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Abstract

We develop a model for TCP that accounts for both sublinearity and limitation of window
increase. Sublinear window growth is observed when the round-trip time of the connection
increases with the window size. The limitation is due to the window advertised by the re-
ceiver. First, we derive the required conditions for the stability of the model. Then, we write
the Kolmogorov equation under Markovian assumptions. The model is solved analytically for
some particular cases. A good match between the throughput predicted by the model and the
throughput measured on real TCP connections is reported.

1 Introduction

TCP congestion control is often analyzed using linear-increase multiplicative-decrease models for

window variation [2, 8, 9, 13]. These models assume that the window increases linearly with time

until a congestion occurs. At the moments of congestion, they assume that the window decreases

multiplicatively by a factor of one half. The average round-trip time is used to calculate the window

increase rate between congestion events. In particular, the window increase rate is taken equal to

1/(bRTT ) packets/s, where b is the number of packets covered by a TCP acknowledgement (ACK)

and RTT is the average round-trip time.

This simple model for window variation holds on long-distance paths where the throughput

(that is, average transmission rate or the ratio of the total number of packets transmitted and

the connection time) of a TCP connection is small compared to the total bandwidth. However,

on short-distance paths where much bandwidth exists for each connection, two phenomena may

appear making this model inaccurate. The first phenomenon is related to the receiver window.

A TCP source cannot inject into the network in a single round-trip time more packets than the

window advertised by the receiver [13, 14]. This puts a maximum limit on TCP window and, hence,

makes an unlimited-window model overestimate the real performance.

The second phenomenon is related to the dependence between the window size and the round-

trip time. When the share of a TCP connection from the total bandwidth is significant (due to

a small number of concurrent connections), an increase in the window size very likely results in

an increase in the round-trip time. The reason for this simultaneous increase is that at a large
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throughput, a TCP connection contributes considerably to the queueing time in network routers.

An increase in the round-trip time together with an increase in the window size is known [1, 2, 4, 8]

to result in a sublinear increase of the window size in time (the derivative of the window size with

respect to time decreases). Hence, assuming that the window increases linearly with time while it

increases sublinearly also results in an overestimation of the real performance [2].

We present a complete model for TCP congestion control. We account for both sublinearity

and limitation of window increase. Some works in the literature account for such phenomena but

they only consider simple networks of one bottleneck router and a single TCP connection [1, 4, 8].

In this paper, we consider real networks. To this end, we present a model for the variation of the

round-trip time as a function of the window size. We propose a technique to infer the parameters

of such model from the traces of a TCP connection. We then write the Kolmogorov equation of the

window size in the stationary regime (we prove first the existence of such a regime) and we solve

this equation numerically for the distribution of window size. The throughput of a TCP connection

is computed from window size distribution. This throughput can be corrected for timeouts and the

discrete nature of TCP congestion control using the heuristics in [2, 13].

In addition to the model for window variation, the modeling of TCP congestion control also

requires a model for the moments at which the window is reduced [2]. We call these moments

congestion moments or loss moments. First, we formulate the problem and we derive some stability

results for any stationary and ergodic process of congestion moments. Then, we present a Markovian

model for which we write the Kolmogorov equation of the window size distribution. This Markovian

model is further specified in some particular cases, such as the cases of always-linear window growth

and always-sublinear window growth.

The paper is organized as follows. In the next Section 2 we present the general model for

the window size evolution as well as some stability results. The Markovian model is described in

Section 3 with the help of its Kolmogorov differential equation. In Section 4 we present analytic

solutions to the Kolmogorov equation for some particular cases. In Section 5 we show how to

identify the parameters of the sublinear window size evolution, namely, we explain how to infer

the parameters of the model for the round-trip time as a function of the window size. Finally, in

Section 6 we present numerical and measurement results.

2 A general model for TCP

We first consider a very general model for the evolution of TCP congestion window. Our general

model is composed of two parts: the model for window increase between loss moments and the

model for loss moments. Recall that by a loss we mean an event that causes a reduction of TCP
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window.

