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Abstract—We study in this paper a TCP-like linear-increase multiplica-  bursts [4]. However, the times between bursts correspond well

tive-decrease flow control mechanism. We consider congestion signals thatyg the Poisson assumption. For this reason, we consider the case

arrive in batches according to a Poisson process. We focus on the case when - - S . .
the transmission rate cannot exceed a certain maximum value. We write when congestion S|gnals arrive in batches accordlng to a Pois-

the Kolmogorov equations and we use Laplace Transforms to calculate the SON process. Batches contain a random number of congestion
distribution of the transmission rate in the steady state as well as its mo- sjgnals and each such signal causes the division of the transmis-

ments. Qur model is pamcylarly useful to study the behawor of TCP, Fhe sion rate by some constamt In the sequel, we also refer to a
congestion control mechanism in the Internet. By a simple transformation,

the problem can be reformulated in terms of an equivalent M/G/1 queue, batch of congestion signals atoas event
where the transmission rate in the original model corresponds to the work- We focus on the case when a certain limitation on the trans-

load in the ‘dual’ queue. The service times in the queueing model are not . . . . .
i.i.d., and they depend on the workload in the system. mission rate exists. We determine the exact expression of the

Keywords—TCP congestion control, batch Poisson process, Kolmogorov th'I’OI..lghput Under'SUCh a limitation. In the literature, only sim-
equation, Laplace Transform. plistic approximations have been proposed [3], [19] so far. We

study two possible scenarios that lead to such a limitation:
. INTRODUCTION (i) Peak Rate limitation: the limitation is not due to congestion

L o in the network but rather to some external agreement. In that
N today’s high speed telecommunication networks, a large . . .
T . .¢ase, when the transmission rate reaches a certain 1éyét

part of the traffic is able to adapt its rate to the congestion " : X
conditions of the network. Conaestion control is tvpicall deremams constant until a loss event appears. For example in case
’ 9 ypicaly of TCP, the window cannot exceed the buffer space available at

signed so as to allow the transmission rate to increase Iineamé receiver [22]. This is known as the end-to-end flow control
in time in the absence of congestion signals, whereas when cQ $CP. In the ABR service of ATM. the transmission rate can-

gestion is detected, the rate decreases by a multiplicative factor )
This is both the case of the Available Bit Rate (ABR) servicnOt exceed the Peak Cell Rate imposed by the contract between
F’g‘xe user and the network.

category in ATM [1] (see definition and use of RDF and R| i) Congestion limitation: the limitation on the transmission

as well as the Transmission Control Protocol (TCP) in the | : C
. L rate is due to congestion in the network that occurs whenever
ternet environment [10], [22]. Congestion is detected by the ~.
the input rate reaches a lev&f. In that case we shall have

source through signals. In case of ABR, the congestion signals

I extra batch of congestion signals when the léuels at-
are RM (Resource Management) cells that have been mar@ed ; 9 ar o
S S . tained which also causes a reduction of the transmission rate by
due to congestion information in some switch along the path 0 ; A
) . . a random factor. A typical example of such limitation is the
the connection. In case of the Internet, the congestion signals". oo . . .
avq[g*I]abIe capacity in the network. There is a maximum limit

are packet losses that are detected by the source either throu :

o BN oIy the number of packets a source can keep in the network and
the expiration of a retransmission timer, or through some nega- co

. . : nce this limits is exceeded packets are dropped. Another ex-
tive acknowledgement mechanism (three duplicate ACKs [22]). . o ; . .

. - : dmple is the reserved bandwidth in a Differentiated Services
There is also a proposal to add some explicit congestion signal- ; .
ing to the Internet (the ECN proposal [7]) network [9] in cases when packets exceeding the reserved band-

ql’he erformance evaluatriJonpof con éstion control mechvz\ali—dth are dropped rather than injected into the network as low
. p . . g . priority packets [21].
nisms is an important issue for network and protocol desd%. i ) _ ) _
This evaluation requires a description of times between the ar!n the particular case in which the batches contain a single
rivals of consecutive congestion signals. Experimentations of&@ngestion signal, the peak rate limitation model reduces to the
the Internet [4], [15] have shown that on long distance conne®?€ Studied in [15], who already attempted at computing the
tions, the Poisson assumption about the times between condst two moments of the transmission rate. A remarkable ob-
tion signals is quite reasonable. This happens when the througftvation is done in that reference showing that the flow con-
put of the studied connection is small compared to the exodE?! can be reformulated in terms of an equivalent M/G/1 queue,
nous traffic, and when the number of hops on the path is |a,xd@ere the transmission rate is translated into the workload of the
so that the superposition of the packet drops in routers leadSItgue. The congestion signals correspond to customers arriving
exponential times between congestion signals. For local af$dhe queue according to a Poisson process. The service timesin

networks, we noticed that the congestion signals may arrivetfi ‘dual’ queueing model are not i.i.d., and they depend on the

workload in the system. This transformation is also valid in our
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case congestion signals arrive in batches. Without loss of g@ie-congestion signal is received and the window is smaller than

erality, we consider that the occurrence of a batch of congestibh the window of the protocol increases linearly at rate- 0.

signals corresponds to the arrival of a client into the dual queur-case of TCPx = 1/(b - RTT) whereb is the number of

ing model. Hence, the service time of a client is also a functiatata packets covered by an ACK (usually 2, see e.g.[19], [22])

of the number of congestion signals in the corresponding bateimd whereRT'T is the average round-trip time of the connection
We solve in this paper the Kolmogorov equations and obtaassumed to be independent of the window size [4], [19].

