
Université de Nice - Sophia Antipolis – UFR Sciences
École Doctorale STIC

THÈSE

Présentée pour obtenir le titre de :

Docteur en Sciences de l’Université de Nice - Sophia Antipolis

Spécialité : INFORMATIQUE

par

Imed LASSOUED

Équipes d’accueil : INRIA Planete Team, Sophia Antipolis

ADAPTIVE MONITORING AND MANAGEMENT OF INTERNET
TRAFFIC

Thèse dirigée par : Dr. Chadi BARAKAT

Soutenance le jj mois 2011, devant le jury composé de :

Président : First Name LAST NAME Affiliation
Directeur : Chadi BARAKAT INRIA

Rapporteurs : Guy LEDUC University of Liège
Laurent MATHY Lancaster University

Examinateurs : Luigi Alfredo GRIECO Politecnico di Bari
Emmanuel LETY Product Manager at UDcast

THÈSE

SOLUTIONS ADAPTATIVES POUR LA MÉTROLOGIE ET
LA GESTION DU TRAFIC DE L’INTERNET

ADAPTIVE MONITORING AND MANAGEMENT OF
INTERNET TRAFFIC

IMED LASSOUED
Mois 2011

ADAPTIVE MONITORING AND MANAGEMENT OF INTERNET TRAFFIC
by

Imed LASSOUED
Directeurs de thèse: Dr. Chadi BARAKAT

Équipes d’accueil : PLANETE – INRIA Sophia Antipolis

ABSTRACT
Traffic measurement allows network operators to achieve several purposes such as traffic engineer-

ing, network resource provisioning and management, accounting and anomaly detection. However,
existing solutions suffer from different problems namely the problem of scalability to high speeds, the
problem of detecting changes in network conditions, and the problem of missing meaningful information
in the traffic. The main consequence of this trend is an inherent disagreement between existing mon-
itoring solutions and the increasing needs of management applications. Hence, increasing monitoring
capabilities presents one of the most challenging issues and an enormous undertaking in a large net-
work. This challenge becomes increasingly difficult to meet with the remarkable growth of the Internet
infrastructure, the increasing heterogeneity of users’ behavior and the emergence of a wide variety of
network applications. In this context, we present the design of an adaptive centralized architecture that
provides visibility over the entire network through a network-wide cognitive monitoring system.

We consider the following important requirements in the design of our network-wide monitoring
system. The first underscores the fact that the vendors do not want to implement sophisticated sam-
pling schemes that give good results under certain circumstances. They want to implement simple and
robust solutions that are well described by some form of a standard (i.e. sFlow, NetFlow). Thus, we
decide to design a new solution that deals with existing monitoring techniques and tries to coordinate
responsibilities between the different monitors in order to improve the overall accuracy. The second
requirement stipulates that the monitoring system should provide general information of the entire net-
work. To do so, we adopt a centralized approach that provides visibility over the entire network. Our
system investigates the different local measurements and correlates their results in order to address the
tradeoff between accuracy and monitoring constraints. And the last requirement indicates that the mon-
itoring system should address the scalability problem and respect monitoring constraints. To this end,
our system relies on a network configuration module that provides a responsive solution able to detect
changes in network conditions and adapt the different sampling rates to network state. At the same time
it avoids unnecessary details and oscillations in the traffic in order to keep the resulting overhead within
the desired bounds. The network reconfiguration module deals with local monitoring tools and adjusts
automatically and periodically sampling rates in order to coordinate responsibilities and distribute the
work between the different monitors.

ACKNOWLEDGMENTS

I wish to express my gratitude to my supervisor, Dr. Chadi Barakat, for his continuous encour-
agement, guidance and support during my thesis work. This work and its underlying details were
greatly influenced and enriched by his assistance and guidance. I extend my thanks to him for
having so much patience with me and for always giving me his honest opinion. It has been a real
pleasure to work with him.

I will always remain grateful to Dr. Konstantin Avrachenkov for his support, advices and con-
structive comments, as well as for taking the time to discuss my research goals and providing me
with helpful feedback.

Then, I am much obliged to //Guy Leduc, Laurent Mathy, Luigi Alfredo Grieco, and Emmanuel
Lety for accepting to be members of the thesis jury and for their pertinent feedback. It is a great
honor for me to have them evaluate my work.

This thesis would not have been possible without the aid and the expertise of Walid DABBOUS,
director of the Planete Project-team at INRIA. I would also like to thank all the academic and
support staff of the department; special attention goes to Thierry Turletti, Arnaud Legout, Thierry
Parmentela and, Mathieu Lacage; then, I would like to acknowledge the fruitful collaboration I
have had with the research engineer Amir Krifa.

My appreciation goes as well to the Ecode project researchers Dimitri Papadimitriou, Kave
Salamatian and philippe owezarski for their constructive comments and suggestions during the
prototype design and implementation and for the technical assistance I have received.

There are also many colleagues to be considered individually, but some names stand out; partic-
ular thanks go to Amine, Roberto, Laurie, Anais, Giovanni, Shafqat, Karim, Stevens and Mohamed
with whom I had many discussions about everything. Finally, my life would not have been the same
without my family that has remained close to me even if we were thousands of miles away. I am
deeply thankful to them.

Imed LASSOUED

v

vi

Sophia Antipolis, France

viii

DEDICATED TO MY PARENTS, HABIB AND FAIZA

CONTENTS

List of Figures xiv

List of Tables 1

1 Introduction: Overview and Contribution 3

1.1 Context and Problem Statement . 4

1.2 Thesis Contributions . 8

1.3 Thesis Outline . 11

2 State of the Art 13

2.1 SNMP: Overview and utilization . 15

2.1.1 SNMP counters . 16

2.1.2 Identification and classification of anomalies in network-wide traffic . . . 17

2.2 NetFlow overview . 20

2.2.1 NetFlow background . 21

2.2.2 Adaptive NetFlow . 22

2.2.3 Control of volume and variance in network measurement 25

2.3 Metering and exporting processes . 26

2.3.1 Techniques for IP packet selection . 26

2.3.1.1 Categorization of packet selection techniques 26

2.3.1.2 Sampling . 27

2.3.1.3 Filtering . 29

2.3.2 IP flow information export (IPFIX) . 29

2.3.3 Sampling primitives . 30

2.3.3.1 Packet sampling . 32

2.3.3.2 Flow sampling . 33

2.3.3.3 Sample and hold . 34

2.3.3.4 Smart sampling . 36

2.3.3.5 Trajectory sampling . 38

xi

xii CONTENTS

2.4 Designing novel network monitoring architecture 41

2.5 Conclusion . 43

3 Evaluation Methodology for network traffic monitoring systems 45

3.1 Experimental Platform for Network Wide Traffic Sampling and Monitoring 46

3.1.1 Introduction . 46

3.1.2 Related Work . 47

3.1.3 Platform architecture . 49

3.1.3.1 Traffic Emulation Service . 49

3.1.3.2 Traffic Monitoring and Sampling Service 51

3.1.4 Data Collection and Analysis Service . 53

3.1.5 Validation of the platform operation . 54

3.1.5.1 Test Environment . 54

3.1.5.2 Results . 55

3.1.6 Summary . 57

3.2 Performance Analysis . 57

3.2.1 Sensitivity Analysis Overview . 57

3.2.2 Sensitivity Analysis Methods . 58

3.2.3 Fourier Amplitude Sensitivity Test . 59

3.3 Conclusion . 61

4 System Architecture 63

4.1 Introduction . 64

4.2 Challenges and objectives . 65

4.3 System architecture . 66

4.3.1 Monitoring Engine (ME) . 68

4.3.2 Cognitive Engine (CE) . 69

4.3.2.1 Network Reconfiguration Engine 70

4.3.2.2 Global Network Traffic Inference Engine 71

4.4 Conclusion . 76

5 Network Reconfiguration Method 79

5.1 Reactive Network Reconfiguration Method . 80

5.1.1 Optimization method description . 81

5.1.2 Validation results . 82

5.1.2.1 Validation scenarios . 82

5.1.2.2 System efficiency, adaptability and convergence 85

5.1.2.3 Fairness and comparison with the static edge method 90

CONTENTS xiii

5.1.2.4 Global sensitivity analysis . 93

5.1.3 Summary . 95

5.2 Proactive Network Reconfiguration Method . 95

5.2.1 Challenges and objectives . 96

5.2.2 Optimization method description . 96

5.2.2.1 Overhead prediction . 97

5.2.2.2 Optimization method . 100

5.2.3 Validation results . 100

5.2.3.1 System efficiency . 102

5.2.3.2 Global sensitivity analysis . 103

5.2.4 Summary . 105

5.3 Reactive optimization method vs. Proactive optimization method 105

5.3.1 Measurement accuracy study . 106

5.3.2 System efficiency . 107

5.4 Conclusions . 108

6 Sampling Primitives Combination 111

6.1 Introduction . 112

6.2 System architecture . 114

6.2.1 Global Estimator Engine . 114

6.2.1.1 Flow counting . 114

6.2.1.2 Flow size estimation . 117

6.2.1.3 Heavy hitter detection . 118

6.2.2 Network Reconfiguration Engine . 119

6.2.2.1 Overhead prediction . 119

6.2.2.2 Optimization method . 120

6.3 Validation results . 122

6.3.1 Comparison with application-specific methods 122

6.3.2 System efficiency and adaptability . 124

6.3.3 Overhead prediction process validation . 125

6.4 Conclusions . 125

7 Conclusion 129

7.1 Overall closure comments . 129

7.2 Future work . 132

Glossary 134

xiv CONTENTS

BIBLIOGRAPHY 135

Résumé 142

FIGURES

2.1 Comparison of IPFIX Architecture and PSAMP Framework. 31

2.2 Packet sampling procedure. 33

2.3 Flow sampling procedure. 34

2.4 Sample and hold procedure. 35

3.1 Experimental Platform Architecture. 49

3.2 Traffic Emulation Service. 51

3.3 Example of emulated topology. 51

3.4 Monitoring and Sampling Service. 52

3.5 Data Collection Service. 53

3.6 Geant topology. 54

3.7 Validation Results. 56

4.1 System architecture. 67

4.2 Functional architecture of the monitoring engine. 68

4.3 Monitoring process. 70

5.1 Geant topology. 84

5.2 Abilene topology. 85

5.3 The evolution of the mean relative error and the resulting overhead O (Netflow

report/s) using two different traces. 86

5.4 Evolution of some sampling rates vs. time using trace V and TOPG. 87

5.5 Average mean relative error for different TO values. 88

5.6 Resulting overhead vs. time using three different TO values. 89

5.7 Average mean relative error vs. target overhead for the Abilene-like topology. . . 89

5.8 The evolution of the mean relative error of all the flows vs. time. 90

5.9 The mean relative error of flow measurements: Our approach vs. static edge one. 92

5.10 Resulting overhead vs. time using two time scales to track variations in the traffic.102

5.11 Average mean relative error vs. (T O). 103

xv

xvi FIGURES

5.12 Average mean relative error of T1 vs. the weight γ1. 104

5.13 Reactive optimization method vs. Proactive optimization method for different

values of time scale τ. 106

5.14 Comparing the performance of the Reactive and Proactive optimization methods

for different values of T O. 107

5.15 Resulting Overhead (Netflow-records/s) of the Reactive optimization method

and the Proactive optimization method using two different time scales. 108

6.1 System architecture. 115

6.2 Average mean relative error vs. Target overhead (T O) for three applications:

Our approach vs. two application-specific approaches. 123

6.3 Resulting overhead vs. time using two time scales to track traffic variations 126

TABLES

2.1 Qualitative effects on feature distributions by various anomalies. 19

2.2 Summary of NetFlow problems and proposed solutions. 23

2.3 Comparison of sampled NetFlow and adaptive NetFlow. 24

2.4 Categorization of packet selection schemes. 27

4.1 Parameters in the model . 72

5.1 Traffic traces summary . 85

5.2 Comparing AS traffic volume estimations. 92

5.3 Parameters of the experiment. 95

5.4 Parameters of the experiment. 104

6.1 Summary of assigned weights and experimental results for a selection of scenarios124

6.2 Average sampling rate values and reported NetFlow records for a selection of

scenarios . 125

1

2 TABLES

1

INTRODUCTION: OVERVIEW AND

CONTRIBUTION

Traffic measurement and monitoring are important tasks in order to understand the per-

formance of a network infrastructure and to efficiently manage network resources. However,

the remarkable growth of the Internet infrastructure and the increasing heterogeneity of appli-

cations and users’ behavior make more complex the manageability and monitoring of Internet

Service Provider (ISP) networks and raises the cost of any new deployment. The main con-

sequence of this trend is an inherent disagreement between existing monitoring solutions and

the increasing needs of management applications. Hence, in this introductory chapter, we will

briefly review the current context of monitoring solutions and we will discuss the technical

challenges facing increasing monitoring capabilities that must still to be overcome and that mo-

tivate this work. Then, we will present the main topics to which we have contributed during

this thesis.

3

4 Introduction: Overview and Contribution

Contents
1.1 Context and Problem Statement . 4

1.2 Thesis Contributions . 8

1.3 Thesis Outline . 11

1.1 Context and Problem Statement

The Internet infrastructure has seen an immense growth in importance and size. One of the

main reasons for the success of the Internet is its service model that emphasizes flexibility: any

computer can send any type of data to any other computer at any time [52]. Internet users

consider the Internet as a medium that provide the connectivity for the end-user applications

and they are shielded from having to know the Internet infrastructure or details of how it

works. In fact, the Internet protocol stack follows the principle of information hiding. This

protocol stack defines the rules for how user-level data is transformed into network packets for

transport across the network. The users do not need to know how many network packets are

generated when using Internet or how these packets are routed through the network. They

care only about the robustness, flexibility, reliability and simplicity of Internet usage. Hence, in

order to ensure reliable operation and smooth growth of computer networks, network operators

need mechanisms to constantly monitor and study data traffic. This often relies on network

traffic measurement as a methodology to collect and analyze data regarding the operation and

performance of network protocols.

Network monitoring is an enormous engagement in a large network. It consists of monitor-

ing a network using a set of monitors deployed in network routers, with the purpose of moni-

toring the performance of the deployed network infrastructure and understanding the behavior

of the network and its users. Monitoring is a main process in the engineering, and operation of

a network. This can serve several purposes such as traffic engineering [55], network resource

provisioning and management, accounting [40] and anomaly detection [19, 33, 98]. There-

fore, improving network monitoring systems and capabilities has a direct impact on network

performance, user experience and operators revenues.

The authors in [95] have defined four main reasons why network traffic measurement is a

useful methodology:

1.1 Context and Problem Statement 5

� Network Troubleshooting. Computer networks are not infallible. Often, a single malfunc-

tioning piece of equipment can disrupt the operation of an entire network, or at least de-

grade performance significantly. Examples of such scenarios include ”broadcast storms”,

illegal packet sizes, incorrect addresses, and security attacks. In such scenarios, detailed

measurements from the operational network can often provide a network administrator

with the information required to pinpoint and solve the problem.

� Protocol Debugging. Developers often want to test out ”new, improved” versions of net-

work applications and protocols. Network traffic measurement provides a means to en-

sure the correct operation of the new protocol or application, its conformance to required

standards, and (if necessary) its backward-compatibility with previous versions, prior to

unleashing it on a production network.

� Workload Characterization. Network traffic measurements can be used as input to the

workload characterization process, which analyzes empirical data (often using statistical

techniques) to extract salient and representative properties describing a network applica-

tion or protocol. Knowledge of the workload characteristics can then lead to the design

of better protocols and networks for supporting the application.

� Performance Evaluation. Finally, network traffic measurements can be used to determine

how well a given protocol or application is performing in the Internet. Detailed analysis

of network measurements can help identify performance bottlenecks. Once these per-

formance problems are addressed, new versions of the protocols can provide better (i.e.,

faster) performance for the end users of Internet applications.

Currently, there is an increasing interest in efficient passive measurement solutions that scale

with the network traffic while providing the maximum possible information.

Until recently, network operators have used coarse-grained data provided by the different

monitors (deployed in network routers). These data consist of aggregate bytes and packets

counts in each direction at a given interface, aggregated over time windows of a few minutes.

However, these data are no longer sufficient to engineer and manage networks. This is due to

two reasons: the Internet infrastructure growth in terms of geographical size and importance

and the tremendous success of Internet-based applications: (i) Internet infrastructure growth:

The Internet has known an impressive growth in terms of size, connectivity, importance and

capacity [21]. Its success is in great part due to its five base design principles (modularization

by layering, connectionless packet forwarding, end-to-end principle, uniform inter-networking

principle and simplicity principle). One cost we pay for this success and growth of Internet is

the difficulty of network monitoring and the inability to efficiently respond to new monitoring

application requirements. Furthermore, with an increasing reliance on the Internet infrastruc-

ture for economic and social activities, the impact of network-wide attack in the form of worms

6 Introduction: Overview and Contribution

or viruses is also increasing [76, 88, 77]. These malicious phenomena make the measurement

and monitoring of Internet traffic even more important. Hence, the Internet has progressively

become an infrastructure that is architecturally more complex to operate. This complexity pro-

gressively impacts the Internet robustness and reliability and in turn impacts its scalability. (ii)
success of Internet-based applications: The evolution of the Internet has been accompanied by

the development, growth, and use of a wide variety of network applications [95, 71]. These

applications range from text-based utilities such as file transfer, remote login, electronic mail,

and network news from the early days of the Internet, to the World-Wide Web, the video-

conference applications, multimedia streaming, and electronic commerce on today’s Internet.

In fact, the application area has seen rapid growth in popularity of new emerged applications

like social networks (e.g., Facebook), peer-to-peer (p2p) systems (e.g., Skype, Bit-Torrent), and

cloud-based applications like Google Apps [5] and Salesforce [10]. For example, P2P traffic

accounted for up to 60% of traffic on most networks [62]. This shows that P2P has become

a mainstream. The emergence of these new applications has changed the characteristics and

communications patterns of existing applications. Hence, network operators need to continu-

ously monitor and manage traffic characteristics in their networks. Network monitoring allows

operators achieving several purposes like traffic engineering and network resource provisioning

and management. Moreover it allows detecting anomalies and any types of malicious behavior

within applications (e.g., p2p system vulnerabilities [6, 24, 78, 92], attacks on Ajax-based web

services and in general, prepare their networks better against any major application trends.

Hence, due to the immense success and growth of Internet infrastructure and the emergence

of new applications, and their rapidly changing characteristics, Network operators need more

finely differentiated information on the use of their network and need to obtain fine-grained

flow measurements. There exist different ways to perform and improve traffic measurements.

The various solutions present a trade-off between the accuracy of the measurement and the

amount of computing resources they require. Currently, router-level measurement solutions

such as NetFlow [30, 32, 79]) represent the most widely deployed and popular approach used

for traffic monitoring. The widely available nature of NetFlow across many modern routers

makes it an ideal candidate for ubiquitous low-cost network monitoring. However, this solution

presents some shortcomings including the problem of setting sampling rates at low values to

cope with the increasing trend in line speed. This is known to introduce a serious bias against

small flows and fine-grained measurements [48, 43]. In fact, because of technological and re-

source constraints, modern routers cannot each record all packets or flows that pass through

them. Instead, they rely on a variety of sampling techniques to selectively record as many pack-

ets as their CPU and memory resources allow. Each router independently selects a packet with

a sampling probability (typically between 0.001 and 0.01) and aggregates the selected packets

into flow records. While sampling makes passive measurement technologically feasible (i.e., op-

1.1 Context and Problem Statement 7

erates within the router constraints), the overall fidelity of flow-level measurements is reduced.

Another problem comes from the static deployment of sampling rates since a static placement

of monitors cannot be optimal given the short-term and long-term variations in traffic due to

re-routing events, anomalies and the normal network evolution. On the other hand, some net-

work behavior may not be accurately detected with low sampling rates. This particularly refers

to anomaly detection. However, sampling with high sampling rate produces vast amounts of

data that need to be sent to the collector and processed afterwards especially in periods of high

traffic. Hence, we need to conceive a new monitoring system that responds to these different

requirements. Packet Sampling has been available for many years. It has been successfully used

in many applications, like accounting and billing with acceptable accuracy. However, in order to

preserve the accuracy and provide accurate estimations, the sampling mechanism should adapt

to network traffic state and monitoring application requirements. Sampling mechanism should

be dynamic in order not to lose any important information during the busy periods of traffic

bursts as well as to get enough information during idle states. Unfortunately we do not have

many possibilities to change sampling techniques applied in network equipment. However we

can change sampling rate, which means that we can control the accuracy by controlling the

number of samples captured in the defined time period.

In this context, we need to design a novel architecture for network traffic monitoring. This

architecture should extend local existing monitoring tools with a central unit that adaptively

configures their sampling rates. We need to multiply the monitoring points inside the network,

couple their observations and find the best network-wide configuration as a function of the

monitoring needs. Moreover, one has to adapt the configuration on the fly if he wants the

monitoring to adapt to changing network conditions. That should lead to better performances

than in the case of static uncorrelated configuration.

Some recent proposals take this previous direction and try to provide a widespread monitor-

ing infrastructure that coordinates monitoring responsibilities and distribute the work between

the different monitors e.g. [48, 86, 28, 89]. The common objective of these efforts is to design a

distributing monitoring system that samples traffic in a cost-effective manner by carefully plac-

ing monitors and configuring their sampling rates. For example, the authors in [86] present

a framework for distributing work across routers to achieve network-wide monitoring goals

while respecting router resource constraints. The responsibility to monitor the different traffic

flows is distributed among the different routers in an exclusive way. Confronted with the gen-

eralization of monitoring in operational networks, the authors in [28] propose placement and

packet sampling solutions that coordinate responsibilities across different network routers to

lower the cost of deploying monitoring infrastructure, while maximizing the benefits of their

infrastructure and improving measurement accuracies. The common objective of these efforts

is to design a distributing monitoring system that sample traffic in a cost-effective manner by

8 Introduction: Overview and Contribution

carefully placing monitors and configuring their sampling rates.

Recent works have demonstrated the benefits of a network-wide approach for traffic engi-

neering [99] and network diagnosis [19, 96], and have suggested that a centralized approach

can significantly reduce management complexity and operating costs [57, 17]. Other works on

network-wide monitoring have focused on the placement of monitors at appropriate locations

to cover all routing paths using as few monitors as possible [89].

In this context, we present in this thesis the design of an adaptive centralized architecture

that provides visibility over the entire network through a network-wide cognitive monitoring

system. The proposed architecture should drive the sampling rates on the interfaces of net-

work routers to achieve the maximum possible accuracy, while adapting itself to any change in

network traffic conditions. It adopts an adaptive centralized approach to coordinate responsi-

bilities across monitors by adjusting their sampling rates. Furthermore, it extends the existing

NetFlow monitoring tools with a cognitive engine that correlates collected measurements from

all routers to infer a better global view of the network traffic. Moreover, it automatically re-

configures the sampling rates in the different monitors according to the monitoring application

requirements and resource consumption constraints.

1.2 Thesis Contributions

Network monitoring is an immense management activity for network operators in order to

determine the composition of the network traffic, to understand the behavior of users, and to

monitor the performance of the deployed network infrastructure. Monitoring is a central activ-

ity in the design, engineering, and operation of a network. It consists of monitoring a network

using a geographically distributed set of monitoring stations, with the purpose of using the

monitoring data to serve several purposes such as traffic engineering, network resource provi-

sioning and management, accounting and anomaly detection. The overall should lead to better

service to end users and better revenues for the network operator. Increasing monitoring capa-

bilities, along with the associated increased understanding of the network and user behavior,

present the most challenging issue and an enormous undertaking in a large network.

This challenge becomes increasingly difficult to meet with the evolution of the Internet in

terms of importance and size. The latter has been accompanied by an increasing heterogeneity

of users’ behavior and the development, growth, and use of a wide variety of network applica-

tions.

The objective of this dissertation is to design and validate a new network-wide monitoring

system that provides better visibility over the entire network and adapts its configuration ac-

cording to network condition changes in order to improve measurement accuracies and respect

monitoring constraints (e.g. volume of collected measurements).

1.2 Thesis Contributions 9

The main contributions of this thesis are summarized as follows:

� We have carried out a critical survey of the existing monitoring tools. We have presented

some works and discussed their advantages and shortcomings. In fact, until recently, the

usage data provided by network elements (e.g. routers) has been coarse-grained, typi-

cally comprising aggregate byte and packet counts in each direction at a given interface,

aggregated over time windows of a few minutes. It has been successfully used in many

applications, like accounting with acceptable accuracy. However, these data are no longer

sufficient to engineer and manage networks that know a remarkable growth. In order

to preserve the accuracy and provide accurate estimations, monitoring solutions should

cope with the increasing trend in line speed and the tremendous success of new emerged

applications. In this thesis we provide a critical survey of the different proposed solutions

and we discuss their performances.

� One of the major issues we faced during this PhD was the experimentation of the pro-

posed monitoring approaches. In fact, although many experimental solutions exist today,

they tend to be highly specialized, or to have a limited availability and openness. We

present our emulation platform [68, 8] for network wide traffic monitoring as an answer

to these limitations. Additionally, having a real-time control on real measurement points

or getting collected traces from these points together with the related network topol-

ogy are most of time not satisfied by ISP(s) for privacy and security reasons. Thus and

as an intermediate solution, researchers make use of either network emulators coupled

with synthetic traffic generators [2] or simply limit their research to parsing and study-

ing link-level traffic traces collected on specific links. We introduce a new approach for

the emulation of Internet traffic and for its monitoring across the different routers. We

put at the disposal of users a real traffic emulation service coupled to a set of libraries

and tools capable of Cisco NetFlow data export and collection, which are meant to run

advanced applications for network wide monitoring and optimization. Furthermore, we

provide an exhaustive analytical sensitivity analysis in order to characterize, qualitatively

or quantitatively, what impact a particular input parameter has on a system output. In

other words, using Sensitivity Analysis, one can determine how changes in one or several

parameters will impact the target output variable.

� We introduce a network-wide cognitive monitoring system that profits from advances in

machine learning techniques and flow-level monitoring tools [69, 61, 70]. The system

starts from the NetFlow monitoring capabilities deployed in routers, tunes them in an

adaptive and optimal way, and combines their results to answer the best the monitoring

application needs. The proposed system adopts an adaptive centralized architecture that

provides visibility over the entire network through a network-wide cognitive monitoring

10 Introduction: Overview and Contribution

system. Our system should adjust its configuration according to network conditions, mea-

surements accuracy and monitoring constraints. Given a set of measurement tasks and

a monitoring constraint, our network-wide system is able to: (i) Use existing local mon-

itoring tools (i.e., NetFlow) deployed in routers inside the network to collect and obtain

data. (ii) Support a central cognitive component that investigates the local measurements

collected from the different routers, correlates them in order to construct a global view

of the traffic and the network state. This component also measures the amount of over-

head (defined as the total number of flow reports that are exported in the entire network,

modelling processing and storage resources) caused by the actual configuration of mon-

itors. (iii) Drive its own deployment by automatically and periodically reconfiguring the

different monitors in a way that improves the overall accuracy (according to monitoring

application requirements) and reduces the resulting overhead (respecting some resource

consumption constraints). The automation of the control of sampling rates is achieved

by learning experiences from the accuracy of the collected data and the resulting over-

head. (iv) Investigate the multi-task and multi-objective techniques in order to support a

general class of monitoring applications.

� We provide a reactive network reconfiguration method [61]. Our method proceeds in

optimizing the configuration in small steps based on dynamics inspired from the one used

by TCP for the adjustment of its congestion window. We use the Gradient Projection

Method (GPM) to identify the monitors that we should reconfigure until the optimal

configuration is reached.

� We introduce a proactive network reconfiguration method that adjusts its configuration

according to network conditions and measurement accuracy [69]. This method relies on

(i) an overhead prediction based on an Exponential Weighted Moving Average (EWMA)

filter to track sustainable changes while removing unnecessary variations in the traffic,

(ii) a global weighted utility function to deal with multiple monitoring tasks at the same

time, and (iii) an optimization algorithm that configures monitors to address the tradeoff

between resource consumption and accuracy of different tasks.

� We provide a critical discussion and an experimental comparison of the reactive and the

proactive network reconfiguration methods. We study the performance of these optimiza-

tion methods in terms of measurement accuracy, resulting overhead and responsiveness

to changes in the network traffic.

� We extend the presentation of our system using two sampling primitives, packet sampling

and flow sampling [70]. We prove the ability of our system to integrate various exist-

ing monitoring primitives in order to support multiple monitoring tasks. We explain and

1.3 Thesis Outline 11

validate the system design for two sampling primitives, packet sampling and flow sam-

pling, and for three monitoring tasks, flow counting, flow size estimation and heavy-hitter

detection.

1.3 Thesis Outline

We have commenced our research work by investigating the existing architectures and

mechanisms. Thus, the following chapter (i.e., Chapter 2) is a survey of the projects and ap-

proaches related to our work, with a detailed review of the most important techniques. More-

over, we compare these approaches from different points of view.

Given the lack of a universal experimental platform for monitoring applications, we present,

in Chapter 3, our own platform together with an exhaustive experimental methodology for

the evaluation of network-wide monitoring tools and systems. We have implemented a real

experimental platform for traffic sampling and monitoring using real traffic traces and real

monitoring tools [8]. We have also carried out a global study of the performance of monitoring

systems and the impact of the different parameters on their behavior.

Initiated in Chapter 2, the original work of the present thesis has been completed through-

out Chapters 4, 5 and 6. Chapter 4 defines a novel monitoring system architecture that adopts a

centralized approach and drives its own configuration in order to address the tradeoff between

monitoring constraints and measurement task requirements. We detail each of the constituent

modules and their interfaces, and we present the various kinds of decision algorithms which

interact and work together for providing better monitoring solution.

Furthermore, two different network reconfiguration methods are presented in Chapter 5. In

fact, monitor configuration and reconfiguration is a crucial issue within the next-generation of

monitoring systems. We present the reactive and the proactive network configuration methods,

we validate their operation and we study their performance. Moreover, we provide an experi-

mental comparison of these two methods as well as a discussion about their performance and

the use case of each of them.

Then, in chapter 6, we extend the presentation of our system using two sampling primitives,

packet sampling and flow sampling, in order to satisfy multiple monitoring tasks. We show that

combining different sampling primitives improves the global accuracy of the different tasks.

Finally, the thesis concludes with Chapter 7 in which we review the main findings of our

work and suggest some topics for further research.

