments we
did not �nd a signi�cant correlation between inter�loss times� Figure � con�rms this
conclusion� The throughput given by formula ��� follows closely the one given by
the exact �uid model� However� to use formula ��� for the throughput calculation�
one must know the second moment of inter�loss times� Usually� this quantity is
di�cult to �nd since it requires the knowledge of all inter�loss times for the modelled
connection� Note that� by contrast� d can be easily calculated by dividing the total
time of the connection by the number of losses� The number of losses in turn can be
calculated using the packet loss probability� One way to eliminate d��� is to express
it as a function of d� For example� one can assume that inter�loss times form a
Poisson process and hence take d��� � 	d�� The problem with this solution is that
it hides the impact of burstiness and expresses the throughput only as a function of



the average loss rate� Indeed in Figure �� the throughput calculated according to the
Poisson assumption does not match well the throughput of the exact �uid model�
The reason for this mismatch is clearly explained by Figure � where we plot the
histogram of inter�loss times� This �gure shows the deviation of the inter�loss time
distribution from the exponential shape� This deviation is caused by the appearance
of bursts of losses which causes the pulse of probability around the origin� Indeed�
we noticed from the real traces of a TCP connection that the congestion window
is divided multiple times by two when a congestion occurs and this due to the loss
of packets in multiple consecutive Round Trips �see also Figure ��� However� the
important notice we made from Figure � is that the time between bursts can still be
well approximated by the exponential distribution� Figure � shows the distribution
of times between losses after the elimination of the pulse around the origin� In the
next two sections� we will present two methods to account for this bursty behavior
of losses�
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Fig� �� Comparison of Poisson� iid and exact �uid models

��� The aggregate loss method

As was noticed in Figure �� the inter�loss time distribution is a mixture of two dis�
tributions� one around the origin represents the time between losses within bursts
and another away from the origin represents the time between bursts� This prompts
us to aggregate the losses inside a burst into a single loss and to divide the transmis�
sion rate upon an aggregate loss occurrence �or a burst occurrence� by two power
the number of aggregated losses inside the burst� The aggregate loss process can
be considered now as a Poisson process� Upon the arrival of an aggregate loss� the
transmission rate is divided by a random factor that can be greater than two� The
question that one may ask here is how to characterize a burst� in other words how
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to decide that two consecutive losses are within the same burst or within two dif�
ferent bursts� In this section we use the following empirical method
 we look at the
distribution of inter�loss times and to try to �nd a point which clearly separates the
two distributions� We zoom in Figure �� the distribution of inter�loss times �Fig�
ure �� around the origin� It is clear that two bursts are separated by approximately
� ����s� We use this � for the identi�cation of bursts� In the following� we present
two di�erent ways to describe the behavior of the random reduction factor� The
�rst way is to assume that it is iid� The second way is to model it with a Markov
chain�
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Fig� �� Histogram of inter�loss times within bursts

First� let us consider the case of iid reduction factor� The evolution of the
transmission rate in this case is given by

Xn�� � AnXn � �Dn�

where the reduction factor An has a distribution function F �a�� Dn is the time
between bursts which can be approximated by a Poisson process� Of course� this
can be viewed as a particular case of our general model where the path of the
connection has only one state� The general results of Section � can be speci�ed for
the present case as follows�

E�Xn� �
�d

�� 
a
�


x � E�X�t�� �
�d
a

�� 
a
�

�

	
�
d���

d
� ���



where 
a �
R �
�
adF �a�� Here� the reduction factor An is a discrete random variable

which takes the values multiple of ��	� Thus� we calculated 
a as


a �
mX
i��

�

	i
pi�

where the probabilities pi are estimated from the TCP connection trace� Let n be
the total number of aggregate losses in the trace� We can write

pi �

nX
k��

�fak � ��	ig�n

Note here that the main gain from aggregation� is that the second moment of
Dn can now be taken as 	d�� Furthermore� from Figure �� one can see that the
distribution of Dn is a shifted exponential distribution given that the time between
two aggregate losses is always larger than �� Thus� a more correct estimation for
the second moment is given by

d��� � �� � 	�d � 	d��
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Fig� 	� Transitions of the multi�state Markov chain

