On Active sampling of controlled experiments for QoE modeling

Muhammad Jawad Khokhar

Nawfal Abbasi Saber

Thiery Spetebroot

Chadi Barakat

ACM SIGCOMM 2017 2nd Workshop on QoE-based Analysis and Management of Data Communication Networks (Internet-QoE 2017), August 21, 2017

Experimental space

Accurate QoE modeling requires building large training sets

Accurate QoE modeling requires building large training sets

A Conventional approach: UNIFORM SAMPLING

Accurate QoE modeling requires building large training sets

A challenge in controlled experimentation:

High training cost

A Conventional approach: UNIFORM SAMPLING

e.g. with 2 min for each experiment,10000 experiments = 20000 minutes= 14 days of continuous experimentation

Accurate QoE modeling requires building large training sets

A challenge in controlled experimentation: **High training cost**

A Conventional approach:

UNIFORM SAMPLING

e.g. with 2 min for each experiment,10000 experiments = 20000 minutes= 14 days of continuous experimentation

Can we reduce **training cost** while not impacting modeling accuracy?

Uniform sampling amplifies the training cost with little improvement in accuracy.

10

Accurate QoE modeling requires building large training sets

A challenge in controlled experimentation: **High training cost**

A Conventional approach: UNIFORM SAMPLING

e.g. with 2 min for each experiment,10000 experiments = 20000 minutes= 14 days of continuous experimentation

Can we reduce **training cost** while not impacting modeling accuracy?

Uniform sampling amplifies the training cost with little improvement in accuracy.

Proposed solution: Active Learning

Experiment in the **most useful** regions that bring **maximum gain** in the **accuracy** of the model.

11

Useful regions in the experimental space: Regions of uncertainty

Conventional Supervised Machine Learning

Active Learning Pool of unlabeled

data

Machine Learning Model

Active Learning

Pool of unlabeled data

Machine Learning Model

Train and build an initial model

INVENTEURS DU MONDE NUMÉRIQUE

INVENTEURS DU MONDE NUMÉRIQUE

Active Learning for QoE Modeling

IVENTEURS DU MONDE NUMÉRIOUE

Method of choosing the most rewarding sample from the Pool

Least Confident: $\operatorname{argmin}_{x} P(\hat{y})$

Minimal Margin: $\operatorname{argmin}_{x}[P(\hat{y}_{1}) - P(\hat{y}_{2})]$

Maximum Entropy:
$$\operatorname{argmax}_{x} - \sum_{y} P(y) \log P(y)$$

Overall methodology

1: $\mathcal{P} = \text{Pool of unlabeled instances } \{x^{(p)}\}_{p=1}^{P}$

- 2: \mathcal{T} = Training set of labeled instances $\{\langle x, y \rangle^{(t)}\}_{t=1}^{T}$
- 3: Θ = QoE Model e.g. a Decision Tree
- 4: Φ = Utility measure of Uncertainty e.g. Max Entropy
- 5: Initialize \mathcal{T}
- 6: **for** *i* = 1, 2, ... **do**
- 7: $\Theta = \operatorname{train}(\mathcal{T})$
- 8: select $x^* \in \mathcal{P}$, as per Φ
- 9: experiment using x^* to obtain label y^*
- 10: add $\langle x^*, y^* \rangle$ to \mathcal{T}
- 11: remove x^* from \mathcal{P}
- 12: **end for**

The YouTube use case

- <u>Network QoS features:</u>
 - 1. RTT
 - 2. Loss Rate
 - 3. Download Throughput/Bandwidth

• Application QoS features:

- 1. Initial Join time
- 2. Total duration of the stalling events

Dataset Labeling process

Mapping Function: QoE definition for YouTube Video

Binary Classification:

 $QoE_{binary} = \begin{cases} 0 - Bad \ (if \ video \ stalls) \\ 1 - Good \ (if \ video \ does \ not \ stall) \end{cases}$

Multiclass Classification:

1 - Poor

$$QoE_{multi} = \alpha e^{-\beta t} + 1$$
 ($\alpha = 4, \beta = 0.0347$)

where t is the total buffering time and factors α and β are computed according to below assumptions for best and worst case scenarios:

4 - Good

1. Best case: QoE is maximum of 5 for zero buffering time;

2 - Bad

2. Worst case: QoE is 1.5 for buffering of 50% of the total duration of the video

- 3 - Fair

• 5 - Excellent

The experimental space for dataset collection

• Instances Pool:

- RTT = 0 5000 ms
- Loss Rate = 0 − 25 %
- Throughput = 0 10 Mbps

The experimental space for dataset collection

• Instances Pool:

- RTT = 0 5000 ms
- Loss Rate = 0 − 25 %
- Throughput = 0 10 Mbps

• Validation Set:

- RTT = 0 1000 ms
- Loss Rate = 0 − 10 %
- Throughput = 0 10 Mbps

Visual Representation of the datasets

INVENTEURS DU MONDE NUMÉRIQUE

Evaluation of our methodology – Binary Classification

Evaluation of our methodology – Binary Classification

Evaluation of our methodology – Multiclass Classification

The Training sets at 5% of Pool size

Conclusions and future work

- Active learning provides a promising opportunity to speed up the process of building ML QoE models using controlled experimentation as shown in case of YouTube.
- Extend the work on more applications (e.g. Skype, Web etc.) and with more input features such as jitter, TCP re-ordering, etc.

Thank you!

