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Abstract—Our goal is to design a traffic model for uncongested
IP backbone links that is simple enough to be used in network op-
eration, and that is protocol and application agnostic in order to be
as general as possible. The proposed solution is to model the traffic
at the flow level by a Poisson shot-noise process. In our model, a
flow is a generic notion that must be able to capture the charac-
teristics of any kind of data stream. We analyze the accuracy of
the model with real traffic traces collected on the Sprint IP back-
bone network. Despite its simplicity, our model provides a good
approximation of the real traffic observed in the backbone and of
its variation. Finally, we discuss three applications of our model to
network design and management.

I. INTRODUCTION

Modeling the Internet traffic is an important issue. It is un-
likely that we will be able to understand the traffic character-
istics, predict network performance (e.g., for QoS guarantees
or Service Level Agreement definition), or design dimension-
ing tools without analytical models. The successful evolution
of the Internet is tightly coupled to the ability to design simple
and accurate models.

The objective of this work is to design a traffic model that
can be used in routers or by network administrators to assist in
network design and management. Such a model needs to be
simple, i.e., it has to be fast to compute and to rely on simple
parameters that can easily be acquired by a router. Currently,
network operators have very basic information about the traf-
fic. They mostly use SNMP [8] that provides average through-
put information over 5 minutes intervals. An analytical model
could provide more accurate information on the traffic. It could
be used in various applications such as detection of anomalies
(e.g., denial of service attacks or link failures), prediction of
traffic growth, or assessment of the impact on the network traf-
fic of a new customer or of a new application. Consequently, a
second important characteristic of the model we want to design
is to be protocol and application agnostic: it needs to be general
enough to evaluate link throughput independently of the appli-
cation nature and of the transport mechanism.

Modeling the traffic at the packet level has proven to be very
difficult since traffic on a link is the result of a high level of
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multiplexing of numerous flows whose behavior is strongly in-
fluenced by the transport protocol and by the application. In
addition, monitoring the traffic at the packet level becomes crit-
ical at OC-192 and above link speed.

Recently, a new trend has emerged, which consists in mod-
eling the Internet traffic at the flow level (see [3] and the refer-
ences therein). A flow here is a very generic notion. It can be
a TCP connection or a UDP stream (described by source and
destination IP addresses, source and destination port numbers,
and the protocol number), or it can be a destination address pre-
fix (e.g., destination IP address in the form a.b.0.0/16). Flows
arrive at random times and share the available bandwidth in the
network according to certain rules. Using Processor Sharing
queues [18], it is possible to get an idea about the response time
of a flow and about the distribution of the flows that are active
at a certain time in the network. From a simplicity standpoint,
it is much easier to monitor flows than to monitor packets in a
router. Tools such as NetFlow already provide flow information
in Cisco routers1.

In this paper, we propose a model that relies on flow-level
information to compute the total (aggregate) rate of data ob-
served on an IP backbone link. We are interested in capturing
the dynamics of the traffic at short timescales (i.e., in the or-
der of hundreds of milliseconds). For the purpose of modeling,
the traffic is viewed as the superposition (i.e., multiplexing) of
a large number of flows that arrive at random times and that
stay active for random periods. As explained earlier, a flow is
a generic notion that must be able to capture the characteristics
of any kind of data stream.

In contrast to other works in the literature (e.g., [3], [5], [16]),
we choose to model a link that is not congested (congestion pos-
sibly appears elsewhere on the flow path). This assumption is
valid, and in fact is the rule, for backbone links that are gen-
erally over-provisioned (i.e., the network is designed so that a
backbone link utilization stays below 50% in the absence of
link failure [12]). It is driven by our main objective, which is
to provide a link dimensioning tool usable in backbone network
management.

The contribution of this work is the design of a flow-based
Internet traffic model using simple mathematical tools (Pois-
son shot-noise). Thanks to the notion of shots we introduce
in the purpose of modeling flow transmission rates, our model
is able to compute the total rate of data in the backbone using
flows’ characteristics (i.e., arrivals, sizes, durations). Once the
model is introduced, the paper focuses on its confrontation to
real data collected on the Sprint IP backbone network. This
confrontation illustrates the efficiency of the model in comput-
ing the traffic in the backbone and its variation. We then discuss
three possible applications of our model, namely (i) the dimen-

�

http://www.cisco.com/warp/public/732/Tech/netflow



sioning and provisioning of the backbone, (ii) the short-term
prediction of the total rate of data on a backbone link, and (iii)
the generation of backbone traffic for network simulation tools.
In addition, our model opens the door to many future works on
a simpler modeling and better understanding of Internet back-
bone traffic.