the exact probability distribution as well as the moments of the We assume that batches containing a random number of con-

transmission rate (of the window in case of TCP) for both prolgestion signals arrive according to an independent Poisson pro-

lems. In doing so, we correct an erfan [15]. cess. We denote the sizes (i.e., the numbers of congestion sig-
We briefly mention some related results. Queueing analysials) of consecutive batches bi, N, N3, ..., and we assume

with service times that depend on the workload or on the quethat these constitute an i.i.d. sequence. The size of an arbitrary

length have been also considered in [2], [12], [17], [20]. OWatch is generically denoted By < N,. The Poisson process
model is a special case of the one studied in [20], where an ighq the sequencdy, k = 1,2,..., are independent of each
plicit characterization of the steady state distribution is obtainggher and independent of the past evolution of the window. For
(closed-form expressions were obtained for special cases 8a¢nh congestion signal received, the window is divided by a fac-
do not cover our model). In [12] an asymptotic approximatiofyy o > 1 which is a fixed parameter. That is, if an arriving
is used for solving state-dependent GI/G/1 queues in which b@fkkch containsy = n congestion signals, the window is mul-
inter-arrival times, service requirements and the service rate M@icatively decreased by a facter™. Immediately after the
depend on the workload. The peak rate limitation model isigytiplicative decrease, the window restarts its linear increase.
special case of the model with a general stationary and ergogiGase of peak rate limitation, the window stays constadtat
arrival process studied in [4]. For that model only bounds on théhen this maximum level is reached until the next congestion
throughput were obtained. Exact expressions for the throughgi¥nal is received. In case of congestion limitation, immedi-
were obtained there for the case in which no limitation on trﬁew upon reaching/, a congestion signal is received and the
transmission rate exists (see also [3], [14], [16], [19]). window is decreased. We present the two cases separately in
The structure of the paper is as follows. In Section Il we d&gctions I1-A and 1I-B.
scribe a general model of flow control with limitation on the geafore doing so, we introduce some further common nota-

transmission rate and we provide a preliminary analysis. THgn we denote the p.g.f. (probability generating function) of
two cases of peak rate limitation and congestion limitation afi§e gistribution of\v by

described separately in Sections II-A and II-B. It is shown that

a special case of the model with congestion limitation reduces o

to that of the model with peak rate limitation. Hence, it suffices Q(2) =E [2N] =) 2"qn, |2/ <1 (1)
to analyze the latter case. We then derive the moments and the n=1

distribution of the transmission rate in Sections Il and IV i?\lote that the peak rate limitation model with= 2 andq 1
1 =

terms of one unknown constant: the probability of attaining the S ; .
. X . . . reduces to the model studied in [15], where congestion signals
maximum rate. This constant is computed in Section V. In Sec- . . :
. . : . appear according to a Poisson process and where the window
tion VI we specify our model to an important particular cas«leé ivided by two upon every congestion signal occurrence. B
that of one congestion signal per batch and a reduction fact0|d y P Y 9 9 - By

. A Fonsidering a general model, we aim to account for a wide range
equal to one half. Based on this particular case, we presen

Section VIl some numerical and experimental results to Va"daﬁg}rig\évrﬁg:ttsr%mrgglzgfgsst%zirotgt?gl TCP and for future en-

the model. We conclude the paper with a section on future re- ) . .
pap Let us denote the window size at time> 0 by W (t) €

search. : . .
(0, M]. We have the following stability result which follows
Il. FLOW CONTROL WITH RATE LIMITATION: MODELS AND  from Theorem 1 in [4]:
PRELIMINARY ANALYSIS Theorem I1.1: There exists a stationary procdds*(t) such

. . . thatWW (t) converges t&V*(t) in distribution for any initial state.
We present in this section our model for the rate evolution Rﬁ?reover, we have P-a.s.

the flow control mechanism. In the sequel we adopt the usual
terminology for TCP, the well known wmdow-b'ased congestlon lim sup |[W(s) — W*(s)| = 0. @)
control protocol of the Internetve shall work with the window t—00 o>y

size rather than the transmission rafehe transmission rate of a

window-based flow control mechanism is at any moment equalygte that (2) implies that the stationary distributiorVB{t) is

to the window size divided by the round-trip time (RTT) of th%nique. For € (0, M], denote the (time-average) distribution
connection.

. . . L function by
Let M denote the maximum window size. The limitation on
the window size is either due to a peak rate limitation or to a con- T
gestion limitation. In the following we explain the similarities F(z) = lim */ P{W(t) <z}dt. 3
—oe t=0

and the differences between the models in the two cases. While

LIn a private communication, the authors of [15] announced to replace tnefo”OWS from Theorem Il.1 that this limit is mdependent of

draft with a new one. W (0) and coincides with the stationary distribution®f(¢).



