
Testing for traffic differentiation with ChkDiff:
the downstream case

Riccardo Ravaioli
Université Nice Sophia Antipolis

Laboratoire I3S/CNRS UMR 7271
Sophia Antipolis, France

ravaioli@i3s.unice.fr

Guillaume Urvoy-Keller
Université Nice Sophia Antipolis

Laboratoire I3S/CNRS UMR 7271
Sophia Antipolis, France

urvoy@i3s.unice.fr

Chadi Barakat
Inria

Sophia Antipolis, France
chadi.barakat@inria.fr

Abstract—
In the past decade it has been found that some Internet

operators offer degraded service to selected user traffic by ap-
plying various differentiation techniques. If from a legal point
of view many countries have discussed and approved laws in
favor of Internet neutrality, confirmation with measuring tools
for even an experienced user remains hard in practice. In this
paper we extend and complete our tool ChkDiff, previously
presented for the upstream case, by checking for shaping also
on the user’s downstream traffic. After attempting to localize
shapers at the access ISP on upstream traffic, we replay
downstream traffic from a measurement server and analyze
per-flow one-way delays and losses, while taking into account
the possibility of multiple paths between the two endpoints. As
opposed to other proposals in the literature, our methodology
does not depend on any specific Internet application a user
might want to test and it is robust to evolving differentiation
techniques that alter delays or induce losses. We provide here
a detailed description of the downstream tool and a validation
in the wild for wired, WiFi and 3G connections.

I. INTRODUCTION

The increasing popularity of bandwidth-hungry
applications, like peer-to-peer and video streaming, has
induced some Internet Service Providers (ISPs) in the last
decade to deploy some traffic management techniques that
offer degraded performance instead of best-effort service to
specific traffic flows. Reported cases abound: from blocking
of BitTorrent traffic when a user is actively sharing files [1],
to reduced performance of NetFlix by a few US operators [2],
[3] and throttling of YouTube during peak hours in the
evening [4], [5]. Also competing services such as VoIP have
been the target of ISPs, for instance when all Vonage calls were
systematically blocked by a regional mobile operator [6] and
when Apple’s FaceTime was disabled for mobile customers
who did not opt for a more expensive data plan [7].

All these examples constitute clear violations of Internet
neutrality, a principle according to which a network should
treat all its incoming traffic equally, without deliberately
offering worse or better performance to any traffic of its
choice. There has been discussion [8] about whether the
Internet has been conceived and implemented as a strictly

level-playing field, but from a broader point of view it
is generally agreed upon that all attempts that selectively
deteriorate certain types of Internet traffic over others are, to
say the least, controversial. Because of this, legislative efforts
aiming at prohibiting cases like the above ones have appeared
in a number of countries, the first of which to approve such
laws were Chile [9] in 2010 and the Netherlands [10] in 2012.

In the literature, several tools [11]–[16] have been described
in recent years to try to establish whether an ISP is applying
traffic differentiation to specific applications (e.g., BitTorrent,
YouTube, Skype, etc.) and with the use of specific differentia-
tion techniques (e.g., port blocking, token-bucket shaper, etc.).

The solution that we propose in this paper, ChkDiff,
directly addresses the problems of scalability to different
user applications and of applicability to different shaping
techniques affecting delays and losses. We achieve this by
performing active measurements with the real user traffic,
comparing the performance of a flow against the performance
of the rest of the replayed traffic, and by analyzing for
each flow its delays and losses, which reflect any alteration
introduced by a shaper inside the network.

This complements our previous work [17], in which we
focused on the user’s upstream traffic and replayed it with
low TTL values in a traceroute-like manner against the
routers at the first few hops away from the user in order to
detect differentiation and localize shapers. We extend this
with a new experiment in the downstream direction, where
we replay the user’s incoming traffic from a server, measure
one-way delays and losses, and check for differentiation on
a per-flow basis. We describe in details the measures taken
by ChkDiff in order to successfully deliver the replayed trace
and validate the tool in two differentiation scenarios, with the
server located in three different data centers, and over wired,
WiFi and 3G connections.

The paper is organized as follows: in Section II we provide
a detailed description of the methodology we used in ChkDiff;
in Section III we validate the tool; we discuss our method
in Section IV and assess it with respect to related work in
Section V; we give closing remarks in Section VI.



(a) Upstream experiment (b) Downstream experiment

Fig. 1: The two experiments in ChkDiff.

II. METHODOLOGY

The design of a new tool for the detection of traffic
differentiation has to necessarily consider two weak points
of existing methods: the difficulty to scale to different
applications and the limitation to specific differentiation
techniques. We overcome this in three steps: a) we use the
real traffic of a user and not a synthetic trace; b) we minimize
the modifications to the trace needed for the experiment to
work and c) we analyze the performance of a flow in terms
of delays and losses with respect to the rest of the trace in
order to infer neutrality violations: these two metrics alone
are able to capture the effect of shapers at the IP layer.

A complete run of ChkDiff consists of two experiments, one
that replays the user’s outgoing traffic (upstream direction)
to the routers at the first few hops away from the user and
one that replays the user’s incoming traffic (downstream
direction) from a measurement server to the user. We report
in Algorithm 1 an outline of a full execution of ChkDiff.