12 Chapter 1: Introduction: Overview and Contribution

2

STATE OF THE ART

Traffic measurement and analysis are important management activities for network opera-

tors in order to determine the composition of the network traffic, to understand the behavior of

users, and to monitor the performance of the deployed network infrastructure. This can serve

several purposes such as traffic engineering, network resource provisioning and management,

accounting and anomaly detection. The overall should lead to better service to end users and

better revenues for the network operator. The monitoring of network traffic is often done by

passive measurements at the interfaces of some or all routers. Packets are captured and ag-

gregated, then reported to a central collector for storage and analysis. Currently, there is an

increasing interest in efficient passive measurement solutions that scale with the network traffic

while providing the maximum possible information. Existing solutions often balance between

number of monitored routers, volume of captured packets and aggregation level to meet ap-

plication requirements while limiting the overhead on both routers and network links. Most

of them treat routers independently of each other and function by static configuration, while

few correlate the information collected from different routers to further increase the accuracy

of measurements. A large part of these works have focused on coarse-grained measurements

where the content of packets is disregarded. For instance, Simple Network Management Pro-

tocol (SNMP) [73] collects coarse information on network traffic as the packet rate and the

burstiness and requires a low cost while packet-level solutions like [35] look at the content of

all packets, and hence suffer from scalability problems given the large of volume of information

they have to process and store. Currently, NetFlow [30, 32, 79] constitutes the most popular

tool for network monitoring at the flow level. While the deployment of NetFlow lowers the cost

of processing and storage resources, it clearly reduces the accuracy of measurements and entails

a loss of information. This is unfortunately unavoidable given the actual disagreement between

13

14 Chapter 2: State of the Art

the increasing speed of links and the router resource constraints. The main consequence of

this trend is a fundamental disagreement between the existing monitoring capabilities and the

increasing requirements of the network management applications in terms of accurate measure-

ments. The solution to this discrepancy has certainly to pass by designing a novel architecture

for network traffic monitoring. This architecture should multiply the monitoring points inside

the network, couple their observations and find the best network-wide configuration (the set of

sampling rates in network monitors) as a function of the monitoring needs. Moreover, one has

to adapt the configuration on the fly if he wants the monitoring to adapt to changing network

conditions. That should lead to better performances than in the case of static uncorrelated con-

figuration. Some recent proposals take this previous direction and try to provide a widespread

monitoring infrastructure that coordinates monitoring responsibilities and distribute the work

between the different monitors e.g. [48, 86, 28]. The common objective of these efforts is to de-

sign a distributed monitoring system that samples traffic in a cost-effective manner by carefully

placing monitors and configuring their sampling rates.

To fulfil these basic requirements we have proposed a new network-wide cognitive moni-

toring system that benefits from advances in machine learning techniques and flow-level mon-

itoring tools. The system starts from the NetFlow monitoring capabilities deployed in routers,

tunes them in an adaptive and optimal way, and combines their results to answer to the best

the monitoring application needs.

Nonetheless, we will first proceed, In this chapter, with a brief definition for the most impor-

tant monitoring tools and techniques. We will present the history of network monitoring and

the main monitoring tools. We will discuss the advantages and the shortcomings of the different

tools. Moreover, we will present the chronology of the different tools as well as the monitoring

requirements that led to their appearance. We will start by presenting the SNMP and the main

monitoring applications achieved using SNMP (i.e. traffic matrix, anomaly detection).

2.1 SNMP: Overview and utilization 15

Contents
2.1 SNMP: Overview and utilization . 15

2.1.1 SNMP counters . 16

2.1.2 Identification and classification of anomalies in network-wide traffic 17

2.2 NetFlow overview . 20

2.2.1 NetFlow background . 21

2.2.2 Adaptive NetFlow . 22

2.2.3 Control of volume and variance in network measurement 25

2.3 Metering and exporting processes . 26

2.3.1 Techniques for IP packet selection . 26

2.3.1.1 Categorization of packet selection techniques 26

2.3.1.2 Sampling . 27

2.3.1.3 Filtering . 29

2.3.2 IP flow information export (IPFIX) . 29

2.3.3 Sampling primitives . 30

2.3.3.1 Packet sampling . 32

2.3.3.2 Flow sampling . 33

2.3.3.3 Sample and hold . 34

2.3.3.4 Smart sampling . 36

2.3.3.5 Trajectory sampling . 38

2.4 Designing novel network monitoring architecture 41

2.5 Conclusion . 43

2.1 SNMP: Overview and utilization

As mentioned above, SNMP is one of the most used monitoring tools. It is a simple solution

deployed with a very low cost in terms of router processing resources. However, it gives only

a rough idea about the network traffic and fails to provide details about its composition. In

this section we will present SNMP and we will present some related works. Moreover, We will

discuss the shortcomings of this tool.

16 Chapter 2: State of the Art

2.1.1 SNMP counters

SNMP counters [73] are a very basic and widely available traffic measurement mechanism

available in all routers today. Among other things, they count the number of packets and bytes

transmitted on each of the links of a router. There are many traffic measurement applications

that use them. The most common one is Multi Router Traffic Grapher (MRTG) [91]: it collects

the values of the counters, and produces web pages with time series plots of the traffic. An-

other important use of these counters is in billing: some ISPs charge their clients based on the

total traffic they send and receive on their link to the ISP. SNMP is the network management

protocol proposed by Internet Engineering Task Force (IETF) for managing devices on IP net-

works. Devices that typically support SNMP include routers, switches, servers, workstations,

printers, modem racks. SNMP is used to monitor and manage network-attached devices. These

devices called managed systems continuously execute a software component called agent. The

agent collects and repots information via SNMP to a central device called manager. SNMP con-

sists of a set of standards for network management, including an application layer protocol,

a database schema, and a set of data objects. Essentially, SNMP agents expose management

data on the managed systems as variables. The protocol also permits active management tasks,

such as modifying and applying a new configuration through remote modification of these vari-

ables. The variables accessible via SNMP are organized in hierarchies. These hierarchies, and

other metadata (such as type and description of the variable), are described by Management

Information Bases (MIBs). The SNMP management environment consists of several key com-

ponents: the monitoring station called manager, the data objects of the network, the variables

MIB and a protocol. The various components of SNMP are:

� The active elements of the network equipment or software which is a network node that

implements an SNMP interface in order to exchange information with the manger. These

nodes range from a workstation to a hub, router, bridge. Each network element has an

entity called agent that responds to requests from the monitoring station. Agents are

network management modules that reside on network elements. They will seek manage-

ment information such as the number of packets received or transmitted. These agents

have local knowledge of management information and translate that to or from an SNMP

specific form.

� The monitoring station (also called manager) executes management applications that

monitor and control network elements. Physically, the station is a workstation. One or

more managers can exist in a managed network.

� The MIB (Management Information Base) is a collection of objects residing in a virtual

database. These collections of objects are defined in specific MIB modules. MIBs describe

2.1 SNMP: Overview and utilization 17

the structure of the management data of a device subsystem, they use a hierarchical

namespace containing object identifiers (OID). Each OID identifies a variable that can be

read or set via SNMP. The MIB is a tree structure where each node is defined by the OID.

� The protocol, which allows the monitoring station to get information about network ele-

ments and receive alerts from these same elements.

SNMP is based on an asymmetric operation. It consists of a set of queries, answers and a limited

number of alerts. The manager sends requests to the agent, which returns answers. When

an abnormal event arises on the network element, the agent sends an alert to the manager.

SNMP uses the UDP protocol. The port 161 is used by the agent to receive requests from the

management station. The port 162 is reserved for the management station to receive alerts

agents. While the information offered by the SNMP counters is useful, it omits a lot of details.

They do not say what type of traffic is using the links. More generally, for network planning,

ISPs need to know the traffic matrix: the traffic between pairs of clients or pairs of traffic

aggregation locations for the network (POPs). There are many approaches for reconstructing

the traffic matrix based on SNMP counters and network topology [74] and they are collectively

known as network tomography. One disadvantage of these methods is that they can only give

approximate traffic matrices.

In the next section we will present some works that try to identify and classify anomalies

using the SNMP counters. Furthermore, we will show some drawbacks of using SNMP counters

such as the approximate and inaccurate results we get and the difficulty of achieving this task.

2.1.2 Identification and classification of anomalies in network-wide traffic

The principle objective of this work is to conceive a traffic analysis method that detects

and identifies a large and diverse set of anomalies. However, mapping an anomalous subspace

traces to one or more responsible flows is challenging since they worked on aggregated mea-

surements data.

Lakhina et al. [19, 18, 20, 97, 96] have proposed a detector based on principal component

analysis and some heuristics in order to detect and classify network attacks. They have used the

principal component analysis in order to detect anomalous time bins. Once done, they provide

a direct mapping between anomalous subspaces (anomalous time bins) and the original flows

(i.e., anomalous flows). They have applied heuristics that associate an anomaly with the flows

with the largest contribution to the anomalous subspace. In previous works [19, 18, 20], they

have detected network-wide anomalies when analyzing the flows aggregation, and could detect

a wide variety of types of anomalies when analyzing entropy timeseries of IP header features.

They have also recently used sketches [97] and distributed monitors [96] to provide more

efficient traffic anomaly detection.

18 Chapter 2: State of the Art

For instance, in [19] they have proposed a general method to diagnose anomalies. This

method is based on a separation of the high-dimensional space occupied by a set of network

traffic measurements into disjoint subspaces corresponding to normal and anomalous network

conditions. They have demonstrated that this separation can be performed effectively by princi-

pal component analysis. They have studied volume anomalies and have shown that the method

can: (i) accurately detect when a volume anomaly is occurring, (ii) correctly identify the un-

derlying origin-destination (OD) flow which is the source of the anomaly, and (iii) accurately

estimate the amount of traffic involved in the anomalous OD flow. They have addressed the

anomaly diagnosis problem in three steps: first, they use a general method to detect anomalies

in network traffic, and then they employ distinct methods to identify and quantify them.

� The detection problem consists of designating those points in time at which the network is

experiencing an anomaly. An effective algorithm for solving the detection problem should

have a high detection probability and a low false alarm probability.

� The identification problem consists of selecting the true anomaly type from a set of pos-

sible candidate anomalies. The method they proposed is extensible to a wide variety of

anomalies.

� The quantification problem consists of estimating the number of additional or missing

bytes in the underlying traffic flows. Quantification is important because it gives a mea-

sure of the importance of the anomaly.

For a successful diagnosis of a volume anomaly, they have argued that it is important to detect

the time of the anomaly, identify the underlying responsible flow, and quantify the size of the

anomaly within that flow. The problem here is, if a timeserie is classified as anomalous, it is

important to determine precisely which set of flows of the traffic matrix were primarily respon-

sible for the detection. Knowing that an anomaly occurred at a particular time is typically not

sufficient. We need to know where it happened to identify and classify this anomaly. For exam-

ple, the network operator may need to know which ingress routers were the entry points for

the anomalous traffic. It is important to realize that this flow identification step is a necessary

step in the context of network traffic anomaly detection.

They have demonstrated in [20], that the distributions of packet features (IP addresses and

ports) observed in flow traces reveals both the presence and the structure of a wide range of

anomalies. Using entropy as a summarization tool, they have shown that the analysis of feature

distributions leads to significant advances on two fronts: (1) it enables highly sensitive detec-

tion of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it

enables automatic classification of anomalies via unsupervised learning. In fact, using feature

distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can

be used to automatically classify anomalies and to uncover new anomaly types.

2.1 SNMP: Overview and utilization 19

Table 2.1: Qualitative effects on feature distributions by various anomalies.

Anomaly label Definition Traffic feature

distributions affected

Alpha flows Unusually large volume point to point flow Source address,

destination address

(possibly ports)

DOS Denial of service attack Destination address,

(distributed or single-source) source address

Flash crowd Unusual burst of traffic to single destination, Destination address,

”typical” distribution of sources destination port

Port scan Probes to many destination ports Destination address,

on a small set of destination addresses destination port

Network scan Probes to many destination addresses Destination address,

on a small set of destination ports destination port

Outage events Traffic shifts due to equipment failures Mainly source and

or maintenance destination address

Point to multipoint Traffic from single source to many destinations, Source address,

e.g., content distribution destination address

Worms Scanning by worms for vulnerable hosts Destination address

(special case of network scan) and port

As shown in Table 2.1, most traffic anomalies share a common characteristic: they induce a

change in distributional aspects of packet header fields (i.e., source and destination addresses

and ports, for brevity in what follows, these are called traffic features). For example, a DOS

attack, regardless of its volume, will cause the distribution of traffic by destination addresses

to be concentrated on the victim address. Similarly, a scan for a vulnerable port (network

scan) will have a dispersed distribution for destination addresses, and a skewed distribution for

destination ports that is concentrated on the vulnerable port being scanned. Even anomalies

such as worms might be detectable as a change in the distributional aspect of traffic features.

Table 2.1 lists a set of anomalies commonly encountered in network traffic. Each of these

anomalies affects the distribution of certain traffic features.

Therefore, they have argued that entropy is an effective metric for anomaly identification

and classification since it captures the distributional changes in traffic features, and observing

the time series of entropy on multiple features exposes unusual traffic behavior. For instance,

they have demonstrated that entropy timeseries of the four main IP header features (source

IP, destination IP, source port, and destination port) is a rich data type to analyze for traffic

20 Chapter 2: State of the Art

anomaly detection. That is, for every measurement there are four measurements. Entropy is

studied because it provides a computationally efficient metric for estimating the dispersion or

concentration in a distribution, and a wide variety of anomalies will impact the distribution of

one of the discussed IP features. For example, the probability of seeing port 80 is defined to

be number of packets using port 80 divided by the total number of packets in the given time

interval. A sudden flash crowd to a webserver, for example, will cause a specific destination

IP (the webserver) and destination port (port 80) to become much more prevalent than in

previous time-steps, which will cause a decrease in the destination IP and destination port

entropy timeseries, respectively, and hence allow us to detect it.

Lakhina et al. were able to achieve such promising early results because of their great

familiarity with both the technique and the data. They have proposed an approach called the

subspace method to diagnose network-wide traffic anomalies. The method can detect, identify

and quantify traffic anomalies. The subspace method uses principal component analysis to

separate network traffic into a normal component that is dominated by predictable traffic, and

an anomalous component which is noisier and contains the significant traffic spikes. Moreover,

they have detected network-wide anomalies when analyzing the OD flow aggregation, and

could detect a wide variety of types of anomalies when analyzing entropy timeseries of IP

header features. They have also recently used sketches [97] and distributed monitors [96] to

provide more efficient traffic anomaly detection.

In the previous section, we have seen one of the most useful monitoring tools (i.e. SNMP).

SNMP is a simple solution that collects coarse information on network traffic. We have pre-

sented some works that used SNMP counters in order to achieve important monitoring appli-

cations (e.g. traffic matrix estimation, anomaly detection). However, SNMP counters are not

sufficient to respond to the increasing requirements of monitoring applications and suffer from

approximate and inaccurate measurements. Hence, many research works have been done in

order to provide a better monitoring systems and techniques.

In the next section we will present the most popular monitoring tool which is Netflow.

We will give an exhaustive overview and we will present some extended works of Netflow.

Moreover we will discuss the advantages and shortcomings of this widely deployed monitoring

solution.

2.2 NetFlow overview

The interest in passive monitoring for the understanding and diagnosis of core IP networks

has grown at an astonishing rate. Recently, numerous works have focused on the design of

new monitoring techniques and on the analysis of the collected results. The spectrum is large

covering simple solutions like SNMP [73] which is a simple solution deployed with a very low

2.2 NetFlow overview 21

cost in terms of router processing resources. But, it gives only a rough idea about the network

traffic and fails to provide details about its composition. To packet-level solutions, at the other

extreme, that examine finer details of traffic and allow extremely accurate measurements [35].

However, these solutions have scalability problems since they capture every packet on a link. To

address this latter drawback, recent works have demonstrated the benefits of traffic sampling

and aggregation for reducing the amount of collected data and improving the overall accuracy,

e.g. [100, 42, 41]. NetFlow has evolved into a solution that satisfies this by reporting flow

records that summarize a sample of the traffic [30, 32, 79, 49]. Packets are sampled at the

packet level of flow level, then aggregated into records, before being sent back to a central col-

lector for later analysis. Currently, NetFlow is the most widely deployed measurement solution.

However, this solution still presents some shortcomings, namely the problem of reconfiguring

sampling rates according to network changes and the requirements of monitoring applications.

Another problem comes from the low values to which the sampling rate is set in practice (be-

tween 0.01 and 0.001) to be able to cope with the increasing trend in line speed. This in its turn

is known to introduce serious bias against small flows and fine-grained measurements [48].

Many efforts have explored ways to improve NetFlow. For instance, Estan et al. present

in [49] an adaptive NetFlow that dynamically adapts the sampling rate in each router to chang-

ing traffic conditions for the purpose of limiting the local resource consumption. Duffield et al.

present in [47] means for dynamic control of sample volumes to minimize the overall amount

of measurement traffic while reducing the variance of the estimated sum of the measurements.

Next, we will first proceed with a brief presentation of Netflow.

2.2.1 NetFlow background

NetFlow [30, 32, 79], first implemented in Cisco routers, is the most widely used flow mea-

surement solution today. Routers maintain flow records collecting various bits of information.

Flows are identified by fields present in the header of every packet: source and destination

IP address, protocol, source and destination port, and type of service bits. The flow record

keeps information such as the number of packets in the flow, the (total) number of bytes in

those packets, the timestamp of the first and last packet, and protocol flag information such as

whether any of those packets had the SYN flag set. NetFlow uses four rules to decide when

to remove a flow record from router memory and report it to the collection station: (i) when

TCP flags (FIN or RST) indicate flow termination, (ii) 15 seconds configurable ”inactive time-

out” after seeing the last packet with a matching flow ID, iii 30 minutes (configurable ”active

timeout”) after the record was created to avoid staleness and iv when the memory is full. On ev-

ery new packet, NetFlow looks up the corresponding entry (creating a new entry if necessary)

and updates that entry’s counters and timestamps. NetFlow [30, 32, 79] is widely deployed

and constitutes the most popular tool for network monitoring at the flow level, with the flow

22 Chapter 2: State of the Art

definition ranging from 5-tuple to entire network prefixes. NetFlow allows a ubiquitous and

cheap deployment of monitors (it is integrated in routers), provides visibility over the entire

network. Moreover, it addresses performance limits by aggregating packets belonging to the

same flow in one record. Netflow records contain several information on the flow as its size in

bytes and packets and its source and destination addresses. NetFlow misses however informa-

tion on packet arrivals within a given flow, but for most management applications this is not

a serious problem. NetFlow is usually deployed in edge routers. This choice is done to ease

the deployment since packets are seen once and so flows can be easily formed at the collector.

NetFlow still has problems in case of high speed links since it has to capture all packets and

update flow records accordingly. To cope with the high rate of packets, NetFlow has a sampled

variant where packets are first sampled at the physical layer with some rate p ≤ 1, then flows

are formed with the stream of sampled packets. This sampling is an efficient mechanism to

reduce the overhead of NetFlow, it is known however to introduce errors and be biased against

flows of small sizes (they may even disappear). Of our days, network operators configure the

sampling rate in their NetFlow monitors at low static and predefined rates (in general between

0.01 and 0.001) and infer the volume of original flows by dividing the reported NetFlow flow

volumes by the sampling rate p (known to be the most likelihood estimator).

While the deployment of NetFlow lowers the cost of processing and storage resources, it

clearly reduces the accuracy of measurements and entails a loss of information. This is unfortu-

nately unavoidable given the actual disagreement between the increasing speed of links and the

router resource constraints. The main consequence of this trend is a fundamental disconnect

between the existing monitoring capabilities and the increasing requirements of the network

management applications in terms of accurate measurements. Many efforts have explored ways

to improve NetFlow. For instance, Estan et al. present in [49] an adaptive NetFlow that dynam-

ically adapts the sampling rate in each router to changing traffic conditions for the purpose of

limiting the local resource consumption. Duffield et al. present in [47] means for dynamic con-

trol of sample volumes to minimize the overall amount of measurement traffic while reducing

the variance of the estimated sum of the measurements.

Next, we will present these two most important extended works of Netflow. We will start

first by presenting the adaptive Netflow solution.

2.2.2 Adaptive NetFlow

Sampled flow level measurement provides a balance between scalability and detail because

performance limits can be addressed by reducing the sampling rate. Thus, most major ISPs rely

on NetFlow data to provide input to traffic analysis tools that are widely used by network oper-

ators. However, sampled NetFlow has shortcomings that hinder the collection and analysis of

traffic data. First, during flooding attacks router memory and network bandwidth consumed by

2.2 NetFlow overview 23

Table 2.2: Summary of NetFlow problems and proposed solutions.

Problem Solution Requirement

Number of records strongly depends on traffic mix Adapting sampling Software update

Network operator must set sampling rate rate to traffic

Mismatch between flow termination Measurement bins Software update

heuristics and analysis

Cannot estimate the number of flows Sampling flows Hardware addition

flow records can increase beyond what is available. Second, selecting the right static sampling

rate is difficult because no single rate gives the right tradeoff of memory use versus accuracy

for all traffic mixes. Third, the heuristics routers use to decide when a flow is reported are a

poor match to most applications that work with time bins. Finally, it is impossible to estimate

without bias the number of active flows for aggregates with non-TCP traffic.

In order to solve these shortcomings, the authors in [49] have proposed an improved version

of NetFlow called adaptive NetFlow, deployable through an update to router software, which

addresses many shortcomings of NetFlow by dynamically adapting the sampling rate to achieve

robustness without sacrificing accuracy as shown in table 2.2.

The main contributions of this work are:

� Sampling rate adaptation: the adaptive solution adapts sampling rates to stay within

mixed resource consumption limits while using the optimal sampling rate for all traffic

mixes.

� Renormalization of flow entries: renormalization allows reducing the number of NetFlow

entries after a decrease in sampling rate. Renormalization also enables a layered transmis-

sion of NetFlow data that gracefully degrades the accuracy of traffic reports in response

to network congestion on the reporting path.

� Time bins: most traffic analysis tools divide the traffic stream into fixed intervals of time

that we call bins. Unfortunately, NetFlow records can span bins, causing unnecessary

complexity and inaccuracy for traffic analysis. our Adaptive NetFlow, by contrast, ensures

that flow records do not span bins. This simple idea is essential in order to provide

statistical guarantees of accuracy after operations such as renormalization and sampling

rate adaptation.

� Accurate flow counting: they provide a flow counting extension to give accurate flow

counts even for non-TCP flows.

This work aims to improve NetFlow and solve its problems. The main problem of NetFlow

is that the memory required by the flow records and the bandwidth consumed to report them

24 Chapter 2: State of the Art

Table 2.3: Comparison of sampled NetFlow and adaptive NetFlow.

Issue sampled NetFlow adaptive NetFlow

Memory usage Variable Fixed

Volume of flow data reported Variable Fixed

Behavior under DDoS with spoofed sources Panicky flow Reduction in

and other traffic mixes with many flows expiration accuracy

Estimates of traffic in small time bins Less accurate Accurate

Reporting overhead when using small bins Unaffected Large increase

Lifetime of flow record in router memory Min (active timeout, Bin length

flow length +

inactivity timeout)

Resource usage at end of time bin N/A Reporting spike or

extra memory

Processing intensive tasks Counting Counting and

renormalization

Counting TCP flow arrivals (using SYNs) Yes Yes

Counting all active flows No Separate flow

counting extension

Counting all active flows at high speeds No Hardware flow

counting extension

depends strongly on the traffic mix. In particular, large floods of small packets with randomly

spoofed source addresses can increase memory and bandwidth requirements by orders of mag-

nitude. Adaptive NetFlow [49] solves this problem by dynamically adapting the sampling rate.

Adaptive NetFlow divides the operation of the flow measurement algorithm into equally spaced

time bins. Within each bin, the algorithm starts by sampling aggressively (high sampling prob-

ability). If memory is consumed too quickly, it switches to less aggressive sampling. It then

”renormalizes” existing entries so that they reflect the counts they would have had with the

new sampling rate in effect from the beginning of the bin. At the end of the bin, all entries

are reported. Using fixed size bins in adaptive NetFlow increases the memory utilization com-

pared to sampled NetFlow and causes bursts in reporting bandwidth. Table 2.3 gives a summary

comparison of sampled NetFlow and adaptive NetFlow.

In the previous section we have presented the adaptive NetFlow work. Now we move to

presenting another extended work for Netflow. This work provides means for dynamic control

of sample volumes to minimize the overall amount of measurement traffic while reducing the

variance of the estimated sum of the measurements.

2.2 NetFlow overview 25

2.2.3 Control of volume and variance in network measurement

The authors in [47] have studied how the sampling distribution should be chosen in order to

jointly control both the variance of the estimators and the number of samples taken? They have

introduced the threshold sampling as a sampling scheme that optimally controls the expected

volume of samples and the variance of estimators over any classification of flows. They have

provided algorithms for dynamic control of sample volumes and they have evaluated them on

flow data gathered from a commercial IP network.

The main contribution of their work is to study what makes a good flow sampling strategy.

The flows are represented by the flow records exported by the routers. The goals are fourfold:

(i) to constrain samples to within a given volume, (ii) to minimize the variance of usage esti-

mates arising from the sampling itself, (iii) to bind the sampling parameters to the data in order

that usage can be estimated transparently, and (iv) with progressive resampling, the composite

sampling procedure should enjoy properties (i)−(iii).

In order to achieve these goals, they proposed to continuously stratify the sampling scheme

so the probability that a flow record is selected depends on its size. This attaches more weight

to larger flows whose omission could skew the total size estimate, and so reduce the impact

of heavy tails on variance. They renormalized the sampled sizes in order that their total over

any key set becomes an unbiased estimator. This is achieved by coordinating the renormaliza-

tion with the sampling probabilities. The sampling scheme is optimized by minimizing a cost

function that expresses the undesirability of having either a large number of samples, or a large

variance in estimates formed from them. Sampling with this optimal choice of sampling proba-

bilities will be characterized by a certain threshold called threshold sampling. Finally, they used

a mechanism to tune the sampling probabilities in order that the volume of sampled records

can be controlled to a desired level, even in the presence of temporal or spatial inhomogeneity

in the offered load of flows.

As illustrated above, NetFlow has problems in case of high speed links since it has to capture

all packets and update flow records accordingly [49]. To cope with the high rate of packets,

NetFlow uses sampling mechanism. While this sampling is an efficient mechanism to reduce

the overhead of NetFlow, it is known however to introduce errors and be biased against flows of

small sizes. Many sampling techniques have been proposed in order to provide more accurate

measurements while reducing the amount of collected data.

In the next section, we will give an exhaustive survey of the different sampling techniques.

26 Chapter 2: State of the Art

2.3 Metering and exporting processes

A metering process selects packets from the observed packet stream using a selection pro-

cess, and produces as output a report stream concerning the selected packets. An exporting

process sends, in the form of export packets, the output of one or more metering processes to

one or more collectors.

2.3.1 Techniques for IP packet selection

Confronted with the increasing trend in network data rates compounded by the demand of

measurement-based applications for increasingly fine grained traffic measurements, monitors

have a serious problem of resource consumption resulting from the huge amount of measure-

ment data. To cope with this problem, monitors require an intelligent packet selection scheme.

We describe in this section, sampling and filtering techniques for IP packet selection. We will

provide a categorization of schemes and defines what parameters are needed to describe the

most common selection schemes

2.3.1.1 Categorization of packet selection techniques

The objective of using packet selection techniques is to generate a subset of packets from an

observed packet stream in order to reduce the amount of collected and transmitted data. We

distinguish two main selection techniques: sampling and filtering.

� Sampling: This is used in order to select a representative subset of packets. Once done

we use this subset of collected data in order to estimate and infer properties of whole

traffic. The selection can depend on packet position, and/or on packet content, and/or

on (pseudo) random decisions.

� Filtering selects a subset with common properties. This is used if only a subset of packets

is of interest. Filtering is a deterministic operation. It depends on packet content or router

treatment is used to remove all packets that are not of interest.

Note that a common technique to select packets is to compute a hash function on some

bits of the packet header and/or content and to select the packet if the hash value falls in

the hash selection range. It is a filtering technique since hashing is a deterministic operation

on the packet content. Nevertheless, hash functions are sometimes used to emulate random

sampling. Depending on the chosen input bits, the hash function, and the hash selection range,

this technique can be used to emulate the random selection of packets with a given probability

p. It is also a powerful technique to consistently select the same packet subset at multiple

observation points.

2.3 Metering and exporting processes 27

Table 2.4: Categorization of packet selection schemes.

Selection scheme Deterministic Content- Category

selection dependent

Systematic
√

- Sampling

count-based

Systematic
√

- Sampling

time-based

Random - - Sampling

n-out-of-N

Random - - Sampling

uniform probabilistic

Random -
√

Sampling

non-uniform probabilistic

Random -
√

Sampling

non-uniform flow-state

Property match
√ √

Filtering

filtering

Hash function
√ √

Filtering

Table 2.4 gives an overview of the packet selection schemes and their categorization. For

instance, property match filtering is typically based on packet content and therefore is content

dependent. But it may also depend on router state and then would be independent of the

content. It easily can be seen that only schemes with both properties are considered as filters

[101].

2.3.1.2 Sampling

The deployment of sampling techniques aims at controlling the resources consumed by

measurements while collecting information about a specific characteristic of the network traffic.

Sampling techniques reduce and lower the cost of monitoring. In order to jointly control both

the variance of estimates and the resulting overhead in terms of the number of samples taken,

we need to determine the type of information or the metric to estimate and the desired degree

of accuracy and/or the monitoring constraint. This can lead to plan the suitable sampling

strategy. Sampling parameters and methods used for selection must be known in the estimation

procedure, in order to ensure a correct interpretation of the measured results. It is important

to know the type of metric that should be estimated. For example, in order to estimate the

number of packets from samples gathered using 1 in N sampling, we multiply the number of

28 Chapter 2: State of the Art

sampled packets by N. in the same manner, to estimate the byte rate in a raw packet stream,

we need just to multiply the byte rate represented in collected data by N.

We characterize sampling methods depending on the the sampling algorithm [101]. The

sampling algorithm describes the basic process for selection of samples. In accordance to [23]

and [31], we devide the basic sampling processes into the following subtypes.

Systematic sampling: it is a statistical method involving the selection of elements from an

ordered sampling frame. It describes the process of selecting the start points and the duration

of the selection intervals according to a deterministic function. This can be the selection of

all packets that arrive at per-defined points in time but the most common form of systematic

sampling is an equal-probability method, in which every kth element in the frame is selected,

where k is the sampling interval. Using this procedure, each element in the population has a

known and equal probability of selection. This makes systematic sampling functionally similar

to simple random sampling. However, the use of systematic sampling involves the risk of biasing

results. Only equally spaced schemes are considered, where triggers for sampling are periodic,

either in time or in packet count. All packets occurring in a selection interval (either in time or

packet count) beyond the trigger are selected. Both schemes are content-independent selection

schemes. Content-dependent deterministic selectors are categorized as filters.

