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Abstract—We study in this paper a TCP-like linear-increase multiplica-
tive-decrease flow control mechanism. We consider congestion signals that
arrive in batches according to a Poisson process. We focus on the case when
the transmission rate cannot exceed a certain maximum value. We write
the Kolmogorov equations and we use Laplace Transforms to calculate the
distribution of the transmission rate in the steady state as well as its mo-
ments. Our model is particularly useful to study the behavior of TCP, the
congestion control mechanism in the Internet. By a simple transformation,
the problem can be reformulated in terms of an equivalent M/G/1 queue,
where the transmission rate in the original model corresponds to the work-
load in the ‘dual’ queue. The service times in the queueing model are not
i.i.d., and they depend on the workload in the system.

Keywords—TCP congestion control, batch Poisson process, Kolmogorov
equation, Laplace Transform.

I. I NTRODUCTION

IN today’s high speed telecommunication networks, a large
part of the traffic is able to adapt its rate to the congestion

conditions of the network. Congestion control is typically de-
signed so as to allow the transmission rate to increase linearly
in time in the absence of congestion signals, whereas when con-
gestion is detected, the rate decreases by a multiplicative factor.
This is both the case of the Available Bit Rate (ABR) service
category in ATM [1] (see definition and use of RDF and RIF)
as well as the Transmission Control Protocol (TCP) in the In-
ternet environment [10], [22]. Congestion is detected by the
source through signals. In case of ABR, the congestion signals
are RM (Resource Management) cells that have been marked
due to congestion information in some switch along the path of
the connection. In case of the Internet, the congestion signals
are packet losses that are detected by the source either through
the expiration of a retransmission timer, or through some nega-
tive acknowledgement mechanism (three duplicate ACKs [22]).
There is also a proposal to add some explicit congestion signal-
ing to the Internet (the ECN proposal [7]).

The performance evaluation of congestion control mecha-
nisms is an important issue for network and protocol design.
This evaluation requires a description of times between the ar-
rivals of consecutive congestion signals. Experimentations over
the Internet [4], [15] have shown that on long distance connec-
tions, the Poisson assumption about the times between conges-
tion signals is quite reasonable. This happens when the through-
put of the studied connection is small compared to the exoge-
nous traffic, and when the number of hops on the path is large
so that the superposition of the packet drops in routers leads to
exponential times between congestion signals. For local area
networks, we noticed that the congestion signals may arrive in
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bursts [4]. However, the times between bursts correspond well
to the Poisson assumption. For this reason, we consider the case
when congestion signals arrive in batches according to a Pois-
son process. Batches contain a random number of congestion
signals and each such signal causes the division of the transmis-
sion rate by some constantγ. In the sequel, we also refer to a
batch of congestion signals as aloss event.

We focus on the case when a certain limitation on the trans-
mission rate exists. We determine the exact expression of the
throughput under such a limitation. In the literature, only sim-
plistic approximations have been proposed [3], [19] so far. We
study two possible scenarios that lead to such a limitation:
(i) Peak Rate limitation: the limitation is not due to congestion
in the network but rather to some external agreement. In that
case, when the transmission rate reaches a certain levelM , it
remains constant until a loss event appears. For example in case
of TCP, the window cannot exceed the buffer space available at
the receiver [22]. This is known as the end-to-end flow control
of TCP. In the ABR service of ATM, the transmission rate can-
not exceed the Peak Cell Rate imposed by the contract between
the user and the network.
(ii) Congestion limitation: the limitation on the transmission
rate is due to congestion in the network that occurs whenever
the input rate reaches a levelM . In that case we shall have
an extra batch of congestion signals when the levelM is at-
tained which also causes a reduction of the transmission rate by
a random factor. A typical example of such limitation is the
available capacity in the network. There is a maximum limit
on the number of packets a source can keep in the network and
once this limits is exceeded packets are dropped. Another ex-
ample is the reserved bandwidth in a Differentiated Services
network [9] in cases when packets exceeding the reserved band-
width are dropped rather than injected into the network as low
priority packets [21].

In the particular case in which the batches contain a single
congestion signal, the peak rate limitation model reduces to the
one studied in [15], who already attempted at computing the
first two moments of the transmission rate. A remarkable ob-
servation is done in that reference showing that the flow con-
trol can be reformulated in terms of an equivalent M/G/1 queue,
where the transmission rate is translated into the workload of the
queue. The congestion signals correspond to customers arriving
at the queue according to a Poisson process. The service times in
the ‘dual’ queueing model are not i.i.d., and they depend on the
workload in the system. This transformation is also valid in our
more general setting except that in our model with congestion
limitation, there is an additional arrival in the equivalent queue-
ing model (in addition to the Poisson arrival stream) that occurs
whenever the queue empties. Another difference is that in our



case congestion signals arrive in batches. Without loss of gen-
erality, we consider that the occurrence of a batch of congestion
signals corresponds to the arrival of a client into the dual queue-
ing model. Hence, the service time of a client is also a function
of the number of congestion signals in the corresponding batch.

We solve in this paper the Kolmogorov equations and obtain
the exact probability distribution as well as the moments of the
transmission rate (of the window in case of TCP) for both prob-
lems. In doing so, we correct an error1 in [15].