In the next section, we survey the related literature and po-
sition our contribution. Section III describes the traces we use
throughout the paper for the validation of our model. In Sec-
tion IV, we present our model and we analyze its performance
in Section V. In Section VI, the model is confronted to the real
traces. We discuss three different applications of the model in
Section VII. Conclusions and perspectives on our future work
are presented at the end of the paper.

II. RELATED WORK

Different works (e.g., [9], [13], [19], [22]) have analyzed
the Internet traffic and have shown that it is self-similar over
large time scales. Self-similarity, or equivalently long-range
dependence, has been considered as a revolution against the
short-range dependence supposed by classical Markovian mod-
els. The latter models under-estimate the burstiness of Internet
traffic and result in a wrong evaluation of network performance.

Self-similarity has been explained by the presence of some
heavy-tailed distributions in the network. [19] explains the
self-similarity in LAN traffic by the multiplexing of ON/OFF
sources with heavy-tailed distributions for the durations of the
ON and/or OFF periods. [22] explains the self-similarity in
WAN traffic by the heavy-tailed distribution of transfer dura-
tions. The M/G/ � queue with a heavy-tailed distribution for
service times is used to generate self-similar traffic. [9] explains
the self-similarity in web traffic by the heavy-tailed distribution
of file sizes. [13] shows that the process of arrivals of TCP
connections is self-similar, and explains this phenomenon by
the heavy-tailed distribution of times between the beginning of
TCP connections in a WEB session.

The other body of the literature (e.g.,[3], [5], [16]) studies
fairness issues by modeling Internet traffic at the flow level.
The main objective is to show how the capacity of the network
is shared among the different flows, or equivalently, to compute
the response times of flows. It is difficult to achieve such an ob-
jective with models at the packet level, as the arrivals of packets
to a router interface are strongly dependent on the transport pro-
tocol involved in the transmission.

Flow-based models consider congested links that constrain
the bandwidth allocated to flows. Processor sharing queues [18]
are used to model such links. [3] uses a processor sharing queue
to study how the bandwidth of congested links is distributed
among large flows (elephants) and small flows (mice). In [3], an
M/G/ � model is also proposed for the number of active flows
on a non-congested backbone link. It coincides with a very par-
ticular case of our model where all flows would have exactly
the same rate. In [5], a multi-class processor sharing queue is
used to compute the queue length and the packet loss proba-
bility in an Active Queue Management buffer crossed by TCP
flows of different sizes. The average response time of a TCP
flow is obtained. A processor sharing queue is also used in [16]
to study the response time of a TCP flow on a congested link.

Date Length Avg. Link Utilization
Nov 8th, 2001 7h 243 Mbps
Nov 8th, 2001 10h 180 Mbps
Nov 8th, 2001 6h 262 Mbps
Nov 8th, 2001 39h 30m 26 Mbps
Sep 5th, 2001 10h 136 Mbps
Sep 5th, 2001 7h 187 Mbps
Sep 5th, 2001 16h 72 Mbps

TABLE I
SUMMARY OF OC-12 LINK TRACES

Once the utilization of the link reaches 100%, all the TCP flows
are supposed by [16] to reduce their rates and to increase them
linearly until the link becomes again fully utilized, and so on.
Note that all the above flow-based models make the assumption
that flows arrive according to a homogeneous Poisson process.

Our model is different from the above works in that (i) it is
designed for non congested links and as a consequence, is spe-
cific to backbone links, (ii) it uses any flavor of flow definition
to model the variation and the correlation of the traffic, and (iii)
it focuses on the variation of the traffic, a performance measure
of particular interest for network engineering (i.e., provision-
ing, SLA definition, anomaly detection, etc.).

III. MEASUREMENT TESTBED

We consider data collected from OC-12 (622 Mbps) links
on the Sprint IP backbone. The monitored links are over-
provisioned so that the link utilization does not exceed 50%
in the absence of link failures. In short, the infrastructure we
use to collect packet traces consists of passive monitoring sys-
tems that tap optical links between access routers and backbone
routers (see [12] for details on the monitoring infrastructure).
Every packet on those links is timestamped and its first 44 bytes
are recorded to disk.