Random Sampling: it refers to taking a number of independent observations from the same

probability distribution. Random sampling consists on selecting a subset of data in accordance

to a random process. The selection of elements must be independent. This minimizes bias and

simplifies analysis of results. The sample usually is not a representative of the population from

which it was drawn, this random variation in the results is known as sampling error. In the

case of random samples, mathematical theory is available to assess the sampling error. Thus,

estimates obtained from random samples can be accompanied by measures of the uncertainty

associated with the estimate. We distinguish two methods of random sampling:

� Simple Random Sampling: this technique consists on selecting n elements out of pop-

ulation that consists of N elements, hence it is sometimes called n-out-of-N sampling.

Applied to network management systems, a smaller set of n packets is sampled from a

given, larger set of N packets. However, selecting n consecutive packets with a count pe-

riod of N may introduce a serious bias in measurements. One way to minimize biasing the

results entails randomly selecting the position of the first packet to be sampled. Although

this reduces the probability of biasing, it does not completely resolve the biasing problem.

For this kind of sampling, the sample size is fixed. Examples of implementation include

sFlow [11] and random sampled Netflow [9]. Both examples use 1-out-of-N sampling.

� The probabilistic sampling method: it is a method of sampling that utilizes some form of

random selection. In order to have a random selection method, one must set up some

2.3 Metering and exporting processes 29

process or procedure that assures that the different units in the population have equal

probabilities of being chosen. For this kind of sampling, the sample size can vary for

different trials. We differentiate two methods probabilistic sampling: (i) uniform proba-

bilistic sampling that uses independent selection of packets with a uniform probability p,

and (ii) non-uniform probabilistic sampling where the sampling probabilities can depend

on the selection process input. This non-uniform approach can be used to weight sam-

pling probabilities in order to boost the chance of sampling packets that are rare but are

deemed important. More details about non-uniform sampling can be found in [101].

2.3.1.3 Filtering

Filtering is a deterministic selection of packets based on the packet content. We select a

packet if its content or its quantity falls into a specified range. A filter is a selector that selects

a packet deterministically based on the packet content, or its treatment, or functions of these

occurring in the selection state and not on their position in time or in space or on random

process. Examples include match filtering, and hash-based selection.

We distinguish two filtering techniques:

� Property match filtering: this technique is used to select packets according to specific

fields. A packet is selected when these specific fields are equal to a predefined value.

Typical fields that can be supported are: the IP header, transport protocol header and

encapsulation headers.

� Hash-based filtering: a hash function is applied to the packet content. Then, the packet is

selected if the result of this function is in a specified range.

In the previous section we have presented the different selection and collection techniques.

Next, we will present the IPFIX standard that defines how IP flow information is to be formatted

and transferred from an exporter to a collector.

2.3.2 IP flow information export (IPFIX)

Internet Protocol Flow Information Export (IPFIX) is an IETF working group. It represents

a universal standard of export for Internet protocol flow information from an IPFIX Device (e.g.

routers probes) to a collector. It was ceated to fulfill the requirements of several applications to

IP flows information export like those used by mediation systems, accounting/billing systems,

and network management systems to facilitate services such as measurement, accounting, and

billing. The IPFIX standard defines how IP flow information is to be formatted and transferred

from an exporter to a collector. The IPFIX standards requirements were outlined in [80, 63, 81].

The working group chose Cisco Netflow version 9 as the basis for IPFIX.

30 Chapter 2: State of the Art

Within the context of IPFIX and similar to the Netflow, a flow is defined as a set of IP packets

passing an observation point in the network during a certain time interval. All packets belong-

ing to a particular flow have a set of common properties, e.g. ”same source, same destination,

same protocol” [81]. Using IPFIX, devices like routers can inform a central monitoring station

about their view of a potentially larger network. IPFIX is a push protocol, i.e. each sender

will periodically send IPFIX messages to configured receivers without any interaction by the

receiver.

The major difference between IPFIX and PSAMP is that the IPFIX protocol exports flow

records while the PSAMP protocol exports packet reports [63]. From a pure export point of

view, IPFIX will not distinguish a flow record composed of several packets aggregated together

from a flow record composed of a single packet. So the PSAMP export can be seen as a special

IPFIX flow record containing information about a single packet. In fact, traffic flow measure-

ment can be separated into two stages: packet processing and flow processing. Figure 2.1

illustrates these stages.

� In stage 1, here monitoring tools act on packets. Packets are captured, timestamped,

selected by one or more selection steps, and finally classified and mapped to flows. The

packets’ selection steps may include filtering and sampling functions.

� In stage 2, here monitoring tools act on flows. After packets are classified (mapped to

flows), flows are generated (or updated if they exist already). Flow generation and update

steps may be performed repeatedly for aggregating flows. Finally, flows are exported.

Packet sampling covers only stage 1 of the IPFIX architecture with the packet classification

replaced by packet report export, while IPFIX covers stage 2 also, as it generates flow records

out of the selected packets.

In the previous parts we have presented the main selection and exporting techniques. We

have given a brief definition for each of the most used techniques. Many extended works based

on these selection and exporting techniques have been proposed. The main goal is to provide

better methods for traffic selection and collection.

In the next section, we will give an exhaustive survey of the different proposed sampling

methods.

2.3.3 Sampling primitives

Network traffic measurement is essential for traffic engineering (e.g. link upgrades or traffic

rerouting) and traffic accounting (e.g. usage based pricing). Routers offer tools such as Cisco’s

Netflow [30, 32, 79] that give information about the flows of packets that traverse them. How-

ever the generation of detailed traffic statistics does not scale well with link speed. This is why

2.3 Metering and exporting processes 31

Figure 2.1: Comparison of IPFIX Architecture and PSAMP Framework.

32 Chapter 2: State of the Art

sampling techniques are increasingly being important to export the statistics of a portion of the

traffic only. We will study in this section different sampling primitives that respond to the re-

quirements of the different monitoring applications that can be divided into two broad classes:

(i) those that require an understanding of volume structure, e.g., heavy-hitter detection and

traffic engineering that need an understanding of the number of packets/bytes per-port or per-

src, and (ii) those that depend on the communication structure, e.g., security applications and

anomaly detection application that require an understanding of ”who-talks-to-whom” [93].

2.3.3.1 Packet sampling

Packet monitoring is an integral part of network measurements. In packet monitoring one

is interested with the information contained within packets traversing a link.

Packet-based sampling schemes are widely used to characterize network traffic. Packet

sampling uses randomness in the sampling process to prevent synchronization with any peri-

odic patterns in the traffic. On average, 1 in every N packets is captured and analyzed. While

this type of packet sampling does not provide a 100% accurate result, it does provide a result

with quantifiable accuracy. We can quantify sampling error using mathematical theory. Packet

sampling is suited to application that require an understanding of volume structure, e.g., heavy-

hitter detection and traffic engineering that require an understanding of the number of pack-

ets/bytes per-port or per-src. Independent and identically distributed (i.i.d.) packet sampling

consists of, for each packet in an independent manner, retaining the packet with probability

p or discarding it with probability 1 − p. Figure 2.2 presents the Packet sampling procedure.

Routers select packets according to a sampling rate value p. Once done they aggregate the

sampled packets into flow reports and send them to a collector. samples can be accompanied

by measures of the uncertainty associated with the estimate given the sampling rate p. This

approach allowed relatively easy monitoring of whole network traffic.

Packet sampling is a main technique for a wide range of network monitoring applications

since it is a scalable alternative to achieve monitoring objectives. Packet sampling provides

several information and statistics on network traffic using packet headers fields. This can serve

several tasks such as traffic engineering and management, trouble shooting, capacity plan-

ning, accounting and usage profiling, and load balancing. The fundamental question regarding

packet sampling is its accuracy: how accurate the different measurements done using packet

sampling? This question is pertinent in the Internet environment and depends on sampling

rate, application and periodicity of measured metric. Periodic events are more likely to be

detected by packet sampling. Packet sampling is a scalable technique that provides accurate

results for several application such as controlling congestion, detection of broken links, miscon-

figured devices [64]. This technique is used to meter and bill for network usage and provide a

classification of top users and applications.

2.3 Metering and exporting processes 33

Figure 2.2: Packet sampling procedure.

2.3.3.2 Flow sampling

All the applications mentioned in the previous section can profit from packet sampling and

still preserve a decent accuracy. However there are domains where packet sampling might in-

troduce some significant errors. There are a lot of packet sampling applications in the domain

of network security and anomaly detection. Examples include detections of protocol violations,

user policy violations, and unauthorized access to an address from a blacklist. For this kind of

anomaly sometimes only one packet is enough to raise the true alarm. For other well know

network anomalies, violations and attacks, like DoS attack, P2P applications, portscans more

sophisticated methods are needed in order to provide accurate results. These advanced meth-

ods include for instance a flow analysis. This new area of applications like anomaly detection

needs flow sampling schemes suited to monitoring applications that depend on the communi-

cation structure, e.g., security applications and anomaly detection application that require an

understanding of ”who-talks-to-whom” [93]. Flow sampling (FS) picks flows rather than pack-

ets at random [59]. As shown if figure 2.3 One way to implement FS is as follows. Each router

has a sampling manifest, a table of one or more hash ranges indexed using a key derived from

each packet header. On receiving a packet, the router computes the hash of the packet’s 5-tuple

(i.e., the flowkey). Next, it selects the appropriate hash range from the manifest and selects the

flow if the hash falls within this range. If the flow is selected, then the router uses its hash as

an index into a table of flows and updates the byte and packet counters for the flow. The hash

34 Chapter 2: State of the Art

Figure 2.3: Flow sampling procedure.

function maps the input 5-tuple uniformly into the interval [0, 1]. Thus, the size of each hash

range determines the flow sampling rate for each category of flows in the manifest. similarly to

packet sampling, i.i.d. flow sampling consists of, for each flow independently, leaving the flow

untouched with probability q or removing it entirely with probability 1− q.

2.3.3.3 Sample and hold

The idea is to sample each packet with a probability p. If a packet is sampled and the flow

it belongs to has no entry in the flow memory, a new entry is created. After an entry is created

for a flow, it updates the entry for every subsequent packet belonging to the flow as shown

in Figure 2.4. Thus once a flow is sampled a corresponding counter is held in a hash table in

flow memory till the end of the measurement interval. While this clearly requires processing

(looking up the flow entry and updating a counter) for every packet, it ensures better accuracy.

The reduced memory requirements allow the flow memory to be in SRAM instead of DRAM.

This in turn allows the per-packet processing to scale with line speeds [65].

There are three main differences between packet sampling and sample-and-hold [53]. First,

the sample-and-hold technique decides, when sampling a packet of a new flow, whether to add

this flow to the memory, from that point on, it updates the flow memory with every byte the flow

sends (see Figure 2.4). This allows sampling more packets belonging to the different flows and

provides more accurate results than those provided by Packet sampling. Second, sampling-and-

2.3 Metering and exporting processes 35

Figure 2.4: Sample and hold procedure.

hold technique avoids packet size biases, since once it decides to sample a flow it collects all its

packets, unlike packet sampling which samples every k packets. Third, this technique optimizes

resources consumption since it reduces the extra resource overhead (router processing, router

memory, network bandwidth) for sending large reports with many records to a management

station. [65, 50]

2.3.3.3.1 Packet sample and hold Packet sample and hold is well suited for traffic engi-

neering and accounting applications that analyze volume structure [93, 50]. It keeps near

exact counts of ”heavy hitters” flows with high packet counts. Packet sample and hold works

as follows: For each packet, the router checks if it is tracking this packet’s flowkey, defined

over one or more fields of the IP 5-tuple. If yes, the router updates that counter. If not, the

flowkey for this packet is selected with probability p, and the router keeps an exact count for

this selected flowkey subsequently. Since this requires per-packet counter updates, the counters

are kept in SRAM [50].

Sample and hold can be used to identify and accurately measure the packet hogs without

keeping state for most other entries. Packets are sampled at random, for each sampled packet,

an entry is created in the target table if one does not already exist, and all packets corresponding

to that entry are counted from then on. A high probability gives accurate results while a lower

36 Chapter 2: State of the Art

one reduces memory usage but allows more packets go uncounted before the entry is created.

2.3.3.3.2 Flow sample and hold Flow sample and hold is similar to packet sample and hold

but its sampling function favors entries with many flows. It uses hashes to decide whether it

samples a flow. It hashes the flow identifier of every packet. If the hash value is less than a

given control variable or probability f, it creates a new entry in memory to collect statistics of

this flow. Note that all packets of a flow have the same hash value, so the number of packets in

a flow have the same hash value. Flow sample and hold is used to accurately identify the flow

hogs regardless of how many packets they have [65, 67].

2.3.3.4 Smart sampling

Confronted with the unfeasibility to collect all raw flow records due to resources required

for transmission, collection, and storage, Nick Duffield et al. have proposed a new sampling

solution called Smart sampling. Smart sampling is controlled through a parameter known as

the sampling threshold. In smart sampling, flows of size greater than the sampling threshold

are always selected, while smaller flows are selected with probability proportional to their size.

The motivation for smart sampling comes from the empirical fact that flow sizes have a heavy

tailed distribution [56]. In this case, sampling with a uniform distribution over flow sizes is

problematic for usage estimation, since the estimates are very sensitive to omission of a single

large flow. Smart sampling avoids this problem by always selecting large flows. This approach

was proposed in [47, 40].

Smart sampling is a technique to get a reliable estimate of detailed usage from only a subset

of flow record by using the suitable sampling strategy. It exploits the fact that a large fraction of

usage is contained in a small fraction of flows. By preferentially sampling larger flows over small

ones, it can control the volume of statistics while simultaneously controlling the variance of

statistical estimates derived from them. Smart sampling provides a tradeoff between improving

measurement accuracy and limiting the resulting overhead. It entails balancing those two

objectives in an optimal manner. Duffield in [40] proposes size-dependent sampling. He defines

a size threshold. Flows of byte size greater than the threshold are sampled with probability 1

and the others are sample with the probability proportional to their size. He develops this

sampling theory in [39, 41, 47, 43].

Nick Duffield et al. have proposed two variants to achieve these objectives:

2.3.3.4.1 Threshold sampling In a first approach they have introduced the threshold sam-

pling techniques that represent a stream-based method suited to sampling records as they are

exported or collected. For instance, in [47] they have introduced threshold sampling as a

sampling scheme that optimally controls the expected volume of samples and the variance of

2.3 Metering and exporting processes 37

estimators over any classification of flows. Moreover, they have provided algorithms for dy-

namic control of sample volumes robust to variation in network conditions The goal is to find

a good flow sampling strategy in order to constrain samples to within a given volume, to mini-

mize the variance of usage estimates arising from the sampling itself, and to bind the sampling

parameters to the data in order that usage can be estimated transparently.

To this end, they have proposed to continuously stratify the sampling scheme so the proba-

bility that a flow record is selected depends on its size. This attaches more weight to larger flows

whose omission could skew the total size estimate, and so reduce the impact of heavy tails on

variance. They have introduced a mechanism to tune the sampling probabilities in order that

the volume of sampled records can be controlled to a desired level called threshold sampling,

even in the presence of temporal or spatial inhomogeneity in the offered load of flows.

In [39], they have provided a traffic analysis platform that manages the trade-off between

estimation accuracy and data volume. They have described the set of analytical tools that enable

planning of resources in this platform. It enables the correct setting of sampling parameters and

dimensioning of resource compatible with accuracy goals.

They have described the sampling error that arises from sampling: how it can be predicted

from models and raw data, and how it can be estimated directly from the sampled data itself.

Secondly, they have shown how to determine the usage of resources bandwidth, computational

cycle, storage within the components of the infrastructure. These two sets of methods allow

the dimensioning of the measurement infrastructure in order to meet accuracy goals for usage

estimation.

2.3.3.4.2 Priority sampling Priority sampling methods sample a fixed number of ”best”

records from a population. This solution is suited to database sampling for fast query execu-

tion. For instance, in [22], they have used ”priority sampling” to preprocess a large table of

items, each of which carries a weight. The preprocessing assigns priorities to the items. After

preprocessing, they estimate the total weight of an arbitrary subset using only a few high pri-

ority samples from the samples. Using unit weights, they could also get the number of people

in a subset, and thus estimate averages. In [43], they have addressed the sampling strategy for

flow records and they have proposed a correlated sampling strategy able to select arbitrarily

small number of the ”best” representative of a set of flows.

This work was motivated by the need to sample within the measurement infrastructure, the

flow statistics currently collected by network routers and switches. The heavy tailed nature of

packets and bytes per flow forms a challenge for sampling, since omission of a record of single

large flow can seriously degrade the accuracy of estimates of network traffic usage. The recent

proposal for smart sampling, i.e., size dependent sampling of flow records, forms the starting

point for this work. They have addressed the need to bound resource usage (bandwidth, stor-

38 Chapter 2: State of the Art

age, aggregation caches) by the sampled flows. Any uncontrolled overflow of these resources

seriously impairs estimation accuracy. They have proposed a simple algorithm that allows smart

sampling from a population of flow records into a buffer of fixed size m, while maintain the

ability to form unbiased usage estimates. The algorithm is simple, requiring the generation of

one random number per flow, and can be implemented in constant time per flow, independent

of m.

2.3.3.5 Trajectory sampling

Traffic measurement is a critical component for the control and engineering of communica-

tion networks. We argue that traffic measurement should make it possible to obtain the spatial

flow of traffic through the domain, i.e., the paths followed by packets between any ingress and

egress point of the domain. Most resource allocation and capacity planning tasks can benefit

from such information. Also, traffic measurements should be obtained without a routing model

and without knowledge of network state. This allows the traffic measurement process to be

resilient to network failures and state uncertainty. Trajectory Sampling (TS) is a novel method

to measure network traffic in potentially large network domains [45, 38, 75]. It is designed

to provide detailed views of network traffic that can drive a wide variety of network engineer-

ing and management applications, such as traffic reporting and characterization, attack and

intrusion detection and diagnosis, traffic engineering, and capacity planning. TS implements

consistent packet sampling. Conceptually, each packet traversing a measurement domain is

sampled either on every link traversed or on no link at all. Some highly compressed informa-

tion on sampled packets are collected centrally in a collection system, which is then able to

reconstruct the trajectory (path) of each sampled packet [44]. This set of sampled packet tra-

jectories provides a complete and statistically representative view of the flow of traffic through

the domain. A wide range of application specific metrics and derived views (such as traffic

matrices for traffic engineering or sink trees for a DDoS attack) can be inferred from this raw

trajectory information.

Trajectory sampling has been proposed in [45] as a monitoring method that enables new

network management applications or enhances existing ones.

� Network Engineering: the fundamental new data provided is the path matrix. This de-

scribes not only the intensities of traffic between origins and destinations (i.e. the OD

traffic matrix) but the intensities along the specific network path that traffic between a

given OD pair flows. The path matrix is measured directly, without the need to track or

join with network-wide routing information, as other monitoring methodologies require.

� Real-time Route Troubleshooting: routing loops are manifest as self-intersecting trajec-

tories. The transient effects of routing and other path changes are measured directly,

2.3 Metering and exporting processes 39

without the need for up to date routing data, or assumptions concerning routing stability

and convergence times. The time required for identification is limited only by the latency

in reports reaching the data collector, and in the grouping and analysis of reports on a

given packet.

� Passive Performance Measurement: loss packets are manifest in incomplete trajectories.

If packet reports also contain a timestamp, and the monitoring points are accurately syn-

chronized (e.g. via low cost GPS receiver) the data collector can also estimate the packet’s

transit delay between the monitoring points (One Way Delay).

In [45], Duffield et al. have proposed a method that allows the direct inference of traffic

flows through a domain by observing the trajectories of a subset of all packets traversing the

network. The key advantages of the method are that (i) it does not rely on routing state, (ii) its

implementation cost is small, and (iii) the measurement reporting traffic is modest and can be

controlled precisely. The key idea of the method is to sample packets based on a hash function

computed over the packet content. Using the same hash function will yield the same sample

set of packets in the entire domain, and enables us to reconstruct packet trajectories.

They have proposed a method for the consistent sampling of packet trajectories in a net-

work. The sampling selects a subset of packets, but if a packet is selected at one link, it will be

selected at every other link it traverses. On traversing the network, each packet implicitly indi-

cates whether or not it should be sampled through its invariant part, i.e. those bits that do not

change from link to link. A hash of these bits calculated at each router, and only those packets

whose sampling hashes fall within a given range of values are selected. This is communicated

by the sampling router to the measurement systems. This enables post sampling analysis of

distinct trajectories once the samples are reported. They proved that the proposed method

has a number of desirable properties: (i) simple processing: the only per packet operations

required are the division arithmetic on a small number of bytes in the packet header. No packet

classification or memory lookups are used. (ii) no router state is required in the per packet

processing of the router: packets being processed individually. No caching is required in the

measurement subsystem of the router, thus avoiding cache delay and possible biasing through

the requirement of cache expiry policies. This does not exclude the possibility of having state

in the reporting system in the router. It may be desirable to aggregate discrete reports to the

measurement system rather than sending them individually. (iii) Packets are directly observed:

the course of the packets through the network can be determined without a network model

that specifies how they ought to be routed. This is important for debugging since routing may

not easily specify current routing state of the system. Moreover, configuration or other errors

may cause actual routing behavior to deviate from that specified by the model.

In their work described previously, they have assumed that measurement devices are capa-

40 Chapter 2: State of the Art

ble of reliably exporting measurements to the collector, which simplifies the task of the collector

in reconstructing a representative set of trajectory samples. However, there are circumstances

where such reliable export is either not desirable or not possible. Therefore, in [46], they have

assumed that measurement devices export measurement report packets unreliably, which re-

lieves them of the burden of buffering and processing acknowledgements. However, dealing

with missing reports complicates the task of the collector. Therefore, they have proposed meth-

ods for the collector to deal with such loss. They have described enhancements to reporting

and reconstruction that enables measurement based applications to function even when reports

are subject to loss. They have defined methods to perform robust network monitoring using

trajectory sampling in the presence of report loss. They have proposed solutions to reconstruct

an unambiguous set of packet trajectories from the reports on sampled packets received at a

collector. They have extended the reporting paradigm of trajectory sampling to enable the elim-

ination of ambiguous groups of reports, but without introducing bias into any characterization

of traffic based on the surviving reports. Moreover, they have adapted measurement based

applications to incomplete trajectories by proposing a method to join multiple incomplete tra-

jectories for inference, and analyzing its performance. They have shown how applications can

distinguish between packet and report loss at the statistical level. They have proposed an ap-

proach based on bloom filters, a data structure that compressed a set membership function into

a bit array. Bloom filters are appropriate because the only errors they incur are false positives,

which may lead to the elimination of some unique labels in addition to actual duplicates. While

this represents a small loss of measurement data, the main property of this approach is that the

duplicate elimination essentially behaves like sub sampling the original set of packets. There-

fore, by applying a correction factor, the resulting set of trajectories can be treated as if it had

been obtained in a collision-free way. This insulates the estimation and detection procedures

fed by trajectory samples from the intricacies of duplicate elimination. Once duplicate labels

have been eliminated, the resulting report stream can be passed to applications. In general,

applications must be adapted to report loss. Path tracing applications must amalgamate reports

from several packets in order to reconstruct complete trajectories. Passive loss measurement

applications must distinguish report loss from packet loss by exploiting transmission sequence

numbers in the reports to estimate report loss rates. The performance analysis of these appli-

cations shows that trajectory sampling brings substantial advantages over independent packet

sampling, reducing both estimator variance and reporting bandwidth.

After providing an exhaustive survey of existing sampling methods, we conclude that the

deployment of these techniques lowers the cost of processing and storage resources. How-

ever, it presents some problems since it clearly reduces the accuracy of measurements and

entails a loss of information. Hence, in order to surmount these problems and to cope with

the increasing trend in line speed and to improve measurement accuracy, we have to multi-

2.4 Designing novel network monitoring architecture 41

ply the measurements inside the network and to combine their measurements. Moreover, we

have to reconfigure monitors in order to optimize resource consumption and improve measure-

ment accuracy. Recently, many works have proposed network-wide monitoring systems that

coordinate monitoring responsibilities and distribute the work between the different monitors

e.g. [48, 86, 28].

In the next section, we will present some works and we will discuss their advantages and

shortcomings.

2.4 Designing novel network monitoring architecture

Network traffic does not exhibit stationary behavior. It exhibits temporal cycles (daily,

weekly) and can be easily affected by network reconfigurations (e.g. dynamic routing change),

link failures and deployment of new machines and applications. Although using sampling

within monitoring applications is a lightweight process that does not consume much of the

network device resources (processing and storage resources), there are certain limitations with

respect to the maximum number of samples the device can produce within a given period.

Thus, in periods of high traffic rate the device and the network may become saturated. More-

over, some applications require high sampling rate values and some network behavior cannot be

accurately detected with low sampling rates (e.g., anomaly detection). On the other hand, sam-

pling with high sampling rates produces huge amounts of data. Hence, we need to find the best

sampling rate values for each case in order to address the tradeoff between accuracy of results

and the amount of collected and reported data. Some works have proposed adaptive sampling

techniques. For instance, the authors in [58] have designed the fast control loop for adjusting

the sampling interval. They have discussed the linear prediction and fuzzy logic approach with

application to different types of traffic (normal Internet traffic and bursty video traffic). Authors

had performed offline simulations and did not analyze the feasibility of embedded implemen-

tation in the device. [29] proposes to use the weighted least squares predictor and certain set

of heuristic rules for determining the sampling rate. [47] describes an approach to flow sam-

pling that allows to control the expected volume of samples and to minimize the variance of

usage estimates arising from the sampling. The proposed schema (smart sampling) adapts the

sampling process by associating the probability that flow is selected with the size of the flow.

This process shifts focus towards the larger ”elephant” flows which have a severe influence on

the traffic volume. These ideas are further extended in [43] to work under strict resource con-

straints by sampling into a buffer of fixed size. However, these methods require that the special

sampling mechanism is present in the network devices. Vendors do not want to implement so-

phisticated sampling schemes that give good results under certain circumstances. They want to

implement simple and robust solutions that are well described by some form of a standard (i.e.

42 Chapter 2: State of the Art

sFlow, NetFlow). Thus proposals have introduced new monitoring systems that extend existing

monitoring tools (e.g., NetFlow) with a central unit that updates sampling rates and place mon-

itors according to network conditions and monitoring application requirements. The common

objective of such distributed monitoring systems is to sample traffic in a cost-effective manner

by carefully placing monitors and controlling their sampling rates. For instance, the authors in

[89], have considered the problem of where to place monitors within the network and how to

control their sampling rates in order to address the tradeoff between monitoring cost and mon-

itoring coverage. They have proposed minimum cost and maximum coverage problems under

various budget constraints and they have introduced greedy heuristics that provide solutions

quite close to the optimal solutions. In addition, they have demonstrated that a small number

of monitors is often enough to monitor most of the traffic in an entire IP network. This near-

optimal monitor placement uses operating strategies in a distributed monitoring system, which

operates either in sampling or non-sampling mode. Each deployment strategy determines the

maximum number of monitors and their locations under a given budget constraint or deter-

mines the minimum deployment cost for a maximum number of monitors. Also, the operating

strategy of each monitor determines the flow sampling rate. More specifically, they introduced

a novel monitoring cost and reward models for a distributed passive monitoring system, which

can accommodate both sampling and non-sampling modes of the monitoring system. Based

on these models, they formulated a set of placement and operating problems assuming differ-

ent constraints for budget and coverage requirements. Since the various placement problems

are NP-hard, they proposed approximation algorithms based on greedy heuristics to determine

placement locations and used an advanced method to get sampling rates. They showed that

only a small fraction of links need be monitored to achieve a high level of monitoring reward.

The authors in [28], have introduced a general framework to solve the problem of sampling

traffic data in large IP networks. They proposed to combine and solve in one step the selec-

tion of traffic monitors and the setting of the sampling rates for each monitor. They provided

an optimal algorithm to solve the sampling and placement problem. Moreover they have in-

troduced additional methods that allow adapting the sampling rates to changes in the traffic

due to time-of-day effects, failures or anomalies. The method receives as input the network

topology, the routing matrix and the set of OD pairs of interest. It returns a set of monitors

and their sampling rates that is optimal with respect to the measurement task to perform. To

do so, they have defined a constrained problem and they have reformulated the optimization

problem using Lagrange multipliers. To solve the problem and find the optimal sampling rate

vector they used the Karush-Kuhn-Tucker (KKT) conditions. They rely on an iterative procedure

to explore the solution space. They keep iterating until either reaching a point that satisfies the

KKT conditions and therefore is the optimal solution, or until exceeding the maximum number

of iterations. The method gives best information compared to alternative solutions since it can

2.5 Conclusion 43

configure sampling rates according to measurement accuracy and network link load.

2.5 Conclusion

In this chapter, we have provided a brief history of the most useful monitoring tools. We

have provided the chronology of the different solutions and the main requirements that led to

their appearance. We have started by presenting the SNMP counters and we have discussed its

advantages and shortcomings. We illustrated our discussion with important monitoring appli-

cations (i.e. traffic matrix estimation, anomaly detection). After demonstrating the inefficiency

of the use of SNMP counters and the need to a new more reliable monitoring tool, we have pre-

sented the most popular monitoring solution (i.e. Netflow). Furthermore, we have presented

some sampling variant of Netflow. Then, we provided a brief definition for each of the most

important sampling techniques. Finally, we have presented some recent extended works based

on multiplying monitoring points inside the network in order to cope with the estimation error

coming from sampling.

In conclusion, based on the above stated survey, we have extracted the important principles

we want to follow throughout our research work. Also, we have designed and implemented a

new wide-network monitoring system. This system deals with sampled Netflow and supports

monitors reconfiguration. Finally, our system tries to find the optimal configuration that pro-

vides the best tradeoff between accuracy and resource consumption. Moreover, it combines

measurements collected from the different monitoring points in order to provide better estima-

tion.

44 Chapter 2: State of the Art

3

EVALUATION METHODOLOGY FOR

NETWORK TRAFFIC MONITORING

SYSTEMS

There is an increasing interest in traffic measurement and monitoring solutions in order

to understand the performance of network infrastructure and to efficiently manage network

resources. Therefore, it is of utmost importance for the network research community to have

access to tools and testbeds to explore the future directions for Internet traffic monitoring and

engineering. Although many experimental solutions exist today, they tend to be highly spe-

cialized, or to have a limited availability and openness. Through this chapter, we outline the

monitoring capabilities limitations of these facilities and we present our experimental platform

for network wide traffic monitoring as an answer to these limitations. Our platform presents

a new approach for the emulation of Internet traffic and for its monitoring across the different

routers. Moreover, we provide a global analysis study in order to characterize, qualitatively or

quantitatively, what impact a particular input parameter has on a system output.