We briefly mention some related results. Queueing analysis
with service times that depend on the workload or on the queue
length have been also considered in [2], [12], [17], [20]. Our
model is a special case of the one studied in [20], where an im-
plicit characterization of the steady state distribution is obtained
(closed-form expressions were obtained for special cases that
do not cover our model). In [12] an asymptotic approximation
is used for solving state-dependent GI/G/1 queues in which both
inter-arrival times, service requirements and the service rate may
depend on the workload. The peak rate limitation model is a
special case of the model with a general stationary and ergodic
arrival process studied in [4]. For that model only bounds on the
throughput were obtained. Exact expressions for the throughput
were obtained there for the case in which no limitation on the
transmission rate exists (see also [3], [14], [16], [19]).

The structure of the paper is as follows. In Section II we de-
scribe a general model of flow control with limitation on the
transmission rate and we provide a preliminary analysis. The
two cases of peak rate limitation and congestion limitation are
described separately in Sections II-A and II-B. It is shown that
a special case of the model with congestion limitation reduces
to that of the model with peak rate limitation. Hence, it suffices
to analyze the latter case. We then derive the moments and the
distribution of the transmission rate in Sections III and IV in
terms of one unknown constant: the probability of attaining the
maximum rate. This constant is computed in Section V. In Sec-
tion VI we specify our model to an important particular case,
that of one congestion signal per batch and a reduction factor
equal to one half. Based on this particular case, we present in
Section VII some numerical and experimental results to validate
the model. We conclude the paper with a section on future re-
search.

II. FLOW CONTROL WITH RATE LIMITATION : MODELS AND

PRELIMINARY ANALYSIS

We present in this section our model for the rate evolution of
the flow control mechanism. In the sequel we adopt the usual
terminology for TCP, the well known window-based congestion
control protocol of the Internet:we shall work with the window
size rather than the transmission rate. The transmission rate of a
window-based flow control mechanism is at any moment equal
to the window size divided by the round-trip time (RTT) of the
connection.

Let M denote the maximum window size. The limitation on
the window size is either due to a peak rate limitation or to a con-
gestion limitation. In the following we explain the similarities
and the differences between the models in the two cases. While

1In a private communication, the authors of [15] announced to replace the
draft with a new one.

no congestion signal is received and the window is smaller than
M , the window of the protocol increases linearly at rateα > 0.
In case of TCP,α = 1/(b · RTT ) whereb is the number of
data packets covered by an ACK (usually 2, see e.g.[19], [22])
and whereRTT is the average round-trip time of the connection
assumed to be independent of the window size [4], [19].

We assume that batches containing a random number of con-
gestion signals arrive according to an independent Poisson pro-
cess. We denote the sizes (i.e., the numbers of congestion sig-
nals) of consecutive batches byN1, N2, N3, . . ., and we assume
that these constitute an i.i.d. sequence. The size of an arbitrary

batch is generically denoted byN
d= Nk. The Poisson process

and the sequenceNk, k = 1, 2, . . ., are independent of each
other and independent of the past evolution of the window. For
each congestion signal received, the window is divided by a fac-
tor γ > 1 which is a fixed parameter. That is, if an arriving
batch containsN = n congestion signals, the window is mul-
tiplicatively decreased by a factorγ−n. Immediately after the
multiplicative decrease, the window restarts its linear increase.
In case of peak rate limitation, the window stays constant atM
when this maximum level is reached until the next congestion
signal is received. In case of congestion limitation, immedi-
ately upon reachingM , a congestion signal is received and the
window is decreased. We present the two cases separately in
Sections II-A and II-B.

Before doing so, we introduce some further common nota-
tion. We denote the p.g.f. (probability generating function) of
the distribution ofN by

Q(z) := E
[
zN

]
=:

∞∑
n=1

znqn, |z| ≤ 1. (1)

Note that the peak rate limitation model withγ = 2 andq1 = 1
reduces to the model studied in [15], where congestion signals
appear according to a Poisson process and where the window
is divided by two upon every congestion signal occurrence. By
considering a general model, we aim to account for a wide range
of flow control mechanisms other than TCP and for future en-
hancements to TCP congestion control.

Let us denote the window size at timet ≥ 0 by W (t) ∈
(0,M ]. We have the following stability result which follows
from Theorem 1 in [4]:

Theorem II.1:There exists a stationary processW ∗(t) such
thatW (t) converges toW ∗(t) in distribution for any initial state.
Moreover, we have P-a.s.

lim
t→∞

sup
s≥t

|W (s)−W ∗(s)| = 0. (2)

Note that (2) implies that the stationary distribution ofW (t) is
unique. Forx ∈ (0,M ], denote the (time-average) distribution
function by

F (x) := lim
T→∞

1
T

∫ T

t=0

P{W (t) ≤ x}dt. (3)

It follows from Theorem II.1 that this limit is independent of
W (0) and coincides with the stationary distribution ofW (t).



We first assume thatF (x) is continuous inx ∈ (0,M) (in the
case of peak rate limitation it is clear from physical considera-
tions thatF (x) has an atom atx = M ). Under this assumption
we find a functionF (x) which is an equilibrium distribution for
the window size and, hence, from its uniqueness it follows that it
is the desired distribution. Instead ofF (x) it will be convenient
to work with the complementary distribution function

F (x) = 1− F (x) = P{W > x} , x ∈ (0,M ].