We first assume thdt(z) is continuous inc € (0, M) (inthe From this differential equation we shall determiféz), =z €
case of peak rate limitation it is clear from physical consideréd, M), in terms of the probability
tions thatF'(x) has an atom at = M). Under this assumption —
we find afu(ntztionF(;z:) which is an equilibrium distribution for Py =P{W =M} =1-FM-)=F(M-).
the window size and, hence, from its unigueness it follows thatif Section 11l we first use (4) to determine the moments of the
is the desired distribution. Instead B{) it will be convenient window size distribution in terms aP,,. Then we find the dis-
to work with the complementary distribution function tribution function itself in Section IV. The unknowf, is then
— determined using the fact thal(xz) is a complementary proba-
Flo)=1-F(z) =P{W >z}, z€(0,M] bility distribution?unction F(O)(:)l). Howe\?er, the exgrgssion
To differentiate between the cases of peak rate limitation aftained forP,, in this way, does not lend itself for computa-
congestion limitation, in the latter case we attach a supersériptional purposes. Therefore we show an elegant alternative to
to the symbols introduced above, e.g., the distribution functigigterminePy, in Section V, which leads to an efficient and nu-
is denoted byF<!(z). Next we treat the two cases separatelynerically stable algorithm for computations.
In particular we show how the analysis of the model with con; Flow control with congestion limitation
gestion limitation reduces to that of the model with peak rate
limitation. Therefore, we concentrate on the peak rate limitation When the maximum window siz& is due to congestion lim-

model in the subsequent sections. itation, immediately upon reaching the level a batch of con-
. S gestion signals is generated. Here we study the case when the
A. Flow control with peak rate limitation size of such a batch has the same distribution as the random vari-

With peak rate limitation, when the window reaches the maRbleN. In [5] we treat a more general case when the number of
imum level M, it stays there until the next congestion signal igongestion signals that result from reachihghas a different
received. In Section 1I-C below we show that the window siZdistribution thanV. Similarly as in Section II-A, we can derive
procesdV (t) can be related to the workload of an M/G/1 queuthe following differential equation fo?d(m), 0<z< M:

(see also [15]). The workload of this state-dependent M/G/1 -

gueue can b_e seen _to be a M_arkov process (e.g. see [11)), an_daifd(x) —\ (Fd(x) _ Z anCl(min(’ynl‘, M)))

hence the window size evolutidi (¢) is a Markov process as dz —

well. With this in mind, we derive a steady-state Kolmogorov

equation forF'(x) = P{W > z} which will be the basis to our +AgP {N >
analysis. We use the following up and down crossing argument:

Assume that the process is in equilibrium and consider a leweith,

x € (0, M). Whenever the window size increases from less than _ ad Fd(y)

In(M) — In(x) } ’ 5)

In(v)

or equal tox to more thane we say that an up crossing of the g A dy y=M—

level = has occurred. Similarly, if the window size decreaseg,q aqditional term, compared to (4), comes from the fact that a
from more than: to less than or equal to we say that a down i crossing of the level may be due to the fact that the level

crossing of the levet has occurred. Left,t + A] be asmall /g reached and that the rate is decreased by a factomith
time interval, where is a deterministic time moment. When theyan < z. Note that if F(z) is the unique complementary

process is in equilibrium, the probability of up-crossing distribution function satisfying (4) then

(I1=2A)P{z —aA <W <z} +0(A) . F(z)— P
7(z) = F@)=Pu oo, (6)
is equal to the probability of down-crossing L= Py
. is the unique complementary distribution function satisfying (5).
AA Z @P{z < W < min(y"z, M)} + o(A). This follows immediately by substituting (6) into (5). This re-

lation has a simple geometric interpretation. Using the fact that
) . the Poisson process is memoryless, if we consider the model
After equating these, we pass | 0. Since we assumed thal it neak rate limitation only at moments when the window is
F(z) = P{W <z} is continuous forr < M (see Remark |o5qthan/ (i.e., we cut out all periods where the window equals
1 for a justification of this assumption), we conclude that ther) \\hat we get is identical to the model with congestion lim-
derivative of F'(x) exists and is continuous for all except at jiation, Thus, we can concentrate on finding the distribution

r= My.in’ Whenq”. > 0. Forz € (O’M)\{M77n}":1»?’»-- function F'(z) for the peak rate limitation model and then use
we obtain the following steady-state Kolmogorov equation (6) or the equivalent:

n=1

OZ%P{W <z}= )\Z @nP{x < W < min(y"z, M)}, F(z) = 1F_(?M,

In particular, the moments of the window size in the two models
are related by:

n=1

or, equivalently,

d — — N = K k
—a&F(x) =) (F(m) - nz::l gnF (min(y"x, M))) . (4 E [(Wcl)k:| _ E [Wl]_ P]];MM . @




In Section Il below we derive a recursive relation E{W’“]. whereN,, is the number of congestion signals in thié batch
Combined with (7), this gives a recursion Er{(wcl)k} which pf corjgestlon IS|gnaIs in the orlgln_al n_10de.l. Instead of work-
ing with the window as we are doing in this paper, one could
solve the queueing problem and switch back to the flow con-
N trol problem by using Equation (10). In particuld,[W*]| =
kB (W) p ;
E[(Wd)k} _ _ M ko (g) E[(M - aU)*],P{W <2} =1-P{U < (M —z)/a} for
AM1-=Q(v7%) 1-Pu z < M andP,, is equal to the fraction of time the server in the

) . . . ... dual queueing modelis idle.
Remark 1.We emphasize that in the congestion limitation In the case of congestion limitation, the only difference in the

model, the quantity’, has no clear interpretation. In SeCtlondual gueueing model is that we have an additional arrival once

Vv_ve use the interpretatiqn of this quantity in the peak rate "mt'ﬁe system becomes empty. This makes of the arrival process
t_atlp n _model to CO’T‘F’“‘G It .If we were to analyze the congesUape sum of a Poisson process of intensitgnd another process
I|m|tat|or11 model without using (6), then from (5) we could Xihat depends on the workload of the system. The definition of
pressF’ (z) — using the same techniques as in Section IV e service time and the transformation back to the flow control
in terms ofg instead ofP,;. Note that these two constants argroblem remain the same.

related:

we report at this point for completeness:

Py 9) Ill. M OMENTS OF THE WINDOW SIZE DISTRIBUTION

9=1"p

We further focus on the model with peak rate limitation. In
The constany can be determined using thﬁfl(z) isacomple- this section we study the moments of the window size. The
mentary probability distribution, see (24) below. Since from thleth moment of the transmission rate can be simply obtained
analysis of Section V we obtain a more tractable expression fay dividing thek-th moment of the window size byRTT)*.