In this paper, we present data from 7 different internal
POP (Point-Of-Presence) links collected on September 5th and
November 8th 2001 in three different POPs of the backbone.
Table I provides a summary of the traces. The traces have dif-
ferent link utilizations (average rates ranging from 26 Mbps to
262 Mbps), resulting in different trace lengths.

We divide each trace into 30 minutes intervals. We tried var-
ious intervals and we found that 30 minutes is a good compro-
mise in term of (i) keeping the arrival process stationary, and (ii)
giving enough points for the analysis of our model. We discuss
later in more details the consequence of this analysis interval on
our observations.

We apply the model to each interval and we validate its effi-
ciency in computing the traffic. We focus on the first two mo-
ments of the total data rate, namely the mean and the variance.
Considering the variance in addition to the mean allows a better
characterization of backbone traffic. As we will see, the vari-
ability of the traffic on some links of the backbone can be as
high as 30% compared to the mean. The importance of the first
two moments of the traffic in dimensioning backbone links will
be illustrated in Section V-E.



For each interval, we measure the coefficient of variation of
the total rate ��� (standard deviation divided by the mean), and
we compare it to the value given by the model. Our model only
requires information on flows, which we derive from the traces
(e.g., average arrival rate of flows).

In the measurements, we use two definitions of “flow”:
1) Flow defined by 5-tuple, which is a stream of packets

having the same source and destination IP addresses,
same source and destination port numbers, and same pro-
tocol number.

2) Flow defined by prefix, which is a stream of packets hav-
ing the same /24 destination address prefix (i.e., only the
24 most significative bits of the destination IP address are
taken into account).

In both cases, the size of a flow is measured in bytes, while
the duration is equal to the time difference between the first and
the last packet of the flow. In order to identify the end of a flow,
we use a fixed timeout of 60 seconds: if the timeout expires
before recording any additional packet, the flow is considered
completed. A flow made of only one packet is discarded (the
duration would be zero), and that packet is not counted for the
purpose of the variance of the measured total rate. Flows that
belong to 30 minutes intervals are split over the intervals they
overlap. We found that this artificial splitting affects only a
small number of flows, as shown in Figure 1. The graph on the
left-hand side shows the cumulative number of flows that arrive
during one 30 minutes interval. We use the second definition of
flow (i.e., /24 prefix) for this graph, since the splitting of flows
has more impact with this definition than with the first one (du-
rations of flows are longer in average). The second graph is a
zoom around 0 of the first one. The divided flows result in a
fast increase in the number of flows at the beginning of the in-
terval. The arrival rate remains pretty constant throughout the
30 minutes interval, except for the first 0.4 seconds, where we
count only around 15,000 extra flows that are the continuation
of flows started in the previous interval, out of a total of 680,000
flows. We consider therefore that the splitting of flows on these
intervals has a nonzero, yet marginal effect on the arrival pro-
cess, and in order to keep the model tractable, we do not correct
for these effects.

As we mentioned in the Introduction, our model can operate
with any definition of flow. The definitions we consider in this
paper are no more than two interesting examples, corresponding
to two different aggregation levels.

IV. THE MODEL

In this section, we describe the model (Poisson shot-noise)
used for data flows arriving on a backbone link (Figure 2). It is
based on the following two assumptions.

Assumption 1: Flow arrivals follow a homogeneous Poisson
process of finite rate � .

This assumption can be relaxed to more general processes
such as MAPs (Markov Arrival Processes) [1], or non homo-
geneous Poisson processes, but we will keep working with it
for simplicity of the analysis. Poisson might be the right model
if we consider recent findings by [2], [6] about the process of
flow arrivals and packet arrivals in the backbone of the Internet.
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Fig. 1. Cumulative number of flows during one 30 minutes interval
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Fig. 2. Traffic modeled as a multiplexing of flows represented by “shots”

When multiplexing a large number of flows from many differ-
ent sources, flows’ inter-arrival times are closer to those of a
Poisson process. The latter property is known to apply to ag-
gregates at the session level [13], [20], [22]. Note that since our
model does not depend on a particular definition of flow, one
can group packets into sessions that have Poisson arrivals, and
apply the model at the session level.