To differentiate between the cases of peak rate limitation and
congestion limitation, in the latter case we attach a superscriptcl

to the symbols introduced above, e.g., the distribution function
is denoted byF cl(x). Next we treat the two cases separately.
In particular we show how the analysis of the model with con-
gestion limitation reduces to that of the model with peak rate
limitation. Therefore, we concentrate on the peak rate limitation
model in the subsequent sections.

A. Flow control with peak rate limitation

With peak rate limitation, when the window reaches the max-
imum levelM , it stays there until the next congestion signal is
received. In Section II-C below we show that the window size
processW (t) can be related to the workload of an M/G/1 queue
(see also [15]). The workload of this state-dependent M/G/1
queue can be seen to be a Markov process (e.g. see [11]), and
hence the window size evolutionW (t) is a Markov process as
well. With this in mind, we derive a steady-state Kolmogorov
equation forF (x) = P{W > x} which will be the basis to our
analysis. We use the following up and down crossing argument:
Assume that the process is in equilibrium and consider a level
x ∈ (0,M). Whenever the window size increases from less than
or equal tox to more thanx we say that an up crossing of the
level x has occurred. Similarly, if the window size decreases
from more thanx to less than or equal tox we say that a down
crossing of the levelx has occurred. Let[t, t + ∆] be a small
time interval, wheret is a deterministic time moment. When the
process is in equilibrium, the probability of up-crossing

(1− λ∆)P{x− α∆ < W ≤ x}+ o(∆)

is equal to the probability of down-crossing

λ∆
∞∑

n=1

qnP{x < W ≤ min(γnx,M)}+ o(∆).

After equating these, we pass∆ ↓ 0. Since we assumed that
F (x) = P{W ≤ x} is continuous forx < M (see Remark
1 for a justification of this assumption), we conclude that the
derivative ofF (x) exists and is continuous for allx except at
x = Mγ−n, whenqn > 0. For x ∈ (0,M)\{Mγ−n}n=1,2,...

we obtain the following steady-state Kolmogorov equation

α
d
dx

P{W ≤ x} = λ

∞∑
n=1

qnP{x < W ≤ min(γnx,M)} ,

or, equivalently,

−α
d
dx

F (x) = λ

(
F (x)−

∞∑
n=1

qnF (min(γnx,M))

)
. (4)

From this differential equation we shall determineF (x), x ∈
(0,M), in terms of the probability

PM := P{W = M} = 1− F (M−) = F (M−).

In Section III we first use (4) to determine the moments of the
window size distribution in terms ofPM . Then we find the dis-
tribution function itself in Section IV. The unknownPM is then
determined using the fact thatF (x) is a complementary proba-
bility distribution function (F (0) = 1). However, the expression
obtained forPM in this way, does not lend itself for computa-
tional purposes. Therefore we show an elegant alternative to
determinePM in Section V, which leads to an efficient and nu-
merically stable algorithm for computations.

B. Flow control with congestion limitation

When the maximum window sizeM is due to congestion lim-
itation, immediately upon reaching the levelM a batch of con-
gestion signals is generated. Here we study the case when the
size of such a batch has the same distribution as the random vari-
ableN . In [5] we treat a more general case when the number of
congestion signals that result from reachingM has a different
distribution thanN . Similarly as in Section II-A, we can derive

the following differential equation forF
cl
(x), 0 < x < M :

−α
d
dx

F
cl
(x) = λ

(
F

cl
(x)−

∞∑
n=1

qnF
cl
(min(γnx,M))

)

+λgP
{

N ≥ ln(M)− ln(x)
ln(γ)

}
, (5)

with,

g := −α

λ

d
dy

F
cl
(y)

∣∣∣∣
y=M−

.

The additional term, compared to (4), comes from the fact that a
down crossing of the levelx may be due to the fact that the level
M is reached and that the rate is decreased by a factorγ−n with
γ−nM ≤ x. Note that ifF (x) is the unique complementary
distribution function satisfying (4) then

F
cl
(x) :=

F (x)− PM

1− PM
, 0 < x < M, (6)

is the unique complementary distribution function satisfying (5).
This follows immediately by substituting (6) into (5). This re-
lation has a simple geometric interpretation. Using the fact that
the Poisson process is memoryless, if we consider the model
with peak rate limitation only at moments when the window is
less thanM (i.e., we cut out all periods where the window equals
M ), what we get is identical to the model with congestion lim-
itation. Thus, we can concentrate on finding the distribution
function F (x) for the peak rate limitation model and then use
(6) or the equivalent:

F cl(x) =
F (x)

1− PM
.

In particular, the moments of the window size in the two models
are related by:

E
[(

W cl
)k

]
=

E
[
W k

]− PMMk

1− PM
. (7)



In Section III below we derive a recursive relation forE
[
W k

]
.

Combined with (7), this gives a recursion onE
[(

W cl
)k

]
which

we report at this point for completeness:

E
[(

W cl
)k

]
=

kαE
[(

W cl
)k−1

]

λ (1−Q(γ−k))
− PM

1− PM
Mk. (8)

Remark 1:We emphasize that in the congestion limitation
model, the quantityPM has no clear interpretation. In Section
V we use the interpretation of this quantity in the peak rate limi-
tation model to compute it. If we were to analyze the congestion
limitation model without using (6), then from (5) we could ex-

pressF
cl
(x) — using the same techniques as in Section IV —

in terms ofg instead ofPM . Note that these two constants are
related:

g =
PM

1− PM
, (9)

The constantg can be determined using thatF
cl
(x) is a comple-

mentary probability distribution, see (24) below. Since from the
analysis of Section V we obtain a more tractable expression for
PM (see Remark 2 for a related discussion), we will not further
dwell on this approach.

