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ABSTRACT

In this paper, we study the second order statistics of traffic
in an Internet backbone. We model the traffic at the flow
level by a Poisson shot noise process. This model is quite
parasimonious, and is driven only by variables that can be
easily obtained from measurements, namely flow sizes, du-
rations and arrival rate. We consider the auto-correlation
of TCP traffic where the loss process of each TCP connec-
tion is assumed to be Poisson. Using a stochastic differ-
ential equation, we are able to provide an upper bound on
the auto-covariance function of the aggregated TCP traffic
whose tightness is shown by simulations with the network
simulator-ns.

1. INTRODUCTION

Second order statistics of network traffic, namely the auto-
correlation, plays an important role in network performance
evaluation (e.g., [1]) and traffic modelling (e.g., [2]). There
is a huge amount of work in the literature which investigates
the second order characteristics of network traffic (see [3]
and the references therein). A recent trend in studying net-
work traffic is to model traffic as fluid flows where each flow
is a stream of packets which have common source and/or
destination [4, 5]. Modelling traffic at the packet level is
very difficult, since traffic on a link is the result of a high
level of multiplexing of numerous flows whose behavior is
strongly influenced by the transport protocol and by the ap-
plication. From a simplicity stand point, it is much easier
to monitor flows than to monitor packets in routers. The
instantaneous rate of a flow depends on the network and
transport protocol dynamics. Transmission Control Proto-
col (TCP) flows, which account for about95% of the Inter-
net traffic, can have a highly varying instantaneous rate due
to the complexities in the mechanisms that TCP employs.
However, the majority of work on auto-correlation of net-
work traffic in the literature concentrates on either studying
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the correlation of a single TCP connection [3], or of the ag-
gregated traffic in which flows have simple shapes such as
rectangle.

The objective of this work is to study the auto-correlation
of traffic in an Internet backbone where links are usually
not congested. To this end, we use a Poisson shot noise
process where a flow is a generic notion which can be a
TCP flow or a UDP stream. We will concentrate only on
the auto-correlation of traffic where all flows are TCP con-
nections. Instead of using Markovian models for studying
auto-correlation of TCP traffic (e.g., [3]), our approach uses
a stochastic differential equation to obtain a tight bound on
the auto-covariance function of TCP flows. We find an up-
per bound on the auto-correlation of the aggregated TCP
traffic. This upper bound is a function of only a few flow
parameters such as flow arrival rate, flow sizes and flow
durations. These parameters can be easily computed by a
router (e.g., using a tool such as NetFlow, which provides
flow information in Cisco routers). Such a bound on the
auto-covariance function of backbone traffic is useful for
backbone operators who currently have only very basic in-
formation about the traffic.

The rest of the paper is organized as follows. Section 2
gives a summary of the shot noise model that was developed
in previous work. Section 3 presents the auto-correlation of
TCP traffic. Section 4 contains the simulation results and
Section 5 concludes the paper.

2. SHOT NOISE MODEL

Our traffic model in this paper is the shot-noise model which
was developed by Barakat et.al. in [6, 4]. In [6], one defi-
nition of flow is a stream of packets having the same source
and destination IP addresses, same source and destination
port numbers, and the same protocol number. Alternatively,
a flow can also be defined as a stream of packets having the
same /24 destination address prefix (i.e., only the 24 most
significant bits).

Let Tn, n ∈ Z, denote the arrival time of then-th flow
to the backbone link under consideration. LetSn andDn

denote the size and duration of then-th flow. The size of a



flow is the volume of data it transports during its lifetime.
Let Xn(t − Tn) denote the rate of then-th flow at timet
(e.g., in bits/s), withXn(t − Tn) equals to zero fort < Tn

and fort > Tn+Dn. We callXn(.) the flow rate function or
shot. The total rate of data through the backbone link, which
we denote byR(t), is the result of multiplexing of all shots:
R(t) =

∑
n∈Z Xn(t − Tn). Flow rate functions{Xn(.)}

are assumed to be independent and identically distributed.
These assumptions hold relatively well on a backbone link
[6]. The total data rateR(t) can be seen as a shot-noise
process [7], where the term ”shot” is synonymous of the
”flow rate function”.

