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Experiment in the most useful 
regions that bring maximum gain in 
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Method of choosing the most rewarding sample from 
the Pool 

𝐋𝐞𝐚𝐬𝐭 𝐂𝐨𝐧𝐟𝐢𝐝𝐞𝐧𝐭: argmin𝑥𝑃 𝑦  
 

𝐌𝐢𝐧𝐢𝐦𝐚𝐥 𝐌𝐚𝐫𝐠𝐢𝐧: argmin𝑥 𝑃 𝑦 1 − 𝑃 𝑦 2  
 

𝐌𝐚𝐱𝐢𝐦𝐮𝐦 𝐄𝐧𝐭𝐫𝐨𝐩𝐲: argmax𝑥 −  𝑃(𝑦) log𝑃(𝑦)

𝑦
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𝑃 𝑦 𝟏  𝑃 𝑦 𝟐  𝑃 𝑦 𝟑  𝑃 𝑦 𝟒  𝑃 𝑦 𝟓  
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𝑀𝑜𝑑𝑒𝑙’𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑏𝑒𝑙/𝑐𝑙𝑎𝑠𝑠 

 𝑃 𝑦 (𝑖)

𝑖

= 1 



Overall methodology 
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The YouTube use case 

• Network QoS features: 
1. RTT 

2. Loss Rate 

3. Download Throughput/Bandwidth 

• Application QoS features: 
1. Initial Join time 

2. Total duration of the stalling events 

 

Dataset Labeling process 
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Binary Classification: 

𝑄𝑜𝐸𝑏𝑖𝑛𝑎𝑟𝑦 =  
0 − 𝐵𝑎𝑑 (𝑖𝑓 𝑣𝑖𝑑𝑒𝑜 𝑠𝑡𝑎𝑙𝑙𝑠)

1 − 𝐺𝑜𝑜𝑑 (𝑖𝑓 𝑣𝑖𝑑𝑒𝑜 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑠𝑡𝑎𝑙𝑙)
  

 

 

Multiclass Classification: 
𝑄𝑜𝐸𝑚𝑢𝑙𝑡𝑖 = 𝛼𝑒−𝛽𝑡 + 1    (𝛼 = 4, 𝛽 = 0.0347) 

where 𝑡 is the total buffering time and factors 𝛼 and 𝛽 are computed according to below assumptions for best and 
worst case scenarios: 

1. Best case: QoE is maximum of 5 for zero buffering time; 

2. Worst case: QoE is 1.5 for buffering of 50% of the total duration of the video 

Mapping Function: QoE definition for YouTube Video 

22 



The experimental space for dataset 
collection 
• Instances Pool: 

• RTT = 0 – 5000 ms 

• Loss Rate = 0 – 25 % 

• Throughput = 0 – 10 Mbps 

• Validation Set: 
• RTT = 0 – 1000 ms 

• Loss Rate = 0 – 10 % 

• Throughput = 0 – 10 Mbps 
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Visual Representation of the datasets 
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Evaluation of our methodology – Binary Classification 
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Evaluation of our methodology – Binary Classification 
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Evaluation of our methodology – Multiclass Classification 
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The Training sets at 5% of Pool size 

𝑄𝑜𝐸𝑏𝑖𝑛𝑎𝑟𝑦 

𝑄𝑜𝐸𝑚𝑢𝑙𝑡𝑖 
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Conclusions and future work 

• Active learning provides a promising opportunity to speed up the 
process of building ML QoE models using controlled experimentation 
as shown in case of YouTube. 

• Extend the work on more applications (e.g. Skype, Web etc.) and with 
more input features such as jitter, TCP re-ordering, etc. 
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Thank you! 

31 