C. The dual M/G/1 queueing model

Before proceeding with determining the moments and the dis-
tribution of the window size, we briefly show how the flow con-
trol problem can be related to an M/G/1 queueing problem with
service depending on the system workload, see also [15]. First
we concentrate on peak rate limitation, then we comment on
congestion limitation. Define

U(t) =
M −W (t)

α
. (10)

Namely,U(t) is obtained by ‘flipping’W (t) around a horizon-
tal line. In particular, the area betweenW (t) and the maximum
window sizeM (Figure 1) corresponds to the area belowU(t).
Note thatU(t) resembles the evolution in time of the workload
(or the virtual waiting time) in a queueing system. A window
equal toM corresponds to an empty queueing system. The lin-
ear increase in workload between arrivals of congestion signals
corresponds to the decrease in workload due to service in the
M/G/1 model. The arrival of a batch of congestion signals in
our model corresponds to an arrival in the M/G/1 model. The
reduction of the window upon a loss event corresponds to the in-
crease in workload upon arrival in the equivalent M/G/1 model.
Given that the amount by which the window is reduced depends
on the current value of the window (and of course on the number
of congestion signals in the batch), the service time in the dual
queueing model is dependent on the current workload there. We
conclude that the dual model behaves indeed as an M/G/1 queue
(infinite buffer capacity, one server and Poisson arrivals with in-
tensityλ) with state-dependent service requirements. IfUn is
the workload seen by arrivaln in the M/G/1 queue, then its ser-
vice timexn is equal to

xn =
(

M

α
− Un

)
.

(
1− 1

γNn

)
,

whereNn is the number of congestion signals in thenth batch
of congestion signals in the original model. Instead of work-
ing with the window as we are doing in this paper, one could
solve the queueing problem and switch back to the flow con-
trol problem by using Equation (10). In particular,E

[
W k

]
=

E
[
(M − αU)k

]
, P{W ≤ x} = 1 − P{U ≤ (M − x)/α} for

x < M andPM is equal to the fraction of time the server in the
dual queueing model is idle.

In the case of congestion limitation, the only difference in the
dual queueing model is that we have an additional arrival once
the system becomes empty. This makes of the arrival process
the sum of a Poisson process of intensityλ and another process
that depends on the workload of the system. The definition of
the service time and the transformation back to the flow control
problem remain the same.

III. M OMENTS OF THE WINDOW SIZE DISTRIBUTION

We further focus on the model with peak rate limitation. In
this section we study the moments of the window size. The
k-th moment of the transmission rate can be simply obtained
by dividing thek-th moment of the window size by(RTT )k.
Of particular interest is the expectation of the transmission rate
which coincides with the throughput of the transfer or the time
average of the transmission rate. LetX denote the throughput.
We have

X = lim
T→∞

1
T

∫ T

0

X(t)dt =
E [W ]
RTT

. (11)

The second moment is also important since it tells us how much
the transmission rate varies. Some applications (e.g., real time
multimedia flows) are sensitive to variations in transmission
rate. One could envisage to tune the flow control so that to re-
duce these variations.

Define forRe(ω) ≥ 0 the LST (Laplace-Stieltjes Transform)
of the window size distribution by

f̂(ω) =
∫ M+

x=0

e−ωxdF (x).

Taking LTs (Laplace Transforms) in (4) leads to:

α
(
f̂(ω)− PMe−ωM

)
= λ

1− f̂(ω)
ω

(12)

−λ
∞∑

n=1

γ−nqn
1− f̂(γ−nω)

γ−nω
.

Note that (12) holds in particular forM = ∞, i.e., no limitation
on the window size, in which casePM = 0. UsingE

[
W k

] ≤
Mk, k = 1, 2, . . ., we may write

f̂(ω) = 1 +
∞∑

k=1

(−ω)k

k!
E

[
W k

]
,

1− f̂(γ−nω)
γ−nω

=
∞∑

k=0

(−γ−nω)k

(k + 1)!
E

[
W k+1

]
.

Substituting this in (12), using the absolute convergence of the
doubly-infinite series to interchange the order of summation and
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Fig. 1. Area associated with a single loss

equating the coefficients of equal powers ofω we get, fork =
1, 2, . . .,

E
[
W k

]
=

kα
(
E

[
W k−1

]− PMMk−1
)

λ (1−Q(γ−k))
, (13)

from which the moments of the window size distribution can be
obtained recursively. In particular we find fork = 1, 2:

E [W ] =
α (1− PM )

λ (1−Q(γ−1))
, (14)

E
[
W 2

]
=

2α
[
α (1− PM )− λPMM

(
1−Q(γ−1)

)]

λ2 (1−Q(γ−1)) (1−Q(γ−2))
.(15)

These first two moments can be also obtained using direct argu-
ments, see Remarks 1 and 2 below. Such arguments were also
used by Misra et al. [15] for the caseγ = 2 andN ≡ 1. How-
ever, in their analysis an error appears which results in an addi-
tional equation besides (14) and (15) from which they determine
an erroneous expression for the probabilityPM (see Remark 2).