Py (see Remark 2 for a related discussion), we will not furth€@f particular interest is the expectation of the transmission rate
dwell on this approach. which coincides with the throughput of the transfer or the time

. average of the transmission rate. Détdenote the throughpuit.
C. The dual M/G/1 queueing model We have

Before proceeding with determining the moments and the dis- 1 /T E (W]
tribution of the window size, we briefly show how the flow con- X = lim = X)dt = —— (11)

trol problem can be related to an M/G/1 queueing problem with T—oo T Jo RIT

service depending on the system workload, see also [15]. Fifgle second moment is also important since it tells us how much
we concentrate on peak rate limitation, then we comment @4y transmission rate varies. Some applications (e.g., real time

congestion limitation. Define multimedia flows) are sensitive to variations in transmission
rate. One could envisage to tune the flow control so that to re-
M —W(¥) o
U(t) = —y (10) duce these variations.

Define forRe(w) > 0 the LST (Laplace-Stieltjes Transform)
Namely,U (t) is obtained by ‘flippingW (¢) around a horizon- of the window size distribution by

tal line. In particular, the area betwe#ri(t) and the maximum M

window sizeM (Figure 1) corresponds to the area beld\i). Fw) = / e “TdF(z).

Note thatU (¢) resembles the evolution in time of the workload ©

(or the virtual waiting time) in a queueing system. A windo
equal toM corresponds to an empty queueing system. The li
ear increase in workload between arrivals of congestion signals . 1_ Jg( )
corresponds to the decrease in workload due to service in thea (f(w) — PMe‘“’M) =
M/G/1 model. The arrival of a batch of congestion signals in o R
our model corresponds to an arrival in the M/G/1 model. The Y Z g 1— f(y"w)
reduction of the window upon a loss event corresponds to the in- o YW
crease in workload upon arrival in the equivalent M/G/1 model.

Given that the amount by which the window is reduced depeni§te that (12) holds in particular fde/ = oo, i.e., no limitation
on the current value of the window (and of course on the numb&t the window size, in which cas®,, = 0. UsingE [W*] <
of congestion signals in the batch), the service time in the dudl®, k = 1,2,..., we may write

gueueing model is dependent on the current workload there. We ~ .

conclude that the dual model behaves indeed as an M/G/1 queue f(w) 1+ Z (—w) E [Wk]

(infinite buffer capacity, one server and Poisson arrivals with in- k! ’
tensity \) with state-dependent service requirementsU,/fis 5 m oo ok
the workload seen by arrivalin the M/G/1 queue, then its ser- M - Z w
vice timez,, is equal to 7w = (k+1)!

=0

aking LTs (Laplace Transforms) in (4) leads to:

(12)
w

k=

=

E [Wk+1] .

o

(M 1 1 Substituting this in (12), using the absolute convergence of the
Tn = AT ’ doubly-infinite series to interchange the order of summation and

yNn



WO +a (1 — Py(t)),
d _
SEWE? = -A(1-Q0 ) E[W()?]
w +2a (E[W(t)] — MPa(t)) .
N In steady state we have [W(t)] = E[W], E[W(t)?] =
E [W?] and Py (t) = Py Substitution into the above gives
(14) together with
t 0=-A(1-Q(v ) E[W?] +2a (E[W] - PyM). (16)
Fig. 1. Area associated with a single loss . .

. o Together with (14) this leads to (15). For the case= 2
equating the coefficients of equal powers.ofve get, fork = and N = 1, the formula given in [15] forE [W?] (below
L2..., Formula (4) in that reference) differs from (16) by a factor

i ko (E [Wk—l] _ PMMk—l) —a = .—1_/R_TT. This resulted in a third (incorrect) equa-
E[WF] = Gl — , (13) tion which is linearly independent of (14) and (15) from which
1-Q(0y™")) Py was determined simultaneously with{IW] and E [W?].
from which the moments of the window size distribution can ba Section V we show howP,, can be determined correctly and
obtained recursively. In particular we find for= 1, 2: computed efficiently.
a(l—Puy) IV. WINDOW SIZE DISTRIBUTION FUNCTION
W)= ————r, (14) :
M=3a-a6)

) We find in this section the explicit expression of the cumu-
B[W?) - 2a [a (1= Py) = APuM (1-Q(v™"))] (15) lative distribution of the window size. The distribution of the
X1-Q(0yH))1-Q(H?)) transmission rate can be simply obtained by rescaling the win-

These first two moments can be also obtained using direct ar w axis by L/RTT. We start first by the case of finité.

ments, see Remarks 1 and 2 below. Such arguments were provide the expre_ssion of the distribution in every inter-
d va%o[M/y’“,M/’ykfl] with & = 1,2,.... Then, for the case

d%-: 0o, We give an expression of the distribution for any 0

tional equation besides (14) and (15) from which they determifig " infinite sum of exponentials.