Assume that traffic flows arrive at the backbone link as a
homogeneous Poisson process of finite rate. Using elements
from theory of Poisson shot-noise process, the authors in [6]
found that the auto-covariance function of the aggregated
traffic can be expressed as

CR(τ) = E[R(t− τ)R(t)]−E[R2(t)]

= λE


1{Dn>|τ |}

Dn−|τ |∫

0

Xn(u)Xn(u + |τ |)du


 , (1)

Where1A is the indicator function of eventA.

3. CORRELATION STRUCTURE OF TCP TRAFFIC

The auto-correlation of the traffic strongly depends on the
shot shape we consider, and thus on the dynamics of the
flow rate, which in turn depends on many factors such as the
definition of flows, the transport mechanism, the application
nature, etc. In some important cases, we can make use of
the protocol information to derive the shot functionXn(.).
The most typical example is TCP, whose dynamics shape
the flows and can be captured by analytical models. TCP is
a window-based flow control protocol that provides reliable
end-to-end communication in data networks. It is designed
to adapt to the various traffic conditions of the network:
a TCP connection progressively increases its transmission
rate until it receives some indication that the capacity along
its path is almost fully utilized. On the other hand, when
the network cannot accommodate the traffic, the data rate of
the connections is reduced. More specifically, the transmis-
sion rate of a TCP connection is governed by the additive-
increase multiplicative-decrease (AIMD) mechanism which
is as follows. Between congestion events (we also call them
loss events, since they are usually the times at which a packet
loss is detected at the sender), the rate of a TCP connection
increases linearly with a slopeα, which is inversely pro-
portional to the square of the round-trip time (RTT) of the
connection. At the congestion events, the rate of a TCP con-
nection is reduced by half. Precisely,α is related to the RTT
by: α = 1/bRTT 2 whereb is the acknowledgement factor

which indicates how many packets are included in one ac-
knowledgement [8] (typically,b = 2).

In this work, we assume that congestion events have a
Poisson distribution with intensityλ`. This assumption may
not hold in practice, but is needed for the following analyti-
cal derivation.

Assume that all traffic flows are long-lived TCP flows,
i.e. the congestion avoidance phase is dominant over the life
time of the flows. Rewrite equation (1), we get

CR(τ) = λP(Dn > |τ |)

E




Dn−|τ |∫

0

Xn(u)Xn(u + |τ |)du

∣∣∣∣∣∣∣
Dn > |τ |


 . (2)

Now if we condition onDn = d with d > |τ | then

E




Dn−|τ |∫

0

Xn(u)Xn(u + |τ |)du

∣∣∣∣∣∣∣
Dn = d, d > |τ |




=

d−|τ |∫

0

Ed [Xn(u)Xn(u + |τ |)| d > |τ |] du

= (d− |τ |)Ed [Xn(t)Xn(t + |τ |)| d > |τ |] .
NotationEd is used to indicate the expected value is cal-
culated under the conditionDn = d. The last equality is
derived under the assumption that the TCP rate is in its sta-
tionary regime at time 0 so thatEd [Xn(t)Xn(t + |τ |)] does
not depend on timet.

From here on, we do the calculation forτ > 0. Forτ <
0, the calculation is similar. Letrd|τ (τ) = Ed|τ [Xn(t)Xn(t+
τ)], where the subscriptd | τ indicates the expected value
is calculated under the conditionsDn = d, andd > τ . Let

drd|τ (τ) = rd|τ (τ + dτ)− rd|τ (τ)
= Ed|τ [Xn(t)(Xn(t + τ + dτ)−Xn(t + τ))].