Remark 1:The mean window size can be obtained by con-
sidering the mean drift. The upward drift of the window
size is given byαP{W < M} and the downward drift equals
λE [W ]

(
1− E

[
γ−N

])
. Equating these gives (14).

We can further deriveE
[
W 2

]
applying an argument simi-

lar to Little’s law as was done by Misra et al. [15] for the case
γ = 2 andN ≡ 1. For details we refer to [5]. The main idea
is sketched in the following. For the dual queueing model de-
scribed in Section II-C, we can equate the mean workloadE [U ]
with λ times the mean area belowU(t) ‘induced by a single ar-
rival’ (use that Poisson Arrivals See Time Averages). Back in
the original model, the ‘mean surface’ of the areaaboveW (t)
in Figure 1 equalsM − E [W ].

The expected surface of the area ‘induced’ by a single loss
event (the surface of the larger triangle minus that of the smaller
one) is equal to

1
2α

((
Q(γ−2)− 1

)
E

[
W 2

]− 2M
(
Q(γ−1)− 1

)
E [W ]

)
.

Multiplying this by λ, equating the result withM − E [W ] and
using (14) indeed gives (15).

Remark 2:For a special case of our model, yet another way is
pursuit in [15] to derive (14) and (15). However, there, the final
result is incorrect due to a small error in an intermediate step.
Defining PM (t) := P{W (t) = M}, E [W (t)] andE

[
W (t)2

]
satisfy:

d
dt

E [W (t)] = −λ
(
1−Q(γ−1)

)
E [W (t)]

+α (1− PM (t)) ,

d
dt

E
[
W (t)2

]
= −λ

(
1−Q(γ−2)

)
E

[
W (t)2

]

+2α (E [W (t)]−MPM (t)) .

In steady state we haveE [W (t)] ≡ E [W ], E
[
W (t)2

] ≡
E

[
W 2

]
andPM (t) ≡ PM . Substitution into the above gives

(14) together with

0 = −λ
(
1−Q(γ−2)

)
E

[
W 2

]
+ 2α (E [W ]− PMM) . (16)

Together with (14) this leads to (15). For the caseγ = 2
and N ≡ 1, the formula given in [15] forE

[
W 2

]
(below

Formula (4) in that reference) differs from (16) by a factor
−α = −1/RTT . This resulted in a third (incorrect) equa-
tion which is linearly independent of (14) and (15) from which
PM was determined simultaneously withE [W ] and E

[
W 2

]
.

In Section V we show howPM can be determined correctly and
computed efficiently.

IV. W INDOW SIZE DISTRIBUTION FUNCTION

We find in this section the explicit expression of the cumu-
lative distribution of the window size. The distribution of the
transmission rate can be simply obtained by rescaling the win-
dow axis by 1/RTT. We start first by the case of finiteM .
We provide the expression of the distribution in every inter-
val [M/γk,M/γk−1] with k = 1, 2, . . .. Then, for the case
M = ∞, we give an expression of the distribution for anyx > 0
as an infinite sum of exponentials.

A. Window distribution for finiteM

ForM/γ ≤ x < M , Equation (4) reduces to:

−α
d
dx

F (x) = λF (x),

hence,

F (x) = PMe
λ
α (M−x),

M

γ
≤ x < M. (17)

To find the entire distribution we introduce, fork = 1, 2, 3, . . .,

F k(x) := F (x),
M

γk
≤ x <

M

γk−1
. (18)

Equation (4) can now be written as:

d
dx

F k(x) = −λ

α
F k(x) +

λ

α

k−1∑
n=1

qnF k−n(γnx). (19)

SinceF (x) is continuous for0 < x < M we have:

F k(
M

γk−1
) = F k−1(

M

γk−1
), k = 2, 3, . . . . (20)

F k is recursively given by

F k(x) = F k−1(M/γk−1)e
λ
α

(
M

γk−1−x
)

−λ

α
e−

λ
α x

∫ M/γk−1

u=x

e
λ
α u

k−1∑
n=1

qnF k−n(γnu)du.



We conclude from the above recursion that a solution to (19) and
(20) has the following form

F k(x) = PM

k∑

i=1

c
(k)
i e−

λ
α γi−1x, k = 1, 2, ... (21)

To determine the coefficientsc(k)
i , we substitute (21) into (19).

Then, equating terms with the same exponents, we get the fol-
lowing recursive formula

c
(k)
i+1 =

1
1− γi

i∑
n=1

qnc
(k−n)
i−n+1, i = 1, ..., k − 1. (22)

Once the coefficientsc(k)
i , i = 2, ..., k are computed, the coeffi-

cientc(k)
1 can be determined from (20):

c
(k)
1 = e

λ
α

M

γk−1

[
k−1∑

i=1

c
(k−1)
i e−

λ
α γi−kM −

k∑

i=2

c
(k)
i e−

λ
α γi−kM

]
.

(23)
Note that to compute the coefficientsc

(k)
i , wedo notneedPM .

Hence, using thatF (x) is a complementary distribution func-
tion, PM is then determined by:

PM

(
lim

k→∞

k∑

i=1

c
(k)
i e−

λ
α M/γk−i

)
= lim

k→∞
F k(

M

γk−1
) = 1.

(24)
However, this relation is not suitable to computePM , see Re-
mark 2 below.