Window evolution model between losses: Consider a fluid model of a TCP window [4, 8]. In

the absence of losses, the window W (t) (measured in packets) evolves according to

dW

dt
= f(W ), (1)

where f is some nonnegative function (i.e., the window only decreases at the moments of conges-

tion).

The main model that we shall analyze later will be the following special case of (1). It cor-

responds to the congestion avoidance mode of current TCP implementations [14]. In the absence

of losses, the window W grows linearly with time until some threshold W0 is achieved. Once the

window size is greater than W0, the growth becomes sublinear [1, 4, 8], and once a maximum

window size M (determined by the receiver) is reached, the window remains constant at M . The

sublinearity of window growth between W0 and M is assumed to be caused by a linear increase in

the round-trip time with the window size. Note that TCP sources increase their windows by the

same amount of bytes in a round-time, whatever is the duration of the round-trip time. Hence, an

increase in the round-trip time slows the window growth. Between 0 and W0, the round-trip time

is assumed to be constant and independent of the window size. The right hand side of the general

model (1) is then given by

f(W ) = 1{W < M} 1
bRTT (W )

= 1{W < M} 1
b(RTT0 + µ1{W > W0}(W −W0))

, (2)

where b is the number of data packets covered by an ACK (usually 2), RTT0 is a basic round-trip

time and the term µ1{W > W0}(W −W0)) corresponds to the increase in round-trip time caused

by the queueing delay induced by the large window size. The basic round-trip time can be seen as

the sum of the propagation time and the contribution of the other flows to the queuing delay. We

refer to [4] for details on how f(W ) is equal to 1/(bRTT (W )) for W ∈ (0,M). Figure 1 shows an

example of how the round-trip time varies with the window size. For a simple network of one router

and a single TCP connection [4, 8], RTT0 represents the two-way propagation delay, µ represents

the router bandwidth, and W0 is simply equal to µRTT0. In a real scenario, these quantities may

have different interpretations. We will propose in Section 5 to use the technique of non-linear least

squares to infer these parameters from the traces of the TCP connection.

Let t0 denote the time when W (t0) = W0. Then, the window evolution for our main model is

given by the function

W (t) =

{
W0 + 1

bRTT0
(t− t0) 0 < W ≤ W0,

W0 + 1
µb [

√
b2RTT 2

0 + 2µb(t− t0)− bRTT0] W0 < W < M,
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Figure 1: The dependence of round trip times on the window size
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Figure 2: The sub-linear window evolution

see also Figure 2. We shall allow below as special cases to have M = ∞ (infinite receiver window)

and/or W0 = ∞ (always-linear growth) and/or W0 = 0 (always-sublinear growth).

The loss model: We consider a stationary ergodic point process defined on some probability space

(Ω,F , P ) with a finite rate ν > 0, which will stand for the process of loss moments. We define

a loss moment as the instant at which the window of a TCP connection is divided by a constant

factor γ > 1. Typically γ = 2 [2, 13]. We consider a general reduction factor to account for other

possible congestion control policies.

Let Ti, i ∈ Z, be the time instant at which the ith loss occurs, and denote by τi = Ti+1 − Ti

the ith inter-loss time. We take ... ≤ T−1 ≤ T0 ≤ 0 ≤ T1 ≤ .... We shall allow in particular τi = 0

with positive probability, which means that losses may arrive in batches.

We begin by establishing conditions for the tightness of the process W , and construct another

simpler process that will serve as a majorant. This will allow us to obtain both bounds for perfor-

mance measures as well as stability results.
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Consider the process Ŵ (t) which is defined on the same probability space as the original process

W and is constructed as follows: it is also divided by γ at each loss, yet between losses it always

grows linearly with some rate v, i.e.
dŴ

dt
= v. (3)

This process is well defined for any initial state. It has a unique stationary ergodic regime Ŵ ∗, as

was shown in [2]. The stationary regime of Ŵ ∗ is given by

Ŵ ∗
n = v

∞∑

k=0

γ−kτn−1−k.

Lemma 1 Consider a stationary ergodic loss point process with finite positive rate. Assume that

there are two nonnegative numbers v and u such that f(w) ≤ v for any w ≥ u. Then, for any

fixed initial state at some time s which is taken to be the same in the original and new system (i.e.,

W (s) = Ŵ (s) ), we have Ŵ (t) + u ≥ W (t) for all t ≥ s.