At first the tool dumps client traffic for a time window
of typically 3-5 minutes, while the user is asked to run the
applications and services of an Internet session she wishes
to test. Next, packets are grouped into 5-tuple flows (source
and destination IP addresses, transport protocol, source and
destination port numbers), which are further arranged into an
outgoing trace, traceout, and an incoming one, tracein. We
now briefly describe the upstream experiment, as proposed in
an earlier work [17], and then go on to illustrate in detail the
methodology for the downstream case.

A. Upstream experiment, in a nutshell

Non-trivial outgoing traffic that an access ISP might want
to differentiate includes media uploading, P2P file sharing
and VoIP; a run of ChkDiff in the upstream direction should
ideally test at least one type of such traffic. Before conducting
the actual experiment, we shuffle traceout in such a way
that the position of the packets of each flow inside the trace
follows a Poisson process, so that according to the PASTA

property (Poisson Arrivals See Time Averages) [18], each
flow will see the same network conditions when the trace is
replayed. The order of packets within each flow is preserved.
As in the first half of Algorithm 1, we consider the first few
hops away from the user, at or in proximity of her access ISP
network (up to hop 3 or 4, as in Figure 1a), and for each hop
h we replay traceout at a constant sending rate higher than
the original one and with a modified IP TTL set to h, so that
the trace will expire on the router(s) at hop h and generate
ICMP time-exceeded messages. We showed the validity of
this ICMP feedback in a previous work [19], along with its
robustness to ICMP rate-limitation. Each flow having its own
set of Round-Trip Times (RTTs) and losses, we can now
compare its performance up to a given hop to that of the
rest of the flows along the same path. We use Kolmogorov-
Smirnov test to analyze delays and a binomial-inspired test to
analyze losses. By aggregating the results of each flow across
consecutive hops we are able to infer the presence of a shaper
and localize it in terms of number of hops from the client.

B. Downstream experiment

In this paper, we present the downstream version of ChkDiff
and validate it experimentally. In brief, the experiment in
the downstream direction consists in taking all necessary
measures to replay the original incoming flows, having the
server replay the trace to the client and finally analyzing the
results in a way that takes into account the possibility of
having multiple paths to the client (Figure 1b).

The second half of Algorithm 1 outlines the main steps
of the downstream experiment, which we describe in details
in the remainder of this section. First, we need to shuffle
tracein in the same way we did in the upstream experiment.
This allows us to eliminate cross traffic noise from the effects
of possible neutrality violations. Then, for a replayed flow to
be able to successfully reach the client, we need to deal with
possible Network Address Translation (NAT) and firewall
devices a user might be behind and also other possible
middleboxes that might be deployed along the path from the



server. After all connections are initiated from the client side,
the server replays the shuffled tracein to the client at a rate
higher than the original one. We compute One-Way Delays
(OWD’s) for each flow and note the number of losses, if any.
In order to infer differentiation, we run a clustering analysis
on delays so that we can distinguish when different delay
distributions are due to shaping and when they are due to a
variety of paths. Lastly, a test on flow losses completes the
analysis. We elaborate now on each of the above actions.

1) Getting ready for replaying. As opposed to the upstream
experiment [17], we do not pad packets in tracein to a fixed
size (the maximum packet size in the trace). In the upstream
experiment the low variability of the total delay along a short
wired path is in the same order of magnitude as the variability
of the transmission delay, which is proportional to the packet
size. That makes it impractical to replay packets exactly as
captured, since flows with large packets over a wired connec-
tion experience larger delays solely because of their packet
size. For the downstream case, we examine a much longer
path in terms of hops and delays, and such source of error is
canceled out by the inherent delay variability along a larger
path. Therefore we are able to replay the packets with their
original payloads, as seen by the client upon receiving them.

Replaying incoming traffic from a single source (i.e. our
server) means that we cannot keep the original source IP
addresses of the user trace, for two main reasons. Firstly, most
access networks today are configured to drop outgoing packets
with a source address that does not belong to the address
space of the access network itself. In other words, they do
not allow IP address spoofing [20]. Secondly, as we will see

Algorithm 1 ChkDiff complete execution

1: Capture user traffic, store into traceout and tracein
2: . Upstream experiment
3: for each hop h ∈ {1, 2...k} do
4: for each run r ∈ {1, 2, 3} do
5: shuffle traceout
6: replay traceout with TTL← h
7: collect ICMP time-exceeded replies
8: end for
9: detect shaped flows at hop h

10: end for
11: aggregate results and locate shaper(s), if any
12: . Downstream experiment
13: for each run r ∈ {1, 2, 3} do
14: shuffle tracein
15: for each flow f in tracein do
16: find NAT mapping for f
17: initiate connection from client
18: end for
19: replay tracein from server to client
20: compute one-way delays and losses
21: end for
22: detect shaped flows

shortly, if a NAT device is present, we can replay a flow
only if we find the mapping applied by the NAT to that flow
for external endpoints. Since we are not in control of other
endpoints (that is to say, all network applications or services
run by the user) than our measurement server, we need to
overwrite the IP source address of each packet in tracein with
the IP address of the server; original port numbers are retained.
Conversely, in the upstream experiment the original source
and destination IP addresses are preserved. However, even if
in the downstream case we lose the ability to reveal shapers
based on the source IP address, we can combine upstream
and downstream experiments to overcome the limitations of
both. Furthermore, the commercial shapers studied in a recent
work [21] do not use this piece of information to classify flows.