Remark 1:With (18) and (21) we have found an equilibrium
distribution functionF (x) satisfying (4). By Theorem II.1 it
is the unique solution and, hence, the assumption thatF (x) is
continuous forx < M is justified.

Remark 2:Recursion (22) is suitable to determine the distri-
bution function on an intervalM/γk ≤ x ≤ M whenk is not
too large. For largek the recursion may become instable, since
it involves subtraction of numbers of the same order. There-
fore (24) is not suitable to computePM . In Section V below
we derive an alternative expression forPM , which leads to a
numerically stable and efficient algorithm to computePM .

B. Window distribution for infiniteM

In this case, the results derived in the previous subsection can-
not be applied immediately by lettingM go to infinity. How-
ever, we can derive the LST of the window size distribution by
similar arguments. WhenM = ∞, (12) becomes

f̂(ω) = −λ

α

[
f̂(ω)

ω
−

∞∑
n=1

qn
f̂(γ−nω)

ω

]
,

or, equivalently,

f̂(ω) =
λ
α

ω + λ
α

∞∑
n=1

qnf̂(γ−nω). (25)

Substituting the above equation repeatedly into itselfl times,
applying partial fraction expansion at each step, and then taking

l →∞, we conclude that̂f(ω) can be expressed as follows:

f̂(ω) =
∞∑

i=0

ci

− λ
αγi

ω + λ
αγi

, (26)

for certain coefficientsci (this is formally justified later). To
determine the constantsci, i = 0, 1, ..., we substitute (26) into
(25) and equate coefficients multiplying the terms1/(ω + λ

αγi).
This leads to the recursive formula

ci

c0
=

1
1− γi

i∑

k=1

qk
ci−k

c0
, (27)

which determines the ratiosci/c0 (it is for this reason that both
sides contain a factor1/c0). The coefficientc0 follows from
f̂(0) = −∑∞

i=0 ci = 1:

c0 = −(1 +
∞∑

i=1

ci

c0
)−1. (28)

It can be shown that the infinite series in the expression ofc0

converges and hence all the coefficientsci exist. The proof of
convergence is given in Appendix A. The inversion of (26) back
into the time domain gives:

F (x) = C +
∞∑

i=0

cie−
λ
α γix, (29)

with C = 1 (becauseF (0) = 0). Given that the coefficientsci

exist, the above series is absolutely convergent for any value of
x ∈ [0,∞). Thus, it is theuniquesolution to (4) whenM = ∞.
For the case of no window size limitation andN ≡ 1, (q1 = 1),
F (x) was already obtained in [18].

V. THE PROBABILITY OF MAXIMUM WINDOW SIZE

In Sections III and IV we determined the window size dis-
tribution and its moments in terms ofPM . In this section we
derive an expression forPM from which it can be computed ef-
ficiently. For this we introduce the random variableT (x) which
is the time until the window size returns to the valuex, starting
just after a loss event occurs with the window size being equal
to x ∈ (0, M ]. We denote its expectation byE(x) := E [T (x)],
x ∈ (0, M ]. Then, from elementary renewal theory,

PM := P{W = M} =
1/λ

1/λ + E(M)
. (30)

We now proceed to find the functionE(x). A typical evolution
of the window size is depicted in Figure 2. For simplicity in the
figure only loss events havingN = 1 are depicted. The times to
recover from losses are partly cut out of the picture (denoted by
the shaded areas).

Suppose for the moment that the initial loss (at the levelx)
was such thatN = n (in the figuren = 1). Let Tn(x) be the
time to get back at levelx conditional onN = n and we further
write En(x) := E [Tn(x)] := E [T (x)|N = n]. Note that

E(x) =
∞∑

n=1

qnEn(x). (31)
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If no losses occur during the timeTn(x) thenTn(x) = (1 −
γ−n)x/α, i.e., the window sizex is reached in a straight line
from the starting point atγ−nx (in the figureγ−1x). Each time
a loss occurs at a levely ∈ (γ−nx, x) it takesT (y) time units
to get back at the levely. Because of the memoryless property
of the Poisson process, if we take out the shaded areas in Fig-
ure 2 and concatenate the non-shaded areas then the cut points
(where the shaded areas used to be) form a Poisson process on
the straight line fromγ−nx to x. Thus if the cut points are given
by y1, y2, . . . , ym (in the figurem = 2) then

En(x) =
(1− γ−n)x

α
+ E(y1) + E(y2) + . . . + E(ym).

Since the loss process is a Poisson process, the mean number
of cut points isλ(1 − γ−n)x/α and the position of each of the
pointsyj is uniformly distributed over the interval(γ−nx, x),
see for instance [23, Thm. 1.2.5]. Hence,

En(x) =
(1− γ−n)x

α

(
1 + λ

∫ x

y=γ−nx

E(y)
(1− γ−n)x

dy

)

=
(1− γ−n)x

α
+

λ

α

∫ x

y=γ−nx

E(y)dy. (32)

Using (1) and (31) we now arrive at

E(x) =
(1−Q(γ−1))x

α
+

λ

α

∞∑
n=1

qn

∫ x

y=γ−nx

E(y)dy. (33)

Although in the finite-window case (M < ∞) the above integral
equation has only meaning for0 < x ≤ M , it is well defined
for all x > 0, and the solution to (33) is unique, see [5]. Define
the LT ofE(x):

ê(ω) :=
∫ ∞

x=0

e−ωxE(x)dx.