We computed the distribution and auto-correlation of the
flow inter-arrival times on the collected traces. We found that
they are close to those of a homogeneous Poisson process hav-
ing the same rate. We show the results for one 30 minutes inter-
val in Figures 3 and 4. The other 30 minutes intervals provide
similar results. These two figures correspond to the two defi-
nitions of flow, respectively. In each figure, the graph on the
left-hand side shows the quantile-quantile plot (qq-plot) of flow
inter-arrival times, and the graph on the right-hand side shows
their coefficient of auto-correlation for different lags. For the
qq-plot, the x-axis corresponds to the quantiles of the measured
inter-arrival times, and the y-axis indicates the corresponding
quantiles of the exponential distribution. We chose qq-plots
rather than histograms, because a qq-plot provides a stricter test
on the tail of the distributions, where a possible disagreement
between the tested distribution and the exponential one is the
most likely. The fit in distribution and the low-level of corre-
lation are clear from the graphs, which confirms that the flow
arrival process on our traces is close to Poisson.

Denote by ��� , �	��
 , the arrival time of the � -th flow, by �
�
its size (e.g., in bits), and by ��� its duration (e.g., in seconds).
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Fig. 3. Distribution and auto-correlation of inter-arrival times ������� ��� � �
	
for 5-tuple flows
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Fig. 4. Distribution and auto-correlation of inter-arrival times ������� ��� � �
	
for /24 prefix flows

A flow is called active at time � when � �
����� ����� � � .
Define ��������� ���
� as the rate of the � -th flow at time � (e.g.,
in bits/s), with ��������� ���
� equal to zero for ��� ��� and for
���
� ����� � ��� . In other words, ��������� � ��� is zero if flow � is
not active at time � . We call � � �! "� the flow rate function or shot.
� � �! "� depends on � � , � � and on the dynamics governing the
flow rate. For example, for TCP flows, the dynamics of the flow
rate is a function of the dynamics of the window size, which in
turn is a function of the round-trip time of the TCP connection,
and of the features of the packet loss process [1], [7], [10], [21].
Our second assumption on � ���! "� is as follows.

Assumption 2: Flow rate functions are independent of each
other and identically distributed.

The assumption on the independence of flow rate functions
is based on the following facts: (i) The link we consider is a
backbone link kept under-utilized by engineering rules. It does
not therefore experience congestion, and so it does not intro-
duce dependence among the flow rate functions. (ii) The flows
sharing this link have a large number of different sources and
destinations, and use many different routes before being multi-
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Fig. 5. Correlation of sequences �$# ��	 and �$% ��	 for 5-tuple flows
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Fig. 6. Correlation of sequences �$# � 	 and �$% � 	 for /24 prefix flows

plexed on the backbone link. The assumption of identical dis-
tribution can be relaxed by introducing multiple classes (based
on transport protocol, flow size, or any other metric). We keep
however a single class in this paper, hence &'� �(�� �*) are iid (in-
dependent and identically distributed). A direct consequence of
Assumption 2 is that sequences & � �+) and & � �,) also form iid
sequences, although for the same � , �
� and � � are obviously
correlated: the larger �
� , the larger � � (in general). Finally,
we assume that -/. � �10 is finite.

We computed the auto-correlation of sequences & � �+) and
& � �,) on our traces. We found indeed that these sequences
exhibit little correlation. The result is illustrated in Figures 5
and 6, where we show the auto-correlation coefficients of the
two sequences for one 30 minutes interval, using our two def-
initions of flow. In each figure, the left-hand side corresponds
to the sequence & � � ) , and the right-hand side to the sequence
& � �,) . The auto-correlation drops quickly to zero after lag-0.

Define 2/�3��� as the total rate of data (e.g., in bits/s) on the
modeled link at time � . It is the result of the addition of the



rates of the different flows. We can then write

2/�3����� �
����� ������� �	������� (1)

This model is a Poisson shot-noise process [4], [11], where the
term “shot” is synonymous here of “flow rate function”. In the
particular case where � ���3��� � ���	��

��� ��� �
��� �
�������
��� , that is,
where shots are rectangles of height 1 and length � � , the pro-
cess (1) is the number of clients found at time � in an M/G/ �

queue [17], if clients are identified with flows. We will allow
however for “shots” with a more general shape than a rectan-
gle of height 1, and we will see in this paper that this is indeed
essential to characterize the total data rate on backbone links.