After being shuffled, tracein is sent via FTP to the server.
While we deploy a server with a public IP address, listening
on a known port, a client is likely less easy to reach: a few
network elements need to be considered before we can replay
the trace to the client.

• NAT’s. In today’s networks, where IPv4 addresses are
running out, deploying a NAT device has become a
widespread practice. For our purposes, this means that
the client’s view of a flow might not be the same as the
server’s. Since the trace to replay is originally as seen
by the client, we might need to modify the destination
IP address and port number in order to reach the client
from an external endpoint (Figure 1b). NAT devices are
usually defined according to how they map the same
source pair X:x of IP address X and port number x of
an internal network when different external destination
IP addresses and port numbers are reached (for instance
Y1: y1 and Y2: y2) [22], [23]. We distinguish four cases:
i) in the simplest scenario the mapping is independent
of the external destination endpoint and will not change
for the same source pair X:x; ii) some NAT’s generate
the same mapping only with same external destination
IP address (Y1 ≡ Y2) or iii) with the same external
destination IP address and port number (Y1 ≡ Y2 and
y1 ≡ y2)) and iv) the mapping might be connection-
dependent and vary each time a new connection to the
same external destination pair is initiated.

• Firewall. We assume that any user is protected by a
firewall from the outer network. Consequently, all flows
need to be initiated from the user side (the so-called hole
punching) before the server can replay the trace. For
TCP flows, we reproduce the whole 3-way handshake
without the interaction of the kernel on both endpoints.
We assign an initial sequence number for each side of a
TCP flow and modify it accordingly in the data packets.
For UDP flows, we only send one probe from the client.

• Initial sequence numbers. It has been observed [24],
[25] that some middleboxes overwrite the initial sequence
number of TCP flows. Since firewalls can easily keep
track of the sequence numbers and reject inconsistent
packets, it is important to intercept the overwritten



sequence number from the SYN packet of the TCP
handshake and modify all subsequent sequence and ac-
knowledgement numbers individually for each TCP flow.

• Timeouts. In NetFilter [26], the standard firewall
provided in Linux, the TCP timeout for established
connections is 5 days, while for UDP it is only 30
seconds whether packets have been seen in one or both
directions. This means that we need to make sure that
the time elapsing between two consecutive packets of
each UDP flow, initial probes included, is less than 30
seconds. NAT mappings expire too in order to remove
stale entries from the NAT table. Given the large amount
of commercial NAT devices, we refer in this case to
the requirements and guidelines found in the RFC’s. For
UDP flows [22] the timeout should not be less than 2
minutes, while 5 minutes is recommended; for TCP [23]
if the connection is not yet in the established state, the
timeout should not be less than 4 minutes, and if it
is already in the established state it should be no less
than 2 hours and 4 minutes. These values are all large
enough for the purpose of our experiment and do not
interfere with ChkDiff. Finally, to avoid unnecessary
synchronization between client and server, we do not
actually send any acknowledgments from the client
side for the TCP flows we replay. In the Linux kernel,
the socket parameter TCP USER TIMEOUT sets the
maximum amount of time that data can be transmitted
without being acknowledged. Its default value is 20
minutes [27], which is roughly one order of magnitude
larger than a single run of ChkDiff.

Given that our goal is not to classify all possible devices
along a path but to rapidly deliver the trace to the client, we
take a conservative approach and assume that the most strin-
gent restrictions among the above ones are in place. We expect
the NAT to be connection-dependent and perform a per-flow
mapping discovery already during the hole punching initiated
by the client against her firewall. For each flow, we encrypt the
client’s view of its source IP address and port number and add
it to the payload of its SYN packet or UDP probe, as NAT de-
vices are expected to overwrite every occurrence of the client’s
own IP address in a packet. We set the client-side initial
sequence number of TCP flows in accordance to the acknowl-
edgement numbers used in the trace (since no packets are sent
from the client during the replaying phase, the acknowledge-
ment number of a TCP flow sent by the server is constant
across packets of the same flow). From the server side, for
TCP flows, we keep track of incoming SYN packets along
with the observed sequence numbers and client’s source pair,
and mimic the TCP handshake; for UDP flows we just keep
track of client’s and server’s views of the client-side source
pair. When these two views differ, we modify the client-side IP
address and port number of the corresponding flows in tracein
with the pair as seen by the server. The server also overwrites
the acknowledgement number of a TCP flow, when the number
in the trace does not match the sequence number seen in the

Fig. 2: Configuration of client and server.

received SYN packet. Additionally, in order to overcome the
relatively short timeout on UDP flows, we enforce a maximum
interval of 30 seconds between any two UDP packets of the
same flow when shuffling tracein and start a timeout on the
client side to make sure that we do not exceed 30 seconds
between the initial UDP probe of a flow and its first occurrence
in the trace. We discard the current run of the experiment and
start a new one if ever this timeout expires. In any case, during
an ordinary execution of ChkDiff only a few seconds elapse
between hole punching and the start of the replaying phase.