Note that the conditions of Lemma 1 apply in particular to our example (2) with v = 1/(bRTT0)

and u = 0.

Define the correlation function between the inter-loss times: R(k) = E [τnτn+k]. The above

lemma implies that

Corollary 1 Under the conditions of Lemma 1,

(i) W (t) ≤st Ŵ + u for any t, and is therefore W (t) is tight.

(ii) For any increasing function h:

lim sup
t→∞

E [h(W (t))] ≤ E [h(W ∗
0 )] + u

lim sup
t→∞

E [W (t)] ≤ λα

(
1
2
R(0) +

∞∑

k=1

γ−kR(k)

)
+ u.

In the above corollary, ”≤st” stands for the stochastic ordering (see e.g. [15]). The last equality

follows from Proposition 2 in [2].

Remark 1 Note that one can construct in a similar lower computable bounds for the process

E [h(W (t))] if we replace the condition f(w) ≤ v for w ≥ u in Lemma 1 by f(w) ≥ v.

In the next two theorems we provide two stability results. The first establishes the existence of

a stationary ergodic regime, whereas the second one establishes its uniqueness and convergence of

the window size to that regime.
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Theorem 1 Assume that the loss process is stationary ergodic. Assume further that there are two

nonnegative numbers v and u such that f(w) ≤ v for any w ≥ u. Then there exists a stationary

ergodic process W ∗(t) satisfying the evolution (1) between losses and for which W (t) is divided by

a factor of γ for each loss.

Proof: Define on the same probability space the family of processes {W (s)(t), t ∈ R}, n ∈ R as

follows. W (s)(t) := 0 for t ≤ −s, and for t > −s it is given by the TCP evolution described by (1)

and with the window divided by γ for each loss. Thus all the processes W (s) experience losses at

the same instants. For each t, W (s)(t) is increasing with respect to s and thus it has a limit W ∗(t).

The limit is clearly finite if M < ∞. Next we show that in the case of M = ∞, the limit is finite

almost surely.

Consider the process Ŵ (t) defined on the same probability space defined in (3). Let Ŵ ∗ be the

unique stationary regime corresponding to Ŵ (see [2]). It follows from Lemma 1 that our limit

process W ∗ is majorized by the stationary ergodic process Ŵ ∗ + u, and therefore it is finite a.s.

(and tight). Since W ∗ is a function of the stationary ergodic loss process, it is also ergodic. This

establishes the theorem.

2

We call the process W ∗, defined in the previous theorem, the minimal stationary regime of W .

Theorem 2 Assume that the loss process is stationary ergodic. Assume that f(W ) is non-increasing.

Then there is a unique stationary regime W ∗ and for any initial value W (0), we have

lim
t→∞ |W (t)−W ∗(t)| = 0

almost surely.

We shall use the following obvious observation:

Lemma 2 Let W (t, w0) be the process W (t) obtained when starting initially at W (0) = w0. Then,

for any t ≥ 0, W (t, w0) is monotone in w0.

Proof of Theorem 2: Define Sn = Tn for n > 0 and S0 = 0. Consider the embedded process

Wn := W (Sn) for all nonnegative integers, with some initial condition W0 = W (0). Consider on

the same probability space another embedded process W ′
n := W ′(Tn) which is obtained similarly

using the same dynamics as that defining W , but with an initial condition W ′
0 > W0. It follows

from Lemma 2 that W ′
n ≥ Wn for all positive integers n. Now,

W ′
n+1 −Wn+1 = γ−1

(
W ′

n −Wn +
∫ Sn+1

Sn

[dW ′(t)
dt

− dW (t)
dt

]
dt

)
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= γ−1
(
W ′

n −Wn +
∫ Sn+1

Sn

(f(W ′(t))− f(W (t)))dt
)

≤ γ−1(W ′
n −Wn)

where we used the fact that f is non-increasing and Lemma 2. It follows that

W ′
n+1 −Wn+1 ≤ γ−n(W ′

0 −W0),

which shows that the processes Wn converges to a limit regime that does not depend on the initial

state. Since Ti are finite P a.s. (as the loss point process is assumed to have a positive rate), we

conclude that W (t) also converges to a unique limiting process that does not depend on the initial

state. This proves the theorem.