We will use two alternative approaches to compute the mo-
ments of 2/�3��� . The first one uses queuing theory to compute the
Laplace Stietljes Transform (LST) of 2/�3��� in stationary regime
(we always assume that we have reached the stationary regime,
which exists for finite � and - . ���10 ). The expression of the
LST of 2/�3��� allows us to compute all moments of 2/�3��� , as well
as its first order distribution. We focus in this paper on the first
two moments (average and variance).

In the second approach, we use elements from the theory of
Poisson shot-noise (Campbell’s theorem [4], [11]) to compute,
in addition to the first two moments of 2 ����� , its spectral density
and its auto-covariance function.

In summary, our model allows us to completely characterize
the data rate on a backbone link based on the following inputs:

1) The arrival rate of flows � .
2) The distributions of flow sizes & � � ) and flow durations

& � � ) .
3) The shot function � ���! "� .
For the particular shapes of the shot presented in Figure 7,

we will see that with only three parameters, our model is able
to compute the average and the variation of the backbone traffic.
In summary:� The average total rate of the traffic is given by the two

parameters � and -/. � � 0 (Corollary 1).� The variance of the total rate (i.e., burstiness of the traffic)
is given by the two parameters � and -�� �! �#" � �%$ (Sec-
tion V-C and V-D), with a multiplicative factor function of
the shot shape.

V. PERFORMANCE ANALYSIS

A. LST and moments of the total rate

Let & �3��� denote the number of active flows at time � . As-
sumptions 1 and 2 imply that the total rate 2 ����� at time � is the
sum of a random number & ����� of iid random variables which
are the rates of active flows. Assumption 1 ensures that there is
no correlation among the instants of arrivals of active flows. In
this section, we compute the LST of 2/�3��� which we denote as'
2/�)( �*� -+�-,/.10 �32 �)4 $ , 576 �8( �:9<; . Our main result is stated in
the following theorem.

Theorem 1: For ( �>= and 5761�)( �79?; , the LST of the total
rate is'2/�8( �@�A6CB�DFE��
-<GIH � �J , .10LK � 2NM 4PORQRS � ��- . � �10UTV�

Proof: The rate of a flow found active at time � is equal to
� ����� � ����� . Let

'
� J �)( �@� - J �W,/.10LK �%2 � . �
� 4 $ , 576 �8( �X9Y; , de-

note its LST. We use superscript 0 to indicate that the expecta-
tion is computed under the condition that flow � is active at time
� : - J �W,/.10LK �%2 � . �
� 4 $ � -��8,/.10LK �%2 � . �
� 4 � � . ���1Z ��� � � � 0 $ .
Define

'& �-[1�\� - � [/] 2 �)4 $ , for [ �^= and _C[`_ �a
 , as the
Probability Generating Function (PGF) of the random variable& �3��� . Using [17, Equation II.34], the LST of 2/�3��� at a certain
point ( �b= , with 5761�)( �c9d; , can be obtained by evaluating
the function

'& �8[�� at [c� '
� J �8( � :'2/�8( �@� '& �

'
� J �)( � ��� (2)

In the following, we simplify this expression of the LST of 2/�3���
and write it as a function of the random variables � � , � � , and
the rate function � � �� � .

We start by computing the PGF of & �3��� , which is the number
of clients found at time � in an M/G/ � queuing model (Sec-
tion IV). The distribution of & ����� in the stationary regime is
given by (see e.g., [15], [17])e &I& �����@�Af()	� � �
-�. � �103�hgf`i , .`jIk � � � � Z f �ml*Z
where ��- . � � 0 is the load of the queue. As ��-�. ���10 is finite,
the system is stable and the number of active flows does not
grow to infinity with probability 1. It follows that'& �-[1�n� o�g�p J e &I& �3���q�Af+)r[ g� 6CB�D � ��- . � �10��8[ �?
 � �`� (3)

Next, we simplify - J � ,/.10LK � 2 � . � � 4 $ by getting rid of the in-
stant of arrival � � and of the superscript 0. We start by the
instant of arrival. The arrival process being Poisson, the start-
ing time of a flow known to be active at time � is uniformly
distributed between � � ��� and � , and is independent of the
starting times of the other active flows [17, Section 2.5]. We
can thus write that'