an erroneous expression f'or the probabiﬁ’gy (see Remark 2)- A. Window distribution for finite\/
Remark 1: The mean window size can be obtained by con- )
sidering the mean drift. The upward drift of the window FOrM/y <x < M, Equation (4) reduces to:
size is given bynP {1V < M} and the downward drift equals d _ o
AE [W] (1 - E [y~"]). Equating these gives (14). —aaF(x) = \F(z),
We can further derivél [WW?2] applying an argument simi-
lar to Little's law as was done by Misra et al. [15] for the casBence,
~v =2andN = 1. For details we refer to [5]. The main idea F(z) = pMeé(M—w)7 M <x< M. (17)
is sketched in the following. For the dual queueing model de- v
scribed in Section II-C, we can equate the mean worklodd]  To find the entire distribution we introduce, for=1,2,3, . . .,
with A times the mean area beldi(¢) ‘induced by a single ar-
rival’ (use that Poisson Arrivals See Time Averages). Back in w(2) = F(x), %k <z< 2{1
the original model, the ‘mean surface’ of the asdmvelV () v v
in Figure 1 equals/ — E[IV]. _ _ Equation (4) can now be written as:
The expected surface of the area ‘induced’ by a single loss
event (the surface of the larger triangle minus that of the smaller ~ ; I P .
one;) is equal to Fi(2) = == Fr(@) + = ;ank_n(’y ). (19)
5. (RO =) E[W?] —2M (Q(y1) — 1) E[W]).

Multiplying this by A, equating the result with/ — E [I¥] and M o M

using (14) indeed gives (15). Fi(—=) = Fr-1(=5—5) k=23,.... (20)
Remark 2: For a special case of our model, yet another way is v v

pursuitin [15] to derive (14) and (15). However, there, the fingf, is recursively given by

result is incorrect due to a small error in an intermediate step.

(18)

dx

SinceF (z) is continuous fof < = < M we have:

Eaetl;isr};r?gPM(t) = P{W(t) = M}, E[W(t)] andE [W (t)?] Fol@) = TFoo(M /Vle/)iﬁl(”lekrl)
Ao ! u ST "u)du
LEWwm] = -A(1-0 ) EWE) S D WS



We conclude from the above recursion that a solution to (19) aheé> oo, we conclude thaf(w) can be expressed as follows:
(20) has the following form

o0 AN
~ -2
k f(w) = E Ci X i’ (26)
o (k) =241y —0 wtav
Fr(x) = Py E c; e T k=12 .. (22) =0
i=1 for certain coefficients; (this is formally justified later). To

. h ici tﬁk) . . determine the constants,: = 0, 1, ..., we substitute (26) _into
To determlng the coe icients™, we substitute (21) into (19). 25) and equate coefficients multiplying the tertyigw + %71,)_
Then, equating terms with the same exponents, we get the H)s< 1aads to the recursive formula

lowing recursive formula _

. C; 1 ! Ci—
(k) 1L & ken) w 1—~i > COk7 (27)
Ci+l = 1— ,yl ;qnci—n+1’ 1= 17 7k - L (22) k=1

which determines the ratias/c, (it is for this reason that both
Once the Coefficientsgk)7i — 2’ - k are Computed, the coeffi- SAideS contain a faCtOl’/Co). The CoefﬁcientCO follows from

cientcgk) can be determined from (20): f0)==-3Zgei=1
k-1 _ k _ _ i

() A lz O S S CRESesY co=—(1+ ; o (28)
=1 =2

(23) It can be shown that the infinite series in the expressioa, of
Note that to compute the coefficien;g), we do notneedPy;. converges and hence all the coefficientexist. The proof of
Hence, using that’(z) is a complementary distribution func-convergence is given in Appendix A. The inversion of (26) back

tion, Py, is then determined by: into the time domain gives:
k ; M > A
Py (klggo S e M/) = Jim Fi(3=) = 1. F(z)=C+ Z;* ., (29)
= (24) -

with C' = 1 (becausd”'(0) = 0). Given that the coefficients
exist, the above series is absolutely convergent for any value of
€ [0,00). Thus, itis theuniquesolution to (4) when/ = cc.
or the case of no window size limitation ahd= 1, (¢; = 1),
F(z) was already obtained in [18].

However, this relation is not suitable to computg,, see Re-
mark 2 below.

Remark 1: With (18) and (21) we have found an equilibriu
distribution functionF'(x) satisfying (4). By Theorem II.1 it
is the unique solution and, hence, the assumption ft{al is

continuous for < M is justified. _ V. THE PROBABILITY OF MAXIMUM WINDOW SIZE
Remark 2: Recursion (22) is suitable to determine the distri- ) ) ] ) )
bution function on an intervalf/v* < = < M whenk is not In Sections Il and IV we determined the window size dis-

too large. For largé the recursion may become instable, sincéiPution and its moments in terms éh,. In this section we
it involves subtraction of numbers of the same order. Therderive an expression fdf,, from which it can be computed ef-
fore (24) is not suitable to compute,;. In Section V below ficiently. For this we introduce the random variafiigr) which
we derive an alternative expression Bk, which leads to a 1S the time until the window size returns to the valuestarting