2

Remark 2 One can easily show that in general, when f does not satisfy the conditions of Theo-

rem 2, there need not be a unique stationary regime for the process W . Consider, for example, the

case where

γ = 2, f(w) = 1 + 9× 1{w > 5}.

First we suppose that losses occur just after Tn = n. If W (0) = 0, the window process converges to

W ∗(t) = t− btc+ 1, t ∈ IR

where btc denotes the largest integer number which is smaller than t. This process takes values in

the interval [1, 2]. However, if the process starts at sufficiently large W (0), it converges to another

limit process:

W
∗(t) = 10W ∗(t),

which takes values in [10, 20]. Although in this example the limit processes are not stationary

ergodic, by adding slight perturbation to the time between losses (e.g., by letting τn be i.i.d. random

variable, uniformly distributed in [1, 1 + ε] for some ε small), we obtain the same features as in the

above example yet with the limiting processes being stationary [5].

3 A Markovian model

In this section we study the window evolution according to the dynamics described by (2). For the

loss process we consider the following Markovian batch model.

We assume that batches containing a random number of losses arrive according to an indepen-

dent Poisson process with intensity λ. The window is divided by a factor γ > 1 for each loss in a

batch. We denote the sizes of (i.e., the numbers of losses in) consecutive batches by N1, N2, N3, . . .,
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and we assume that these constitute an i.i.d. sequence. The size of an arbitrary batch is generically

denoted by N
d= Nk. The Poisson process and the sequence Nk, k = 1, 2, . . ., are independent of

each other and independent of the past evolution of the window. For a batch containing n losses,

the window is multiplicatively decreased by a factor γ−n. Immediately after the multiplicative

decrease, the window restarts its growth (linear or sublinear). Furthermore, the window stays

constant at M when this maximum level is reached until the next batch of losses appears.

Note that W (t) is a so-called “Piecewise Deterministic Markov Process”, see [6]. We denote

the probability generating function of the distribution of N by

Q(z) := E
[
zN

]
=:

∞∑

n=1

znqn, |z| ≤ 1. (4)

We are interested in the calculation of the stationary distribution function of W (t), that is

F (x) := lim
T→∞

1
T

∫ T

t=0
P {W (t) ≤ x}dt. (5)

Once this distribution is calculated, the throughput (in packets/s) can be deduced in the following

way [2]

X̄ = E
[

W ∗

RTT (W ∗)

]
=

∫ M+

0

x

RTT (x)
dF (x).

Note that the throughput is no other than the expectation of the instantaneous transmission rate

X(t) = W (t)/RTT (W (t)). To correct for the burstiness of TCP, the instantaneous transmission

rate is supposed to be averaged over the last round-trip time.

The next theorem states that the distribution F (x) exists and is unique. It also provides the

Kolmogorov steady-state differential equations.

Theorem 3 There exists a unique steady-state distribution of the window size for the window

evolution model defined in (2) and the batch loss Poisson process. The complementary distribution

function F (x) = 1 − F (x) = P {W > x} , x ∈ (0,M ], is a solution of the following Kolmogorov

steady-state differential equations

− 1
b(RTT0 + µ1{x > W0}(x−W0))

d
dx

F (x) = λ

(
F (x)−

∞∑

n=1

qnF (min(γnx,M))

)
, (6)

where x ∈ (0, M)\{M/γn}n=1,2,....

Proof: The existence and uniqueness of the steady-state distribution follows immediately from

Theorem 2, as the function f(W ) defined in (2) is indeed non-increasing and the batch loss Poisson

process is stationary and ergodic. To derive the Kolmogorov steady-state differential equation we

use the up and down crossing argument. Namely, assume that the process is in equilibrium and

consider a level x ∈ (0,M). Whenever the window size increases from less than or equal to x to
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more than x we say that an up crossing of the level x has occurred. Similarly, if the window size

decreases from more than x to less than or equal to x we say that a down crossing of the level x has

occurred. Let [t, t + ∆] be a small deterministic time interval. When the process is in equilibrium,

the probability of up-crossing

(1− λ∆)P
{

x− 1
b(RTT0 + µ1{x > W0}(x−W0))

∆ < W ≤ x

}
+ o(∆)

is equal to the probability of down-crossing

λ∆
∞∑

n=1

qnP {x < W ≤ min(γnx,M)}+ o(∆).