� J �)( �s� - Jut , .10LK � 2 � . � � 4wv
� - J G 
� � H ���J , .`0LK � 2�M 4 O�Q S � (4)

To get rid of the superscript 0, we use a technique similar to that
used in queuing theory to compute the distribution of the resid-
ual service time of the client in the server when a new client
arrives to the queue (e.g.,[17, Section 5.2]). We recall that the
superscript 0 represents the fact that the flow is active at time � .
Given that the time � is arbitrary, a flow active at time � has in
average a longer duration than an arbitrary flow. Let x J �-y1� andx �8y�� denote the probability density functions of the duration of
a flow active at time � and of the duration of an arbitrary flow,
respectively. x J �8y�� is obtained by scaling x �-y1� with the dura-
tion of the flow in a way to give more weight to large values
of � � . We have the following relation between the two densi-
ties [17, Section 5.2]: x J �-y1�*�zx �-y1�|{k � � � � . Using this equation
in (4), and substituting the result in (2) then in (3), we get the



expression of the LST of 2/�3��� stated in the theorem. The ex-
pectations in the theorem are computed for an arbitrary flow,
and not for a flow we found active at time � . �

By differentiating with respect to ( and then setting ( to
0, the LST in Theorem 1 can give us all the moments of the
total rate in the stationary regime. We have the following main
results.

Corollary 1: The average of the total rate is - . 2/�3��� 0Y�
��-�. � �10 .

This expected expression for -�. 2/�3��� 0 is very simple, and it
does not need any knowledge of the distribution of flow dura-
tions. It states that the average total rate is equal to the average
arrival rate of flows times the average amount of data brought
by each flow.

Corollary 2: The variance of the total rate is � � �
��- t�� � �J �  � � Q � ORQ v .

The variance of the total rate is the second important per-
formance measure an ISP needs to know in order to properly
dimension the links of its network. A backbone link has to be
provisioned so as to absorb the average of the total rate as well
as its variations. In contrast to the average, our model tells us
that the variance of the total rate is a function of the durations of
flows and their rate functions. This requires some assumptions
(or more information) on the dynamics of flow rate. Later, we
will provide approximations of the variance of 2/����� for some
particular rate functions.

Corollary 3: Let ���b� � � �J � �� � Q � O�Q . The computation
of the f -th moment of the total rate requires the expectations
- .�� � 0 , �3�d
 Z
	RZI� �I��Zhf .

B. Spectral density and auto-correlation of the total rate

The second approach for computing the moments of 2 ����� is
to write (1) as the convolution of a train of Dirac pulses located
at times ��� , �/�3���m�
� ������� ��� � ����� , with function ������ � :
2/�3��� � �3������� � �3��� � � � o. o � ��������� �
�/����� O � , where � de-
notes the convolution operator. As � ���� � and �/�� � are indepen-
dent because of our assumptions in Section IV, we can com-
pute the first and second order moments of 2 ����� using Camp-
bell’s theorem [4], [11], which is an alternative approach to
obtain Corollary 1 and 2. It also provides the spectral den-
sity � � �-x�� of the centered process 2/�3��� � - . 2 ����� 0 , which is

� � �wx��X� �
- ����� '� �-x�� ���  �� ,
'� �-x�� being the Fourier transform of

� � �! "� :
'� �wx��@� � � o. o � � � Q ��,/.  
���
� M ORQ . Inverting this expres-

sion for the spectral density into the time domain, we obtain
the following result for the auto-covariance function of the total
rate.

Theorem 2: The auto-covariance function of the total rate is
given by� ���! �� -�. 2/�3� �" �!2/�3��� 0+� - � 2  �3���P$

� �
- G 

� � �$#&% '(% � H ��� . % ')%J � � � Q � � � � Q �+*  ,* � O�Q S �
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(a) Rectangular shot (b = 0)

(c) Sublinear shot (b < 1) (d) Superlinear shot (b > 1) 

(b) Triangular shot (b = 1)
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Fig. 7. Simple models for shots

Proof: The spectral density � � �-x�� � ��-
� ��� '� �wx�� ���  � , is by

definition the Fourier Transform of the auto-covariance func-
tion

� � �! � . Using Inverse Fourier Transform, we write� � �- �� H � o. o � � �-x���,  
���
� ' O x
� ��-

� H � o. o * '� �-x��.*  ,  
���
� ' O x �
� ��- GIH � �J H � �J � � � Q �!� � �-/
� � �- � Q �"/�� O�Q`O / S �

For  � ; , the double integral in the last expectation is equal
to 0 when � � � ; and to

� ��� . 'J � � � Q �!� � � Q �� � O�Q other-
wise. Combining this result with the fact that

� � �- � is an even
function, leads to the expression stated in the theorem. �

For the particular case  �a; , we clearly retrieve, as ex-
pected, the expression of the variance of 2/�3��� given by Corol-
lary 2. Note that this approach can be extended to non Poisson
arrivals using [4].