Next we consider the case where the reduction factor is modelled using a Markov
chain� We associate a multi�state Markov chain to the path� The transitions of the
chain occur upon aggregate loss arrival� The state of the chain when an aggregate
loss arrives is equal to the number of losses within the burst� The Markov chain
determines then how many times the transmission rate is divided by two� Figure 	
explains how the transmission rate and the Markov chain change together� A inter�



val of ���s is used to identify the losses belonging to the same burst� The evolution
of the transmission rate in this case can be described as follows�

Xn�� �

NX
j��

aj�fYn � jgXn � �Dn� ���

where aj is constant equal to ��	j and where Yn is the state of the Markov chain� Dn

again represents the time between bursts which can be approximated by a Poisson
process� As a corollary of Theorem �� the throughput can be written as


x � E�X�t�� �

NX
j��

ajxj �
�d���

	d
� ����

The estimations of transition probabilities �pij � i� j � �� ���� N � of the Markov chain
fYkg are identi�ed from the trace of the TCP connection as follows�

�pij �
n��X
k��

�fYk�� � jjYk � ig�
n��X
k��

�fYk � �g

where the Markov chain state Yk corresponds to the number of transmission rate
reduction at the event of the kth aggregate loss and n is the total number of
aggregate loss events� If the number of rate reductions at the aggregate loss moment
is greater than N � we assume that the Markov chain is in the state N � Since N is
chosen so that it is unlikely to have the rate reduced more than N times during
a burst� this assumption should not cause any problem� In the following we take
N � ��

Using the maximum distance of ���s between losses within a burst �Figure ���
we aggregate in bursts the moments at which the transmission is divided by two�
As before� we assume that the resulting aggregate loss process is Poisson� We ap�
proximate the throughput of the exact �uid model using equations ��� and �����
Figure � shows the results� The iid batch model denotes the �rst case where the
number of losses in a burst is described by an iid random variable� The Markovian
batch model denotes the second case where this number is described by a Markov
chain� We notice that the two methods give approximately the same result which
means that the number of losses within a burst is really iid distributed� The result
is closer to that of the exact �uid model than the throughput calculated for the
Poisson model� However� it is not as good as we expected� The main reason is that
we are ignoring the length of a burst which is here comparable to the time between
bursts� Possibly� for other connections where losses are more clustered together� this
batch method will have a better performance� One may expect that the Markov
version of the batch model will perform better than the iid version on connections
where strong correlation exists between burst sizes� In the next subsection� we will
present a model that accounts for the time the connection spends during a burst�
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� Comparison between the di�erent methods

��� The two�state model

Consider a particular case of our general model where the path switches between
two di�erent states� Namely� let N � 	 and let the state � corresponds to the Good
state of the path and the state 	 to the Bad state� We also denote the transition
probabilities of the Markov chain as follows
 p�� � g� p�� � 
g � ��g� p�� � 
b � ��b
and p�� � b� The stationary distribution of this chain are equal to�

�� �

b


b� 
g
� �� �


g

b� 
g

The following results can be easily obtained as straightforward corollaries of the
theorems for the general N state model�

Corollary � The Laplace Stieltjes Transforms W �s� i�� i � �� 	� are the solutions
of the following implicit equations�

W �s� �� � D���s��g

Z �

�

W �as���dF ��a�� �D���s��
b

Z �

�

W �as�	�dF ��a���

W �s� 	� � D���s��
g

Z �

�

W �as���dF ��a�� �D���s��b

Z �

�

W �as�	�dF ��a���

We shall now proceed to obtain explicit expressions for the �rst and second
moments of the transmission rate at potential loss instants�

Corollary � The �rst moment of the transmission rate at a potential loss moment
is given by

E�Xn� � x� � x��



where

x� � �d
a���� � b� � ��

�� a�b� a�g � a�a��g � b� ��
����

x� � �d
a���� � g� � ��

�� a�b� a�g � a�a��g � b� ��
����

Corollary � The second moment of the transmission rate at a potential loss mo�
ment is given by

E�Xn� � x
���
� � x

���
� �

where

x
���
� �

	�da�a
���
� x���� g � b� � 	�d�a�x�
g � a�x�g� � ��d����a

���
� �� � �� � ba

���
� ��

�� ga
���
� � ba

���
� � a

���
� a

���
� ��� g � b�

�
����

x
���
� �

	�da
���
� a�x���� g � b� � 	�d�a�x�
g � a�x�b� � ��d����a

���
� �� � �� � ga

���
� ��

�� ga
���
� � ba

���
� � a

���
� a

���
� ��� g � b�

�
����

Corollary � The throughput� or the time�average of the transmission rate� is given
by

E�X�t�� � a�x� � a�x� �
�

	
�
d���

d
�

where x� and x� are given in Equations 	

� and 	
���

Corollary � The second moment of the transmission rate at an arbitrary time
instant is given by

E�X��t�� � a
���
� x

���
� � a

���
� x

���
� �

�d����a�x� � a�x��

d
�

�

�
��

d���

d
�

where x� and x� are given in Equations 	

� and 	
�� and x
���
� and x

���
� in Equations

	
�� and 	
�� respectively�

Next we specialize the model further by taking Aj
n� for j � f�� 	g and �n � �� to

be discrete random variables with values in f���� �g� Note that Aj
n � ��� represents

the case when a potential loss is transformed into a real loss� namely when it causes
a reduction in the transmission rate� whereas Aj

n � � represents the case when



the transmission rate is not reduced at the potential loss moment� We get here the
same model as that described in ���� Note that in ��� we validate via simulation a
particular case of this two�state model that corresponds to pG � �� pB � �� In the
present work� we show how to set the di�erent parameters of the two�state model
in its general case� fDng is the sequence of the times between potential losses� We
also denote pG �� PfA�

n � ���g � � � PfA�
n � �g� as the probability of the event

when a potential loss is transformed into a real loss in the Good state� Analogously�
we de�ne the probability of a potential loss becoming a real loss in the Bad state
as pB �� PfA�

n � ���g � �� PfA�
n � �g� We assume that pG � pB� Clearly�

a� � ��
�

	
pG and a� � ��

�

	
pB�

Next we demonstrate how the introduced above parameters as well as d and the
transition matrix P can be determined from the data in real TCP traces� First� we
obtain an estimation of the transition matrix for the Markov chain fYng� Recall
that this is the Markov chain obtained when looking at the state of the channel at
potential loss moments� Let fSng be a sequence of inter�loss times measured from
a TCP trace� We need to determine when the path is in the �Good� state and when
it is in the �Bad� state� We use the following simple method� Choose some time
interval � � We will explain later how to make this choice� If the inter�loss time Sn is
less than � then the path is in the Bad state� otherwise the path is considered to be
in the Good state� If two or more inter�loss times correspond to the same state� we
will merge these intervals together and call the new interval LGk or LBk depending
on the state� Note that these new intervals represent the time during which the
path of the connection is either in the Good or in the Bad state� Denote nG �resp�
nB� the number of the time intervals SGk �resp� SBk � during the time interval that
we use for measurement� Then� the evolution of the path of the TCP connection
can be described by a two�state continuous time Markov process with the following
in�nitesimal generator matrix�

Q �

�
�	G 	G
	B �	B

�
����

where the rates 	G and 	B are calculated as follows


	G �
�

E�SGk �
�

nGPnG
k�� S

G
k

� 	B �
�

E�SBk �
�

nBPnB
k�� S

B
k

�

Note that on some paths� say a wireless link� this Markov chain is a priori known and
can be directly used without the need to look at the trace of the TCP connection�
In case it is not known� we need to de�ne it using the parameter � as described
above� We present now two approaches for the determination of � � The �rst one
is more empirical� We look at the histogram of the inter�loss times �Figure �� and
we choose � as the time separating the two distributions it encloses ����s in the
�gure�� The second method is less empirical and was used in the context of Markov�
modulated Poisson processes ����� In this second approach we de�ne parameter �
as the expectation of the inter�loss times� that is

� � E�Sk� �
�

n

nX
k��

Sk�



where n is the total number of inter�loss intervals we get from the trace� Given
the continuous time Markov chain associated to the channel� we can now extract
the parameters of the discrete time Markov chain embedded at the potential loss
moments� We use for this purpose the uniformization technique ����� Let us choose
the potential loss process fDng as a Poisson process with intensity ��d higher
than both 	G and 	B � For example� a reasonable choice of d is the estimation of
the average Round Trip Time of the connection� According to the uniformization
technique ����� the state of the path described by the Markov process ���� and
sampled at the moments of potential losses can be equivalently given by a discrete
time Markov chain with the following transition matrix�

P �

�
�� d	G d	G
d	B �� d	B

�
�

Having chosen d and calculated 	G and 	B from the trace� we can easily deduce
the parameters b and g of the loss model� Namely� 
g � d	G and 
b � d	B� Now we
determine pG and pB� Let 


G
k �
Bk � be the number of real losses in the time interval

SGk �resp� in SBk �� Then the probabilities pG and pB are given by

pG �

PnG
k�� 


G
kPnG

k�� S
G
k �d

�
d
PnG

k�� 

G
kPnG

k�� S
G
k

� d�G� pB �

PnB
k�� 


B
kPnB

k�� S
B
k �d

�
d
PnB

k�� 

B
kPnB

k�� S
B
k

� d�B�

���G and ���B represent the average time between window reductions in the Good
and in the Bad state respectively� For the same eleven traces obtained in our exper�
iments� we calculated the parameters of the model� We use � � � ����s to separate
the Bad state from the Good state� In Figure �� we compare the result with that
of the exact �uid model� A close match is noticed� In addition to the good results
and the closed form expression it provides� this model has the advantage of having
simple parameters� All what we need to approximate the throughput is the para�
meters of the two�state Markov chain associated to the path and the intensity of
losses in both states� Concerning the parameter d� it is enough to choose in a way
that the intensity of potential losses ��d is higher than the intensity of losses in the
Bad state �B �

� Concluding Remarks

We considered in this paper a multi�state Markov path for describing the loss
process experienced by a connection that has a linear window increase between
losses� and multiplicative decrease upon a loss event� The modelling of some chan�
nels using a Markov chain with more than two states have long been advocated�
see e�g� ��������

Using an approach based on the Laplace Stieltjes Transform� we derived explicit
expressions for the two �rst moments of the transmission rate of the connection just
prior to losses� as well as the two �rst moments of the steady state throughput� We
note that the expression for the second moment of the throughput could be useful
in designing TCP friendly protocols for real time applications �	� in which other
parameters of the linear increase and multiplicative decrease are chosen so as to
maintain the same expected throughput �as a function of the loss process and
of the round�trip time� as the original TCP protocol� �The latter requirement on



the expected throughput stmes from fairness arguments�� Such applications �e�g�
interactive voice or video connections� typically require a smaller variance of the
throughput than the one of the original TCP in order to ensure a reasonable quality
of service�

We have recently succeeded also in analysing non Markovian channels ���� and
obtain similar performance measures using a completely di�erent approach �that
relies on some covariance functions of the interloss times�� The approach obtained
here� in contrast� leads to formulae that involve only a �nite and small number of
parameters that can be easily computed� In addition� we proposed here methods
for the identi�cation of such parameters�
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