We avoid the overhead of opening a socket for each flow
and replaying the trace from the application layer by injecting
packets with tcpreplay [28] directly between the IP layer and
the Network Interface Card. Since we are emulating TCP and
UDP flows below the IP layer, we need to prevent our packets
from reaching their respective client applications, which could
cause unsolicited traffic or unexpected application behaviour.
Also, our hole-punching probes target ports on the server on
which no process should be listening and will trigger TCP
reset packets for TCP SYN probes, ICMP port-unreachable
messages for UDP probes and real application packets if
ever a process is indeed listening. As error messages cross
a firewall on their way to the user, the corresponding newly-
created connection entries are removed. Therefore, we need
a way to distinguish between experiment packets and regular
traffic, so that we can drop the former right before they reach
the IP stack and we can allow the latter to pass through.
We achieve this by assigning a unique number to each user
session and overwrite with this value the 2-Byte IP ID field of
each experiment packet between a given user and the server.
Through a combined use of tcpdump and iptables, as shown in
Figure 2, we dump the experiment packets right at the Network
Interface Card and drop them before they reach the kernel.

2) Replay. We are now ready to replay the trace from the
server at a constant packet rate higher than the original one
(by default, we replay it at twice the original rate).

We dump the replayed trace on both the server and the
client and then for each flow we measure One-Way Delays
and note the number of lost packets. For simplicity, we avoid
any clock synchronization between user and server: any effect



Fig. 3: Timeseries of an experiment with packets following
multiple paths. Each packet is represented by a black dot.

due to clock skewing is not expected to disrupt the measured
delays for the short time window of one experiment (a few
tens of seconds) and in any case will affect all flows equally,
as they are evenly spread across the trace.

Once the server has completed the replaying phase, the
client closes the emulated TCP connections by sending an
RST packet for each TCP flow in tracein. This has the added
benefit of clearing space in the open connection table of the
firewall, if ever a per-user restriction is active.

3) Results analysis. The study of delays between two end-
points across a path of several hops has to necessarily take into
account the possibility of multiple paths. Discovering the paths
taken by each flow would be cumbersome: first of all, we do
not know the exact hash function applied in a load balancing
decision and we observed that some data centers, where the
measurement server could be deployed, make a massive use
of load balancers; second of all, it would take some extra
time, as we would need to probe at low rates (i.e. 1 packet
per second) to bypass ICMP rate limitation [19] and have a
complete view of each path. An example is provided in the
timeseries of Figure 3, where we can visually identify at least
five different paths; a direct comparison between any two flows
becomes harder in this case. In the absence of the ground truth,
we can rely on the fact that non-differentiated flows following
the same path will have similar delay distributions, which a
clustering algorithm can group together. A differentiated flow
going on any of the available paths will show a distribution sig-
nificantly different from that of all other flows and should not
belong to any of the discovered groups. We combine this with
a loss analysis in order to capture the behaviour of shapers.

• Delays. Our choice of clustering algorithm for delays is
dbscan [29], which groups together points that are in the
same high-density area and labels as outliers those that
do not belong to any found cluster. As a representative
point for each flow we take its 25th percentile: it is close
enough to the real path delay, it discards possible queue-
ing delays and it is robust to delay variations due for ex-
ample to WiFi. The algorithm then takes two parameters:
the minimum number n of core samples to form a cluster
and the maximum distance ε between any two samples for
them to be included as core points in a cluster. Since we

Fig. 4: Setup used in the validation of ChkDiff, along with
the shaper configuration.

expect shaped flows to stand out from non-shaped flows,
we set n to 2. As for ε, we need a value that reflects the
delay variations of a path: we take the core values (2nd
quartile range, i.e. the 25th-50th percentile range) of the
delay distribution of each flow, we aggregate them and
then pick for ε a large value in this set, the 75th percentile.
The output of dbscan will be a set of clusters of flows
and a set of outliers, which we label as having failed the
delay analysis.

• Losses. We compare the losses of a flow to the loss
rate of the rest of the trace as a whole. The reasoning is
the following: if a flow i with si packets has not been
differentiated, its number of lost packets can be modeled
as a binomial random variable of parameters B(si, p),
where p is the loss rate of the rest of the trace. If we
approximate this binomial to a normal random variable of
parameters N(sip, sip(1−p)), we can verify whether the
number of lost packets li of flow i lies within α standard
deviations of the normal mean, where α is approximated
to 2.58 for our chosen significance level of 99%. Since
we are interested to know whether a flow experienced
more losses than it should have with the global loss rate p,
we check that li < psi +α

√
p(1− p)si. If the condition

does not hold, the flow is rejected by our loss analysis.
Since a shaper affects the delays or the losses of a flow, or

both, we reject a flow if it fails either analysis.
We repeat the whole experiment three times in order

to remove transient errors and claim that a flow was
differentiated if in all three runs it failed the combined
analysis of delays and losses.