45

46 Chapter 3: Evaluation Methodology for network traffic monitoring systems

Contents
3.1 Experimental Platform for Network Wide Traffic Sampling and Monitoring . . 46

3.1.1 Introduction . 46

3.1.2 Related Work . 47

3.1.3 Platform architecture . 49

3.1.3.1 Traffic Emulation Service . 49

3.1.3.2 Traffic Monitoring and Sampling Service 51

3.1.4 Data Collection and Analysis Service . 53

3.1.5 Validation of the platform operation . 54

3.1.5.1 Test Environment . 54

3.1.5.2 Results . 55

3.1.6 Summary . 57

3.2 Performance Analysis . 57

3.2.1 Sensitivity Analysis Overview . 57

3.2.2 Sensitivity Analysis Methods . 58

3.2.3 Fourier Amplitude Sensitivity Test . 59

3.3 Conclusion . 61

3.1 Experimental Platform for Network Wide Traffic Sampling and

Monitoring

3.1.1 Introduction

For the purpose of testing new applications and protocols related to traffic monitoring and

traffic engineering, the network research community has a persistent demand of either having

a real-time control on real measurement points or getting collected traces from these points

together with the related network topology. If available, and even in the absence of real-time

control, network-wide traces can be played a posteriori to simulate as close as possible the real

environment. The problem is that these needs are most of time not satisfieed by ISP(s) for

privacy and security reasons. Thus and as an intermediate solution, researchers make use of

3.1 Experimental Platform for Network Wide Traffic Sampling and Monitoring 47

either network emulators coupled with synthetic traffic generators [27] or simply limit their

research to parsing and studying link-level traffic traces collected on specific links. Choosing

one of these last solutions depends on a set of factors namely the available information, the

context of the algorithm to evaluate, the solution realism, the facilities provided by the solution

in terms of monitoring and finally its extensibility.

As other researchers, we are also facing situations where access to network-wide traces and

a control on measurements points are required. In particular, we are seeking a network-wide

monitoring platform that allows us to control the monitoring tools inside each router and to

report measurement results to a central unit for further analysis. This is useful to study several

applications as distributed anomaly detection, traffic engineering, and network-wide optimiza-

tion of monitoring tools. Unfortunately, such platform is not available for researchers that do

not operate real networks. One solution could be to play synthetic traffic inside network sim-

ulators. Even though it is an interesting option, we discard it in our research for its lack of

realism and we focus instead on the development of an emulation platform where real moni-

toring tools run inside virtual routers, and where generated traffic is faithful to the one in real

ISP networks. The main question we try to solve then becomes: starting from a partial set of

collected real traces and given a network topology, how to build a platform of virtual routers re-

specting this topology, and how to dispatch and play over it the available traces while providing

to the end-user remote controllable traffic monitoring capabilities for each router?

In this section, we present the platform [8, 68] we developed as an answer to the latter

question. Our platform presents a new approach for the emulation of Internet traffic and for its

monitoring across the different routers. In its current version, the traffic is sampled at the packet

level in each router of the platform, then monitored at the flow level. We put at the disposal

of users real traffic emulation facilities coupled to a set of libraries and tools which are capable

of Cisco NetFlow [30, 2] data export, collection and analysis. Our aim is to enable running

and evaluating advanced applications for network monitoring and optimization. We believe

that the framework we are proposing can play a significant role in the systematic evaluation

and experimentation of network-wide monitoring and optimization algorithms. Among the

direct candidates figure algorithms for traffic engineering and distributed anomaly detection.

Methods for placing monitors, sampling traffic, coordinating monitors, and inverting sampling

traffic will find in our platform a valuable tool for experimentation.

3.1.2 Related Work

Several recent works were interested in the evaluation of traffic monitoring solutions. The

majority of these works deals with the understanding of the content of the traffic on some

network link. They use for their evaluation packet level traces collected by network operators

or by researchers themselves, then made available after anonymization. The traces of the

48 Chapter 3: Evaluation Methodology for network traffic monitoring systems

Japanese MAWI project [7] are a typical example that we use in this work. Packet level traces

have been used for several purposes as to study the statistical properties of Internet traffic [54],

to detect anomalies and attacks [90], to validate efficient methods for application identification

and classification [25], or to study the accuracy of estimating traffic statistics from a stream

of sampled packets [59]. Works in this list, which is far from being exhaustive, all share the

feature of only requiring the availability of traces collected on Internet links. Clearly, the more

of these traces are available, the stronger is the validation.

On the other hand, one finds studies that require the existence of network-wide data and

access to routers and monitors. Those studies are more challenging since their requirements in

terms of validation cannot be unfortunately satisfied except for network operators who possess

such data and monitors. The most common approach is to resort to simulations or emulations

where synthetic traffic is played across the studied ISP topology. In [89], the authors follow

this approach to optimize the placement of monitors and the sampling rates inside routers.

In [86], Sekar et al. develop their own synthetic traffic generator tool; they use Monlab [8,

68] for setting the test network topology and YAF [16] as a monitoring tool to capture flow

information. The existence of network-wide real data would help to strengthen the validation

of these solutions even further. Such data has helped Duffield et al. in [48] to propose a

solution for estimating network-level flow rates from measurements taken at multiple routers.

They use sampled NetFlow records gathered from two routers in a major ISP network. Lakhina

et al. [20] have used NetFlow data collected from the PoP routers of a tier-1 ISP network

to detect network-wide traffic anomalies and classify them. Generally, the collected data is

parsed offline with appropriate scripts implementing the proposed algorithms. It is also used to

calibrate models for the generation of synthetic traffic. Unfortunately, real access to monitors

to analyze the reports they send and apply the proposed algorithms on the fly is still hard if not

impossible to obtain by the research community.

Our platform provides a tool for researchers to play real packet traces over a target net-

work topology and to control the monitors installed inside routers. These monitors sample

and capture the traffic, then send flow-level reports about it in real time to a central collec-

tor. The key feature of our platform is that it splits the available packet-level traces across the

emulated topology without resorting to synthetic models. This guarantees realism while pro-

viding enough freedom in defining the way the real trace is split and the network topology is

formed. Routers are virtual entities of very low complexity, which allow the platform to scale

to large networks as long as rich packet-level traces exist. Users can control the way the traffic

is sampled and monitored, and can use the real time reports sent by monitors to feed their own

applications. The applications they develop over our platform can run later, and as they are,

over real networks. These are required features in any platform.

3.1 Experimental Platform for Network Wide Traffic Sampling and Monitoring 49

Figure 3.1: Experimental Platform Architecture.

3.1.3 Platform architecture

The objective of this work is to build a real environment for flow-level monitoring inside ISP

networks starting from traffic emulation to traffic sampling and monitoring. We reproduce and

approximate this real environment through our platform described in Figure 3.1. The latest

depicts the interactions between the three main components of our architecture: the emulation

service, the flow monitoring and sampling service and the flow data collection and analysis

service.

A common usage scenario of our platform can be summarized as follows. The user starts

by supplying the emulation service with two XML configuration files describing respectively

the list of packet-level traces to play and the network topology. Once done, the user runs the

three services of the platform either in the same machine or in three different machines for

better performance 1. The emulation service creates the virtual routers and links to emulate

the described topology, then dispatches the set of IP addresses available in the traces over the

emulated topology and plays the packets accordingly. The monitoring and sampling service

installed in each router allows to sample the emulated traffic at the packet level, to construct

flows and to export flow reports to the data collection and analyses service. Within this latest

service, the user can plug and run any advanced traffic analysis algorithm. Next we describe

the services of our platform with further details.

3.1.3.1 Traffic Emulation Service

The traffic emulation service provides means to describe a given network topology. The em-

ulated network is then fed with a real traffic captured on some high speed link in a backbone

transit network, before being dispatched and played over the emulated topology. Figure 3.3

1Towards a better scalability and as part of the future work, we intend to enhance the platform in such a way
that users can emulate different set of routers over different machines.

50 Chapter 3: Evaluation Methodology for network traffic monitoring systems

depicts an example of a simple topology that users can describe. We provide a highly flexible

configuration methodology via XML files through which users can describe their emulated net-

work. In particular, they can describe the different ASes and their associated weights2, the list

of routers (interfaces, IP addresses), the set of characteristics of the different links as well as the

list of monitors deployed inside routers. Once the emulated topology is available, our emula-

tion service looks for IP prefixes within the available TcpDump traces and dispatches them over

the stub ASes according to their weights. The packets of these traces are then played over the

routers of the topology respecting their timestamps to reproduce the network wide packet-level

traffic we are looking for.

Figure 3.2 shows the processing flow within the emulation service. As the traffic loader

module reads packets from the TcpDump trace using the Pcap library [14], the dispatching

module associates them online to the right AS based on one hand on the list of weights the user

attributes to the different stub ASes, and on another hand on the prefix length specified by the

user for the dispatching. The default dispatching method we are implementing is the weighted

random. Suppose we have 23 ASes to which we want to associate different weights. We divide

the interval [0, 100] into 23 consecutive bins, where each bin represents the weight of an AS.

Suppose further that the user chooses the prefix length to dispatch as being the /16. Then, each

time a new prefix of the same length appears while reading the raw trace, a random number is

selected within the interval [0, 100] using a uniform distribution. This selected number points to

the AS to which the new prefix is to be associated. All subsequent packets having the same prefix

as source or destination are associated to the same AS3. Once loaded packets are dispatched,

they are scheduled and played within the routers’ emulation module. And as a final step, if

there is a router within the transit network selected as a monitor, the data forwarding module

enables the monitoring and sampling service described in Figure 6.2 over the interfaces of this

router.

Note that towards scaling up the experimentation to large scenarios, we parallelize the max-

imum number of tasks within the emulation service, namely those required for trace parsing,

IP prefix mapping and packet playing. The objective is to profit from all the CPU power pro-

vided by the host machine and to prevent excess latency introduction during packet scheduling.

So, all the modules described in Figure 3.2 run in parallel. Furthermore, we resort to massive

dynamic memory development to minimize the emulator memory footprint. Indeed, we profit

from the parallelism that we have introduced to parse and play large TcpDump binary files

without having to load them entirely into the memory. Instead, as loaded packets are played

inside routers through the emulation module and consumed by the data forwarding module,

2ASes connected to the emulated network are supposed to generate different amounts of traffic with respect to
the whole network traffic.

3Depending on users’ needs, one could imagine other dispatching methods as well.

3.1 Experimental Platform for Network Wide Traffic Sampling and Monitoring 51

Figure 3.2: Traffic Emulation Service.

Figure 3.3: Example of emulated topology.

new ones are loaded via the traffic loader module. The amount of packets to load at once is

dynamically adjusted to limit the latency introduced during packet scheduling.

In terms of extensibility, new traffic control and monitoring methods can be added without

major changes to the emulation service design. In addition, users interested in studying the

performance of different routing algorithms can plug their own routing module providing that

they maintain the same programming interface as the default one. For the moment, we are only

supporting the shortest path routing protocol based on the Dijkstra algorithm [34]. Routes are

static and are set up via the XML configuration file.

3.1.3.2 Traffic Monitoring and Sampling Service

We have designed and developed the traffic monitoring and sampling component as an

extension of Softflowd [12]. Indeed, Softflowd is a flow based network traffic analyzer capable

of Cisco NetFlow data export. Note that Softflowd does not include support for packet sampling

neither fixed nor adaptive. Our extensions to Softflowd add this sampling functionality, which

52 Chapter 3: Evaluation Methodology for network traffic monitoring systems

Figure 3.4: Monitoring and Sampling Service.

is essential for monitoring scalability. They also allow the integration of this tool over virtual

nodes fed by our emulated traffic, while being able to run over real routers by sniffing packets

directly on their interfaces. The last functionality enables users to first run and evaluate their

sampling and monitoring methods on a set of nodes within a controlled environment and then

use these methods within real routers without any extra development effort. Next we describe

these extensions through two typical usages scenarios.

� Experimenting with emulated nodes: The monitoring and sampling service communicates

with the emulation service via the virtual interface module described in Figure 3.4. So, a user

willing to plug the monitoring and sampling service to the emulation service has to run it by

specifying the port number on which the virtual interface module will listen to incoming packets

(per-monitor TcpDump headers) from the emulator. Then, received packets are sampled via

the sampling module and forwarded (if chosen) to the NetFlow flow constructer and exporter

module, which takes in charge the construction of the flows and the NetFlow reports to be sent

to the data collection and analysis service described in Figure 3.1.

� Experimenting with real nodes: Our monitoring and sampling service is also designed to be

plugged directly to a real node interface. In this case, it captures traffic promiscuously using

the Pcap library [14] as described in Figure 3.4. Note that it is likely that the sampling module

will place additional load on hosts or gateways on which it runs. Our implementation has been

designed to minimize this load as much as possible. Indeed, in order to decide either to consider

the packet being read or to reject it, the sampling module makes a decision each time the Pcap

library returns a handle to a new packet and before the packet is being loaded to the memory.

3.1 Experimental Platform for Network Wide Traffic Sampling and Monitoring 53

If the result of the sampling algorithm is to capture the packet, the entire packet is then loaded

and the maintained flow list is updated via the NetFlow flow constructer module, otherwise the

packet is simply discarded.

As described in Figure 3.4, the sampling module encloses a sampling algorithm as a core and a

sampling rate control server. The default sampling algorithm we are providing is the following:

if a user chooses a sampling rate of A/B (A packets among B packets, A ≤ B, B > 0, A ≥ 0),

then every B packets, the sampling module generates randomly a set S of A numbers within

the interval [1, B]. Packets with numbers outside the set S are rejected and only the remaining

packets are considered for 5-tuple flow construction. Generated flows are then encapsulated

within NetFlow reports and are exported via the NetFlow flows constructer and exporter mod-

ule. The sampling rate control server enables users to change remotely the sampling rate of a

given monitor whether it is in a real network or downstream the emulation service. The remote

monitor controller, which we will describe later, proceeds to change the local sampling rate to

each monitor. This remote control functionality allows users to control and change online the

sampling rate of one or multiple monitors, or simply offline from one experiment to the other.

3.1.4 Data Collection and Analysis Service

Figure 3.5: Data Collection Service.

Figure 3.5 depicts the principal modules of the data collection and analysis service. We

design and develop the data collection and analysis service starting from the functionalities

proposed by Flowd [3]. As described in Figure 3.5, we enclose the Flowd capabilities within

the NetFlow reports receiver module around which we develop other modules namely the flow

statistics generator and analyzer and the remote monitor controller modules. Depending on

user needs, one can easily enhance this module. For example, one can implement anomaly

detection based on the collected NetFlow reports or introduce quality of service algorithms that

improve traffic routing as a function of the monitored network status. And independently of

the process of data analysis, the user can decide to change the sampling rate of one or more

54 Chapter 3: Evaluation Methodology for network traffic monitoring systems

Figure 3.6: Geant topology.

monitors to improve the accuracy of the algorithms implemented at the analyzer, either offline

or online. For this, he has to use the remote monitor controller. The latest module provides an

API to send control messages to a monitor specific control server, which proceeds to modify the

sampling rate of the given monitor.

3.1.5 Validation of the platform operation

We validate the effectiveness of the dispatching module (described in Section 3.1.3.1) by

tracking the number of sampled flows and the number of packets across the different edge

routers to check whether they follow the access network weights (or traffic matrix) predefined

in our experiment configuration file. For that we use a trace of 15 minutes.

3.1.5.1 Test Environment

To emphasize the realism and the scalability of the platform we are proposing, we choose

to reproduce the GEANT backbone topology [15].

3.1 Experimental Platform for Network Wide Traffic Sampling and Monitoring 55

The GEANT network 3.6 is a pan-European backbone that connects Europe’s national re-

search and education networks via 23 routers. In another hand, we choose to play different

traces collected at a trans-pacific line from the MAWI working group traffic archive [7]. Traffic

traces are made by TcpDump, and then, IP addresses in the traces are scrambled by a modified

version of Tcpdpriv [13]. For traffic dispatching over the different access networks (Euro-

pean countries in this experiment), we associate different weights to the 23 ASes connected

to GEANT based on the importance of the traffic they are supposed to generate in reality. We

infer these weights from the populations of the countries represented by these ASes and the

capacities of the links that connect them to their respective access routers in GEANT. The three

services of the platform run on one machine each. (machines are connected via an Ethernet

network). Indeed, the traffic collection and analysis service is supposed to be a centralized

component that collects NetFlow reports sent by the monitoring and sampling service. The

latter is connected to the 23 emulated routers via its virtual interface module.

3.1.5.2 Results

Figure 3.7(a) depicts the evolution of the network-wide monitored number of flows function

of the sampling rate in routers that we vary while maintaining it the same for all routers. As

expected, the number of flows decreases linearly as we decrease the sampling rate in all the

access routers. Indeed, if S is the size of a given flow, then the probability that this flow is

sampled given a sampling rate p is equal to 1 − (1 − p)S, which can be approximated by p.S

for small p. The number of sampled flows Np can then be approximated by p.E[S].N, where

N is the total number of original flows. This latter quantity clearly decreases linearly with the

sampling rate. Next, we look at the effectiveness of the emulation service and especially of its

dispatching mechanism. We try to answer the following question: does each AS generate as

much traffic as the importance of the weight associated to it? Towards that, we start by plotting

in Figure 3.7(b) the number of prefixes per AS function of the weights associated to ASes. The

resulting curves remain linear for different prefix lengths. So, we conclude that our emulator

dispatches the prefixes to ASes without any bias. Then, we look at the number of generated

flows, ingoing and outgoing packets per AS in Figures 3.7(c), 3.7(d) and 3.7(e), respectively.

We notice that for the three prefix lengths (/16, /24 and /32), the number of generated flows

as well as the number of ingoing/outgoing packets scale with the AS weights but do not fit

a perfect line. Nevertheless, the fitting improves when the prefix granularity becomes finer.

This indeed comes from the presence of very large prefixes of different volumes that, when

dispatched over the ASes, cause such deviations in the traffic; the coarser the prefix the more

important this phenomenon. We illustrate it on prefixes of length /32 (IP addresses), for which

we plot the distribution of their sizes (in packets) on a log-log scale in Figure 3.7(f). Clearly,

there is a power-law behavior leading to very large prefixes compared to the average prefix size

56 Chapter 3: Evaluation Methodology for network traffic monitoring systems

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Validation Results.

(these are servers, heavy users, etc). To improve further the fit, one can run the dispatching

at another finer granularity, the 5-tuple level. This finer granularity enables our dispatching

algorithm to split a big set of 5-tuple flows generated by (or destined to) a single /32 prefix to

different ASes. As we can see in Figures 3.7(c), 3.7(d) and 3.7(e), the number of generated

flows and ingoing/outgoing packets fits now better a line. Even though it preserves the notion

of connections, the 5-tuple dispatching still has the problem of altering the pattern of activity

of servers and end hosts. The choice of the best prefix length should be decided by this tradeoff

established between traffic realism and AS weight respect.

3.2 Performance Analysis 57

3.1.6 Summary

In this section, we have described our experimental platform for network wide traffic sam-

pling and monitoring. The architecture that we propose contains three main components:

an emulation service, a monitoring and sampling service, and a data collection and analysis

service. The design of these services takes into consideration the constraints of environment

conservation, scalability and extensibility. Our platform offers a complete set of features to-

wards the development and evaluation of solutions for network monitoring and management.

Namely, it offers the possibility to reproduce real backbone network topology, to monitor and

sample the packets being forwarded in a given router and finally the ability to analyse the col-

lected flows. Our platform allows users to remotely tune the sampling rate of a given monitor.

Users can also easily introduce traffic engineering methods methods within the monitors.

In order to provide an exhaustive evaluation methodology for monitoring applications, we

have used a global sensitivity analysis that allows studying the performance of the proposed

system and the impact of the different parameters on its behavior. Next, we give a detailed

description of this advanced variance-based analytical method.

3.2 Performance Analysis

3.2.1 Sensitivity Analysis Overview

Large-scale experimentation models (simulations, emulations, etc) often involve a large

number of parameters, making it prohibitive to run more than a small fraction of all poten-

tially relevant cases. In this context, sensitivity analysis attempts to identify how responsive

the results of an experimental model are to changes in its parameters: this is an important

tool for achieving confidence in experimentation and making its results credible. The general

goal of Sensitivity Analysis is to characterize, qualitatively or quantitatively, what impact on a

system a particular variable will have if it differs from what was previously assumed. In other

words, by using Sensitivity Analysis, the analyst can determine how changes in one or several

parameters will impact the target variable. Sensitivity analysis quantifies the dependence of

system behavior on the parameters that affect the modeled process and in particular its dynam-

ics. It is used to determine how sensitive a model is to (i) changes in the numerical value of

the model parameters: parameter sensitivity analysis aims at determining the uncertainty asso-

ciated with the numerical values of model parameters (resulting thus in parameter estimation

but also prediction). Hence, sensitivity analysis is used to increase the confidence in the model

and its predictions, by providing an understanding of how the model responds to changes in its

parameters, and (ii) changes in the structure of the model.

58 Chapter 3: Evaluation Methodology for network traffic monitoring systems

3.2.2 Sensitivity Analysis Methods

Perturbation Theory based methods: They study a set of models which are different from

a nominal model by some small terms. Sensitivity Analysis is closely linked with Perturbation

Theory. Perturbation Theory comprises mathematical methods that are used to find an approx-

imate solution to a problem which cannot be solved exactly, by starting from the exact solution

of a related problem. Perturbation Theory can be applied if the problem under study can be

formulated by adding a ”small” term to the mathematical description of the exactly solvable

problem. Thus, Perturbation theory can be viewed as a tool for Sensitivity Analysis. Further-

more, it can be classified as an analytic tool for the Sensitivity Analysis. The main types of

mathematical models for perturbation methods are:

� Linear Algebraic Systems

� Non-linear Algebraic Systems

� Mathematical programming

The advantage of analytic Perturbation Theory based methods is that these methods are

based on a solid theoretical ground. The disadvantage of the analytic methods is that typ-

ically the deviations of parameters need to be small and a good knowledge of the system’s

structure/dynamics is required.

The other class of tools for Sensitivity Analysis is Sampling based methods. Analytical meth-

ods require a good knowledge of the system and might require tedious calculations. The sam-

pling based methods are designed to overcome these disadvantages. Sampling methods are

particularly well suited to withstand the changing one-factor-at-a-time (OAT) paradox.

� FAST (Fourier Amplitude Sensitivity Test): A method which deals with static models.

The main idea of FAST [36, 37] is to assign to each parameter a distinct integer frequency

(characteristic frequency). Then, for a specific parameter, the variance contribution can

be singled out of the model output with the help of the Fourier transformation. FAST

is considered to be one of the most efficient methods in sensitivity analysis [82, 84].

Among its advantages are: fast implementation, deals with non-monotonic models, allows

arbitrary large variations in input parameters, and does not require the knowledge of the

mathematical model. The latter two features are in particular positively distinguishing

FAST from analytical methods. However, FAST suffers from computational complexity for

a large number of inputs. Moreover, the basic FAST method can only be applied to static

models with independent parameters. As, in many cases the parameters are correlated

with one another, extended FAST (EFAST) has been proposed for models with correlated

parameters i.e. EFAST can address higher order interactions [83].

3.2 Performance Analysis 59

� Path based Sensitivity Analysis (of Markov Chains) for dynamical systems: The key idea

in path-based sensitivity analysis of Markov chains is the observation that a sufficiently

long sample path contains enough random deviations to test the system sensitivity.

Sampling based methods do not require access to model equations or even the model code.

These methods require running a series of experiments. Experiments can be either real-life or

numerical. The disadvantage of the sampling based methods is that the number of experiments

required can be very large.

In the previous part, we have presented an exhaustive overview on performance analysis

methods. The goal is to find an accurate solution that gives the impact of parameter changes

on the results of our experimental model. In this thesis, we choose to use FAST method within

our experimentation models. In the next section, we will give a detailed presentation of the

FAST method. We will present how it characterizes the impact of the different parameters on

the system output.

3.2.3 Fourier Amplitude Sensitivity Test

The main idea of FAST is to assign to each parameter a distinct integer frequency (char-

acteristic frequency). Then, for a specific parameter, the variance contribution can be singled

out of the model output with the help of the Fourier transformation. Therefore, FAST is also

referred to as variance based sensitivity analysis.

Specifically, let us consider a nonlinear model y = f(x1, x2, ..., xn) where xn are parameters.

We emphasize that the FAST method does not require the analytic knowledge of the function

f(·).
Various search functions have been proposed. The search function must let the parameter

xi to oscillate with frequency ωi. For instance, the authors of [85] have proposed the search

function

xi =
1

2
+

1

π
arcsin(sin(ωis)), (3.1)

which is a particular case of a more general search function [72]

xi = F−1
i

(
1

2
+

1

π
arcsin(sin(ωis))

)
, (3.2)

where F−1
i (·) is the inverse cumulative distribution function for xi. To make more efficient use

of the model evaluations, the authors of [85] have suggested the following slight modification

xi =
1

2
+

1

π
arcsin(sin(ωis+φi)), (3.3)

where φi is a random phase-shift chosen uniformly in the interval [0, 2π).

60 Chapter 3: Evaluation Methodology for network traffic monitoring systems

The model output becomes a periodic function with period 2π. Thus, we can represent the

model with a Fourier series

y = f(x1, x2, ..., xn) = A0 +

∞∑
k=1

[Ak cos(ks) + Bk sin(ks)].

If we denote a sample of size N as

S = {s1, s2, ..., sN},

then, using either (3.2) or (3.3) as a search function, we can obtain the sampled values of the

parameters

Xi = {xi1, xi2, ..., xiN},

and the discrete Fourier transform coefficients

A0 =
1

N

N∑
j=1

f(sj),

Ak =
2

N

N∑
j=1

f(sj) cos(sjk),

Bk =
2

N

N∑
j=1

f(sj) sin(sjk),

where f(sj) = f(x1j, ..., xnj) and k = 1, ..., (N− 1)/2.

The variance of the model output can be decomposed into variance components at the

integer frequencies

V =
1

2

(N−1)/2∑
k=1

[A2
k + B2

k],

By summing the spectrum values Λk = [A2
k + B2

k]/2 for the characteristic frequencies ωi and

their higher harmonics, the partial variance in model output arising from the uncertainty of

parameter xi, Vi, can be estimated by

Vi =
∑
p

Λpωi,

where pωi ≤ (N− 1)/2. The ration Vi/V measures the contribution of parameter xi. This ratio

is also referred to as the first-order sensitivity index [87].

Because the characteristic frequencies are integers, there will be an aliasing effect if one

frequency is a linear combination of the others. It is said that a frequency set is free of interfer-

ences to an order M if
n∑
i=1

aiωi ̸= 0,

3.3 Conclusion 61

n∑
i=1

|ai| ≤ M+ 1,

where ai is an integer and M is a design integer (usually 4 or 6). In order to avoid the inter-

ference effect the maximal value of p in calculating Vi should be M. In [37] the authors have

proposed the following empirical formula for calculating the characteristic frequencies free of

interference up to order M = 4

ω1 = Ωn,

ωi = ωi−1 + dn+1−i, i = 2, ..., n.

The parameters Ωn and dk can be found in a table provided in [37]. Below we give several line

from that table.

Dimension, n Ωn dn Minimal number of points, Nmin

1 4

2 8

3 1 6 38

4 5 10 78

5 11 20 142

Then, for instance, for the case of four input parameters we obtain the following values of

the characteristic frequencies

ω1 = Ω4 = 5,

ω2 = ω1 + d3 = 11,

ω3 = ω2 + d2 = 19,

ω4 = ω3 + d1 = 23.

3.3 Conclusion

Confronted with the increasing trend and popularity of passive monitoring at multiple lo-

cations within an IP network, several monitoring systems have emerged. However, there is a

lack of a universal experimental platform for monitoring applications. Given the inadequacy

of current validation solutions, we have introduced in this chapter an exhaustive methodology

for the evaluation of network monitoring solutions. We have implemented a real experimental

platform for traffic sampling and monitoring using real traffic traces and real monitoring tools.

We have also introduced a global analytical study based on sensitivity analysis to assess the

performance of these systems and to characterize the impact of the different input parameters

on their behavior.

62 Chapter 3: Evaluation Methodology for network traffic monitoring systems

4

SYSTEM ARCHITECTURE

Traffic measurement and monitoring are important activities in order to understand the

performance of a network infrastructure and to efficiently manage network resources. However,

the remarkable growth of the Internet infrastructure, the tremendous success of the Internet-

based applications and their rapidly changing characteristics have made the management and

monitoring of ISP networks a complex process. Therefore, the design of a new monitoring

system that takes into account the requirements of multiple monitoring tasks and variations in

the traffic is becoming an inevitable trend.

In this chapter, we present the design of an adaptive centralized architecture that provides

visibility over the entire network through a network-wide cognitive monitoring system. Prac-

tically, given a set of measurement tasks (e.g. flow size estimation, flow counting) and a con-

straint on the volume of collected information, the proposed architecture drives the sampling

rates on the interfaces of network routers to achieve the maximum possible accuracy, while

adapting itself to any change in network traffic conditions.

63

64 Chapter 4: System Architecture

Contents

4.1 Introduction . 64

4.2 Challenges and objectives . 65

4.3 System architecture . 66

4.3.1 Monitoring Engine (ME) . 68

4.3.2 Cognitive Engine (CE) . 69

4.3.2.1 Network Reconfiguration Engine 70

4.3.2.2 Global Network Traffic Inference Engine 71

4.4 Conclusion . 76

4.1 Introduction

With the remarkable growth of the Internet connectivity in terms of infrastructure, capac-

ity, size and the number of connected users, the networks operators are facing many problems

challenges in order to determine the composition of network traffic, to monitor the perfor-

mance of the deployed network infrastructure and to understand the behavior of users. In fact,

users go from occasionally connected to always connected, the Internet infrastructure is also

growing in capacity and in number of network elements. The Internet infrastructure growth

makes its manageability and reconfigurability increasingly complex. It is thus expected that the

monitoring and management cost of the Internet technology will start to increase more than

proportionally to the number of nodes. This results in increasing complexity and decreasing

maintainability of user’s satisfaction while keeping an openly accessible, neutral, and generic

Internet infrastructure.

In this context, the main objective of this thesis is to introduce a new monitoring system

architecture based on a cognitive component that allows to transpose the high-level objectives

and constraints. This new architecture will introduce a centralized adaptive architectural com-

ponent that provides visibility over the entire network, improves measurement accuracy and

respects monitoring constraints. The introduction of this cognitive engine implementing ma-

chine learning techniques is expected to improve and extend the overall Internet controllability

capabilities as well as reducing their resulting cost.