After equating these probabilities, we pass ∆ ↓ 0. We note that the derivative of F (x) exists and is

continuous for all x except at x = W0 and x = Mγ−n, when qn > 0. For x ∈ (0,M)\{Mγ−n}n=1,2,...

we obtain the following steady-state Kolmogorov equation

1
b(RTT0 + µ1{x > W0}(x−W0))

d
dx

P {W ≤ x} = λ
∞∑

n=1

qnP {x < W ≤ min(γnx,M)}

The above equation immediately imply (6).

2

The differential equation (6) can be solved in a recurrent manner. Namely, we solve the equation

successively on the intervals [M/γ,M), [M/γ2,M/γ],... Note that at each step of this recursion one

needs to solve a linear differential equation of the first order. Thus, in principle, one can obtain an

analytic solution for any number of the intervals [M/γn+1,M/γn]. However, the analytic solution

is very messy and it is recommended to use any standard numerical differential equation solver.

The probability PM = P {W ∗ = M} can be found from the normalization condition. Furthermore,

PM as well as the moments of the window size distribution can be obtained explicitly in some

particular cases (see Section 4).

4 Some important particular cases

In this section we present some particular but important cases when we can obtain simple analytic

expressions for the distribution and the moments of the window size as well as for the constant PM .

4.1 The case of only linear window growth

Here we present the results for the case W0 ≥ M , that is, we assume that the window growth is

always linear. The linear window growth holds on paths where the connection under consideration

does not contribute significantly to queueing delays. For the detail derivations we refer an interested
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reader to [3]. If W0 ≥ M , the coefficient in front of the derivative in (6) becomes constant α :=

1/(bRTT0). Consequently, on the interval [M/γ, M) the distribution function is given by

F (x) = PMe
λ
α

(M−x),
M

γ
≤ x < M.

We recall that PM = P {W ∗ = M}. Let F k(x) denote the truncation of F (x) on the interval

[M/γk,M/γk−1). Then,

F k(x) = PM

k∑

i=1

c
(k)
i e−

λ
α

γi−1x, k = 1, 2, ... (7)

The coefficients c
(k)
i are calculated by the following double recursion on k and i

c
(k)
i+1 =

1
1− γi

i∑

n=1

qnc
(k−n)
i−n+1, i = 1, ..., k − 1,

with c
(k)
1 given by

c
(k)
1 = e

λ
α

M

γk−1

[
k−1∑

i=1

c
(k−1)
i e−

λ
α

γi−kM −
k∑

i=2

c
(k)
i e−

λ
α

γi−kM

]
.

The probability PM of the window size being at the maximum level can be calculated by the formula

PM =

(
1 +

(
1−Q(γ−1)

) ∞∑

i=0

ei

(
eγ−i λ

α
M − 1

))−1

,

where
ei

e0
=

1
1− γ−i

i∑

n=1

γ−nqn
ei−n

e0
, i ≥ 1,

e0 =


1 +

∞∑

n=1

γ−nqn

∞∑

j=0

ej/e0

γj+n − 1



−1

.

Next, define for Re(ω) ≥ 0 the LST (Laplace-Stieltjes Transform) of the window size distribution

by

f̂(ω) =
∫ M+

x=0
e−ωxdF (x).

Taking Laplace Transforms in (6) leads to:

α
(
f̂(ω)− PMe−ωM

)
= λ

1− f̂(ω)
ω

− λ

∞∑

n=1

γ−nqn
1− f̂(γ−nω)

γ−nω
. (8)

Since E
[
W k

] ≤ Mk, k = 1, 2, . . ., we may write

f̂(ω) = 1 +
∞∑

k=1

(−ω)k

k!
E

[
W k

]
.
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Substituting the above series in (8), using the absolute convergence of the doubly-infinite series to

interchange the order of summation and equating the coefficients of equal powers of ω we get the

following recursive formula for the moments of the window size distribution

E
[
W k

]
=

kα
(
E

[
W k−1

]− PMMk−1
)

λ (1−Q(γ−k))
, k = 1, 2, ...