numerically stable and efficient algorithm to compifig. just after a loss event occurs with the window size being equal
tox € (0, M]. We denote its expectation iy(z) := E [T'(x)],
B. Window distribution for infinité// z € (0, M]. Then, from elementary renewal theory,
In this case, the results derived in the previous subsection can- 1/
not be applied immediately by lettingy/ go to infinity. How- Py :=P{W =M} = At BEQ) (30)
ever, we can derive the LST of the window size distribution by
similar arguments. Whef/ = oo, (12) becomes We now proceed to find the functidfi(z). A typical evolution
X . of the window size is depicted in Figure 2. For simplicity in the
A AW & fyTw) figure only loss events haviniy = 1 are depicted. The times to
flw) = al|l w Z L ’ recover from losses are partly cut out of the picture (denoted by
n=t the shaded areas).
or, equivalently, Suppose for the moment that the initial loss (at the leyel

was such thaftV = n (in the figuren = 1). Let T, (z) be the
=~ i 25 time to get back at levet conditional onV = n and we further
Tox 2 mf07). (25 \write E, (z) := E [T,.(z)] := E [T(x)|N = n]. Note that

a n=1

A
a

fw)=

Substituting the above equation repeatedly into itédlmes, E(z) = i 4nEn (). (31)
applying partial fraction expansion at each step, and then taking ot



solution:

X
WOy, 1-Q(v ) & €;
VA éw) = w ; Yiaw — A’ (35)

| . . .
v where thee; are constants to be determined. This representation

will be justified by showing that it leads us to theiquesolu-
tions to (34) and (33). Substituting (35) into (34) and equating

NG Ny the coefficients multiplying the termis/ (v aw — \) leads to:
~—_ ~—__ t
T(y) T(Y) e; 1

i
—n _ €i-n .

g _ A WS i>1 (36

o T ;7 e (36)

—1

Fig. 2. TCP window

If no losses occur during the timE,(z) thenT,,(z) = (1 — o0 © /e
y~™z/a, i.e., the window size: is reached in a straight line e = 1+ Z v "gn Z #01 . (37
from the starting point at—"z (in the figurey—'z). Each time n=1 7T

a loss occurs at a levgl € (v~ "z, z) it takesT'(y) time units _ _

to get back at the leve). Because of the memoryless propertyVe note that the ratios; /e, are non negative and can be com-
of the Poisson process, if we take out the shaded areas in gted recursively from (36). Then the normalizing constant
ure 2 and concatenate the non-shaded areas then the cut p6ints 0 can be computed from (37).

(where the shaded areas used to be) form a Poisson process &#0M (36) it can be shown (by induction énthat

the straight line fromy—"z to z. Thus if the cut points are given i .

by y1, 2, - - ., ym (in the figurem = 2) then e < e, =120, (38)

1=~z

J

that is, thee; decay exponentially fast inasi — oc. Therefore
+E(y)+ E(y2) + ... + E(Ym)- the right hand side of (35) certainly convergesdor \/a and,
from its construction, (35) is the solution to (34). By partial
Since the loss process is a Poisson process, the mean nurfiB&tion (35) can be rewritten as:
of cut points isA(1 — y~™)z/« and the position of each of the

En(x) =

pointsy; is uniformly distributed over the intervdly "z, z), é(w) = 1-Q(v™H iei 1) (39)
see for instance [23, Thm. 1.2.5]. Hence, A — w—yid
En(z) = A=y (1 +)\/ E(?{) dy) Inverting this LT gives:
; e (e 1-Q( ) & (o
L9 A [ By = 120D S (o7 1) o
= %+a / E(y)dy. (32) () 3 go ( ). @0
y=y~ "w

Using (1) and (31) we now arrive at Using this in (30) we have

b - Q0 255

[e%

0o —1

—i XA
E(y)dy. (33) Pu= (1 F(1=QU0 )Y e (e A - 1)) . (41)
—ng =0
Although in the finite-window casel{ < o) the above integral '\Ot€ that because of (38) and
equation has only meaning for< = < M, it is well defined Ciagyg Y _
for all z > 0, and the solution to (33) is unique, see [5]. Define (67 o« = 1) ~ 7_25M7 1 — 00,
the LT of E'(x):
P, can be computed efficiently from (41).

o0
é(w) = / e “"E(r)dx. VI. SPECIAL CASE ONLY ONE CONGESTION SIGNAL PER
»=0 LOSS EVENT AND Ay = 2

In [5] it is shown thaté(w) < oo for w > A/ Hence, using |n this section we specify our results for the important par-
that theg,, and E(x) are non-negative we may interchange thgcylar case of TCP flow control with only one division of the
order of integration and summation (twice), finally arriving at:\window by a factor 2 at loss events. Namely, we take- 2
. andN =1 (¢; = 1, andg, = 0,n = 2,3,...) in the model
1 1-Q(v™) — with peak rate limitation, see [15] for a similar model. In Sec-
= - A ne(y" . (34 ' . .
() aw— A ( w Z ané(7"w) (34) tion VII-B we compare the results from this particular case of
our model to measurements from the Internet. We worked with
Repeated substitution of this equation into itself and applyingng distance connections where congestion signals rarely ap-
partial fraction expansion leads us to the following candidagear in batches and where the process of loss events is close to

n=1



Poisson [4]. From (14) and (15) we obtain the expressions for Probability Density Function
the first two moments of the window size distribution.