4.2 Challenges and objectives 65

4.2 Challenges and objectives

We illustrate the interest of our architecture with the help of NetFlow since it is the mostly

deployed traffic monitoring tool. In its current deployment, NetFlow is activated on the edge

routers such that each flow is captured one time in each direction. Moreover, each NetFlow

router independently selects packets to monitor with a low sampling rate to satisfy local router

resource constraints and to reduce the processing and computation cost. In practice NetFlow

sets sampling rates to low values (between 0.01 and 0.001). However, this router-centric ap-

proach can cause an inefficient use of resources to make redundant measurements, since they

are completely independent, and can lead to several local and noisy estimations, as the sam-

pling rate should be very low.

The problem is then how to keep passive measurements technologically feasible and oper-

ate within the routers’ constraints (i.e. deploy sampling rates at a low values) while improving

the accuracy of measurements. We propose to adopt a centralized network-wide approach that

explicitly coordinates monitoring responsibilities and shares the work between the different

routers. Furthermore, it provides means to leverage the possibility of parallel measurements of

network flows in the different routers they cross inside the network. Those parallel measure-

ments of each flow can be combined together to provide a finer estimation of flow statistics

while distributing the load over the different routers instead of focusing on the edge. Note that

the load distribution comes from lowering the sampling rates in the routers. In addition, the

fact that a flow can be monitored everywhere along its path leads to possible optimizations

of the distribution of the sampling rates across routers that can satisfy both global and local

objectives as improving the estimation accuracy and minimizing the load. That should give a

richer configuration scheme where the standard configuration (i.e. deploying routers in edge

routers) is no other than one particular case.

Two major challenges arise in the development of our approach:

� The first one is how to combine sampled and noisy traffic measurements, carried out

in the different routers using various sampling primitives, in a way to provide network-

wide sampled NetFlow records having a better accuracy than in the single edge router

approach. This combination should be motivated by the need to minimize the amplitude

of estimation errors given the monitoring objective.

� The second challenge we face is how to coordinate responsibilities across the different

monitors (routers) in order to increase global accuracy while avoiding unnecessary mea-

surements.

We argue that a centralized system that collects and combines local measurements and that

coordinates monitoring responsibilities across different monitors can significantly increase the

66 Chapter 4: System Architecture

flow monitoring capabilities of a network. In this thesis, we aim to build an adaptive system that

realizes network-wide flow measurement objectives. Our system should adjust its configuration

according to network conditions and measurements accuracy. Given a set of measurement tasks

(in the form of a filter to apply on the collected traffic at the central unit) and a target overhead

value T O, defined as the desired total number of flow reports that can be exported in the entire

network (processing and storage resources), our network-wide system should be able to:

� Collect and obtain data from different monitors using various sampling primitives de-

ployed in network routers. All monitors integrate one or more sampling primitives for

traffic capturing as well as reporting capabilities for exchanging information with the

collector.

� Support a cognitive component that processes the collected measurements from the dif-

ferent routers, correlates them and calculates the targeted metric together with its esti-

mated error. This component also measures the amount of overhead caused by the actual

configuration of monitors (volume of collected data, CPU, memory, disk space, etc).

� Drive its own deployment by automatically and periodically reconfiguring the different

monitors in a way that improves the overall accuracy (according to monitoring applica-

tion requirements) and reduces the resulting overhead (respecting some resource con-

sumption constraints).

� Support a general class of monitoring applications by using various sampling primitives.

In the next section we will present our system that achieves all these monitoring objectives

and we will highlight its main components.

4.3 System architecture

In order to provide network-wide capabilities, we need a framework that assigns moni-

toring responsibilities across routers to satisfy network-wide monitoring goals. At the same

time, our system should be resource-aware; i.e., respect the resource constraints (i.e. the max-

imum amount of exported data). As discussed in the previous section, we adopt a centralized

network-wide approach that extends existing local monitoring tools with a central cognitive

component. This component coordinates monitoring responsibilities across different routers in

order to significantly increase the flow monitoring capabilities of a network. Such a central-

ized system simplifies the process of specifying and realizing network-wide flow measurement

objectives. Moreover, by using different sampling primitives, the proposed system is capable to

support a large spectrum of monitoring applications.

4.3 System architecture 67

Figure 4.1: System architecture.

68 Chapter 4: System Architecture

Figure 4.2: Functional architecture of the monitoring engine.

Figure 4.1 depicts the basic functional components of the proposed monitoring system and

the interactions among them. This system relies on local NetFlow-like measurement tools (Mon-

itoring Engine (ME)) deployed in network routers as well as on the reporting capabilities for

exchanging information and decisions with the central unit (Cognitive Engine (CE)). The tar-

geted applications provide the input to the system in the form of monitoring objectives to apply

on the collected data at the central unit. The system adjusts the sampling rates in routers to

answer the application needs with the best accuracy while respecting monitoring constraints.

Next we give a detailed description of the architecture components.

4.3.1 Monitoring Engine (ME)

This engine runs in each router and aims at sampling and capturing traffic at the interfaces

of the router using one or more sampling primitives. It then exports NetFlow records to the

central collector. As depicted in Figure 4.2, one can observe four main modules:

� Packet capturing: This module listens to the network interface and samples data using

a sampling primitive (e.g., packet sampling, flow sampling) at a given sampling rate.

This sampling rate is configured each time by the Cognitive Engine (CE) next to the

optimization it carries out after correlating measurements from all routers.

4.3 System architecture 69

� Classifier: Once a packet is sampled by the packet capturing module, the classifier iden-

tifies flows by a key (in our case this key corresponds to the 5-tuple). The classifier then

determines if a flow is active or if it is a new flow. If the flow is active, it updates real-time

statistics on that flow such as the number of packets and bytes. If it is a newly observed

flow, it inserts a new flow record for this new packet’s key. The ME maintains the keys of

flows forwarded by the router to the collector together with the statistics on those flows.

A flow is declared finished by the classifier in one of three cases: (i) when observing a

FIN or an RST packet (TCP control), (ii) when a timeout expires after the record for that

flow was created, and finally (iii) when the number of records exceeds a given threshold

requiring to release memory.

� Reporting: Once collected, flow records are exported using UDP messages to the Cogni-

tive Engine via the CM (Cognitive-Monitoring) interface.

� Controller: Based on the collected data applies machine learning methods, the cognitive

engine (CE) takes a decision on how to tune the sampling rates for the different sampling

primitives and then sends it back to the ME in each router. The router controller receives

the decision and updates its sampling rate accordingly.

4.3.2 Cognitive Engine (CE)

This component is motivated by the need to extend the local existing monitoring tools (MEs)

with a network-wide cognitive engine able to:

� Investigate the measurements collected from the different routers (local views) and then

construct a global view of the traffic and the network state.

� Automate and enhance network-wide monitoring control while decreasing their resulting

cost. The automation of the control of sampling rates is achi-eved by learning experiences

from the accuracy of the collected data and the resulting overhead.

As described in the previous section, our network-wide monitoring system adopts an adap-

tive centralized approach to coordinate responsibilities across monitors by adjusting their sam-

pling rates. Our system extends the existing NetFlow-like monitoring tools with a cognitive

engine that correlates collected measurements from all routers to infer a better global view of

the network traffic. Moreover, it automatically reconfigures the sampling rates in the different

monitors for different sampling primitives according to the monitoring application require-

ments and resource consumption constraints. The automation of the control of sampling rates

is achieved by learning experiences from the accuracy of the collected data and the overhead

of measurements. Figure 4.3 outlines the monitoring process of the cognitive engine. Given

70 Chapter 4: System Architecture

Figure 4.3: Monitoring process.

the set of monitoring objectives T to achieve and the monitoring constraints to respect (T O),

our adaptive finds the optimal configuration of network monitors that addresses the tradeoff

between the monitoring accuracy and the resulting overhead.

Figure 4.3 highlights the main stages of the monitoring procedure. First, the cognitive en-

gine starts by collecting NetFlow records from the different monitoring engines deploying dif-

ferent sampling primitives in the monitors inside the network. Once NetFlow records have been

collected, the cognitive engine investigates these local estimators in order to provide visibility

over the entire network. It provides means to combine the different local and noisy measure-

ments to form reliable and accurate global estimations. In this way, our system leverage the

possibility of parallel measurements of network flows in the different routers they cross inside

the network. Those local and parallel measurements are combined together to provide a finer

estimation. Next, our system drives its own deployment and configuration to the optimal by

diagnosing the reported network traffic, learning about the status of flows and the accuracy of

estimators, and taking the best adjustment decisions on the sampling rates in monitors that can

satisfy both global and local objectives. Finally, the cognitive engine executes these decisions

by deploying the new sampling rates in the different monitors.

The CE is composed of two main modules:

4.3.2.1 Network Reconfiguration Engine

This engine is motivated by the need to coordinate responsibilities across the different mon-

itors according to network condition changes and measurement accuracy while respecting the

monitoring constraints in order to improve monitoring capabilities and achieve network-wide

4.3 System architecture 71

monitoring goals. The optimization methods should address a number of key concerns in the

design of a network-wide monitoring system including responsiveness to changes in network

conditions, avoidance of the introduction of unnecessary noise and robustness of monitoring

solutions. While the main goal is to provide a responsive control that quickly react to net-

work condition changes, the smooth control exhibits contained oscillations and avoid the in-

troduction of unnecessary details and information in network traffic in order to keep resource

consumption within a desired bound.

Therefore, the optimization algorithm for configuring monitors and periodically calculating

the sampling rate vector is a key design issue in network-wide monitoring system. It deter-

mines the tradeoffs between responsiveness to network condition changes and the avoidance

of oscillations or unnecessarily abrupt shifts in the network traffic.

We provide two different network configuration methods:

� In a first method we provide a reactive method inspired from the dynamics used by TCP

for the adjustment of its congestion window. We continuously control the amount of

collected overhead. Then, we propose one of two actions: (i) either to increase the

sampling rate of the different monitors when the resulting overhead is lower than the

T O, (ii) or in the opposite case to decrease the sampling rate of the least significant

monitors. The least significant monitors are those providing the minimum loss when

playing with their sampling rates and they are identified using the gradient projection

method (GPM) 1.

� The second method presents a proactive approach that provides smoother control of sam-

pling rates based on overhead prediction. In order to smooth the reaction to network

changes, we predict the values for the overhead and determine the sampling rate vector

accordingly. We smooth the predicted overhead using an exponentially weighted mov-

ing average. The weight of the prediction determines the responsiveness of the sampling

rates to changes.

4.3.2.2 Global Network Traffic Inference Engine

This component is motivated by the need to extend local existing monitoring tools (MEs)

with a network-wide engine that combines their measurements to support a large spectrum

of applications and provide more accurate results. The global estimator module relies on a

1Gradient Projection Method (GPM) is among the most widely used of all function approximation methods and
is particularly well suited to reinforcement learning. This optimization method uses the derivative of the function
and the idea of steepest descent. The derivative of a function is simply the slope. GPM is an attractive optimization
method in that it is conceptually straightforward and often converges quickly. Its drawbacks include the fact that
the derivative of the function must be available, and it converges to a local minimum rather than a global minimum

72 Chapter 4: System Architecture

Table 4.1: Parameters in the model
Parameter Definition

T Set of measurement tasks

M Set of network monitors

S Set of sampling primitives

ps
k Set of sampling rates of the sampling primitive s in the monitor k

V The global normalized estimation variance

T̂ s
ik Set of estimations of the task Ti

done in the monitor k using the sampling primitive s

Vs
ik Set of normalized estimation variances of the tasks (Ti)

done in the monitor k using the sampling primitive s

T O The target overhead value (monitoring constraint)

SRmin Minimum sampling rate value

SRmax Maximum sampling rate value

d Computation period

set of measurement tasks T to realize, a set of network monitors M, and a set of sampling

primitives S deployed in the different monitors. It investigates the local measurements made

by the different routers using various sampling primitives to have a global and more reliable

view. We summarize the important flow and monitoring parameters in Table 5.4.

4.3.2.2.1 Estimation procedure Consider the set of available sampling primitives S. Let

(ps
k)(k∈M,s∈S) be the sampling rate vectors of the different sampling primitives in the different

monitors. The objective of the cognitive engine is to find the optimal sampling rate vectors that

minimize the global normalized estimation variance V (variance of estimator).

Local estimation

For each monitoring task Ti ∈ T and given the sampling rate value ps
k of the sampling

primitive s ∈ S, the monitor k samples data according to the sampling rate value and derives

a local estimation T̂ s
ik of the task Ti. Moreover, it calculates analytically its corresponding local

normalized estimation variance Vs
ik.

Combining measurements

The central unit collects the different local estimations T̂ s
ik with their corresponding normal-

ized variances Vs
ik and combines them in order to get a global estimation for each sampling

primitive T̂ s
i . Furthermore, it calculates their normalized estimation variances Vs

i .

Global estimation

In order to support a large spectrum of monitoring applications and to minimize the vari-

4.3 System architecture 73

ance of the global estimation error, we combine the global estimations of the different sampling

primitives T̂ s
i to construct the global estimator of the task Ti. This global estimator is defined as

a weighted sum of the sampling primitive estimators. This weighted summation of the different

estimators is known to be the best linear combination in terms of mean square error [48],

T̂i =
∑
s∈S

χsT̂
s
i with χs =

1
Vs
i∑

l∈S
1
Vl
i

. (4.1)

Note that the weights are inversely proportional to the estimator error variance, which in

their turn are inversely proportional to the configured sampling rate. Thus, primitives providing

estimates with smaller error variances have a larger impact on the global estimator than those

providing estimates with larger error variances.

Monitors reconfiguration

The monitor reconfiguration module takes as input the global estimator variance V and the

sampling rate vectors in order to identify the optimal sampling rate vectors. It calculates the

marginal loss or gain in the global accuracy when reconfiguring a sampling rate value. Then, it

finds the best sampling rates vectors by testing all monitors [70, 61, 69].

In order to explain the operation of our system and how it configures the different monitors

and combines their local measurements, we explain in the next section the estimation of flow

sizes using a single monitoring primitive: the packet sampling. We consider in this section the

reactive network reconfiguration method.

4.3.2.2.2 Case study: Traffic accounting We explain in this section using a concrete exam-

ple how the central cognitive engine, based on the collected measurements, can decide on the

way to tune the sampling rates over the network using the reactive network reconfiguration

method. We consider for this purpose an accounting application: the estimation of the volume

of some chosen network flows 2. Given a set of flows to monitor, the cognitive engine should

progressively tune the sampling rates in routers in such a way to minimize the global estimation

error.

Definitions

Consider N traffic aggregate flows whose volumes in packets are labeled F1, F2, . . ., FN.

Denote by F̂1, F̂2, . . ., F̂N the corresponding estimators. Let P = (pk) be the vector of packet

sampling rates in the different monitors of the network (a monitor is equivalent to a router

interface). There are in total M monitors. The target of the system is to find the vector P that

2A flow is an aggregate of packets sharing some common features. The basic definition is what is called the
5-tuple definition where packets share the source and destination IP addresses and port numbers plus the protocol
number.

74 Chapter 4: System Architecture

minimizes the sum of normalized estimation errors∑
i

Var(F̂i)/F
2
i .

Each aggregate flow Fi is formed of a set of 5-tuple flows whose volumes are denoted by

Sji. Again, denote by Ŝji the best estimator for the size of each of these 5-tuple flows. One can

then transform the optimization problem into minimizing the sum of the normalized estimation

errors of the sizes of the 5-tuple flows.∑
i

∑
j

Var(Ŝji)/F
2
i

As long as there are available resources (i.e. The resulting overhead is less than the TO

threshold), the system periodically increases all sampling rates to improve results’ accuracies.

Once the T O value is reached the system triggers a decrease in the sampling rate of the least

significant monitors. This continues until the overhead is again below this T O value. The least

significant monitors are the ones having the smallest absolute values for the following partial

derivative sum: ∑
i

∑
j

∂Var(Ŝji)

∂log(pk)
.
1

F2i
. (4.2)

In the following we show how such estimators for the 5-tuple flow sizes are formed and how the

partial derivatives of their variances are obtained. For the Fi themselves, which are unknown,

we simply substitute them by their estimations, i.e. F̂i =
∑

j Ŝji. Note that we consider the

volumes of flows as measured in packets. The passage to bytes can be made by multiplying the

size in packets by the average packet size, which we suppose true for large flows.

Local flow size estimation

Consider a 5-tuple flow Sji crossing monitor k whose sampling rate is pk. Let skji be the

number of packets sampled from this 5-tuple flow in the monitor (this number could be zero).

With this information, one can derive a first estimation for the flow size of the flow. The

estimator that maximizes the likelihood is known to be [41]:

Ŝkji = skji/pk. (4.3)

Under independent sampling of packets with probability pk, the number of packets skji sampled

from an original 5-tuple flow Sji follows a binomial distribution whose variance is well known

and equal to Sji.pk.(1− pk). It follows that this local estimator for the size of a 5-tuple flow has

a variance equal to

Var(Ŝkji) = Sji.(1− pk)/pk. (4.4)

Combining measurements

4.3 System architecture 75

The information on a 5-tuple flow comes from all monitors along its path. Though, some of

them may not sample any of the packets of the flow, either because their sampling rate is low,

or because the volume of the 5-tuple flow is small in terms of packets. We propose to identify

these monitors related to a 5-tuple flow with the help of routing information. Largely deployed

link-state protocols like OSPF and IS-IS provide such information. If such routing information

is not available at the central unit, one has to limit the observations to monitors that have seen

the flow knowing well that this might cause a bias against 5-tuple flows that got unsampled.

This bias is expected to be small when aggregating over aggregate flows Fi.

According to Equation (4.1), we estimate the volume of a 5-tuple flow as being the sum of

the weighted sum of the local estimators done in the monitors along its path. This gives the

following global estimator for 5-tuple flow j belonging to aggregate flow Fi,

Ŝji =
∑
k∈φji

λkskji/pk, with λk =

1

Var(Ŝkji)∑
l∈φji

1

Var(Ŝlji)

, (4.5)

φji is the set of monitors on the path followed by Sji. Replacing the variances by their ex-

pressions given in the previous section, substituting the second equation into the first one, and

simplifying by Sji, we get,

Ŝji =
1

αji

∑
k∈φji

βkjiskji, (4.6)

with

αji =
∑
l∈φji

pl

(1− pl)
and βkji =

1

(1− pk)

Note in particular how the αji and the βkji are the same for all 5-tuple flows that follow the

same path, which eases a lot the calculation. As for the variance of this estimator of 5-tuple

flow sizes, it is simply equal to

Var(Ŝji) = Sji/αji. (4.7)

The original flow size being unknown, we can simply substitute it by its global estimator Ŝji.

Reconfiguring monitors

As shown in the previous section, the variance (or mean square error) of 5-tuple flow size

estimation is very important for the determination of the global system accuracy and for the

identification of the monitors that should be reconfigured. For 5-tuple flow Sji and monitor k

we can write,
∂Var(Ŝji)

∂log(pk)
=

−Sji.pk

α2
ji(1− pk)2

. (4.8)

This represents the marginal gain in the accuracy (loss in the variance) when the logarithm of

the sampling rate of monitor k is increased by a small step δ and this is from the perspective

of estimating the size in packets of flow Sji. As expected, this gain is positive when someone

76 Chapter 4: System Architecture

increases the sampling rate (more sampling means more accuracy). It also decreases when pk

increases, which suggests that the estimation error follows well a continuously decreasing and

convex function with the sampling rate, a condition required for the uniqueness of solution in

non-linear optimization theory.

By plugging the above expression in Equation (4.2) we obtain the utility function of the

monitor k, which sums the accuracy and normalizes it over all 5-tuple flows forming the traffic

of interest, we can easily find the total gain (resp. the loss) in accuracy when the sampling

rate of monitor k is tuned up (resp. down) by a multiplicative step (additive in the logarithmic

scale). By testing all monitors, we can find the best sampling rates to tune down in case of

saturation. We choose to decrease the monitors having utility function values less than the

average over the different monitors. Note that the sum in (4.2) can be calculated online as

long as more reports are received. The parameters αji can be calculated only once for each

configuration and for all possible paths across the network.

4.4 Conclusion

There is an increasing interest in passive monitoring systems. Existing solutions, however,

are inadequate for monitoring application requirements and fail to meet the increasing de-

mands for fine-grained flow-level measurements. To meet these growing demands, we argue

the need for a centralized monitoring system that takes a network-wide approach to flow mon-

itoring.

In this chapter, we have presented a network-wide monitoring system that adopts an adap-

tive centralized approach to coordinate responsibilities across the different monitors by adjust-

ing their sampling rates. Our system extends the existing NetFlow-like monitoring tools with a

cognitive engine that correlates collected measurements from all routers to infer a better global

view of the network traffic. Moreover, it automatically reconfigures the sampling rates in the

different monitors according to the monitoring application requirements, resource consumption

constraints and network condition changes. After a general presentation, we have described the

details of our system by the help of a traffic accounting application, i.e. estimating the volume

of some well defined flows. Furthermore, we have discussed the different needs that address a

number of key concerns like addressing the tradeoff between improving monitoring accuracy,

respecting monitoring constraints and reacting to network condition changes.

In the next chapter, we will describe two different approaches for network monitoring re-

configuration. We will illustrate our work with more monitoring applications and primitives.

Moreover, we will provide experimental results to validate the functioning of the proposed

system and methods.

4.4 Conclusion 77

78 Chapter 4: System Architecture

5

NETWORK RECONFIGURATION METHOD

As we have seen in the previous chapter, an important part of the proposed monitoring

system architecture is dedicated to the reconfiguration of monitors according to measurements

accuracy and network condition changes. The optimization methods should address the trade-

off between responsiveness to changes in network conditions and smoothness defined as avoid-

ance of unnecessary oscillations and avoidance of the introduction of unnecessary noise and

robustness of monitoring solutions. In this Chapter, we will provide two different network re-

configuration methods: A reactive optimization method and a proactive optimization method.

We will give an exhaustive description of each method. Furthermore we will study their per-

formance using a single sampling primitive, packet sampling and two monitoring applications,

flow size estimation and heavy hitter detection. We will validate the operation of each method

and we will compare their performances.

79

80 Chapter 5: Network Reconfiguration Method

Contents
5.1 Reactive Network Reconfiguration Method . 80

5.1.1 Optimization method description . 81

5.1.2 Validation results . 82

5.1.2.1 Validation scenarios . 82

5.1.2.2 System efficiency, adaptability and convergence 85

5.1.2.3 Fairness and comparison with the static edge method 90

5.1.2.4 Global sensitivity analysis . 93

5.1.3 Summary . 95

5.2 Proactive Network Reconfiguration Method . 95

5.2.1 Challenges and objectives . 96

5.2.2 Optimization method description . 96

5.2.2.1 Overhead prediction . 97

5.2.2.2 Optimization method . 100

5.2.3 Validation results . 100

5.2.3.1 System efficiency . 102

5.2.3.2 Global sensitivity analysis . 103

5.2.4 Summary . 105

5.3 Reactive optimization method vs. Proactive optimization method 105

5.3.1 Measurement accuracy study . 106

5.3.2 System efficiency . 107

5.4 Conclusions . 108

5.1 Reactive Network Reconfiguration Method

A key characteristic of adaptive monitoring systems is their responsiveness to network con-

ditions changes and measurement accuracy requirements. This means that the proposed moni-

toring systems should rely on a responsive optimization method. This responsive control should

update its configuration as a result of experiencing resulting overhead made by the storage en-

gine and measurement accuracy calculated by the global estimator. The degree to which the

5.1 Reactive Network Reconfiguration Method 81

optimization method updates its sampling rates should depend on the value of these two met-

rics.

The goal of this section is to introduce a reactive optimization method able to continuously

and gradually react to monitoring requirements. The degree of this reaction should depend on

the aggressiveness of changes of network conditions and measurement accuracy.

We propose a network-wide cognitive monitoring system that profits from advances in ma-

chine learning techniques and flow-level monitoring tools. The system starts from the NetFlow

monitoring capabilities deployed in routers, tunes them in an adaptive and optimal way, and

combines their results to answer to the best the monitoring application needs. We aim at find-

ing the best configuration of sampled NetFlow that provides the best accuracy while respecting

router and collector resource constraints. Our system is centralized and proceeds in optimizing

the configuration in small steps based on collected reports from inside the network until the

optimal configuration is reached. Our system can drive its own deployment and configuration

to the optimal configuration by diagnosing the reported network traffic, learning about the sta-

tus of flows and the accuracy of estimators, and taking the best adjustment decisions on the

sampling rates in monitors.

5.1.1 Optimization method description

This engine is motivated by the need to coordinate responsibilities across the different mon-

itors in order to increase the global accuracy while avoiding unnecessary measurements. To do

so, we proceed by an adaptive centralized control of sampling rates based on the estimation

of the measurement error and the reporting overhead (as shown in Algorithm 1). We resort

to a dynamics inspired from the one used by TCP for the adjustment of its congestion window.

Starting from an initial sampling rate vector Pinit, the Network Reconfiguration Engine is fed

with the estimation of the different tasks (Ti) and their corresponding errors (Ei), as well as the

resulting overhead (O), i.e. rate at which flow records arrive. If the overhead O is less than the

target overhead T O, the system keeps increasing periodically (each time period d) the sam-

pling rates of the different monitors. Once T O is reached, the system triggers a decrease in the

sampling rates of the least significant monitors. In this way the system strives to keep the re-

porting overhead at T O flow records per second and fully profits from the available resources.

Note that setting the sampling rate to a very low value in a router (SRmin) is equivalent to

turning it off for the purpose of monitoring while we don’t let the sampling rate exceeds some

maximum value (SRmax) to respect local router constraints.

To increase or to decrease sampling rates, we use increments in the logarithmic scale in

order to give more flexibility to our system and to get a fast scan of the sampling rate interval

[0, 1]. For reconfiguring the sampling rate of, let’s say monitor k and sampling primitive s, we

set log(pk) to log(pk)± δ depending on where the decision is to increase or decrease pk. This

82 Chapter 5: Network Reconfiguration Method

gives in the normal scale pk = pk(γ)
±1 where γ = exp(δ). In our experiments, we measure

O and we set the value of γ at min{1 + σ|T O−O
T O |, 3}, so that this value varies between 1 and 3.

O is the number of flow records received since the last update, divided by the time since this

last update. It is immediately noticed that the value of γ depends on the value of O: small

adjustments when O converges to T O and large adjustments when O deviates from T O. σ is

a constant parameter of the control that represents a balance between convergence speed and

stability.

As described in 4, the least significant monitors are identified using the Gradient Projection

Method (GPM). From the perspective of the set of tasks T to realize, the least significant mon-

itors are the ones providing the least increase in the global estimation variance V , when the

logarithmic of their sampling rates are decreased by step δ. To be identified, one has first to

write analytically the expression of V as a function of the sampling rates in routers of interest,

then calculate the utility function of the different monitors by differentiating this expression

with respect to log(pk), where pk is the sampling rate of the monitor k: Uk = |∂E/∂log(pk)|,

k = 1 . . .M. Given the current configuration of sampling rates, we choose the least signifi-

cant monitors as being those having utility function values less than the average of the utility

functions values over all the monitors.

5.1.2 Validation results

In order to explain the operation of our system and how it configures the different moni-

toring primitives and combines their measurements, we consider two monitoring applications:

flow size estimation and heavy hitter detection. The analysis and validation are done using a

single sampling primitives: packet sampling.

We divide the validation results section into three parts. First, we study the efficiency and

convergence of our adaptive solution and its ability to adapt to the heterogeneity of flow rates

and to the predefined collected traffic overhead. Second, we show the practical benefits of

deploying our optimization approach by comparing it to the common static configuration ap-

proach where sampling is only performed at the edge of the network. Last but not least, we

present a global sensitivity analysis of the importance of the different parameters of our algo-

rithm and we calculate their influence on the system behavior.

5.1.2.1 Validation scenarios

MonLab [8, 68] requires the definition of a network topology over which it dispatches and

replays a real traffic. This topology is supposed to connect an AS at each of its POP (Point-Of-

Presence) routers. We chose to experiment over network topologies similar to the ones of well

known tier-1 transit networks. Two topologies, described in Figures 5.1 and 5.2, were chosen

5.1 Reactive Network Reconfiguration Method 83

Data: The global estimation T̂ with its estimation variance V , and the sampling rate

vector P
Result: The new sampling rate vector P
begin

Initialize the sampling rate vector at Pinit ;

P ← Pinit ;

while True do
/* If O exceeds T O, the system triggers a decrease in the sampling rates of the

least significant monitors */

if O exceeds T O then
calculate γ = min{1+ σ|O−TO

TO
|, 3} ;

foreach pk ∈ P do
calculate Uk = |∂E/∂log(pk)| ;

end

calculate AvgUtility = Avgpk∈PUk ;

foreach pk ∈ P do

if Uk < AvgUtility then
pk ← max{pk

γ
, SRmin} ;

end

end

return {P} rst(d, O) ;
end

/* If d expires, we increase the sampling rate of the different monitors.*/

if d expires then
calculate γ = min{1+ σ|O−TO

TO
|, 3} ;

foreach pk ∈ P do
pk ← min{γpk, SRmax} ;

end

return {P} rst(d, O) ;
end

end

end

Algorithm 1: The adaptive centralized control algorithm.

84 Chapter 5: Network Reconfiguration Method

Figure 5.1: Geant topology.

for their widely use, the Geant topology (TOPG) [4] and the Abilene one (TOPA) [1].

The weights of ASes needed for traffic dispatching are set according to the sizes of stub ASes

in Geant and Abilene (we make sure these weights sum to 1). An AS of weight w will then see

itself attributed 100.w% of the prefixes available in the trace and will see its traffic (ingoing

or outgoing) being around 100.w% of the total trace traffic, both at the flow and packet levels

(random prefix allocation).

Once topology and weights are set, we replay over each emulated topology different traces

collected at a transpacific link by the Japanese MAWI working group [7]. Traffic traces are

made by TcpDump, and then, IP addresses in the traces are scrambled by a modified version of

Tcpdpriv [13]. The default scrambling configuration preserves network prefixes and IP address

classes. In this paper, we present results for two traces among the many ones in this data

archive: Trace S collected on 03/03/2006 during the night making the traffic relatively smooth,

and Trace V collected on 03/03/2006 during the day featuring more important traffic variability.

Table 5.1 provides summary information on these two traces.

We run the three services of the MonLab platform on one machine each. Machines are fast

5.1 Reactive Network Reconfiguration Method 85

Figure 5.2: Abilene topology.

Table 5.1: Traffic traces summary

Trace Start time End time Avg Rate # of flows # of pkts

S 00:30 02:30 26.34 Mbps 3250616 56178542

V 13:00 15:00 30.26 Mbps 3278041 69499589

enough to follow in real time the stream of packets in the replayed TcpDump traces. There is

one machine for dispatching and replaying traffic, a second machine for topology emulation

and flow monitoring, and a third machine for measurement collection. This latter machine em-

ulates the central unit; it collects NetFlow reports and implements the sampling rate adaptation

algorithm.