III. VALIDATION

We validate the downstream experiment of ChkDiff in
wired, WiFi and 3G setups (Figure 4) with a client located
in France and the server located in three different Amazon
data centers: Germany, Ireland and Oregon (USA). The client
is directly connected to a middlebox, where the shaper is
deployed and which serves also as the client’s gateway. In the
WiFi setup, the client is connected to the gateway through
a dedicated WiFi network operating on the same channel as



the local University WiFi network to cause more link-level
collisions. In the 3G setup, the client is connected to the
middlebox via a wired connection and the middlebox is
connected via WiFi to a mobile phone functioning as hotspot.
We test ChkDiff in two differentiation scenarios: given a set of
flows we want to differentiate, in Scenario 1 we throttle their
bandwidth and in Scenario 2 we apply a uniform packet drop
rate to them. We configure dummynet [30] on the middlebox to
shape incoming traffic, as shown in the upper part of Figure 4.
Flows to shape are forwarded to the upper pipe, which applies
the desired differentiation technique according to the scenario
we test; flows that we do not intend to differentiate go through
the lower pipe, which only adds a constant delay equal to the
transmission delay of the upper pipe in Scenario 1 and has no
effect in Scenario 2. This way, in Scenario 1 the difference in
delays between shaped and non-shaped flows is due only to
the queueing delay at the upper pipe. A final pipe, where all
flows eventually go, emulates a 100 Mbit/s link. In Scenario
2 this last pipe causes uniform drops on the whole trace.

In all experiments we replay a trace of approximately 9000
packets captured during an Internet session of 3 minutes that
included watching a short streaming video, browsing a news
website and making a call on Skype. In dummynet, our pipes
have a buffer length of 100 packets and use droptail buffer
management policy.

A. Shaping pipe (Scenario 1).

In this scenario, we compute in tracein the overall sending
rate of the flows to shape and set the shaping pipe to a
fraction kbw < 1 of this value. The second parameter we
vary is the fraction fr of packets we shape. When picking
which flows to differentiate, we choose iteratively the flow
closest to the target fr , until the desired size is reached. All
flows we differentiate go through the same shaping pipe.
By combining delay and loss analysis, we show that we can
effectively identify all shaped flows as long as the fraction fr
does not constitute most of tracein , which is what we expect
when we take the whole trace as baseline for comparison.

We present in Figure 5 the results in terms of recall1 for each
of the three server locations over wired, WiFi and 3G connec-
tions. For constraints of space, we do not include the results
in terms of precision, commonly defined as the number of true
positives over the number of positives, since we found it for all
experiments to be the optimal one, at 100%; in short, we never
flagged a non-differentiated flow erroneously. For each pair of
fr and kbw we show a pie where the color of the upper-left
quarter represents the result of the delay analysis, the color of
the upper-right quarter represents the result of the loss analysis,
and the color of the lower half is the outcome of the combined
analysis. If for fr ≤ 40% in almost all cases the delay analysis

1The definition of recall we use is the classic one: the number of
true positives over the sum of true positives and false negatives; in our
specific case, it is the number of differentiated flows correctly detected as
differentiated by the combined analysis over the number of flows that we
know were shaped, whether or not we have detected them. A recall of 100%
indicates that we have correctly identified all shaped flows, while a recall of
0% indicates that we have missed them all.

suffices to detect all shaped flows, for fr = 60% we see that
combining the delay and loss analysis is essential for a correct
output. When kbw = 1.0 the shaping pipe is configured with
the average bit rate of incoming packets, so the flows that are
supposedly being differentiated might not be shaped at all,
hence the uncertain outcome on the top row of each graph.

In this scenario, ChkDiff appears to cope just as well with
a wired connection as it does with WiFi and 3G. Over the
two wireless connections, there seems to be more noise that
is in any case neutralized for the most part when combining
the two analysis.

B. Uniform drops (Scenario 2).

We consider now a shaper that uniformly drops packets of
selected flows at a loss rate lr (upper-right pipe in Figure 4)
and of the whole trace at a loss rate lrall (left pipe in the same
figure). As opposed to the previous scenario, we deploy here a
dedicated shaping pipe for each flow we want to differentiate.
We vary lr and lrall, as well as the fraction fr of traffic
impacted by lr. Shaped flows will thus have an overall loss rate
lrshaped equal to 1−(1−lr)(1−lrall). For reasons of space we
only show the results for the server located in the data center
in Germany, over the three types of connection considered pre-
viously (Figure 6). Nevertheless, results across the three server
locations are qualitatively similar. Since in this second scenario
the differentiation we apply does not affect delays, we focus
only on the outcome of the loss analysis. For completeness, re-
sults are shown also for high values of lrall, even if in practice
a global loss rate of 20% is already able to disrupt TCP con-
nections. We observe for both wired and wireless setups that
when fr is less than half of the trace, ChkDiff is able to detect
all differentiated flows except for the cases on the bottom di-
agonal, where the difference in loss rate between differentiated
and non-differentiated flows is the lowest (5%, 10% and some-
times 20%). Experiments over WiFi and 3G seem to be only
slightly worse than over wired for the lowest values of lrall.