In [5] it is shown thatê(ω) < ∞ for ω > λ/α. Hence, using
that theqn andE(x) are non-negative we may interchange the
order of integration and summation (twice), finally arriving at:

ê(ω) =
1

αω − λ

(
1−Q(γ−1)

ω
− λ

∞∑
n=1

qnê(γnω)

)
. (34)

Repeated substitution of this equation into itself and applying
partial fraction expansion leads us to the following candidate

solution:

ê(ω) =
1−Q(γ−1)

ω

∞∑

i=0

ei

γiαω − λ
, (35)

where theei are constants to be determined. This representation
will be justified by showing that it leads us to theuniquesolu-
tions to (34) and (33). Substituting (35) into (34) and equating
the coefficients multiplying the terms1/(γiαω − λ) leads to:

ei

e0
=

1
1− γ−i

i∑
n=1

γ−nqn
ei−n

e0
, i ≥ 1, (36)

e0 =


1 +

∞∑
n=1

γ−nqn

∞∑

j=0

ej/e0

γj+n − 1



−1

. (37)

We note that the ratiosei/e0 are non negative and can be com-
puted recursively from (36). Then the normalizing constant
e0 > 0 can be computed from (37).

From (36) it can be shown (by induction oni) that

ei ≤ γ−ie0, i = 1, 2, . . . , (38)

that is, theei decay exponentially fast ini asi →∞. Therefore
the right hand side of (35) certainly converges forω > λ/α and,
from its construction, (35) is the solution to (34). By partial
fraction (35) can be rewritten as:

ê(ω) =
1−Q(γ−1)

λ

∞∑

i=0

ei

(
1

ω − γ−i λ
α

− 1
ω

)
. (39)

Inverting this LT gives:

E(x) =
1−Q(γ−1)

λ

∞∑

i=0

ei

(
eγ−i λ

α x − 1
)

. (40)

Using this in (30) we have

PM =

(
1 +

(
1−Q(γ−1)

) ∞∑

i=0

ei

(
eγ−i λ

α M − 1
))−1

. (41)

Note that because of (38) and

(
eγ−i λ

α M − 1
)
∼ γ−i λ

α
M, i →∞,

PM can be computed efficiently from (41).

VI. SPECIAL CASE: ONLY ONE CONGESTION SIGNAL PER

LOSS EVENT AND Aγ = 2

In this section we specify our results for the important par-
ticular case of TCP flow control with only one division of the
window by a factor 2 at loss events. Namely, we takeγ = 2
andN ≡ 1 (q1 = 1, andqn = 0, n = 2, 3, ...) in the model
with peak rate limitation, see [15] for a similar model. In Sec-
tion VII-B we compare the results from this particular case of
our model to measurements from the Internet. We worked with
long distance connections where congestion signals rarely ap-
pear in batches and where the process of loss events is close to



Poisson [4]. From (14) and (15) we obtain the expressions for
the first two moments of the window size distribution.

E[W ] =
2α

λ
(1− PM ).

E[W 2] =
8α[2α(1− PM )− λPMM ]

3λ2
.

The throughput of TCP can be obtained from Equation (11).
The distribution function itself or the complementary distribu-
tion function F (x) is computed successively on the intervals
[M/2k,M/2k−1], k = 1, 2, ... using (21) withγ = 2. Recur-
sion (22) reduces to

c
(k)
i+1 =

c
(k−1)
i

1− 2i
, i = 1, ..., k − 1,

andc
(k)
1 is given by (23). WhenM = ∞, the distribution func-

tion is given by (29) with

ci =
1

1− 2i
ci−1, i = 1, 2, . . . ,

andc0 is given by (28).
Finally,

PM =

(
1
2

∞∑

i=0

eie2−i λ
α M

)−1

, (42)

where the coefficientsei are given by

ei

e0
=

2i−1

2i − 1
ei−1

e0
, i = 1, 2, . . . ,

e0 =

(
1 +

∞∑

i=1

1
2i

ei

e0

)−1

.

VII. M ODEL VALIDATION

In this section we compare measurements from long distance
and long life TCP connections with the results of Section VI
(N ≡ 1, γ = 2, peak rate limitation). Comparison of real mea-
surements with the model with clustered (batch) arrivals of con-
gestion signals is a topic of current research, see also Section
VIII.

Due to the large number of hops and the multiplexing of ex-
ogenous traffic in network routers, the Poisson loss process as-
sumption is expected to hold on long distance connections [15].
Our TCP receivers implement the delay ACK mechanism [22]
and our TCP senders increase their windows in the congestion
avoidance mode by approximately one packet every window’s
worth of ACKs. Thus, we takeα equal to1/(2RTT ) [19]. First,
we show theoretically how the window size is distributed in the
stationary regime. Second, we compare our results to measure-
ments from the Internet.