2a 05
E[W] = 5 (1 - Pay). b
8&[2&(1 — PM) — )\P]\{M} °02§
EW? = .
(W o i
The throughput of TCP can be obtained from Equation (11). oo
The distribution function itself or the complementary distribu- a0
tion function () is computed successively on the intervalg e inter-iosstime (95 e
[M/2F M /21 k = 1,2,... using (21) withy = 2. Recur- P05 - o B 2
sion (22) reduces to o o Window size (kbytes)

k—
) _ab
Gl T i

=1,..,k—1, Fig. 3. Limited receiver window/ = 32 Kbytes

Probability Density Function
andc(lk) is given by (23). When/ = oo, the distribution func-
tion is given by (29) with oas

1 .
C; = iCifl, Z:].,Q,...,

1-2

andcy is given by (28).
Finally,

1 - :
I w272 M
Py = (2 Zele > ) (42) Averageinter-losslime(sz,)02
1=0

where the coefficients; are given by

80 100

Window size (kbytes)

€; 27 ey
— = . , 1=1,2,..., Fig. 4. Unlimited receiver windowM = co
€o 20 —1 e
1o -1 function f(x) for increasing values of the intensity of losses.
ep = 1+ Z & We consider the both cas@¢ = 32 Kbytes andM = oo (un-
i—1 2% eo limited receiver window). In Figures 3 and 4 we plot our results

for the density functioryf(x). For the casé/ = 32 Kbytes, we
computed the distribution function successively for the intervals
In this section we compare measurements from long distaridé/2, M|, [M /4, M /2] and so on. In the case of an unlimited
and long life TCP connections with the results of Section Weceiver window, we used the expression of the density function
(N = 1,v = 2, peak rate limitation). Comparison of real meaas an infinite sum of exponentials (Equation (29)). Note that
surements with the model with clustered (batch) arrivals of cowhen solving numerically the model for the distribution, sev-
gestion signals is a topic of current research, see also Sec@@l infinite series, e.g. (29) and (42), need to be computed. As
VIII. we discussed in previous sections, these infinite series converge
Due to the large number of hops and the multiplexing of eguite fast; so one needs to use only a small number of terms.
ogenous traffic in network routers, the Poisson loss process asi’henM = 32 Kbytes, the discontinuity of () atz = M /2
sumption is expected to hold on long distance connections [1&]clearly seen in Figure 3 (especially for large inter-loss times).
Our TCP receivers implement the delay ACK mechanism [2Zhe pulsePy; atx = M is depicted by an area equal k.
and our TCP senders increase their windows in the congestiyhenM = oo, the density function exhibits neither pulses nor
avoidance mode by approximately one packet every windovéliscontinuities (Figure 4).
worth of ACKs. Thus, we take equal tol /(2RT'T) [19]. First, )
we show theoretically how the window size is distributed in th@- Experimental results

stationary regime. Second, we compare our results to measure@ur experimental testbed consists of a long life and long
ments from the Internet. distance TCP connection between INRIA Sophia Antipolis
(France) and Michigan State University (US). The TCP connec-
tion is fed at INRIA by an infinite amount of data. The New
Consider the case of a long TCP connection with packetsRé&no version of TCP [8] is used for data transfer. We changed
size 1460 bytes and a constant RTT of one second. Using the socket buffer at the receiver in order to account for differ-
results of Section VI, we computed the cumulative distributioent values of\/. We considered three values &f: 32, 48 and
function F'(x) of the window size and its probability density64 Kbytes. For every value g/, we ran the TCP connection

VII. M ODEL VALIDATION

A. Numerical results
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for approximately one hour and we registered the trace of thet dependent on the measured connection. Namely, when the
connection using thiepdump tool developed at LBNL [13]. measured connection’s share of the available bandwidth on the
We also developed a tool that analyzes the trace of the conngath is small compared to that of the exogenous traffic. A small
tion and that detects the times at which the window is reduced. limits the bandwidth share of our connection and limits its
Moreover, our tool gives the average RTT of the connection amdpact on the network, resulting in a loss process close to Pois-
the statistics of the window per RTT. We compared for the threen. However for largé/, the measured connection realizes a
values ofM, the distribution of the window size from measurefarger share of the bandwidth and thus contributes more to the
ments to that given by our model. The results are plotted @ongestion of network routers. When it reduces its window, the
Figures 5, 6 and 7. state of the network changes and becomes under-loaded. Some

WhenM is small, we observe a good match between the md#ne is needed for the network to be loaded again. This is the
sured distribution and the one resulting from our model. Howeason for which small inter-loss times start to get small proba-
ever, for larger values af/, the difference between the two in-bilities. In such a case when the loss process is close to a deter-
creases. In particular, dd increases, the measured probabilityninistic process, a simple fixed-point method as that proposed
density concentrates around the average window size. This @3], [19] can be used to approximate the achieved throughput.
viation can be explained from the measured distribution of times
between loss events. First, we plot in Figure 8 the distribution
of inter-loss times fol\/ = 32 Kbytes. This distribution is in  \We studied additive-increase multiplicative-decrease flow
agreement with an exponential law, resulting in a good matebntrol mechanisms under the assumption that congestion sig-
between the model and the measurements. Figures 9 anchal@ arrive in batches according to a Poisson process. As high-
show the measured distributions for the other two value®/of Jighted in [15], the model can be reformulated as an M/G/1
We observe that the loss process is no longer Poisson, but clefgfuing problem with service time dependent on system work-
to a deterministic process. Small inter-loss times are less figad. We tried to keep the model as general as possible in order
quent asM increases, and the medium inter-loss times domp account for a wide range of congestion control strategies. We
nate. This results in a degradation of the correspondence Bgfculated explicit expressions for the moments as well as the
tween our model and the measurements. distribution of the transmission rate (of the window size in case

One explanation of the deviation of the loss process fromo&TCP). For the case of single congestion signals, we compared
Poisson process for larger valuesifis the following. A true our results to measurements from TCP connections over the In-
Poisson loss process implies that the time until the next lassnet. From our experiments, we concluded that our model
event is independent of the past. This is the case when the deads to accurate results when the times between losses are close
gestion of the network is dominated by the exogenous traffic atedbeing exponentially distributed.