IV. DISCUSSION

A full run of ChkDiff in upstream and downstream
directions is able to detect differentiation when, regardless of
its implementation, it directly worsens the throughput, packet
delay and losses of user applications. This is the typical effect
introduced by a shaper. Even though in this paper we used the
terms shaping and differentiation interchangeably, the former
is a subset of the latter and shaping is what we aim at detecting
with our current tool. As we saw in the validation section, we
cannot precisely reveal shaping when most of the user traffic is
affected, as our baseline in the analysis would mainly be made
of differentiated flows. To counteract this, a user should be
running different applications during the capturing phase, so
as to have a variety of flows to check against. In the extreme
case, if really an ISP throttles the bandwidth of all traffic for
a given user, it would not be possible to discern it from severe
network congestion from the view point of this particular user.

In this work, we assume that ISPs select flows to
differentiate based on packet fields (IP addresses, ports and



0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

0

20

40

60

80

100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(a) Frankfurt, wired connection.

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

0

20

40

60

80

100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(b) Ireland, wired connection.

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

0

20

40

60

80

100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(c) Oregon, wired connection.

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

0

20

40

60

80

100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(d) Frankfurt, WiFi connection.

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0
k
bw

0

20

40

60

80

100

re
ca

ll
T
P
/(
T
P

+
F
N

)
(e) Ireland, WiFi connection.

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

0

20

40

60

80

100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(f) Oregon, WiFi connection.

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

0

20

40

60

80

100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(g) Frankfurt, 3G connection.

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0

k
bw

0

20

40

60

80

100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(h) Ireland, 3G connection.

0.2 0.4 0.6 0.8

fr

0.2

0.4

0.6

0.8

1.0
k
bw

0

20

40

60

80

100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(i) Oregon, 3G connection.

Fig. 5: Recall of combined analysis (delay and losses) for Scenario 1 over wired, WiFi and 3G connections.

payload). We do not directly address classification based on
flow bandwidth, but we make sure that we replay the trace at
a higher global rate than the original one.

Also, we do not detect differentiation when it aims at
providing better treatment to selected traffic. Such behaviour
could be the result of an agreement between a content
provider and an ISP and it does not necessarily imply any
worse conditions for the rest of the traffic than in normal
network conditions. It would be interesting to redefine the
delay analysis in both upstream and downstream experiments
to account for this, as it could reveal what services and
applications are favored in a given network. We plan to

address this in future work.
The tool is available for Linux machines on the web page

of the project2. We currently provide a server located in our
lab, where no traffic differentiation is taking place.

V. RELATED WORK

Many tools for the detection of traffic differentiation have
appeared in the literature in recent years. Among the first ones,
BT-test [12] checks for injected RST packets while emulating
a BitTorrent packet exchange between a user and a server.
Other tools [13]–[16] compare the performance of a synthetic

2http://chkdiff.gforge.inria.fr/



0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 20%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)
(a) Recall when fr = 20%,

wired connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 40%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(b) Recall when fr = 40%,
wired connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 60%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(c) Recall when fr = 60%,
wired connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 80%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(d) Recall when fr = 80%,
wired connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 20%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(e) Recall when fr = 20%,
WiFi connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0
lr
sh
a
p
ed

fr= 40%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(f) Recall when fr = 40%,
WiFi connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 60%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(g) Recall when fr = 60%,
WiFi connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 80%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/(
T
P

+
F
N

)

(h) Recall when fr = 80%,
WiFi connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 20%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(i) Recall when fr = 20%,
3G connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 40%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(j) Recall when fr = 40%,
3G connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 60%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(k) Recall when fr = 60%,
3G connection.

0.0 0.2 0.4 0.6 0.8

lrall

0.0

0.2

0.4

0.6

0.8

1.0

lr
sh
a
p
ed

fr= 80%

0
10
20
30
40
50
60
70
80
90
100

re
ca

ll
T
P
/
(T
P

+
F
N

)

(l) Recall when fr = 80%,
3G connection.

Fig. 6: Recall of loss analysis as we vary fr in Scenario 2. Results are from the server located in Germany over wired, WiFi and 3G
connections.

application flow to the performance of a similar flow with
some modified or randomized packet fields (port numbers
or payloads), so that a shaper targeting such application
would affect the former and not the latter. Glasnost [13]
looks for differences in throughput between these two flows,
while DiffProbe [14] attempts to create congestion in the ISP
network by scaling up the replaying rate of application and
control flows, and then analyzes their delay and loss distribu-
tions. ShaperProbe [15] expands on DiffProbe by considering
the case of a shaper implemented as a token bucket and tries
to infer its parameters as the received rate at the destination
shows a level shift. Packsen [16] also tries to identify the
shaper type and its parameters, but claims to use a more
efficient statistical analysis. As opposed to ChkDiff, these
tools are limited to the set of application traces made available
by their authors (e.g., Skype, BitTorrent, YouTube, etc), which
would make it hard to maintain them in the long run.