As target application, we consider the estimation of flow sizes as described in Section 4.3.2.2.2.

We recall that a flow Fi is the set of 5-tuple flows that share the same AS source and AS destina-

tion. All AS-to-AS flows are jointly considered, which is often called in the literature the traffic

matrix. The target of the system is to find the vector P that minimizes the sum of normalized

mean relative errors.

5.1.2.2 System efficiency, adaptability and convergence

In this section we aim to address the following points:

� Convergence: Starting from any initial configuration value Pinit of all sampling rates (usu-

ally a low value), we want to know if our system is able to converge to an equilibrium

in its configuration and hence in the realized monitoring accuracy. To detect this equilib-

rium, we will experiment the same scenario for different initial sampling rates and check

86 Chapter 5: Network Reconfiguration Method

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1000 2000 3000 4000 5000 6000 7000

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Time (s)

Pinit = 0.005

Pinit = 0.01

Pinit = 0.02

(a) Mean relative error vs. time using Trace V.

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000 7000

O
v
e
r
h
e
a
d

Time (s)

Target Overhead Value
Pinit = 0.005
Pinit = 0.01
Pinit = 0.02

(b) Overhead (Netflow report/s) vs. time of Trace V.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1000 2000 3000 4000 5000 6000 7000

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Time (s)

Pinit = 0.005

Pinit = 0.01

Pinit = 0.02

(c) Mean relative error vs. time using Trace S.

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000 7000

O
v
e
r
h
e
a
d

Time (s)

Target Overhead Value
Pinit = 0.005
Pinit = 0.01
Pinit = 0.02

(d) Overhead (Netflow report/s) vs. time of Trace S.

Figure 5.3: The evolution of the mean relative error and the resulting overhead O (Netflow report/s)
using two different traces.

the final state of the system. The system converges when the mean relative error stabilizes

and stops improving.

� Reactivity: Any change in the network traffic should bring the system temporary out of

its convergence state before it converges again toward a new equilibrium. We want to

observe if our system can detect changes in the network traffic and if it is able to find

quickly this new equilibrium.

� Target Overhead: We want to test the capability of our system to respect the imposed

constraint on the rate of measurement records. Among the set of configurations resulting

in a rate of records equal to the imposed constraint, the system should be able to find the

one minimizing the error on the target measurement task.

The above points will be addressed next by real experiments over the two network topologies

Geant-like and Abilene-like and by the help of the two traces S and V described in Table 5.1.

5.1 Reactive Network Reconfiguration Method 87

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1000 2000 3000 4000 5000 6000 7000

S
a
m
p
l
i
n
g

r
a
t
e

v
a
l
u
e

Time (s)

P1

P2

P3

P4

Figure 5.4: Evolution of some sampling rates vs. time using trace V and TOPG.

In Figure 5.3, we plot the evolution of the mean relative error obtained over all AS-to-AS

flows (on the left hand side) and the resulting overhead in NetFlow-records/s (on the right

hand side) over time using the two traces S and V. Each point in the graphs corresponds to an

update of the sampling rates, either in the increase (overhead O less than the target value T O)

or in the decrease (overhead O larger than the target value and the buffer B is full). For this

experiment, we set the timer d for updating sampling rates to 1 minute, the regulator σ to 2,

the minimum possible sampling rate SRmin to 0.0005 and the maximum possible one SRmax to

1. The T O is set to 200 NetFlow-records/s.

Three initial sampling rates are considered: 0.005, 0.01 and 0.02. We can immediately

observe that the system keeps improving the global accuracy while fully profiting from the

available resources for measurement collection. At the beginning, the system exponentially

increases sampling rates until the T O is reached. Once done, it keeps improving the accuracy

of the estimation while maintaining the overhead around its target value. After few iterations,

the system reaches an equilibrium where the mean relative error tends to oscillate around its

minimum value. For the smooth trace S, the equilibrium does not change much along the trace.

For the other variable trace V however, we can see in the middle of the trace sudden increases

in the error caused by sudden changes in the traffic. The system adapts to these changes

by recalculating a new optimal configuration, always at a constant overhead. Note how the

behavior is almost identical for the three initial sampling rates illustrating the stability of our

system and its ability to converge in few iterations (few minutes here) to an equilibrium that

only depends on traffic conditions and monitoring target and not on the initial configuration of

sampling rates. These results are illustrated in Figure 5.4, presenting the evolution in different

routers of sampling rates over the time starting from an initial configuration Pinit equal to 0.005

and using the trace V. We can observe the ability of our system to converge to an equilibrium

88 Chapter 5: Network Reconfiguration Method

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 150 200 250 300

Ave
rag

e M
ean

 Re
lati

ve
Err

or

Target Overhead (NetFlow/s)

Average Mean Relative Error

Figure 5.5: Average mean relative error for different TO values.

in its configuration. Once done, it keeps oscillating around this optimal configuration until

the network conditions change. Moreover, we notice the capability of our system to track any

change in the network conditions as well as to adapt sampling rates to move smoothly towards

a new optimal configuration.

Figure 5.5 shows the value of the mean relative error for different target overhead values.

Each point in the graphs corresponds to an experimentation. We run the experimentation

while calculating periodically the MRE. Then, we calculate the mean value of these calculated

MRE values to get the Average Mean Relative Error (AMRE). These results are for topology

TOPG and Trace V. One can immediately notice the impact of the TO on the traffic estimation

accuracy. There is a clear reduction of the overall measurement error from 0.402 for a TO equal

to 100 NetFlow-records/s, to 0.08 for a TO equal to 300 NetFlow-records/s. Indeed, for each TO

value, the system tries to find the best configuration that minimizes the traffic estimation error.

When TO is low, the system has to lower the sampling rates in the least significant monitors with

the objective to reduce the rate of collected measurement records without much compromising

the estimation accuracy. Allowing more overhead gives the system more freedom in increasing

the sampling rates of the most significant monitors looking for better estimation of the sizes of

the target flows. The main strength of our system is that it is able to cope with any TO value

and provides for this value the best configuration of monitors. Now, this configuration might

not satisfy the administrator in terms of the accuracy of the measurement, in this case the only

remaining solution is to increase the value of TO. In a future research we will be working on an

enhanced version of our system that adapts the TO in such a way to realize the measurement

task with some predefined minimum accuracy. For now, we suppose the TO is a constraint set

by the administrator and we let our system find the best configuration that maximizes accuracy.

To illustrate the capacity of our system to maintain the measurement overhead around the

TO, we plot in Figure 5.6 the measured overhead in terms of collected NetFlow-records/s as a

5.1 Reactive Network Reconfiguration Method 89

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000

Re
su

ltin
g O

ve
rhe

ad

Time (s)

TO = 300
TO = 200
TO = 100

Figure 5.6: Resulting overhead vs. time using three different TO values.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 150 200 250 300

Av
era

ge
 M

ea
n R

ela
tiv

e E
rro

r

Target Overhead (NetFlow/s)

Average Mean Relative Error

Figure 5.7: Average mean relative error vs. target overhead for the Abilene-like topology.

function of experimentation time and this is for three TO values. We can clearly see how for

each experiment, whose traffic estimation accuracy is reported in Figure 5.5, the real overhead

is maintained around the target value and how our system is able to converge and adapt to

variations in traffic conditions along the trace lifetime.

The experiments over the Abilene-like topology confirm the same findings about the per-

formance of our system. To give a sample of the obtained results, we plot in Figure 5.7 the

mean relative estimation error averaged over all flows as a function of the TO. This figure is

the equivalent to Figure 5.5 for the Geant-like topology. We can notice how the two figures

look the same. The error for the Abilene-like topology is slightly smaller which comes from the

smaller size of this topology and hence the larger volume of flows. Note that both experiments

are conducted (on TOPG and TOPA) at equal total traffic driven by the same Trace V.

90 Chapter 5: Network Reconfiguration Method

Figure 5.8: The evolution of the mean relative error of all the flows vs. time.

5.1.2.3 Fairness and comparison with the static edge method

We argue that an adaptive system that coordinates sampling responsibilities between the

different monitors can considerably improve the flow monitoring capabilities of the network.

In this section, we are interested in comparing our adaptive solution with the standard static

configuration of NetFlow in order to assess the ability of our system to avoid unnecessary

measurements while tracking efficiently the target flows at constant overhead.

By minimizing the sum of estimation relative errors for flow sizes, our system gives the same

weight to each flow independently of its volume. This should naturally lead to a fair allocation

of sampling rates that homogenizes estimation errors over target flows. This ability to track

indifferently small and large flows constitutes one of the main strengths of our system. Any

static configuration of sampling rates does not provide this fairness feature. Note that we are

talking here about aggregate flows Fi. Each aggregate flow is composed of a set of 5-tuple flows

whose total volume is estimated.

In order to illustrate the fairness of our approach with respect to target flows, we plot in

Figure 5.8 the evolution of the mean relative error of all the flows over time. Starting from a

large mean relative error, we can clearly note how our system keeps reducing this estimation

error for all flows at almost the same rate even though these flows span different volumes.

Some of the flows unfortunately still suffer from a large relative error because of their very

small volume.

Then, we move to the comparison of the performance of our system with the widely de-

ployed NetFlow solution, which consists of monitoring traffic at the edge of the network with

static sampling rates. For this latter solution, each flow is monitored only one time at the input

5.1 Reactive Network Reconfiguration Method 91

interface of the edge router of its originating AS. This has the advantage that every sampled

packet belongs to one of the flows of interest thereby flows can be easily formed at the collector.

The problem is that this offers few options to sample a flow, and thus small flows that get mixed

at their input interface with large flows suffer from a low sampling rate. Our approach has the

nice feature of giving more choices for where to sample a flow, hence the protection of small

flows. One has to add the dynamic feature of our approach and its ability to combine multiple

measurements for the same flow and to limit the overhead. We use for the comparison two

specific accounting applications:

� Traffic matrix estimation: All AS-to-AS flows are considered as described in section Sec-

tion 4.3.2.2.2.

� AS traffic estimation: The focus is on the total volume of traffic generated by each stub

AS.

For this experimentation, we use the Geant-like topology and the variable traffic trace V. The

parameters of the experimentation are set as in the previous sections. For the sampling rate of

the static edge configuration, denoted by p, we set it in such a way that the resulting reporting

overhead is the same as in our network-wide adaptive case, and this for the main purpose of

fairness between the two approaches. If NS is the total number of 5-tuple flows in the trace,

D the duration of the trace, π(S) the probability to sample a 5-tuple flow of size S packets, S

being a random variable, then the sampling rate p is given by:

NS.π(S)

D
=

NS.E[1− (1− p)S]

D
= TO.

The term on the right-hand side is no other than the target overhead of our adaptive architec-

ture. The term on the left-hand side is an estimation of the rate of collected records in the static

edge configuration.

Traffic matrix estimation: While giving on average close performance to our approach, the

edge solution presents sampling bias against small flows as we can see in Figure 5.9 for the case

of the smallest 20 flows. This figure plots the average mean relative error as a function of the

TO. With the edge solution, small flows dilute within large flows and suffer from low estimation

accuracy. If this happens, no other choices are available to sample them elsewhere. However,

with our approach, we are able to track small flows on other lightly loaded links inside the

network and combine measurements from different routers together without incurring much

overhead on the system. As we can see, in order to track small flows using the edge solution

with a similar accuracy to the one we obtain using the adaptive solution, we have to use a TO

value larger than 150% of the value used by the adaptive solution.

AS traffic estimation: We change our objective and instead of defining a flow as being the

volume of traffic from one stub AS to another stub AS, we define it as the total volume of traffic

92 Chapter 5: Network Reconfiguration Method

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 150 200 250 300

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Adaptive solution (All flows)
Edge solution (All flows)

Adaptive solution (20 worst flows)
Edge solution (20 worst flows)

Adaptive solution (20 best flows)
Edge solution (20 best flows)

Figure 5.9: The mean relative error of flow measurements: Our approach vs. static edge one.

Table 5.2: Comparing AS traffic volume estimations.

AS Affected Without Edge sloution All ASes Large ASes

weight sampling

AS ratio # of pkts AS ratio # of pkts AS ratio # of pkts AS ratio # of pkts

2 10 9.926 13797278 8.91 14273284 10.88 12937707 9.35 14040661

5 8 6.66 9258345 5.31 8499160 7.08 8415835 6.568 9860137

4 7 8.13 11302633 6.616 10590567 8.74 10387119 7.928 11901672

7 6 7.23 10049975 5.782 9256026 7.704 9155527 7.1 10663023

8 5 6.03 8381660 4.749 7602165 6.376 7577020 5.968 8959994

11 4 3.04 4228675 1.807 2892413 2.975 3535172 0.45 676588

9 2 1.87 2599884 0.633 1013954 1.542 1832918 0.155 233989

Total number 138999178 160057553 118830397 150119112

of packets

5.1 Reactive Network Reconfiguration Method 93

generated by each stub AS. We count both the outgoing and ingoing traffic for each AS. The

best configuration is the one that minimizes the sum of mean square relative errors of AS traffic

estimators. Changing target measurement is very easy in the context of our approach; one has

to correctly define an aggregate flow, the configuration of sampling rates follows automatically.

In this scenario, the traffic volume of an AS should be proportional to the weight attributed to

it during the trace dispatching phase.

To further prove the generality and efficiency of our approach in comparison to the standard

static edge one, we perform two tasks within this scenario. In a first time, we estimate the

traffic volume of the different ASes (All ASes task). Then, we estimate the traffic volume of

ASes contributing to more than some threshold of the total traffic trace (Large ASes task). We

present results for a 6% threshold. Some ASes are smaller than this threshold but there traffic

might still be reported to the central collector, yet it is not included in the optimization loop

and is not returned to the monitoring application. The main purpose of our architecture is to

reduce this volume of undesirable traffic. The All ASes task is a particular case of this second

general task and can be obtained by setting the threshold to 0%.

Table 5.2 presents a summary of the experimental results for a selection of ASes. The first

two columns present the AS number and its associated weight. The other columns present the

AS traffic volume estimation in number of packets and the ratio of this volume with respect to

the total estimated network traffic. Four configurations are presented, the one without sampling

as a reference configuration, the static edge one, the adaptive All ASes one, and the adaptive

Large ASes one. A set of observations can be made from these results. The first observation is

that the All ASes adaptive configuration provides more accurate results for all AS traffic volumes

independently of their sizes. The traffic volume of ASes is better estimated than with the static

edge configuration, especially for small ASes whose traffic get diluted within the traffic of large

ASes if only sampled at the edge. The second observation we can make is that for large ASes,

one can even get a better estimation by only focusing in the optimization on the sizes of these

large ASes. As requested, small ASes contributing to less than 6% of the total network traffic

got ignored by our optimization, hence the decrease in their accuracy. Indeed, the overhead

these small ASes generate with the All ASes configuration and the static edge one is used to

better sample the large ASes and to better estimate their traffic volumes. These results illustrate

the adaptive nature of our approach and its capacity to cope with the monitoring application

needs, always at constant monitoring overhead.

5.1.2.4 Global sensitivity analysis

In the previous two parts, we gave a particular attention to the impact of the overhead

target value. Yet, the system has other parameters and it is important to evaluate their impact

as well. In this section we use the sensitivity analysis method described in 3.2 to demonstrate

94 Chapter 5: Network Reconfiguration Method

indeed that, apart from the overhead target value, the other parameters have minor impact on

system performance.

The goal of global sensitivity analysis is to characterize, qualitatively or quantitatively, what

impact an input parameter has on a system output and how it compares with the impact of the

other parameters. In other words, using Sensitivity Analysis, one can determine how changes

in one or several parameters will impact the target output variable. In this section we apply

Sensitivity Analysis to study the importance of the parameters of the proposed architecture.

Fourier Amplitude Sensitivity Test [36, 37] is considered to be one of the most efficient methods

in sensitivity analysis [82, 84]. Among its advantages are: fast implementation, possibility to

deal with nonmonotonic models, arbitrary large variations in input parameters, and no need

for the knowledge of the mathematical model.

The main idea of FAST is to assign to each parameter a distinct integer frequency (char-

acteristic frequency). Then, for a specific parameter, the variance contribution can be singled

out of the model output with the help of the Fourier transformation. Therefore, FAST is also

referred to as variance based sensitivity analysis.

We have applied the method FAST to our system in order to characterize the impact of the

different parameters used in experimentations on results. Table 5.4 summarizes the different

evaluated parameters with their ranges. The last column presents the impact of each parameter

on the system output.

For the case of six input parameters we obtain the following values of the characteristic

frequencies

ω1 = Ω6 = 1

ω2 = ω1 + d5 = 21

ω3 = ω2 + d4 = 31

ω4 = ω3 + d3 = 37

ω5 = ω4 + d2 = 45

ω6 = ω5 + d1 = 49

It is immediately noticed that the parameter having most important impact on the system

output is the target overhead TO while the other parameters have a light impact on results in

the order of 1% or less. Indeed, for some value of TO, there is an optimal configuration of

monitors, and our system will converge to this optimal configuration in a robust manner with

respect to the other parameters. It is only by changing the value of TO that the system will

converge to another optimal configuration yielding another measurement precision.

5.2 Proactive Network Reconfiguration Method 95

Table 5.3: Parameters of the experiment.

Parameter symbol range impact

Target Overhead TO [20, 500] 0.58

Computation period d [60s, 300s] 0.0142

γ regulator σ [1, 10] 0.00747

Initial sampling Pinit [0.005, 0.02] 0.01179

rate value

Minimum sampling SRmin [0.0005, 0.005] 0.00691

rate value

Maximum sampling SRmax [0.02, 1] 0.00721

rate value

5.1.3 Summary

In this section, we presented a responsive optimization method that automatically recon-

figures the sampling rates in the different monitors according to the monitoring application

requirements and resource consumption constraints. By using this optimization method, the

network operator just has to select a measurement task and a monitoring resource constraint

(T O). Our self-configuring system will then iterate measurements and adjust sampling rates in

small steps in order to address the tradeoff between monitoring accuracy and overhead.

Experimental results proved the ability of our system to continuously improve the monitor-

ing accuracy while limiting the overhead to its target value. Moreover, the system provides a

fair allocation of sampling rates over monitors so that measurement errors are homogeneously

distributed among flows independently of their volumes. Compared to static edge configura-

tion, our network-wide adaptive system has shown its advantages in better capturing network

flows especially for small flows.

5.2 Proactive Network Reconfiguration Method

We have presented in the previous section a reactive optimization method for network mon-

itors reconfiguration. While this solution provides a responsive control of sampling rates and

quickly reacts to network condition changes and measurement accuracy requirements, it dis-

rupts the system with unnecessary details specific to a particular observation period since it

tracks fine-grained changes in the traffic.

In this section, we introduce the notion of smoothness for network configuration and define

it as the degree or the aggressiveness to which the system should react to changes of network

conditions. By tracking smoothly changes in network conditions and measurement accuracy we

96 Chapter 5: Network Reconfiguration Method

exhibit unnecessary oscillations and avoid the introduction of unnecessary details and informa-

tion in network traffic in order to keep resource consumption within a desired bound. Our

solution relies on an overhead prediction module in order to track long-term and short-term

variations in the traffic using an exponentially weighted moving average. The different weights

of this method determine the responsiveness to changes and address the tradeoff between re-

sponsiveness and smoothness.

In this section, we will present the optimization procedure using a single sampling primitive:

packet sampling and two monitoring tasks: heavy hitter detection and flow size estimation.

5.2.1 Challenges and objectives

Recently, many proposals try to design a network-wide monitoring infrastructures that co-

ordinate monitoring responsibilities between different monitors e.g. [86, 28]. However, despite

these available solutions, monitoring applications still present some shortcomings including the

problem of overhead prediction and that of improving accuracy of multiple tasks.

The optimization of monitoring applications requires the estimation of overhead in order to

find the appropriate configuration that keeps the overhead within a target value while providing

the best possible accuracy. The majority of existing solutions uses information about links’ load

and defines the overhead as being the total number of packets that can be sampled in the entire

network. Clearly, such approach leads to an inefficient use of resources since the load of links

varies over time. These variations can either degrade the accuracy of measurements or increase

the resource consumption.

We argue that an advanced module for overhead prediction can significantly increase the

monitoring capabilities of a network and cope with short-term and long-term variations in the

traffic. In this section, we introduce an adaptive monitoring system that adjusts its configura-

tion according to network conditions and measurement accuracy. Our system relies on an opti-

mization method consisting of: (i) an overhead prediction based on an Exponential Weighted

Moving Average filter to track long-term and short-term variations in the traffic, (ii) a global

weighted utility function to deal with multiple monitoring tasks at the same time, and (iii)
an optimization algorithm that configures monitors to address the tradeoff between resource

consumption and accuracy of different tasks.

5.2.2 Optimization method description

Given a list of measurement tasks T and an overhead constraint (Target Overhead T O), our

system adaptively adjusts its configuration to answer the requirements of multiple tasks while

tracking variations in the traffic. A configuration is a selection of sampling rates of the different

primitives on the different interfaces of network routers (or monitors). This configuration is

5.2 Proactive Network Reconfiguration Method 97

periodically updated as a function of a prediction of the overhead and in a way to optimize the

accuracy of the considered measurement tasks.

In order to address the tradeoff between responsiveness and smoothness, the proactive

approach relies on advanced method for overhead prediction. This method relies on the ex-

ponentially weighted moving average in order to track variations in the traffic. The different

weights of this method determine the responsiveness and the aggressiveness of our system to

changes in network conditions. In this section, we present the architectural ideas behind our

system.

5.2.2.1 Overhead prediction

The optimization procedure requires the estimation of overhead in order to find the optimal

configuration that keeps the overhead within a target value and shares resources between the

different monitoring primitives while providing the best possible accuracy. Hence, in order to

efficiently use resources we predict the value of the resulting overhead.

O =
∑
m∈M

∑
s∈S

(Os
m), (5.1)

where Os
m is the number of NetFlow records generated by the sampling primitive s ∈ S

in the monitor m ∈ M. In order to track variations in the traffic, we use the Exponentially

Weighted Moving Average (EWMA) which is a memoryless moving average whose weights are

exponentially decreasing from more recent historical samples to older ones. The weight for each

older data point decreases exponentially with time, giving much more importance to recent

observations while still not discarding older observations entirely. Next, we will explain the

prediction procedure using a single sampling primitive: packet sampling and two monitoring

tasks: heavy hitters detection and flow size estimation.

Consider the set of paths A in a network. Each path a ∈ A consists of a set of monitors. Let

Na and Σa be respectively the smoothed version of the number of flows along the path a and

their mean size in terms of packets. Hence, we update as follows:

Na ← δNa + (1− δ)Na, (5.2)

Σa ← δΣa + (1− δ)Σa, (5.3)

where Na and Σa are the last observations which can be approximated by N̂a and Σ̂a. δ = 2
(n+1)

is the smoothing factor where n is the window length over which we smooth the traffic. This

factor allows us to choose the time scale τ of tracking variations in the traffic. For instance,

if we want to track changes on hourly scale (i.e. τ = 3600s), we calculate the window length

n = τ
d
, where d is the period of configuration updates.

98 Chapter 5: Network Reconfiguration Method

Next, we will give the expression of N̂a and Σ̂a using the single packet sampling primitive

data.

Consider n
p
a to be the number of packet-sampled flows crossing the path a. Let S be the

size of a given flow in terms of packets, then the probability that this flow is packet-sampled

along the path a is equal to 1−
∏

k∈a(1− p
p
k)

S (i.e. at least one packet sampled), which can be

approximated by S.π
p
a, where π

p
a =
∑

k∈a p
p
k for small pp

k. The number of packet-sampled flows

n
p
a can then be approximated by π

p
a.Σa.Na, where Σa is the mean size of 5-tuple flows crossing

the path a. Hence, we can give an estimation for Na:

N̂p
a =

n
p
a

π
p
a.Σa

. (5.4)

This estimator has a variance equal to

Var(N̂p
a) =

Var(np
a)

(πp
a)2.(Σa)2

=
(1− π

p
a.Σa).Na

π
p
a.Σa

. (5.5)

We still need to provide an estimation for the average flow size. We use the number of sampled

flows to this end.

Let sa be the total number of sampled packets along the path a. The estimator of the total

number of packets crossing the path a, that maximizes the likelihood is known to be: Ŝa = sa
π
p
a

.

Hence, we can derive a first estimation of the mean flow size crossing the path a.

Σ̂a =
Ŝa

N̂a

(5.6)

Equations (5.4) and (5.6) constitute a system of two equations with two unknowns that we

can solve to find the values of N̂a and Σ̂a.

Using equations (5.2), (5.3) and (5.1), we can now give the analytical expression of the

overhead prediction:

O =
∑
m∈M

∑
a∈ΓM

πp
a.Na.Σa, (5.7)

where ΓM ⊂ A is the subset of paths containing the monitor M. This overhead prediction is

no other than the smoothed version of the number of sampled flows.

The overhead prediction method works as follows. For each path a ∈ A, first we look for

initial values for the number of flows Na and the mean flow size Σa. To do so, we can use values

of the same period of the last week or the last day. Then, we start using the collected traffic

to update estimators and predict the overhead. For this, we use the Algorithm 2 implementing

the EWMA filter for prediction according to Equation (6.18). Note that the smoothing factor δ

plays a crucial role in the overhead prediction. In fact, using short time scale can disrupt the

system with unnecessary details specific to a particular observation period while the use of a

large time scale can lead to the loss of important changes in the traffic. We have to find the

suitable time scale that addresses the tradeoff between these two extremes.

5.2 Proactive Network Reconfiguration Method 99

Data: Measured flows and packets in the different paths, (np
a) and (sa).

The previous estimations: Na and Σa, and the previous sampling rate vector (pp
k).

Time scale τ and computation period d

Result: The expression of the overhead prediction O
begin

n← τ
d
; δ← 2/(n+ 1) ;

foreach a ∈ A do

calculate N̂a = n
p
a

π
p
a.Σa

;

\\Estimate the number of 5-tuple flows.

Na ← αN̂a + (1− α)Na ;

calculate Ŝa = sa
π
p
a

; calculate Σ̂a = Ŝa
N̂a

;

\\Estimate the mean size of 5-tuple flows.

Σa ← αΣ̂a + (1− α)Σa ;

\\Predict the expression of the overhead

Oa ← Na.Σa.π
p
a ;

end

\\Derive the global overhead prediction expression.

O =
∑

M∈M
∑

a∈ΓM π
p
a.Na.Σa ;

return {O}

end

Algorithm 2: Overhead prediction method.

100 Chapter 5: Network Reconfiguration Method

5.2.2.2 Optimization method

The optimization method is motivated by the need to coordinate responsibilities across the

different monitors to improve the accuracy. This method is fed by the list of tasks Ti, their

associated weights γi, and the normalized variance of the global estimation of each task T̂i,

Var(T̂i). Our objective is to find the optimal sampling rate vector that minimizes the utility

function:

U =
∑
i

γiVar(T̂i), (5.8)

under the following constraints:

O ≤ T O (5.9)

pk ≤ SRmax ∀k ∈ M, (5.10)

pk ≥ SRmin ∀k ∈ M, (5.11)

SRmin and SRmax are respectively the minimum and maximum sampling rate values we allow

in monitors.

To solve this constrained optimization problem we define the corresponding Lagrangian:

L = U+ δ(O− TO) +
∑
k

ak(pk − SRmax) +
∑
k

bk(SRmin − pk).

(δ, ak, bk) is the set of Lagrange multipliers that enforce the satisfaction of the constraints

(6.20), (6.21) and (5.11). We solve this Lagrangian by an iterative procedure using the Newton

method (refer to [26], Chapter 9.5). The idea of the method, summarized in Algorithm 3, is

as follows. We start with an initial guess of the optimal sampling rate vector. Then, at each

iteration, we use the Newton method to go into a better direction while using a sophisticated

line search algorithm to find the best step value σb. We continue until we either reach the

global minimum or we exceed the maximum number of iterations.

5.2.3 Validation results

In this paragraph, we study the efficiency of our adaptive solution. We then provide a global

sensitivity analysis to study the importance of the different parameters.

We chose to study the performance of our system by emulating Geant 5.1, the European

Research network [4]. As target, we consider two accounting applications or tasks: (i) traffic

matrix estimation (T1) which consists in jointly estimating edge-to-edge flow sizes. A flow Fi is

the set of 5-tuple flows that share the same AS source and AS destination; (ii) large AS traffic

estimation (T2) where we aim to estimate the volume of the greediest ASes (those contributing

to more than some percentage of the total traffic, we take 7% as example). Except when

explicitly mentioned, we assign to these tasks respectively the equal weights γ1 = γ2 = 0.5 (see

Equation 5.8).

5.2 Proactive Network Reconfiguration Method 101

Data: The expression L(Pt+1) and the previous sampling rate vector Pt = (pt
k)

Result: The new sampling rate vector Pt+1

begin

i← 0 ;
−→
P i ← Pt ;

while i < maxiteration and minfound == false do

Evaluate the gradient vector ∇L(
−→
P i) ;

Evaluate the Hessian matrix H(
−→
P i) ;

\\Compute the search direction
−→
S i ← −∇L(

−→
P i)(H(

−→
P i))

−1 ;

\\Calculate the best step σb value using line \\search algorithm

σb ← lineSearch(
−→
P i + σ

−→
S i) ;

\\calculate the next point
−→
P i+1 ← −→

P i + σb

−→
S i ;

\\Perform the termination test for minimization

if L(
−→
P i+1) − L(

−→
P i) < precision then

minfound ← true ;

end

i← i+ 1 ;
end

return {
−→
P i}

end

Algorithm 3: Optimization procedure.

102 Chapter 5: Network Reconfiguration Method

 260

 280

 300

 320

 340

 6 8 10 12 14 16

O
v
e
r
h
e
a
d

(
N
e
t
F
l
o
w
/
s
)

Time (Hour)

Target overhead (TO)
β = 3600s

β = 900s

Figure 5.10: Resulting overhead vs. time using two time scales to track variations in the traffic.

5.2.3.1 System efficiency

In this part, we aim to address the performance of our system. For this experiment, we set

the update period d to 5 minutes, the time scale τ to 3600s, the minimum sampling rate SRmin

to 0.0005 and the maximum one SRmax to 1. The T O is set to 300 NetFlow-records/s.