VIIl. CONCLUSIONS AND FUTURE RESEARCH
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Currently, we are working on the validation of our modét?!
with clustered congestion signals. Our measurements over [t{s
Internet have shown that on some paths especially short dig!
tance ones, the loss process presents a high degree of burstines
We are currently also studying the extension of the analysis[ig]
more general inter-loss time processes, in particular to MMPPs
(Markov Modulated Poisson Processes). [16]
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A. APPENDIX 21]

We shall prove here that the infinite series in Equation (2[’:2)2]
converges. Denote; := ¢;/cy. Using (27),a; satisfies the [23]
folowing recurrent relation

g

a; = ! ZQkaiflv

=73

To prove that serie} _, a; is absolutely convergent, it is enough
to prove that the majorant serigs, b;, with b; defined below, is
convergent.

=
bi = Ni—1 Zbk
k=0

0.07 B 1 1 ;
oss | \ ] bit1 = ST Zbk = m((’)’ —1)bi+b;) = mbi

INRIA - Michigan Consider; 1

i

Vi

k=0

Thus,b;1/b; — 1/~ asi — oo, and therefore, the serigs, b;
(and hencé, a;) is absolutely convergent for > 1.

REFERENCES

The ATM Forum Technical Committe&raffic Management Specification
Version 4.0, 95-0013R8, Oct. 1995.

V.M. Abramoyv, “Investigation of a queueing system with service depend-
ing on queue length”, Donish (pub.), Dushanbe, 1991, (in Russian).

E. Altman, K. Avrachenkov and C. Barakat, “TCP in presence of bursty
losses” ACM SIGMETRICSJun. 2000.

E. Altman, K. Avrachenkov and C. Barakat, “A stochastic model of
TCP/IP with stationary random losse&XCM SIGCOMM Sep. 2000.

E. Altman, K. Avrachenkov C. Barakat and Rifez-Queija, “State-
dependent M/G/1 type queueing analysis for congestion cont@N|
report PNA-R0005Jul. 2000.

D. Choi, C. Knessl, C. Tier, A queueing system with queue length depen-
dent service times, with applications to cell discarding in ATM networks”,
J. Appl. Math. Stoch. Analvol. 12 (1999), no. 1, pp. 35-62.

S. Floyd, “TCP and Explicit Congestion NotificationACM Computer
Communication Reviewol. 24, No. 5, Oct. 1994, pp. 8-23.

S. Floyd and T. Henderson, "The NewReno Modification to TCP’s Fast
Recovery Algorithm” RFC 2582 Apr. 1999.

J. Heinanen, T. Finland, F. Baker, W. Weiss, and J. Wroclawski, "Assured
Forwarding PHB Group”RFC 2597 Jun. 1999.

V. Jacobson, “Congestion avoidance and cont®CM SIGCOMM Aug.
1988.

C. Knessl, B.J. Matkowsky, Z. Schuss, and C. Tier, “Asymptotic Analysis
of a state-dependent M/G/1 queueing syste8IAM J. Appl. Math.vol.

46 (1986), no. 3, pp. 483-505.

C. Knessl, C. Tier, B.J. Matkowsky, Z. Schuss, “A state-dependent GI/G/1
queue” Eur. J. Appl. Math,vol. 5 (1994), no. 2, pp. 217-241.

LBNL's t cpdump tool, available at http://www-nrg.ee.lbl.gov.

M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic Behavior
of the TCP Congestion Avoidance AlgorithmACM Computer Commu-

Shication Reviewvol. 27, no. 3, pp. 67-82, Jul. 1997.

V. Misra, W.-B. Gong, D. Towsley, " Stochastic differential equation mod-
eling and analysis of TCP-windowsize behavidPgrformance’99 Oct.
1

A. Misra, T. Ott, and J. Baras, "The Window Distribution of Multiple TCPs
with Random QueuesTEEE GLOBECOMDec. 1999.

S.C. Niu, "On queues with dependent interarrival and service times”,
Naval Res. Logist. Quartvol. 28 (1981), no. 3, pp. 497-501.

TJ. Ott, J.H.B. Kemperman, and M. Mathis, “The station-
ary behavior of ideal TCP congestion avoidance”, available at:
ftp://ftp.telecordia.com/pub/tjo/TCPwindow.ps, Aug. 1996.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Through-
put: a Simple Model and its Empirical Validatio’RCM SIGCOMM Sep.
1998.

M. Posner,” Single-server queues with service time dependent on waiting
time”, Operations Resvol. 21 (1973), pp. 610-616.

S. Sahu, D. Towsley, and J. Kurose "A Quantitative Study of Differentiated
Services for the InternetEEE GLOBECOMDec. 1999.

W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms’RFC 2001 Jan 1997.

H.C. Tijms,” Stochastic Models — An Algorithmic Approach”, Wiley,
Chichester, 1994.