A recent work, Differentiator Detector [21], aims at solving
this by replaying between user and server a captured user
trace and reproducing the same original application behaviour
(ports, payloads, inter-packet times) at the application layer,
first through a direct path between the two endpoints (appli-
cation flow) and then through VPN tunnel to a middlebox

(control flow). It measures throughput, RTT distribution and
losses in order to detect shaping. Even though our tool replays
separately upstream and downstream traffic, in the upstream
direction it tests the real hops where the original packets went
instead of testing the path between client and server, and in the
downstream direction it deals in a more robust and scalable
way with NAT devices. Moreover, differentiation of VPN’s is
not unheard of [31] and the released version of Differentiation
Detector only provides a set of pre-recorded traces to replay.

NetPolice [11] makes use of TTL-limited probes from
numerous vantage points to ingress and egress routers of
backbone ISPs to find differentiation in backbone networks. It
replays a few synthetic application flows along with an HTTP
flow, which serves as control flow, and looks for differences
in loss rates on the same path segments.

Zhang et al. [32] propose a theoretical framework where
they conduct measurements on target links from a large
number of vantage points and try to derive differentiation
from link properties typical of non-differentiated networks,
in a way inspired by network performance tomography. This
method, if deployed, would need a substantial and diverse
user base in order to have enough vantage points and would
require a central server to process measurement results.



Nano [33] differs from existing solutions in that it carries
out passive measurements on user traffic and compares it
against a data set of other users in the same geographical
area, with comparable machine setups, at the same time
of the day, but connected to a different ISP. While this
method is undeniably independent of user applications and
differentiation techniques, its main disadvantage is that it
needs a fairly large number of users for it to be operational.

VI. CONCLUSION

We extended with a downstream experiment ChkDiff, a
tool which enables users to detect differentiation on their own
traffic. After first checking for degraded traffic performance on
upstream traffic, the tool replays user incoming flows from a
measurement server to the user and analyzes delays and losses
to verify whether each flow experienced the same network
conditions as the rest of the trace. While in the upstream
direction our tool proved to be robust to rate limitation in the
ICMP feedback generated by routers, in the downstream case
we successfully cope with NAT’s and middleboxes in front
of the client and with end-to-end measurements possibly
representing a diversity of paths between server and client.
We validated ChkDiff in the wild, with two differentiation
scenarios over three types of connections: wired, WiFi and
3G. We showed that it correctly identifies shaped flows when
up to half of a user trace is affected.

In future work, we envisage to include in the tool tests that
check for differentiation techniques that do not necessarily
alter delays and losses, as for instance TCP RST injection.
We also intend to run a study with volunteers in a variety of
wired and mobile setups in order to have a mapping of the
current practices of ISPs.

ACKNOWLEDGMENTS

This work was funded by the French Government (National
Research Agency, ANR) through the ”Investments for the
Future” Program reference #ANR-11-LABX-0031-01.

REFERENCES

[1] “Dslreports: comcast is using sandvine to manage p2p connections.”
[Online]. Available: http://goo.gl/bpFpru

[2] “Cogent now admits they slowed down netflix’s traffic, creating a fast
lane & slow lane.” [Online]. Available: http://goo.gl/WDiLom

[3] “Netflix performance on Verizon and Comcast has been dropping for
months,” 2013. [Online]. Available: http://goo.gl/fTSbCe

[4] “Respect my net.” [Online]. Available: http://respectmynet.eu/view/196
[5] “Respect my net.” [Online]. Available: http://respectmynet.eu/view/205
[6] “Vonage says broadband provider blocks its calls.” [Online]. Available:

http://www.cnet.com/news/vonage-says-broadband-provider-blocks-its-
calls/

[7] “AT&T blocking iPhone’s FaceTime app would harm
consumers and break net neutrality rules.” [Online]. Available:
http://www.freepress.net/press-release/99480/att-blocking-iphones-
facetime-app-would-harm-consumers-and-break-net-neutrality

[8] J. Crowcroft, “Net neutrality: the technical side of the debate: a white
paper,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 49–56, January
2007.

[9] “Chile, primer paı́s en incorporar la neutralidad en la red.” [Online].
Available: http://www.elmundo.es/elmundo/2010/07/16/navegante/
1279272468.html

[10] “Net neutrality enshrined in dutch law.” [Online]. Available:
http://www.theguardian.com/technology/2011/jun/23/netherlands-
enshrines-net-neutrality-law

[11] Y. Zhang, Z. M. Mao, and M. Zhang, “Detecting traffic differentiation
in backbone isps with netpolice,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement Conference, ser. IMC
’09. ACM, 2009, pp. 103–115.

[12] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi,
“Detecting BitTorrent Blocking,” in Proceedings of the 8th
ACM SIGCOMM Conference on Internet Measurement (IMC’08),
Vouliagmeni, Greece, October 2008.