In order to evaluate the performance of the overhead prediction method, we plot in Fig-

ure 5.10 the evolution of the measured overhead (exported NetFlow records) over time. We

observe that the system profits from the available resources to provide the best possible accu-

racy. For the two considered time scale values, the system maintains the overhead around the

T O. The use of a small time scale (τ = 900s) leads to an oscillating behavior of the overhead

since the system tracks more details and fine-grained changes in the traffic. On the contrary and

because of a coarser aggregation of NetFlow reports, tracking changes on hourly scale leads to

a more stable behavior of the overhead.

Figure 5.11 shows the value of the average mean relative error for different T O values. We

notice the impact of the T O on the global estimation accuracy. There is a clear reduction of

the overall measurement error when the target overhead increases. The error drops from 0.284

for a T O equal to 100 NetFlow-records/s, to 0.0279 for a T O equal to 400 NetFlow-records/s.

Indeed, the system tries to provide the best possible accuracy given a monitoring constraint

(T O). Allowing more overhead (resources) gives the system the possibility to increase some

sampling rates and to collect and export more data looking for better estimation. The main

strength of our system is that it is able to cope with any T O value and provides for this value

the best configuration of monitors.

5.2 Proactive Network Reconfiguration Method 103

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Average Mean Relative Error

Figure 5.11: Average mean relative error vs. (T O).

Now, we want to study the performance of this global optimization as a function of the

weights assigned to each task Ti. We run experimentations using two tasks T1 and T2 while

changing their assigned weights (γ1 and γ2 = 1−γ1). We plot in Figure 5.12 the average mean

relative error of T1 as a function of its assigned weight γ1. As expected, γ1 has a clear impact

on the accuracy of T1. The mean relative error varies between 0.0296 and 0.18 for different

values of γ1. For instance, setting γ1 at a large value (i.e. setting γ2 at a low value) gives more

importance to T1 in the optimization procedure and decreases the impact of the estimation

error of T2 on the global accuracy. In this manner, the optimal solution that maximizes the

global accuracy is the one that satisfies especially the accuracy of T1. This result confirms the

flexibility of our method where the operator can set the weights according to the importance of

tasks. By setting the weights to different values, one can achieve high accurate measurements

for important tasks at the expense of less important ones.

5.2.3.2 Global sensitivity analysis

In the previous part, we have studied the performance of our system and the influence of

some parameters on results. In this part, we use global sensitivity analysis to characterize,

qualitatively and quantitatively, what impact an input parameter has on the system output and

how it compares with the impact of the other parameters.

We have applied the method FAST 3.2 to our system to characterize the impact of the

different parameters used in experimentations on results. Table 5.4 summarizes the different

evaluated parameters with their ranges. The last column presents the impact of each parameter

104 Chapter 5: Network Reconfiguration Method

 0

 0.05

 0.1

 0.15

 0.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Weight γ1

Average Mean Relative Error

Figure 5.12: Average mean relative error of T1 vs. the weight γ1.

Table 5.4: Parameters of the experiment.

Parameter symbol range impact

Target Overhead T O [20, 500] 0.431

Time scale τ [60s, 7200s] 0.1147

Computation period d [60s, 300s] 0.0234

Min sampling rate SRmin [0, 0.01] 0.0876

Max sampling rate SRmax [0.01, 1] 0.0935

5.3 Reactive optimization method vs. Proactive optimization method 105

on the system output in terms of measurement accuracy.

For the case of five input parameters we obtain the following values of the characteristic

frequencies

ω1 = Ω5 = 11;

ω2 = ω1 + d4 = 21;

ω3 = ω2 + d3 = 27;

ω4 = ω3 + d2 = 35;

ω5 = ω4 + d1 = 39;

It is immediately noticed that the parameter having most important impact on the system

output is the target overhead T O. In our system, the T O is a monitoring constraint set by

the operator and can be changed to achieve a given accuracy. We also observe the important

impact of the time scale τ parameter. Thus, it is so important to set this parameter at a suitable

value in order to address the tradeoff between the long-term and short-term variations and to

improve results. The other parameters have a light impact on the behavior of the system (less

than 10%).

5.2.4 Summary

We have presented a Proactive network reconfiguration method that coordinates respon-

sibilities between the different monitors in order to achieve the best possible accuracy while

respecting monitoring constraints. Our optimization method based on overhead prediction to

track short-term and long-term variation and global weighted utility function to deal with mul-

tiple tasks.

Experimental Results proved the ability of the Proactive method to keep the resulting over-

head around a target value. We also demonstrated that our system is practical: it provides an

efficient method to achieve multiple monitoring objectives using a weighted utility function and

it relies on a flexible method to track variations in the traffic according to an adaptable time

scale. Moreover, we provided a global study of the impact of the different parameters on the

behavior of the system.

5.3 Reactive optimization method vs. Proactive optimization method

In this section we aim to compare the performance of the two different network recon-

figuration methods (i.e., Reactive and Proactive optimization methods) described previously.

106 Chapter 5: Network Reconfiguration Method

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 1000 2000 3000 4000 5000 6000 7000

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Time scale (s)

Reactive optimization method
Proactive optimization method

Figure 5.13: Reactive optimization method vs. Proactive optimization method for different values of
time scale τ.

We study the performance of these optimization methods in terms of measurement accuracy,

resulting overhead and responsiveness to changes in the network traffic.

We validated the performance of our system over MonLab [8, 68]. We chose to study the

performance of our system by emulating Geant. As target, we consider the two accounting

applications or tasks described above: The traffic matrix estimation (T1) and large AS traffic

estimation (T2). We assign to these tasks respectively the equal weights γ1 = γ2 = 0.5. For this

experiment, we set the update period d to 5 minutes, the time scale τ to 3600s, the minimum

sampling rate SRmin to 0.0005 and the maximum one SRmax to 1. The T O is set to 300 NetFlow-

records/s. We divide the performance evaluation into two parts. First, we study the accuracy of

measurements provided by each method for different values of input parameters. We evaluate

their performance for different values of the monitoring constraint values. Then, we compare

the efficiency and convergence of these two methods. We study their resulting overhead and

their ability to detect changes in network traffic and to react to these changes.

5.3.1 Measurement accuracy study

We plot in Figure 5.13 the evolution of the mean relative error of the two methods. For

the Proactive optimization method, we have used different values of the time scale of tracking

changes in network traffic. We observe for small values of the time scale, the Proactive opti-

mization method is close to the behavior of the reactive method. In fact, for small time scale

the Proactive method tracks more details in the traffic and becomes sensitive to the different

changes in network conditions even those corresponding to a specific period of time. However,

5.3 Reactive optimization method vs. Proactive optimization method 107

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Proactive optimization method
Reactive optimization method

Figure 5.14: Comparing the performance of the Reactive and Proactive optimization methods for differ-
ent values of T O.

for large time scale values the Proactive method provides inaccurate measurements compared

to those provided by the Reactive method. Nonetheless, using the suitable value of the time

scale parameter, the Proactive method performs better results than the Reactive method.

Figure 5.14 shows the value of the mean relative error for different target overhead values.

We observe that the performances of the two optimization methods look the same. However,

for small target overhead values, the Proactive method provides better performance and copes

with any monitoring constraint. However, the Reactive method needs more resources in order

to converge and achieve the optimal configuration of monitors. Moreover, for big values of

target overhead it provides better performance than the proactive method.

5.3.2 System efficiency

In order to better study the performance of the optimization methods, we plot in Figure

5.15 the evolution of the resulting overhead over time. For this experiment, we set the timer d

for updating sampling rates to 5 minutes and the T O is set to 200 NetFlow-records/s. For the

Proactive method we use two different time scale values. We notice the ability of the reactive

method to detect changes in the traffic. The system continues collecting NetFlow records while

controlling the resulting overhead. Once it detects a change in the rate of traffic, it triggers

a new optimization in order to calculate a new sampling rate vector to adapt to this change.

However, this reactivity characteristics requires collecting and detecting all the changes in the

traffic even unnecessary ones corresponding to a specific period. This leads to an oscillating

behavior and can decrease the accuracy of results. The Proactive method adds smoothness

108 Chapter 5: Network Reconfiguration Method

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0 5000 10000 15000 20000 25000 30000 35000

O
v
e
r
h
e
a
d

Time (s)

Reactive method
Proactive method (time scale = 900s)

Proactive method (time scale = 5400s)

Figure 5.15: Resulting Overhead (Netflow-records/s) of the Reactive optimization method and the
Proactive optimization method using two different time scales.

to the system behavior. In fact, by tracking smoothly changes in network traffic conditions,

the system can avoid unnecessary details in the traffic. This can lead to a smooth behavior

and allows respecting the monitoring constraint. However, by using a large time scale we

lose responsiveness and ability to detect changes in network traffic. We can observe that for a

time scale equal to 5400s, the system cannot detect changes because of coarse aggregation of

NetFlow reports. For a small time scale (i.e., 900s), we observe an oscillating behavior close to

the behavior of the reactive method.

5.4 Conclusions

In this chapter, we have provided two different network reconfiguration methods: (i) A

Reactive optimization method inspired from dynamics used by TCP for the adjustment of its

congestion window. This method provides a reactive solution able to track changes in network

traffic conditions. It is suited for monitoring applications that depend on the communication

structure e.g., security applications and anomaly detection applications that analyze commu-

nication structure. These monitoring applications need a continuous analysis of the network

traffic. In order to detect and react to traffic changes, the optimization should track all the

details. This leads to an oscillating behavior and can degrade the accuracy of measurements.

(i) A Proactive optimization method based on overhead prediction. This method provides more

smoothness and reacts less aggressively to changes in network traffic changes. This solution is

able to monitoring applications that require an understanding of volume structure; e.g., heavy-

5.4 Conclusions 109

hitter detection and traffic engineering that require an understanding of the number of pack-

ets/bytes per-port or per-src. These monitoring applications don’t require tracking all changes

and details in the network traffic. We need just to fix a time scale to track these changes. Once

done, the optimization method reconfigures monitors accordingly.

In this chapter, we have presented two complementary network configuration methods that

use a single sampling primitive (i.e., Packet Sampling) to achieve some monitoring tasks. We

argue that it is possible to investigate the different sampling primitives in order to support

a large spectrum of applications. In the next chapter, we introduce an adaptive system that

combines two sampling primitives, packet sampling and flow sampling, and that is able to

satisfy multiple monitoring tasks.

110 Chapter 5: Network Reconfiguration Method

6

SAMPLING PRIMITIVES COMBINATION

Traffic measurement and analysis are crucial management activities for network operators.

With the increase in traffic volume, operators resort to sampling primitives to reduce the mea-

surement load. Unfortunately, existing systems use sampling primitives separately and config-

ure them statically to realize some performance objective. It becomes important to design a

new system that combines different existing sampling primitives together to support a large

spectrum of monitoring tasks while providing the best possible accuracy by spatially correlat-

ing measurements and adapting the configuration to traffic variability. In the previous Chapter

(Chapter 5) we have validate our system presented in Chapter 4 through experimental scenar-

ios and using the packet sampling primitive. In this Chapter, and to prove the interest of the

joint approach, we extend the presentation of our system using two sampling primitives, packet

sampling and flow sampling. Our system consists of two main functions: (i) a global estimator

that investigates measurements of the different sampling primitives in order to deal with multi-

ple monitoring tasks and to construct a more reliable global estimator while providing visibility

over the entire network; (ii) an optimization method based on overhead prediction that allows

to reconfigure monitors according to accuracy requirements and monitoring constraints. In this

Chapter we will use the proactive optimization method described in Chapter 5.

111

112 Chapter 6: Sampling Primitives Combination

Contents
6.1 Introduction . 112

6.2 System architecture . 114

6.2.1 Global Estimator Engine . 114

6.2.1.1 Flow counting . 114

6.2.1.2 Flow size estimation . 117

6.2.1.3 Heavy hitter detection . 118

6.2.2 Network Reconfiguration Engine . 119

6.2.2.1 Overhead prediction . 119

6.2.2.2 Optimization method . 120

6.3 Validation results . 122

6.3.1 Comparison with application-specific methods 122

6.3.2 System efficiency and adaptability . 124

6.3.3 Overhead prediction process validation . 125

6.4 Conclusions . 125

6.1 Introduction

The importance of traffic measurements and passive monitoring for the understanding and

diagnosis of core IP networks has led to a considerable evolution in the number and qual-

ity of monitoring tools and techniques. Recently, numerous monitoring primitives have been

proposed in order to achieve a large number of network management tasks. The spectrum is

large covering among others flow sampling [60], sample and hold [51] and packet sampling

[28]. However, network management applications require accurate estimates of a wide range

of flow-level traffic metrics. Given the inadequacy of current solutions, several application-

specific monitoring algorithms have emerged. While these provide better accuracy for the spe-

cific applications they target, they increase router complexity and require vendors to commit to

hardware primitives without knowing how useful they will be to meet the needs of future appli-

cations. These application-specific systems still present some drawbacks including the problem

of tightly coupling target applications and sampling primitives (i.e. they focus on achieving a

6.1 Introduction 113

specific application using a single sampling primitive). For instance, the authors in [28] use the

packet sampling primitive and reconfigure periodically the different sampling rates in order to

calculate the traffic matrix, while the authors in [86] use the flow sampling primitive for flow

counting. The main consequence of this trend is the deployment and the commitment of moni-

toring systems using single sampling primitives for the achievement of specific monitoring tasks

without thinking of a combination of these primitives for a broader usage. Hence, it becomes

complicated to achieve a general class of monitoring tasks using such application-specific sys-

tems. In order to solve these limitations, some proposals have presented simple combination of

existing sampling primitives in order to achieve larger class of tasks. For instance, the authors

in [94] combine a small number of simple and generic router primitives that collect flow-level

data to estimate traffic metrics, while the authors in [66] use a combination of flow sampling

and sample-and-hold to provide traffic summaries and detect resource hogs. The system pro-

posed in this thesis should be able to combine different sampling primitives. More importantly

it should adapt their contribution in a way to maximize the global measurement accuracy at

limited overhead. Different monitoring applications will automatically lead to different tuning

of the sampling primitives.

We argue that it is possible to investigate the different existing monitoring tools and sam-

pling primitives in order to support a large spectrum of applications. In fact, the proliferation of

monitoring solutions motivates us to build a novel system able to achieve a myriad of concur-

rent monitoring jobs while offering the best possible accuracy at limited monitoring overhead.

Three main challenges arise in the development of such a system:

� How to deal with multiple monitoring objectives and how to combine independent mea-

surements collected using different sampling primitives and different monitoring tools.

� How to coordinate responsibilities across the different monitors and how to share re-

sources between the different sampling primitives in order to improve the global accuracy

while respecting resource consumption constraints.

� How to adapt to variations in the monitored traffic and in network conditions.

In this Chapter, we extend the presentation of our proposed system. We will show the ability

of our system integrate various existing monitoring primitives in order to support multiple mon-

itoring tasks. We explain and validate the system design for two sampling primitives, packet

sampling and flow sampling, and for three monitoring tasks, flow counting, flow size estimation

and heavy-hitter detection. Our system extends the local monitoring tools with a network-wide

cognitive engine that consists of two main design primitives: (i) a global estimator module that

investigates the local measurements of the different deployed techniques in order to provide

a global more accurate estimation; (ii) an optimization method that dynamically adjusts the

114 Chapter 6: Sampling Primitives Combination

different monitors and shares resources between the supported sampling primitives according

to the requirements of the monitoring tasks while addressing the tradeoff between resource

consumption and global measurement accuracy. This optimization method is based on an over-

head prediction method to track sustainable changes while removing unnecessary variations in

the traffic and a global weighted utility function to deal with multiple monitoring tasks.

6.2 System architecture

As described in Chapter 6.2, our system extends local existing monitoring tools (MEs) with

a network-wide cognitive engine (CE) in order to drive its own deployment by automatically

and periodically reconfiguring the different monitors in a way that improves the overall accu-

racy (according to monitoring application requirements) and reduces the resulting overhead

(respecting some resource consumption constraints).

Figure 6.1 depicts a descriptive presentation of the proposed monitoring system presented

before in the Figure 4.1. We present in this Figure the basic functional components of our

system and the interactions among them. Moreover, we give a detailed description of the mon-

itoring engine deploying two different sampling techniques (i.e. packet sampling and flow

sampling). We chose to use two complementary sampling primitives: (i) Flow Sampling (FS)

which is well suited for security and anomaly detection applications that analyze flow commu-

nication structure, and (ii) Packet Sampling (PS) which is well suited for traffic engineering

and accounting applications that analyze traffic volume structure e.g., heavy-hitter detection

and traffic engineering that require an understanding of the number of packets/bytes per-port

or per-src [94]. While packet sampling consists in capturing a subset of packets independently

of each other, flow sampling consists in capturing flows independently of each others. Once a

flow is captured by flow sampling, all its packets are captured and analyzed. The decision to

capture a flow or not is done at the beginning of the flow.

6.2.1 Global Estimator Engine

In order to explain the operation of our system and how it configures the different monitor-

ing primitives and combines their measurements, we consider three monitoring applications:

flow counting, flow size estimation and heavy hitter detection. The analysis and validation are

done for the two-well known sampling primitives: packet sampling and flow sampling.

6.2.1.1 Flow counting

We explain in this section how the central estimator can combine measurements collected

from the PS and FS tools to provide a global estimation of the number of flows N crossing the

6.2 System architecture 115

Figure 6.1: System architecture.

116 Chapter 6: Sampling Primitives Combination

entire network during the time period d.

Consider the set of paths A. Each path a ∈ A consists of a set of monitors. Consider Na

to be the total number of flows crossing the path a. Let N̂f
a and N̂

p
a be two estimators of Na

using respectively FS and PS and let Var(N̂f
a) and Var(N̂p

a) be their corresponding variances.

Hence, according to (4.1), we can derive a better estimation of Na as a linear combination of

these two estimators:

N̂a = χpN̂
p
a + χfN̂

f
a, (6.1)

where:

χp =

1

Var(N̂p
a)

1

Var(N̂p
a)

+ 1

Var(N̂f
a)

and χf =

1

Var(N̂f
a)

1

Var(N̂f
a)

+ 1

Var(N̂p
a)

. (6.2)

Note that if a sampling primitive is not executed over a certain path, we set its corresponding

weight to 0 and we verify that the weights sum to 1.

Next, we explain how to calculate N̂f
a, N̂p

a and their corresponding variances Var(N̂f
a) and

Var(N̂p
a). Consider for this the packet sampling rate vector Pp = (pp

k)k∈M and the flow sampling

rate vector Pf = (pf
k)k∈M. M is the set of monitors in the network, each monitor k is tuned by

a packet sampling rate p
p
k and a flow sampling rate pf

k.

First, using the FS primitive, the probability that a flow is flow-sampled along the path a

is equal to: πf
a = 1 −

∏
k∈a(1 − pf

k). Consider nf
a to be the number of flow-sampled flows

crossing the path a. We can derive a first estimator for the number of flows along the path a

that maximizes the likelihood:

N̂f
a =

nf
a

πf
a

. (6.3)

Under independent sampling of flows with probability πf
a, the number of flow-sampled flows

nf
a follows a binomial distribution whose variance is well known and equal to Na.π

f
a.(1 − πf

a).

It follows that this path-level estimator has a variance equal to:

Var(N̂f
a) =

N
(t)
a .(1− πf

a)

πf
a

. (6.4)

Now we will give the expression of the estimator for Na using the PS primitive (denoted

above N̂
p
a). Consider n

p
a to be the number of packet-sampled flows crossing the path a. Let S

be the size of a given flow, then the probability that this flow is packet-sampled along the path

a is equal to 1−
∏

k∈a(1− p
p
k)

S (i.e. at least one packet sampled), which can be approximated

by S.π
p
a, where π

p
a =
∑

k∈a p
p
k for small pp

k. The number of packet-sampled flows n
p
a can then

be approximated by π
p
a.Σa.Na, where Σa is the mean size of 5-tuple flows crossing the path a.

Hence, we can give a second estimation for Na:

N̂p
a =

n
p
a

π
p
a.Σa

. (6.5)

6.2 System architecture 117

This estimator has a variance equal to

Var(N̂p
a) =

Var(np
a)

(πp
a)2.(Σa)2

=
(1− π

p
a.Σa).Na

π
p
a.Σa

. (6.6)

We still need to provide an estimation for the average flow size. We use the number of sampled

flows to this end.

Let Oa = nf
a + n

p
a be the total number of sampled flows along the path a. Given the

global estimator for the number of flows N̂a, we can approximate this overhead by: Oa =

πf
a.N̂a+(1−πf

a)π
p
a.Σa.N̂a. This gives the following estimator for the mean size of flows crossing

path a:

Σ̂a =
Oa − πf

a.N̂a

(1− πf
a)π

p
a.N̂a

. (6.7)

Eq. (6.1) and (6.7) constitute a system of two equations with two unknowns that we can solve

to find the values of N̂a and Σ̂a.

6.2.1.2 Flow size estimation

Consider C traffic aggregate flows whose volumes in packets are labeled F1, F2, . . ., FC.

Denote by F̂1, F̂2, . . ., F̂C the corresponding estimators. Each aggregate flow Fi is formed of a

set of 5-tuple flows whose volumes are denoted by Sji. Again, denote by Ŝji the best estimator

for the size of each of these 5-tuple flows. We have then F̂i =
∑

j Ŝji. As target application and

without loosing generality, we define a flow Fi as the set of 5-tuple flows that share the same

AS source and AS destination. All AS-to-AS flows are jointly considered, which is often called

in the literature the traffic matrix.

Similarly to (4.1), we can derive a global estimator for the size of flows F̂i using estimations

made by packet-sampled flows, F̂pi , and flow-sampled flows, F̂fi:

F̂i = χpF̂
p
i + χfF̂

f
i . (6.8)

Where:

χp =

1

Var(F̂p
i
)

1

Var(F̂p
i
)
+ 1

Var(F̂f
i
)

andχf =

1

Var(F̂f
i
)

1

Var(F̂f
i
)
+ 1

Var(F̂p
i
)

(6.9)

Next we calculate F̂
p
i , F̂fi and their corresponding variances, Var(F̂pi) and Var(F̂fi).

Take a 5-tuple flow Sji crossing path a and belonging to aggregate flow Fi, and let (spkji)k∈a
be the number of packet-sampled packets from this 5-tuple flow in monitor k. We can easily

derive an estimation for the size of this 5-tuple flow:

Ŝ
p
ji =
∑
k∈a

λkŜ
p
kji, with λk =

1

Var(Ŝp
kji

)∑
l∈a

1

Var(Ŝp
lji

)

, (6.10)

118 Chapter 6: Sampling Primitives Combination

where Ŝ
p
kji =

s
p
kji

p
p
k

is the best local estimator for the size of the 5-tuple flow in the monitor

k ∈ a. This local estimator has a variance equal to Var(Ŝpkji) = S
p
ji.(1 − p

p
k)/p

p
k. It follows that

the estimator Ŝpji is equal to:

Ŝ
p
ji =

1

φa
.
∑
k∈a

skji

1− pk

, where φa =
∑
l∈a

p
p
l

1− p
p
l

. (6.11)

The variance of this estimator is simply equal to:

Var(Ŝpji) = Sji/φa. (6.12)

Hence, under independent sampling of packets in the different monitors, we can derive the

expression of F̂pi =
∑

j Ŝ
p
ji and its corresponding variance Var(F̂pi) =

∑
j Var(Ŝ

p
ji). Now we move

to deriving the estimator of flow size using flow sampling. Consider sfji to be the number of

flow-sampled packets of the 5-tuple flow Sji. Hence:

F̂fi =

∑
j sji

πf
a

. (6.13)

This estimator has a variance equal to:

Var(F̂fi) =
1− πf

a

πf
a

.
∑
j

(Sji)2 =
1− πf

a

(πf
a)

2
.
∑
j

(sji)2. (6.14)

6.2.1.3 Heavy hitter detection

The goal here is to identify the top flows with the most traffic volume. These flows are

used by operators to understand application patterns and resource hogs, as well as for traffic

engineering and accounting. In this Chapter, we track heavy hitters at the AS level, i.e. we

define a flow as the total volume of traffic generated by each stub AS and we make sure to

count both outgoing and incoming traffic in each AS flow.

For the calculation of the outgoing and incoming traffic for each AS, we use the method

used for flow size estimation while considering only large ASes in the optimization procedure.

We estimate all AS flows but we only optimize sampling rates over those contributing to more

than some percentage of the total network traffic. We present results for a 5% threshold under

the Large ASes task. Some ASes are smaller than this threshold but their traffic might still be

reported to the central collector, yet they are not included in the optimization procedure and

they not returned to the monitoring application. For this application, our system will try to

minimize the volume of undesirable measurement traffic coming from small flows.

6.2 System architecture 119

6.2.2 Network Reconfiguration Engine

Given a list of measurement tasks T and an overhead constraint measured in terms of re-

ported NetFlow records (Target Overhead T O), our system adaptively adjusts its configuration

to answer the requirements of the multiple tasks while tracking short-term and long-term vari-

ations in the traffic. A configuration is a selection of sampling rates of the different primitives

on the different interfaces of network routers (or monitors). This configuration is periodically

updated as a function of the overhead and in a way to optimize the accuracy of the considered

measurement tasks. Next, we present the architectural ideas behind our system.

6.2.2.1 Overhead prediction

The optimization procedure requires the prediction of overhead after any reconfiguration,

in order to find the optimal configuration that keeps the real overhead within a target value

while providing the best possible measurement accuracy for the considered tasks. Defined as

the total volume of NetFlow records collected at the central cognitive engine, the overhead can

be expressed as follows:

O =
∑
M∈R

∑
a∈ΓM

(πf
a.Na + (1− πf

a)π
p
a.Na.Σa), (6.15)

where ΓM ⊂ A is the subset of paths containing the monitor M. In order to track signification

variations in the traffic while removing undesirable noise, we use the Exponentially Weighted

Moving Average (EWMA) filter which is a memoryless moving average filter whose weights are

exponentially decreasing from more recent historical samples to older ones. Hence, an EWMA

filter gives more importance to recent observations while still not discarding older observations

entirely.

Let Na and Σa be respectively the smoothed version of the number of flows across a path

a and their mean size expressed in number of packets. Every period d, which is the period at

which sampling rates are reconfigured, we update these moving averages as follows:

Na ← δNa + (1− δ)Na, (6.16)

Σa ← δΣa + (1− δ)Σa, (6.17)

where Na and Σa are the last estimations provided by Eq. (6.1) and (6.7) over the last d

period. δ = 2
(n+1) is the smoothing factor where n is the window length over which we smooth

the traffic. This factor allows us to choose the time scale τ at which we track variations in the

traffic. For instance, if we want to track changes on hourly scale (i.e. τ = 3600s), we calculate

the window length n = τ
d
, d being the period of configuration updates.

120 Chapter 6: Sampling Primitives Combination

Using (6.16) and (6.17) and a slightly simplified version of (6.15), we can now give the

analytical expression of the overhead prediction. This overhead prediction is no other than the

smoothed version of the number of collected NetFlow records per d period.

O =
∑
M∈R

∑
a∈ΓM

(πf
a.Na + πp

a.Na.Σa). (6.18)

The overhead prediction method works as follows. For each path a ∈ A, first we look for

initial values for the number of flows Na and the mean flow size Σa. To do so, we can use values

of the same period of the last week or the last day. Then, we start using the collected traffic

to update estimators and predict the overhead. Algorithm 4 explains how the EWMA filter is

implemented for prediction according to Eq. (6.18). Note that the smoothing factor δ plays a

crucial role in the overhead prediction. In fact, using short time scale can disrupt the system

with unnecessary details specific to a particular observation period while the use of a large time

scale can lead to the loss of important changes in the traffic. One has to find the suitable time

scale that addresses the tradeoff between these two extremes.

6.2.2.2 Optimization method

The optimization method is motivated by the need to coordinate responsibilities across the

different monitors to improve the accuracy. This method is fed by the list of tasks Ti (e.g. flow

size estimation, heavy hitter detection), their associated weights γi, and the normalized error

of the global estimation of each task T̂i, MRE(T̂i). Our objective is to find the optimal sampling

rate vector that minimizes this utility function:

U =
∑
i

γiMRE(T̂i), (6.19)

under the following constraints:

O ≤ T O, (6.20)

pk ≤ SRmax and pk ≥ SRmin. (6.21)

SRmin and SRmax are respectively the minimum and maximum sampling rate values. To solve

this constrained optimization problem we define the corresponding Lagrangian:

L = U+ δ(O− TO) +
∑
k

ak(pk − SRmax) +
∑
k

bk(SRmin − pk).

(δ, ak, bk) is the set of Lagrange multipliers that enforce the satisfaction of the constraints.

We solve this Lagrangian by an iterative procedure using the Newton method (refer to [26],

Chapter 9.5). The idea of the method is as follows. We start with an initial guess of the

optimal sampling rate vector. Then, at each iteration, we use the Newton method to go into

6.2 System architecture 121

Data: Number of flow-sampled flows and packets (nf
a)a∈A and (sfaji)a∈A.

Number of packet-sampled flows and packets (np
a)a∈A and (spkji)k∈M.

The predictions: Na and Σa, and the sampling rate vectors Pf and Pp.

Time scale τ and computation period d

Result: The expression of the overhead prediction O
begin

n← τ
d
; δ← 2/(n+ 1) ;

foreach a ∈ A do

calculate N̂f
a = nf

a

πf
a

; calculate N̂
p
a = n

p
a

π
p
a.Σa

.;

calculate N̂a = χpN̂
p
a + χfN̂

f
a ;

\\Estimate the number of 5-tuple flows.

Na ← δN̂a + (1− δ)Na ;

calculate Σ̂a = Oa−πf
a.N̂a

π
p
a.N̂a

;

\\Estimate the mean size of 5-tuple flows.

Σa ← δΣ̂a + (1− δ)Σa ;

\\Derive the expression of the overhead prediction of the next period.

Oa ← πf
a.Na + π

p
a.Na.Σa ;

end

\\Derive the global overhead prediction expression.

O =
∑

M∈M
∑

A∈ΓM Oa ;

return {O}

end

Algorithm 4: Overhead prediction method.

122 Chapter 6: Sampling Primitives Combination

a better direction while using a sophisticated line search algorithm to find the best step value.

We continue until we either reach the global minimum or we exceed the maximum number of

iterations.

6.3 Validation results

In this section, we study first the efficiency of our adaptive solution. Second, we show the

practical benefits of deploying our system by comparing it to application-specific systems. Last,

we present a global sensitivity analysis to study the importance of the different parameters.

6.3.1 Comparison with application-specific methods

In this section we aim to address the performance of our system using real experiments

over our platform. For this experiment, we set the timer d for updating sampling rates to 5

minutes, the time scale τ to 3600s, the minimum possible sampling rate SRmin to 0.0005 and

the maximum possible one SRmax to 1. The T O is set to 200 NetFlow-records/s.

We plot in Figure 6.2 the average mean relative error for three specific monitoring applica-

tions:

� Flow counting application.