In particular we find for k = 1, 2:

E [W ] =
α (1− PM )

λ (1−Q(γ−1))
,

E
[
W 2

]
=

2α
[
α (1− PM )− λPMM

(
1−Q(γ−1)

)]

λ2 (1−Q(γ−1)) (1−Q(γ−2))
.

The round-trip time is constant in this case (linear window growth) and the throughput is

simply equal to X̄ = E [W ] /RTT0.

4.2 The case of only sublinear window growth

Here we study the cases when the round-trip time always grows linearly with the window size. This

corresponds to congested paths where a queue of packets always exists in routers. A path crossed by

TCP connections is congested either because the bandwidth-delay product is small compared to the

buffering capacity of routers, or because the number of connections is large [8]. First, we consider

the case when the constant component of the round-trip time (RTT0) is negligible compared to

the increase in round-trip time induced by the connection. In our model such a situation would

correspond to RTT0 ≈ 0 and W0 ≈ 0. If we assume RTT0 = W0 = 0, the differential equation for

the window size evolution between losses takes the following form

dW

dt
=

1
bµW

. (9)

The window reduction at instants of losses is as before and W (t) stays constant until the next loss

when the maximum window size M is reached. As before, we seek to find a stationary probability

distribution for W (t) that satisfies these dynamics. Our approach will be to transform (9) into

an equation of the type studied in Section 4.1. This can be achieved using the transformation1

X(t) = W (t)2, which indeed leads to
dX

dt
=

2
bµ

,

i.e., a constant linear growth in between loss instants. The maximum value of the transformed

process X(t) is, of course, M2. If at the k-th loss instant t = Tk, the window W (T−k ) is reduced by

a factor γnk due to nk clustered loss events, then

X(T+
k ) = W (T+

k )2 =
(
γ−nkW (T−k )

)2 =
(
γ2

)−nk X(T−k ),
1The transformation X(t) = W (t)m+1/(m + 1) has been used in Ott et al. [12] to analyze the more general case

dW/dt = cW−m, c > 0, m > −1 for single losses (q1 = 1) and unlimited window growth (M = ∞).
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that is, the value of the process X(t) is reduced by a factor γ2 (instead of γ) for each individual

loss event. We can compute the stationary distribution of X(t) as in Section 4.1 taking a maximum

level M2 (instead of M), a linear increase rate α = 2/(bµ) and a reduction factor γ2 (instead of

γ). With these substitutions, the complementary distribution function of X(t) is given by (7) and,

hence, the stationary version W of the process W (t) satisfies:

P {W > x} = PM

k∑

i=1

c
(k)
i e−

λ
α

γ2(i−1)x2
, x ∈ [M/γk,M/γk−1), k = 1, 2, ... (10)

The probability PM := P {W = M} = P
{
X = M2

}
and the coefficients c

(k)
i are calculated as in

Section 4.1 (with M , α and γ replaced by M2, 2/(bµ) and γ2, respectively). The throughput in

this case is simply equal to 1/µ. Note that from the results of Section 4.1 we can also immediately

obtain a recursion on the even moments of the window size distribution. In the following we show,

however, how such a recursion can also be obtained for the odd moments, in the more general case

where RTT0 > 0.

Next, we consider the case when the constant component RTT0 of the round-trip time is sig-

nificant. W0 is still assumed to be negligible due to a persistent congestion of the path. This leads

to the following Kolmogorov equation for the steady-state window size distribution

− 1
b(RTT0 + µx)

d
dx

F (x) = λ

(
F (x)−

∞∑

n=1

qnF (min(γnx,M))

)
.