[13] M. Dischinger, M. Marcon, S. Guha, K. Gummadi, R. Mahajan,
and S. Saroiu, “Glasnost: Enabling End Users to Detect Traffic
Differentiation,” in Proceedings of the 7th Symposium on Networked
Systems Design and Implementation (NSDI), San Jose, CA, Apr 2010.

[14] P. Kanuparthy and C. Dovrolis, “Diffprobe: detecting ISP service
discrimination,” in Proceedings of the 29th conference on Information
communications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE
Press, 2010, pp. 1649–1657.

[15] ——, “Shaperprobe: End-to-end detection of isp traffic shaping
using active methods,” in Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, ser. IMC ’11. ACM,
2011, pp. 473–482.

[16] U. Weinsberg, A. Soule, and L. Massoulié, “Inferring traffic shaping
and policy parameters using end host measurements,” in INFOCOM,
2011, pp. 151–155.

[17] R. Ravaioli, G. Urvoy-Keller, and C. Barakat, “Towards a general solu-
tion for detecting traffic differentiation at the internet access,” in Teletraf-
fic Congress (ITC 27), 2015 27th International. IEEE, 2015, pp. 1–9.

[18] R. W. Wolff, “Poisson arrivals see time averages,” Operations Research,
vol. 30, no. 2, pp. 223–231, 1982.

[19] R. Ravaioli, G. Urvoy-Keller, and C. Barakat, “Characterizing ICMP
Rate Limitation on Routers,” in IEEE International Conference on
Communications (ICC), 2015.

[20] “BCP 38 - Network Ingress Filtering: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing.” [Online].
Available: https://tools.ietf.org/html/bcp38

[21] A. Molavi Kakhki, A. Razaghpanah, A. Li, H. Koo, R. Golani,
D. Choffnes, P. Gill, and A. Mislove, “Identifying traffic differentiation
in mobile networks,” in Proceedings of the 2015 ACM Conference on
Internet Measurement Conference. ACM, 2015, pp. 239–251.

[22] “RFC 4787 - Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP.” [Online]. Available:
http://tools.ietf.org/html/rfc4787

[23] “RFC 5382 - NAT Behavioral Requirements for TCP.” [Online].
Available: http://tools.ietf.org/html/rfc5382

[24] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP?” in Proceedings of the
2011 ACM SIGCOMM Conference on Internet Measurement Confer-
ence, ser. IMC ’11. New York, NY, USA: ACM, 2011, pp. 181–194.

[25] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proceedings of
the 2013 Conference on Internet Measurement Conference, ser. IMC
’13. New York, NY, USA: ACM, 2013, pp. 1–8.

[26] “NetFilter: Firewalling, NAT and packet mangling for Linux.” [Online].
Available: www.netfilter.org

[27] “Linux Programmer’s Manual - TCP protocol .” [Online]. Available:
http://man7.org/linux/man-pages/man7/tcp.7.html

[28] “Tcpreplay.” [Online]. Available: http://tcpreplay.appneta.com/
[29] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based

algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[30] M. Carbone and L. Rizzo, “Dummynet revisited,” SIGCOMM Comput.
Commun. Rev., vol. 40, no. 2, pp. 12–20, Apr. 2010.

[31] “I just doubled my PIA VPN throughput that I am getting on my
router by switching from UDP:1194 to TCP:443.” [Online]. Available:
http://goo.gl/pxXIWf

[32] Z. Zhang, O. Mara, and K. Argyraki, “Network neutrality inference,”
in Proceedings of the 2014 ACM Conference on SIGCOMM, ser.
SIGCOMM ’14. New York, NY, USA: ACM, 2014, pp. 63–74.

[33] M. B. Tariq, M. Motiwala, N. Feamster, and M. Ammar, “Detecting
network neutrality violations with causal inference,” ACM SIGCOMM
CoNext, p. 289, 2009.

http://goo.gl/bpFpru
http://goo.gl/WDiLom
http://goo.gl/fTSbCe
http://respectmynet.eu/view/196
http://respectmynet.eu/view/205
http://www.cnet.com/news/vonage-says-broadband-provider-blocks-its-calls/
http://www.cnet.com/news/vonage-says-broadband-provider-blocks-its-calls/
http://www.freepress.net/press-release/99480/att-blocking-iphones-facetime-app-would-harm-consumers-and-break-net-neutrality
http://www.freepress.net/press-release/99480/att-blocking-iphones-facetime-app-would-harm-consumers-and-break-net-neutrality
http://www.elmundo.es/elmundo/2010/07/16/navegante/1279272468.html
http://www.elmundo.es/elmundo/2010/07/16/navegante/1279272468.html
http://www.theguardian.com/technology/2011/jun/23/netherlands-enshrines-net-neutrality-law
http://www.theguardian.com/technology/2011/jun/23/netherlands-enshrines-net-neutrality-law
https://tools.ietf.org/html/bcp38
http://tools.ietf.org/html/rfc4787
http://tools.ietf.org/html/rfc5382
www.netfilter.org
http://man7.org/linux/man-pages/man7/tcp.7.html
http://tcpreplay.appneta.com/
http://goo.gl/pxXIWf