� Flow size estimation.

� Heavy hitter detection.

For these applications, we use our proposed combination method and we compare its perfor-

mance with two known application-specific solutions i.e., packet sampling primitive and flow

sampling primitive.

We plot in Figure 6.2(d) the global accuracy defined as the global weighted utility func-

tion described in Equation 6.19. This figure shows that our solution provides the best global

accuracy for the different monitoring applications. It combines measurements of the different

monitoring primitives to improve the accuracy of the global estimator. As we can see, in order

to have similar global accuracy using application-specific primitive to the one obtained by our

method, we have to use a T O value larger than 150% of the value used by the adaptive solu-

tion. However, even in this case, results would be biased against some applications. In fact,

each primitive focuses on achieving a specific application. Therefore, while the use of a single

primitive allows improving results for its specific monitoring application, it provides inaccurate

results for the other monitoring applications. Hence, using our solution based on combining

different sampling primitive measurements, allows not only optimizing resource consumption

6.3 Validation results 123

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Packet sampling primitive
Flow sampling primitive

Combining sampling primitives

(a) Flow counting

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Packet sampling primitive
Flow sampling primitive

Combining sampling primitives

(b) Flow size estimation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Packet sampling primitive
Flow sampling primitive

Combining sampling primitives

(c) Heavy hitter detection

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 100 150 200 250 300 350 400

A
v
e
r
a
g
e

M
e
a
n

R
e
l
a
t
i
v
e

E
r
r
o
r

Target Overhead (NetFlow/s)

Packet sampling primitive
Flow sampling primitive

Combining sampling primitives

(d) Global accuracy

Figure 6.2: Average mean relative error vs. Target overhead (T O) for three applications: Our approach
vs. two application-specific approaches.

124 Chapter 6: Sampling Primitives Combination

Table 6.1: Summary of assigned weights and experimental results for a selection of scenarios

Scenario Flow counting Flow size Heavy hitter Global accuracy

estimation detection

assigned AMRE assigned AMRE assigned AMRE assigned AMRE

weight weight weight weight

SC1 0.5 0.0889 0.5 0.114 - - 1 0.1014

SC2 0.5 0.0738 0.25 0.164 0.25 0.0865 1 0.0995

SC3 0.333 0.1045 0.333 0.083 0.333 0.0674 1 0.0851

but also improving the global accuracy as well as the accuracy of each specific monitoring appli-

cation. These results are illustrated in Figures 6.2(a),6.2(b) and 6.2(c). We observe that each

primitive provides accurate measurements for its specific application and less accurate results

for the other applications. For instance, we can see that packet sapling primitive improves accu-

racy of flow size estimation and heavy hitter detection while it provides a large estimation error

for flow counting. We can also notice how combining results of the different monitoring primi-

tives improves accuracy of the different applications especially when the value of T O is small.

In this case, sampling rate values are low and each single primitive provides inaccurate results.

We can thus combine their measurements in order to improve the global accuracy. These fig-

ures show the large impact of the monitoring constraint (T O) on measurement accuracies, we

observe the clear reduction of estimation errors when increasing the value of T O.

6.3.2 System efficiency and adaptability

Now we want to study the impact of the weights used in the global utility function on the

behavior of our system. The parameters of experiments are set as in the previous section. We

run three scenarios while changing each time the assigned weight value to each monitoring

application. Table 6.1 presents a summary of experimental results for a selection of scenarios.

We notice that assigned weights have an impact on the behavior of our system. We observe

that increasing the weight value assigned to a given monitoring application allows reducing the

average mean relative error (AMRE) of its measurement. However this impact is small since

the system can profit from measurements provided by other sampling primitives and combine

them in order to improve the overall accuracy.

In order to illustrate these results, we present in Table 6.2 the average of sampling rate

values as well as the percentage of reported NetFlow records by each sampling primitive. We

observe that the value of sampling rates and the number of reported NetFlow records of each

primitive depend on the assigned weights to the different applications. In fact, assigning a large

weight to a given application increases its impact on the global accuracy. Hence, the system tries

6.4 Conclusions 125

Table 6.2: Average sampling rate values and reported NetFlow records for a selection of scenarios

Scenario Flow Sampling Packet Sampling

Average sampling Percentage of reported Average sampling Percentage of reported

rate value NetFlow records rate value NetFlow records

SC1 0.03613 58.23% 0.023 41.77%

SC2 0.0287 62.84% 0.197 37.16%

SC3 0.016 39.65% 0.314 60.35%

to increase sampling rate values of the suitable sampling primitive which allows improving the

accuracy of this application. For instance, by increasing the weight value assigned to the flow

counting from 0.333 in scenario SC3 to 0.5 in scenario SC1, the system increases the average

flow sampling rate from 0.016 to 0.03613 and reduces the AMRE of this task from 0.1045 to

0.0889. This introduces an increase in reported Netflow records of this sampling primitive from

39.65% to 58.23%.

6.3.3 Overhead prediction process validation

In order to evaluate the performance of the overhead prediction method, we plot in Figure

6.3 the evolution of the measured overhead (exported NetFlow records) over time. We observe

that for the two time scale values, the system maintains the overhead around the T O. In

fact, the system tries to profit from the availale resources in order to provide the best possible

accuracy. However, the use of a small time scale (τ = 600s) leads to an oscillating behavior

of the overhead since the system tracks more details and changes in the traffic. However,

tracking changes on a large scale (τ = 5400s) leads to a stable behavior of the overhead. This

latter behavior is due to the avoidance of some details and variations in the traffic specific to

individual observation period.

6.4 Conclusions

In this Chapter, we have presented an adaptive system that combines different existing sam-

pling primitives in order to support a large spectrum of monitoring tasks while providing the

best possible accuracy. Our system coordinates responsibilities between the different monitors

and shares resources between the different sampling primitives. Experimental results proved

the ability of our system to keep the resulting overhead around a target value. Compared to

application-specific systems, our system has shown its advantages in providing more accurate

results especially for low values of T O. Our system is practical and provides a flexible optimiza-

tion method based on overhead prediction that reconfigures monitors according to monitoring

126 Chapter 6: Sampling Primitives Combination

 260

 280

 300

 320

 340

 6 8 10 12 14 16

O
v
e
r
h
e
a
d

(
N
e
t
F
l
o
w
/
s
)

Time (Hour)

Target overhead (TO)
time scale = 5400s

time scale = 600s

Figure 6.3: Resulting overhead vs. time using two time scales to track traffic variations

applications requirements and network conditions.

6.4 Conclusions 127

128 Chapter 6: Sampling Primitives Combination

7

CONCLUSION

Contents

7.1 Overall closure comments . 129

7.2 Future work . 132

This chapter concludes our thesis. In Section 7.1 we will make a summary of our work and

restate the main findings. Section 7.2 contains a number of proposals for a possible future work

that will extend our network-wide monitoring system.

7.1 Overall closure comments

Traffic measurement allows network operators to achieve several purposes such as traffic

engineering, network resource provisioning and management, accounting and anomaly detec-

tion. Although many monitoring solutions exist today, the number Network engineers and

operators are faced with a number of challenges that arise in the context of network monitor-

ing and measurement. In fact, existing solutions, either lack the necessary detail, do not scale

to high enough speeds, fail to extract the meaningful information from raw data or are not

flexible enough to keep up with the ever changing traffic mix. Our research work focused on an

advanced network-wide monitoring system which adopts a centralized approach in order to ad-

dress these shortcomings. Our system supports a central unit that deals with existing monitor-

129

130 Chapter 7: Conclusion

ing tools in order to provide visibility over the entire network. It should adjust its configuration

according to network conditions, measurements accuracy and monitoring constraints.

Nonetheless, we have started by presenting the projects related to our work and we have

compared, from different points of view, all these various approaches. Thus, we were able

to derive the following important remarks. The first underscores the fact that the vendors do

not want to implement sophisticated sampling schemes that give good results under certain

circumstances. They want to implement simple and robust solutions that are well described

by some form of a standard (i.e. sFlow, NetFlow). Thus, we decided to design a new solution

that deals with existing monitoring tools and tries to coordinate responsibilities between the

different monitors in order to improve the overall accuracy. The second one requires that the

monitoring system should adopt a centralized approach in order to provide visibility over the

entire network and to investigate the local measurements and correlate their results in order to

address the tradeoff between accuracy and monitoring constraint. And the last one indicates

that the network configuration module should provide a responsive solution able to detect

changes in network conditions and adapt the different sampling rates to network state. At the

same time it should avoid unnecessary details and oscillation in the traffic in order to keep the

resulting overhead within the desired bounds.

Based on this survey, we have designed a centralized network-wide monitoring architecture

that deals with existing monitoring tools (NetFlow) and coordinates responsibilities among the

different monitors in order to achieve multi-monitoring objectives. We have detailed each of the

constituent modules and their interfaces, and we have presented the various kinds of decision

algorithms.

We have pursued our work by introducing a new approach for the emulation of Internet

traffic and for its monitoring across the different routers, through which, we put at the disposal

of users a real traffic emulation service coupled to a set of libraries and tools capable of Cisco

NetFlow data export and collection, which are meant to run advanced applications for network

wide monitoring and optimization. Our platform offers a complete set of features towards the

development and evaluation of solutions for network monitoring and management. Namely,

it offers the possibility to reproduce real backbone network topology, to monitor and sample

the packets being forwarded in a given router and finally the ability to analyze the collected

flows. Our platform allows users to remotely tune the sampling rate of a given monitor. Users

can also easily introduce traffic engineering methods within the monitors. Furthermore, we

provide an exhaustive analytical sensitivity analysis in order to characterize, qualitatively or

quantitatively, what impact a particular input parameter has on a system output. In other

words, using Sensitivity Analysis, one can determine how changes in one or several parameters

will impact the target output variable.

Then, we have concentrated our discussion on another important mechanism needed within

7.1 Overall closure comments 131

the future monitoring systems, which is the network reconfiguration method. We have pro-

posed two different network reconfiguration methods in order to address the tradeoff between

responsiveness and smoothness defined as avoidance of the introduction of unnecessary noise

and details in the traffic. we have first designed a Reactive network reconfiguration method. It

automatically reconfigures the sampling rates in the different monitors according to the moni-

toring application requirements and resource consumption constraints. It proceeds in optimiz-

ing the configuration and adjusting sampling rates in small steps based on dynamics inspired

from the one used by TCP for the adjustment of its congestion window and using the gradient

Projection Method (GPM) to identify the monitors that we should reconfigure until the optimal

configuration is reached. For the case of estimating the full traffic matrix, experimental results

proved the ability of the reactive optimization method to continuously improve the monitoring

accuracy while limiting the overhead to its target value. Moreover, it provides a fair allocation of

sampling rates over monitors so that measurement errors are homogenously distributed among

flows independently of their volumes. Compared to static edge configuration, our network-wide

adaptive system has shown its advantages in better capturing network flows especially for small

flows. Next, we have presented a Proactive network reconfiguration method. This optimization

method consists of: an overhead prediction based on an Exponential Weighted Moving Average

filter to track long-term and short-term variations in the traffic, a global weighted utility func-

tion to deal with multiple monitoring tasks at the same time, and an optimization algorithm

that configures monitors to address the tradeoff between resource consumption and accuracy

of different tasks. Results proved the ability of the Proactive optimization method to keep the

resulting overhead around a target value. We also demonstrated that the proposed method

is practical: it provides an efficient method to achieve multiple monitoring objectives using a

weighted utility function and it relies on a flexible method to track variations in the traffic ac-

cording to an adaptable time scale. Furthermore, we have compared the performance of the

two different network reconfiguration method (i.e., Reactive and Proactive optimization meth-

ods) described previously. We study the performance of these optimization methods in terms

of measurement accuracy, resulting overhead and responsiveness to changes in the network

traffic. Experimental results showed the ability of the reactive optimization method to track

changes in network traffic conditions. It is suited for monitoring applications that depend on

the communication structure e.g., security applications and anomaly detection application that

analyze volume structure. These monitoring applications need a continuous analyze of the net-

work traffic. In order to detect and react to network changes, the optimization should track all

the details in network traffic. However, this leads to an oscillating behavior and can degrade

the accuracy of measurements. The Proactive optimization method provides more smoothness

and reacts less aggressively to changes in network traffic changes. This solution is suited to

monitoring applications that require an understanding of volume structure; e.g., heavy-hitter

132 Chapter 7: Conclusion

detection and traffic engineering that require an understanding of the number of packets/bytes

per-port or per-src. These monitoring applications don’t require tracking all changes and details

in the network traffic. We need just to fix a time scale to track changes in network traffic. Once

done the optimization method reconfigure monitors accordingly.

Furthermore, we have introduced a novel system that is able to integrate various existing

monitoring primitives in order to support multiple monitoring tasks. We explain and validate

the system design for two sampling primitives, packet sampling and flow sampling, and for

three monitoring tasks, flow counting, flow size estimation and heavy-hitter detection. Ex-

perimental Results proved the ability of our system to keep the resulting overhead around a

target value. Compared to application-specific solutions, our system has shown its advantages

in providing more accurate results especially for low values of T O.

7.2 Future work

In the previous section we have summarized the contributions of this dissertation and hav-

ing highlighted their efficiency and wide applicability. Next, we will discuss future directions

this work can lead to.

We argue that using our adaptive network-wide monitoring system, monitoring applications

will be easier to achieve. In fact, adding more monitoring applications is very easy in the

context of our approach; one has to correctly define these monitoring applications. Hence, it is

exciting to validate our system with more monitoring applications. For instance, the flow size

distribution, the tracking of some user-specific flows and the detection of anomalies are among

the applications we want to cover.

The distribution of the control and adaptive overhead tuning are other interesting objectives

to realize. In this dissertation we have focused on building a centralized network-wide mon-

itoring system that collects measurements from the different monitors deployed in network

routers to build global more accurate results and to provide visibility over the entire network.

We believe that distributing the control can clearly reduce the amount of exported data and

optimize the resource consumption cost. It would be interesting to see how our methods could

be extended to a distributed system. There are many interesting ways to achieve this objective.

For instance, we can apply the game theory to identify which monitors we should reconfigure.

Finally, the current experimentations have been done on emulated topology networks with

virtual routers and virtual links. However, we can deploy our experimental platform Monlab on

real network nodes. Hence, running more realistic experimentations on real network topologies

with real routers is considered future work.

7.2 Future work 133

134

BIBLIOGRAPHY

[1] Abilene or internet2: The us research and acamdemic backbone. http://www.

internet2.edu/network/. 84

[2] Cisco netflow. http://www.cisco.com/. 47

[3] Flowd small fast and secure netflow collector. http://www.mindrot.org/projects/

flowd/. 53

[4] . Geant: The european research and academic backbone. http://www.geant.net/. 84,

100

[5] Google apps. http://www.google.com/apps. 6

[6] Is the skype outage really a big deal? http://news.cnet.com/

8301-107843-9761673-7.html/. 6

[7] Mawi working group traffic archive. http://tracer.csl.sony.co.jp/mawi/. 48, 55,

84

[8] . Monlab: Emulation platform for network wide traffic sampling and monitoring. http:

//planete.inria.fr/MonLab. 9, 11, 47, 48, 82, 106

[9] Random sampled netfow. http://www.cisco.com/. 28

[10] Salesforce: Crm software solutions and enterprise cloud computing. http://www.

salesforce.com. 6

[11] sflow home page. http://sflow.org. 28

[12] . Softflowd flow-based network traffic analyser. http://www.mindrot.org/projects/

softflowd/. 51

[13] Tcpdpriv: A program for eliminating confidential information from packets. http://

ita.ee.lbl.gov/html/contrib/tcpdpriv.html/. 55, 84

135

http://www.internet2.edu/network/.
http://www.internet2.edu/network/.
http://www.cisco.com/.
http:/ /www .mindrot.org/projects/flowd/
http:/ /www .mindrot.org/projects/flowd/
http://www.geant.net/.
http://www.google.com/apps.
http://news.cnet.com/8301-10784 3-9761673-7.html/.
http://news.cnet.com/8301-10784 3-9761673-7.html/.
http://tracer.csl.sony.co.jp/mawi/
http://planete.inria.fr/MonLab.
http://planete.inria.fr/MonLab.
http://www.cisco.com/.
http://www.salesforce.com.
http://www.salesforce.com.
http://sflow.org.
http://www.mindrot.org/projects/softflowd/
http://www.mindrot.org/projects/softflowd/
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html/.
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html/.

136

[14] Tcpdump/libpcap. http://www.tcpdump.org/. 50, 52

[15] . Xml description of the geant topology. http://planete.inria.fr/GEANT. 54

[16] . Yaf: Yet another flowmeter. http://tools.netsa.cert.org/yaf. 48

[17] Greenberg A., Hjalmtysson G., Maltz D. A., Meyers A., Rexford J., Xie G., Yan H., Zhan

J., and Zhang H. A clean slate 4d approach to network control and management. In

ACM SIGCOMM CCR, 2005. 8

[18] Lakhina A., Crovella M., and Diot C. Characterization of network-wide anomalies in

traffic flows. In In ACM Internet Measurement Conference, 2004. 17

[19] Lakhina A., Crovella M., and Diot C. Diagnosing network-wide traffic anomalies. In In
ACM SIGCOMM, 2004. 4, 8, 17, 18

[20] Lakhina A., Crovella M., and Diot C. Mining anomalies using traffic feature distributions.

In In ACM SIGCOMM, 2005. 17, 18, 48

[21] M. Allman, V. Paxson, and W. Stevens. Tcp congestion control. internet engineering task

force. In RFC 2581, 1999. 5

[22] N. Alon, N.G. Duffield, C. Lund, and M. Thorup. Estimating sums of arbitrary selections

with few probes. In PODS, 2005. 37

[23] Paul D. Amer and Lillian N. Cassel. Management of sampled real-time network measure-

ments. In 14th Conference on Local Computer Networks, 1989. 28

[24] S. Bellovin. Security aspects of napster and gnutella. In Invited Talk at USENIX Annual
Technical Conference, 2001. 6

[25] L. Bernaille, R. Teixeira, and K. Salamatian. Early application identification. In in pro-
ceedings of the 2nd CoNEXT Conference, 2006. 48

[26] S. Boyd and L. Vandenberghe. Convex optimization. In Cambridge University Press, 2004.

100, 120

[27] D. Brauckhoff, A. Wagner, and M. May. Flame: A flow-level anomaly modeling engine.

In in proceedings of CSET, 2008. 47

[28] G.R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran. Reformulating the

monitor placement problem: Optimal networkwide sampling. In Proc. of CoNeXT, 2006.

7, 14, 41, 42, 96, 112, 113

http://www.tcpdump.org/.
http://planete.inria.fr/GEANT.
http://tools.netsa.cert.org/yaf.

BIBLIOGRAPHY 137

[29] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. On random sampling over

joins. In In ACM SIGMOD, 1999. 41

[30] Cisco. Netflow services and applications. White Paper, 2000. 6, 13, 21, 30, 47

[31] K.C. Claffy, George C. Polyzos, and Hans-Werner Braun. Application of sampling method-

ologies to network traffic characterization. In Proceedings of ACM SIGCOMM, 1993. 28

[32] B. CLAISE. Cisco systems netflow services export version 9. RFC3954. 6, 13, 21, 30

[33] M. P. COLLINS and M. K. REITER. Finding peer-to-peer file-sharing using coarse network

behaviors. In in proceedings of ESORICS, 2006. 4

[34] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to algorithms. In

MIT Press and McGraw-Hill, 2001. 51

[35] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream database

for network applications. In Proc. of the ACM SIGMOD, 2003. 13, 21

[36] R.I. Cukier, C.M. Fortuin, K.E. Shuler, A.G. Petshek, and J.H. Schaibly. Study of the

sensitivity of coupled reaction systems to uncertainties in rate coefficients. The Journal
of Chemical Physics, 1973. 58, 94

[37] R.I. Cukier, J.H. Schaibly, and K.E. Shuler. Study of the sensitivity of coupled reaction

systems to uncertainties in rate coefficients. iii analysis of the approximations. The Jour-
nal of Chemical Physics, 63, 1975. 58, 61, 94

[38] N. Duffield and M. Grossglauser. Trajectory sampling. White Paper, 2003. 38

[39] N. Duffield and C. Lund. Predicting resource usage and estimation accuracy in an ip

flow measurement collection infrastructure. ACM SIGCOMM Internet Measurement Con-
ference, 2003. 36, 37

[40] N. Duffield, C. Lund, and M. Thorup. Charging from sampled network usage. ACM
SIGCOMM Internet Measurement Workshop, 2001. 4, 36

[41] N. Duffield, C. Lund, and M. Thorup. Properties and prediction of flow statistics from

sampled packet streams. In Proc. of IMC, 2002. 21, 36, 74

[42] N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions from sampled flow

statistics. In Proc. of the ACM SIGCOMM Conference on Applications, Technologies, Archi-
tectures, 2003. 21

138

[43] N. Duffield, C. Lund, and Mikkel Thorup. Flow sampling under hard resource con-

straints. SIGMETRICS, 2004. 6, 36, 37, 41

[44] N. G. Duffield, A. Gerber, and M. Grossglauser. Trajectory engine: A backend for tra-

jectory sampling. In In Proc. Network Operations and Management Symposium (NOMS),

2002. 38

[45] N. G. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observation. In

IEEE/ACM Transactions on Networking, 2001. 38, 39

[46] N. G. Duffield and M. Grossglauser. Trajectory sampling with unreliable reporting. In

IEEE Infocom, 2004. 40

[47] N.G. Duffield, C. Lund, and M. Thorup. Learn more, sample less: control of volume and

variance in network measurement. IEEE Transactions in Information Theory, 51:1756–

1775, 2005. 21, 22, 25, 36, 41

[48] N.G. Duffield, C. Lund, and M. Thorup. Optimal combination of sampled network mea-

surements. In IMC 2005, 2005. 6, 7, 14, 21, 41, 48, 73

[49] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a better netflow. In Proc. of ACM
SIGCOMM, 2004. 21, 22, 23, 24, 25

[50] C. Estan and G. Varghese. New directions in traffic measurement and accounting. In In
Proc. ACM SIGCOMM, 2002. 35

[51] C. Estan and G. Varghese. New directions in traffic measurement and accounting. In

Proc. of ACM SIGCOMM, 2002. 112

[52] Cristian Estan. Internet traffic measurement: What’s going on in my network? In Ph. D.
thesis at University of California San Diego, 2003. 4

[53] Cristian Estan and George Varghese. New directions in traffic measurement and account-

ing: Focusing on the elephants, ignoring the mice. In in journal of ACM Transactions on
Computer Systems (TOCS), 2003. 34

[54] A. Feldmann, A. Gilbert, P. Huang, and W. Willinger. Dynamics of ip traffic: A study of

the role of variability and the impact of control. In in proceedings of ACM SIGCOMM,

1999. 48

[55] A. FELDMANN, A¿ G. GREENBERG, C. LUND, N. REINGOLD, J. REXFORD, and F. TRUE.

Deriving traffic demands for operational ip networks: Methodology and experience. In

in proceedings of ACM SIGCOMM, 2000. 4

BIBLIOGRAPHY 139

[56] A. Feldmann, J. Rexford, and R. Caceres. Efficient policies for carrying web traffic over

flow-switched networks. IEEE/ACM Transactions on Networking, 1998. 36

[57] Ballani H. and Francis P. Conman: A step towards network manageability. In In Proc. of
ACM SIGCOMM, 2007. 8

[58] Edwin A. Hernandez, Matthew C. Chidester, and Alan D. George. Adaptive sampling for

network management. In Journal of Network and Systems Management, 2001. 41

[59] N. Hohn and D. Veitch. Inverting sampled traffic. In In Proc. IMC, 2003. 33, 48

[60] N. Hohn and D. Veitch. Inverting sampled traffic. In Proc. of IMC, 2003. 112

[61] Chadi Barakat Imed Lassoued, Amir Krifa and Konstantin Avrachenkov. Network-wide

monitoring through self-configuring adaptive system. In in proceedings of IEEE INFOCOM,

2011. 9, 10, 73

[62] Leydon John. P2p swamps broadband networks. In whitepaper, 2002. 6

[63] A. Johnson and J. Quittek. Packet sampling (psamp) protocol specifications. RFC5476,

2009. 29, 30

[64] Ryszard Erazm Jurga and Mi losz Marian Hulboj. Technical report packet sampling for

network monitoring. In CERN-HP Procurve openlab project, 2007. 32

[65] K. Keys, D. Moore, and C. Estan. A robust system for accurate real-time summaries of

internet traffic. In In Proc. SIGMETRICS, 2005. 34, 35, 36

[66] K. Keys, D. Moore, and C. Estan. A robust system for accurate real-time summaries of

internet traffic. In Proc. of SIGMETRICS, 2005. 113

[67] Ramana Rao Kompella and Cristian Estan. The power of slicing in internet flow mea-

surement. In in proc. IMC ’05 Proceedings of the 5th ACM SIGCOMM conference on Internet
Measurement, 2005. 36

[68] A. Krifa, I. Lassoued, and C. Barakat. Emulation platform for network wide traffic sam-

pling and monitoring. TRAC, 2010. 9, 47, 48, 82, 106

[69] Imed Lassoued and Chadi Barakat. Adaptive multi-task monitoring system based on

overhead prediction. In in proceedings of the ACM CoNext PRESTO workshop on Pro-
grammable Routers for Extensible Services of Tomorrow, 2010. 9, 10, 73

[70] Imed Lassoued and Chadi Barakat. A multi-task adaptive monitoring system combining

different sampling primitives. In in proceedings of the 23 International Teletraffic Congress
(ITC), 2011. 9, 10, 73

140

[71] Myungjin Lee, Mohammad Y. Hajjat, Ramana Rao Kompella, and Sanjay G. Rao. Rel-

samp: Preserving application structure in sampled flow measurements. In Proc. of IEEE
Infocom, 2011. 6

[72] Y. Lu and S. Mohanty. Sensitivity analysis of a complex, proposed geologic waste disposal

system using the fourier amplitude sensitivity test method. Reliab. Eng. syst. Safe., 72,

2001. 59

[73] Keith McCloghrie and Marshall T. Rose. Management information base for network

management of tcp/ip-based internets. In RFC 1213, 1991. 13, 16, 20

[74] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic matrix estima-

tion: Existing techniques and new directions. In In Proceedings of the ACM SIGCOMM,

2002. 17

[75] M. Molina, S. Niccolini, and N.G. Duffield. A comparative experimental study of hash

functions applied to packet sampling. In ITC-19, 2005. 38

[76] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. The spread of

the sapphire/slammer worm. In CAIDA Technical Report, 2003. 6

[77] D. Moore and C. Shannon. The spread of the witty worm. In In IEEE Security and Privacy,

2004. 6

[78] N. Naoumov and K. Ross. Exploiting p2p systems for ddos attacks. In In International
Workshop on Peer-to-Peer Information Management, 2006. 6

[79] P. Phaal, S. Panchen, and N. McKee. Inmon corporation’s sflow: A method for monitoring

traffic in switched and routed networks. RFC3176, 2001. 6, 13, 21, 30

[80] J. Quittek, T. Zseby, B. Claise, and S. Zander. Requirements for ip flow information

export (ipfix). RFC3917, 2004. 29

[81] G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek. Architecture for ip flow information

export. RFC5470, 2009. 29, 30

[82] A. Saltelli, K. Chan, and M. Scott. Sensitivity analysis. Wiley, 2000. 58, 94

[83] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and

S. Tarantola. Global sensitivity analysis: The primer. John Wiley and Sons, 2008. 58

[84] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity analysis in practice: A

guide to assessing scientific models. Wiley, 2004. 58, 94

BIBLIOGRAPHY 141

[85] A. Saltelli, S. Tarantola, and K. P.-S. Chan. A quantitative model-independent method

for global sensitivity analysis of model output. Technometrics, 41:39–56, 1999. 59

[86] V. Sekar, M.K. Reiter, W. Willinger, H. Zhang, R.R. Kompella, and D.G. Andersen. cSamp:

A system for network-wide flow monitoring. In Proc. 5th USENIX NSDI, 2008. 7, 14, 41,

48, 96, 113

[87] I.M. Sobol. Sensitivity estimates for nonlinear mathematical models. Math. Model. Com-
put. Exp., 1:407–414, 1993. 60

[88] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed of flash worms. In In
Proc. ACM Workshop on Rapid Malcode (WORM)., 2004. 6

[89] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating network monitors: Complexity

heuristics and coverage. In Proc. of IEEE Infocom, 2005. 7, 8, 42, 48

[90] M. Thottan and C. Ji. Anomaly detection in ip networks. In IEEE Trans. Signal Processing,

2003. 48

[91] Tobias Oetiker and Dave Rand. Mrtg: Multi router traffic grapher.

http://people.ee.ethz.ch/oetiker/webtools/mrtg/. 16

[92] R. Torres, M. Hajjat, S. Rao, M. Mellia, and M. Munafo. Inferring undesirable behavior

from p2p traffic analysis. In In ACM SIGMETRICS, 2009. 6

[93] Hui Zhang Vyas Sekar, Michael K Reiter. Revisiting the case for a minimalist approach

for network flow monitoring. In Proc. of IMC, 2010. 32, 33, 35

[94] Hui Zhang Vyas Sekar, Michael K Reiter. Revisiting the case for a minimalist approach

for network flow monitoring. In Proc. of IMC, 2010. 113, 114

[95] Carey L. Williamson. Internet traffic measurement. In Tutorial article at the Department
of Computer Science University of Calgary. IEEE Internet Computing, 2001. 4, 6

[96] Li X., Bian F., Zang H., Diot C., Govindan R., Hong W., and Iannaccone G. Mind: A dis-

tributed multi-dimensional indexing system for network diagnosis. In In IEEE INFOCOM,

2006. 8, 17, 20

[97] Li X., Bian F., Crovella M., Diot C., Govindan R., Iannaccone G., and Lakhina A. Detection

and identification of network anomalies using sketch subspaces. In In ACM Internet
Measurement Conference, 2006. 17, 20

142

[98] Y. XIE, V. SEKAR, D. A. MALTZ, M. K. REITER, and H. ZHANG. Worm origin identification

using random moonwalks. In in proceedings of IEEE Symposium on Security and Privacy,

2005. 4

[99] Zhang Y., Roughan M., Duffield N., and Greenberg A. Fast accurate computation of

large-scale ip traffic matrices from link loads. In In Proc. of ACM SIGMETRICS, 2003. 8

[100] T. Zseby, T. Hirsch, and B. Claise. Packet sampling for flow accounting: Challenges and

limitations. In PAM, 2008. 21

[101] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall. Sampling and filtering

techniques for ip packet selection. In RFC 5475, 2009. 27, 28, 29