By multiplying the above equation by xkb(RTT0 + µx) and then integrating from 0 to M−, we

obtain the next recurrent relation between the moments W (k) = E
[
W k

]
, k ≥ 1

W (k) −MkPM =
λbRTT0

k + 1
[1−Q(γ−(k+1))]W (k+1) +

λbµ

k + 2
[1−Q(γ−(k+2))]W (k+2).

If the first moment W (1) = E [W ] and the constant PM are determined (e.g., after having numer-

ically determined the distribution function), then the higher moments can be calculated by the

simple recurrent formula:

W (k+2) = −RTT0(k + 2)[1−Q(γ−(k+1))]
µ(k + 1)[1−Q(γ−(k+2))]

W (k+1)

+
(k + 2)

λbµ[1−Q(γ−(k+2))]
W (k) − (k + 2)Mk

λbµ[1−Q(γ−(k+2))]
PM , k ≥ 2.

5 Identification of round-trip time model parameters

For networks of one bottleneck router and a single TCP connection (see [1, 4, 8]), the three pa-

rameters of the model for round trip time (RTT0, µ and W0) can be directly deduced. For more

complicated networks, these parameters have to be inferred on end-to-end basis from the traces of
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Figure 3: Round-trip time vs. window size

the connection. Assume that we have some measurements of the round trip times and the corre-

sponding window sizes seen by the connection. Figure 3 shows an example of such measurements

for a TCP connection that we ran for twenty minutes between a machine at INRIA Sophia Antipolis

(south of France) and another machine at ESSI about 1 Km from INRIA location. Each point in

this figure represents a measurement of the round trip time and the corresponding window size.

These points are obtained by a tool that we developed and that monitors the flow of packets and

ACKs at the output interface of the TCP source machine. The thick line in the figure represents

the average round trip time over close windows. It is clear how the round trip time tends to increase

with the window size. Next, we explain how we can infer the three parameters of our model from

such traces.

Let RTTi be the i-th measurement of the round-trip time and let Wi be the corresponding

window size. When using our model to predict the round-trip time for the window size Wi, the

error we introduce is equal to

εi = RTT0 + µ1{Wi > W0}(Wi −W0)−RTTi.

Let n be the total number of measurements. We propose to use the non-linear least-square technique

which consists in finding the parameters of the model that minimize the sum
∑n

i=1 ε2i . We solve

numerically such minimization problem for the traces presented in Figure 3. The program in C

that we developed using the non-linear simplex method of the NAG library [11] gives the curve

shown in Figure 4. The figure also shows 95% confidence intervals.
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Figure 4: Expected round-trip time vs. window size

6 Measurement results

We use the traces of the TCP connection between INRIA and ESSI to validate our calculation

of the throughput and the window size distribution. This connection was run for a whole day in

January 2000. We only consider the working hours. Approximately every twenty minutes, we store

the traces of the connection in separate files. Then, we apply our Markovian model to predict the

throughput of the connection in each time interval. We use two variations of our model. First,

we use the model for the case of always-linear window growth. Then, we use the general model

which takes into account the both cases of linear and sublinear window growth (see equation (6)).

The non-linear least-square technique is applied to the traces for different time intervals to find the

parameters of the model for round trip time variation. In both cases, we take N ≡ 1, that is, the

moments at which the window is reduced are assumed to follow a Poisson process. The maximum

window size on this connection is equal to 64 Kbytes and the New-Reno version of TCP is used in

the source machine at INRIA [7].

First, we plot in Figure 5 the variation of the throughput of the connection during the day

corresponding to the both models we considered. We also plot the variation of the real throughput.

The linear model overestimates the real throughput on this connection, whereas the estimation

given by the general model is much more accurate. The overestimation given by the linear model

is the result of the sublinearity of the window increase on this short-distance path. The model of

round trip time for this connection shown in Figure 4 is a clear proof of such sub-linearity.

Second, we plot the window size distribution function F (x) at different hours during the day.

Two samples are shown in Figure 6. The figure shows the distribution function given by our linear
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Figure 5: TCP throughput: sublinear vs. linear models
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Figure 6: Window size distribution function

and sublinear models as well as that calculated from window size measurements. A good match is

noticed between the model and the reality. The figures (especially the right-hand one) also shows

that the linear model overestimates the real throughput by giving more weight to large windows.
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