We now consider the condition of occurrence of loss in[t +
τ, t + τ + dτ ]. When a loss appears in[t + τ, t + τ + dτ ],
the rate is divided by 2, so

Xn(t + τ + dτ)−Xn(t + τ) = −Xn(t + τ)
2

+ αdτ,

Whereas when there is no loss in[t+τ, t+τ +dτ ], we have

Xn(t + τ + dτ)−Xn(t + τ) = αdτ.

Since the loss process is Poisson with rateλ`, the probabil-
ity that a loss appears in[t+ τ, t+ τ +dτ ] is independent of
Xn(.), and is equal toλ`dτ . If all the flows have the same
RTT, and thus the sameα, it follows that

drd|τ (τ) = −Ed|τ [Xn(t)Xn(t + τ)]
2

λ`dτ

+Ed|τ [Xn(t)]αdτ. (3)



From [8], we have for a Poisson loss process:Ed|τ [Xn(t)] =
2α/λ`.

Inserting this value in (3), we obtain the following ordi-
nary differential equation

drd|τ (τ)
dτ

+
λ`

2
rd|τ (τ) =

2α2

λ`
.

From [4], we have the initial condition for Poisson losses
rd|τ (0) = Ed|τ [X2

n(t)] = 4Ed|τ [Sn]2/3d2.
Solving the above equation and simplifying the result

usingEd|τ [Xn(t)] = Ed|τ [Sn]/d ([4]), we obtain:

rd|τ (τ) =
1
3
Ed|τ [Sn]2

d2
e
−ατ d

Ed|τ [Sn] +
Ed|τ [Sn]2

d2
.

Let us definefd|τ as the probability density function (pdf) of
the random variablesDn whose probability space is[τ,∞].
Substituting the expression ofrd|τ in (2), we get

CR(τ) = λP(Dn > τ)
∫ ∞

τ

(d− τ)
(

1
3
Ed|τ [Sn]2

d2
e
−ατ d

Ed|τ [Sn] +
Ed|τ [Sn]2

d2

)
fd|τ dd.

Since the functionf(x) = x2e−ατd/x/3d2 is convex for all
x > 0, we have:

1
3
Ed|τ [S2

n]
d2

e
−ατ d

Ed|τ [Sn] ≤ Ed|τ [
1
3

S2
n

d2
e−ατ d

Sn ].

Thus,

CR(τ) ≤ λP(Dn > τ)∫ ∞

τ

(d− τ)
(
Ed|τ [

1
3

S2
n

d2
e−ατ d

Sn ] +
Ed[S2

n]
d2

)
fd|τ dd

≤ λP(Dn > τ)
(

1
3
E

[
S2

n(Dn − τ)
D2

n

e−ατ Dn
Sn

∣∣∣∣ Dn > τ

]

+ E
[

S2
n(Dn − τ)

D2
n

∣∣∣∣ Dn > τ

])
.

As CR(τ) is an even function, we have the general result:

CR(τ) ≤ λP(Dn > |τ |)(
1
3
E

[
S2

n(Dn − |τ |)
D2

n

e−α|τ |Dn
Sn

∣∣∣∣ Dn > |τ |
]

+ E
[

S2
n(Dn − |τ |)

D2
n

∣∣∣∣ Dn > |τ |
])

. (4)

There are two separate terms in the bound. The first term
is an exponential function ofτ , which vanishes quickly for
large values ofτ . The second term is a linear function of
τ , which decreases slowly asτ increases. As a result, the
bound has two distinct behaviors: one for small values of
τ , when the exponential term dominates and one for large
values ofτ , when the linear term dominates. Furthermore,
the loss rateλl does not figure in the bound and the round-
trip time only appears in the exponential term viaα.

4. SIMULATION RESULTS

We present a validation of the bound on the auto-covariance
function of TCP traffic by simulation. We use thenssimu-
lator to study two different scenarios. In the first scenarios,
all flows have the same size but different durations. In the
second scenario, both sizes and durations of flows change
during each simulation.