A. Numerical results

Consider the case of a long TCP connection with packets of
size 1460 bytes and a constant RTT of one second. Using the
results of Section VI, we computed the cumulative distribution
function F (x) of the window size and its probability density

Probability Density Function

0 5 10 15 20 25 30 35

Window size (kbytes)0
5

10
15

20
25

30
35

40
45

50

Average inter-loss time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
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function f(x) for increasing values of the intensity of losses.
We consider the both casesM = 32 Kbytes andM = ∞ (un-
limited receiver window). In Figures 3 and 4 we plot our results
for the density functionf(x). For the caseM = 32 Kbytes, we
computed the distribution function successively for the intervals
[M/2,M ], [M/4,M/2] and so on. In the case of an unlimited
receiver window, we used the expression of the density function
as an infinite sum of exponentials (Equation (29)). Note that
when solving numerically the model for the distribution, sev-
eral infinite series, e.g. (29) and (42), need to be computed. As
we discussed in previous sections, these infinite series converge
quite fast; so one needs to use only a small number of terms.

WhenM = 32 Kbytes, the discontinuity off(x) atx = M/2
is clearly seen in Figure 3 (especially for large inter-loss times).
The pulsePM at x = M is depicted by an area equal toPM .
WhenM = ∞, the density function exhibits neither pulses nor
discontinuities (Figure 4).

B. Experimental results

Our experimental testbed consists of a long life and long
distance TCP connection between INRIA Sophia Antipolis
(France) and Michigan State University (US). The TCP connec-
tion is fed at INRIA by an infinite amount of data. The New
Reno version of TCP [8] is used for data transfer. We changed
the socket buffer at the receiver in order to account for differ-
ent values ofM . We considered three values ofM : 32, 48 and
64 Kbytes. For every value ofM , we ran the TCP connection
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for approximately one hour and we registered the trace of the
connection using thetcpdump tool developed at LBNL [13].
We also developed a tool that analyzes the trace of the connec-
tion and that detects the times at which the window is reduced.
Moreover, our tool gives the average RTT of the connection and
the statistics of the window per RTT. We compared for the three
values ofM , the distribution of the window size from measure-
ments to that given by our model. The results are plotted in
Figures 5, 6 and 7.

WhenM is small, we observe a good match between the mea-
sured distribution and the one resulting from our model. How-
ever, for larger values ofM , the difference between the two in-
creases. In particular, asM increases, the measured probability
density concentrates around the average window size. This de-
viation can be explained from the measured distribution of times
between loss events. First, we plot in Figure 8 the distribution
of inter-loss times forM = 32 Kbytes. This distribution is in
agreement with an exponential law, resulting in a good match
between the model and the measurements. Figures 9 and 10
show the measured distributions for the other two values ofM .
We observe that the loss process is no longer Poisson, but closer
to a deterministic process. Small inter-loss times are less fre-
quent asM increases, and the medium inter-loss times domi-
nate. This results in a degradation of the correspondence be-
tween our model and the measurements.

One explanation of the deviation of the loss process from a
Poisson process for larger values ofM is the following. A true
Poisson loss process implies that the time until the next loss
event is independent of the past. This is the case when the con-
gestion of the network is dominated by the exogenous traffic and
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not dependent on the measured connection. Namely, when the
measured connection’s share of the available bandwidth on the
path is small compared to that of the exogenous traffic. A small
M limits the bandwidth share of our connection and limits its
impact on the network, resulting in a loss process close to Pois-
son. However for largeM , the measured connection realizes a
larger share of the bandwidth and thus contributes more to the
congestion of network routers. When it reduces its window, the
state of the network changes and becomes under-loaded. Some
time is needed for the network to be loaded again. This is the
reason for which small inter-loss times start to get small proba-
bilities. In such a case when the loss process is close to a deter-
ministic process, a simple fixed-point method as that proposed
in [3], [19] can be used to approximate the achieved throughput.

VIII. C ONCLUSIONS AND FUTURE RESEARCH

We studied additive-increase multiplicative-decrease flow
control mechanisms under the assumption that congestion sig-
nals arrive in batches according to a Poisson process. As high-
lighted in [15], the model can be reformulated as an M/G/1
queuing problem with service time dependent on system work-
load. We tried to keep the model as general as possible in order
to account for a wide range of congestion control strategies. We
calculated explicit expressions for the moments as well as the
distribution of the transmission rate (of the window size in case
of TCP). For the case of single congestion signals, we compared
our results to measurements from TCP connections over the In-
ternet. From our experiments, we concluded that our model
leads to accurate results when the times between losses are close
to being exponentially distributed.
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Currently, we are working on the validation of our model
with clustered congestion signals. Our measurements over the
Internet have shown that on some paths especially short dis-
tance ones, the loss process presents a high degree of burstiness.
We are currently also studying the extension of the analysis to
more general inter-loss time processes, in particular to MMPPs
(Markov Modulated Poisson Processes).
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A. A PPENDIX

We shall prove here that the infinite series in Equation (28)
converges. Denoteai := ci/c0. Using (27),ai satisfies the
folowing recurrent relation

ai =
1

1− γi

i∑

k=1

qkai−k.

To prove that series
∑

i ai is absolutely convergent, it is enough
to prove that the majorant series

∑
i bi, with bi defined below, is

convergent.

bi =
1

γi − 1

i−1∑

k=0

bk

Considerbi+1

bi+1 =
1

γi+1 − 1

i∑

k=0

bk =
1

γi+1 − 1
((γi−1)bi+bi) =

γi

γi+1 − 1
bi

Thus,bi+1/bi → 1/γ asi →∞, and therefore, the series
∑

i bi

(and hence
∑

i ai) is absolutely convergent forγ > 1.
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