4.1. Simulation scenario

In our simulations, a set of TCP Newreno flows transmit
files over a 10 Mbps link which corresponds to the back-
bone link. Each flow transmits one file and all flows cross
the backbone link in the same direction. The duration of
each simulation is equal to 1000 seconds. Delayed acknowl-
edgement option of TCP is enabled and each packet has a
size of 500 bytes. Before arriving on the backbone link,
all flows experience some packet losses with a probability
of 3% (to introduce randomness in the durations of flows).
TCP flows are generated according to a Poisson process.
The rate of the Poisson process and the file sizes are cho-
sen such that the 10Mbps backbone link always remains
under-utilized. The round trip time of all TCP flows is set
to 80ms. We compute the rate with which data cross the
10Mpbs link and store the variation of this rate as a function
of time. This rate is used to calculate the auto-covariance
of TCP traffic. We also measure the size and duration of
each flow, which produces samples for the processes{Dn}
and{Sn}. The instantaneous rateR(t) is measured by av-
eraging the number of bytes that cross the 10Mpbs link
over the interval of 100ms. In each simulation, we plot
the auto-covariance of the real simulation traffic, and the
upper bound of the auto-covariance for TCP traffic (4). In
our simulations, the RTT was set to 80ms.α will then be:
α = 1/(bRTT 2) = 500 ∗ 8/(2 ∗ 0.082)(bits/sec2).

4.2. Constant-size flows

We set the arrival rate of TCP flows to 2 flows per second
and we give file sizes constant values equal to 25Kbytes,
50Kbytes, 100Kbytes, 250Kbytes and 500Kbytes. We run a
set of 10 simulations for each value of the file size. In each
simulation, all files have the same size. The average of the
10 values obtained from simulations are plotted. The 95%
confidence intervals for the actual traffic are also plotted,
while the 95% confidence interval for the approximations
are omitted because they are too narrow. The results are
plotted in Figures 1(a) to (e).

4.3. Variable-size flows

We repeat the previous simulations with variable file sizes.
To generate variable sizes, for each flow we pick a real num-
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(b) File size of 50KB
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(c) File size of 100KB
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(d) File size of 250KB
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(e) File size of 500KB
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Fig. 1. Simulation results showing the auto-covariance
functionCR(τ) versus time lagτ .

ber randomly between 1 and 3 with a uniform distribution.
The size of the flow in Kbytes is 10 to the power of the
selected number. This way we get an average file size of
215KB. The results are plotted in Figure 1(f).

4.4. Observations

From the simulation results, we can observe that for all val-
ues ofτ , the gap between the upper bound in (4) and the real
auto-covariance of the traffic is very small. For large values
of τ , both the upper bound and the auto-covariance of the
simulated traffic decrease slowly as a function ofτ with a
rate close to linear. This is consistent with our finding in (4),
where for large value ofτ the exponential term vanishes and
only the linear term contributes to the bound. For small val-
ues ofτ , both the auto-covariance of the simulated traffic
and the upper bound decrease exponentially fast as a func-
tion of τ . This can be explained by the domination of the
exponential term in the bound. Note here that the bound (4)
is obtained under some strong assumptions (i.e., losses are
Poisson, and other approximations detailed in [6]), which
may not hold in practice. This explains the instances in our
simulation results where the bound (4) is not respected.

5. CONCLUSION

In this paper, we use a Poisson shot noise model to study the
auto-correlation of Internet traffic in non-congested back-
bone links. We provide an upper bound on the correlation
of aggregated TCP traffic where all flows are long-lived
TCP flows. The upper bound is a function of only three
flow parameters (λ: arrival rate,Dn flow duration, andSn

flow size) which can be obtained from passive measure-
ments quite easily [4]. Such a bound can be used in network
dimensioning and management to study the impact of flow
arrival, flow sizes and durations on the auto-correlation of
the traffic and hence on dimensioning the backbone.
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