C. Two particular shot shapes

To compute the moments of the total rate of order higher than
2, we need to model the shot (Corollary 3). Before moving to
more general models, let us examine the two particular cases
shown in Figure 7a and 7b.

1) Rectangular shots: First, we consider the case where the
rate of a flow is constant and equal to �
� " � � (which gives
the rectangular shot of length � � and height � � " � � of Fig-
ure 7a). Here, the random variable �0� (Corollary 3) is equal to
� ��#" � � .21� , and we need therefore to compute all expectations
- � � �� " � � .21� $ in order to fully characterize the total rate. The
average of the total rate requires the expression of -/. � � 0 . The
variance of the total rate requires the expression of -b� �  �#" � �%$ ,
and so on. In particular, Corollary 2 yields that the variance of

2 ����� is equal to � � � ��- t43)5�� � v .
The rectangular assumption is the simplest one; the only gen-

eralization from an M/G/ � model is the height of the “shot”
which is now variable. With this assumption, we only cap-
ture the variation of the total rate caused by the variation of



& ����� and by the variation of the ratio �
� " � � . In fact, a Pois-
son shot-noise with rectangular shots always under-estimates
the variance of the actual process.

Theorem 3: Among all possible flow rate functions, the rect-
angular flow rate function achieves the lowest variance � � of
the total rate.

Proof: Consider the following quantity which is clearly pos-
itive over all the set of flow rate functions:

��- GIH � �J � � � � Q � � � �
� ���  ORQ S 9?;R�

It can be expanded as

�
- GIH ���J � � � � Q � � ���
� ���  O�Q S

� �
-<GIH � �J E+�  � � Q � � 	 � �� � ����� Q � � � � �� � �  T O�Q#S
� �
- GIH �3�J �  � � Q � ORQ S � ��- �

�  �
� �

� Z
so that ��- t � �3�J �  � � Q � ORQ v 9 ��- t�3)5���� v �

This result holds for any flow rate function � � �� � . The first
term is the variance � � of the total rate for a general flow rate
function � � �� � (Corollary 2). The second term is the variance
of the total rate when flow rates are modeled by rectangles (Sec-
tion V-C.1). This concludes the proof. �

We know that flow rates are dynamic, especially with a pro-
tocol such as TCP which adapts the rate of a flow to network
conditions. Better results could be obtained with other flow
rate functions that capture a part of, if not all, this dynamics.
We will give an example in the next sections. One must not
interpret these particular shots as representative of a particular
protocol. They can be seen as attempts to capture some dynam-
ics of flow rates, while keeping our model simple and general.

2) Triangular shots: Another assumption is to consider that
the rate of a flow linearly increases with time (Figure 7b). This
assumption is inspired from the dynamics of TCP transfers that
form a large majority of the flows in IP backbones [12]. For
a flow of size � � and of duration � � , the rate is assumed to
increase linearly from zero to 	 �
� " � � , with a mean equal to
��� " � � . At a time � between � � and ��� � � � , we can write
�����3� � ����� � � 	 ��� " �  � � �3� � ����� . Hence, for � 9 
 , ��� � ���N� 1 � �� " � � . 1� . Again, we need to compute all the expectations
- � � �� " � � . 1� $ in order to fully characterize the total rate. For

the variance of 2 ����� we have � � ��� j� - t43)5���� v . As expected

from Theorem 3, the variance is larger than in the rectangular
case (by a multiplicative factor 4/3).

D. Measurement-based derivation of flow rate functions

The rectangular and the triangular assumptions are just two
examples among many. One can always consider other approx-
imations of flow rate functions using �
� and � � (log, square
root, exponential, etc.).

There are two methods to determine the function � ���� � . The
first method is based on modeling the individual rate function
� ���� � . For some transport protocols like TCP, it is indeed pos-
sible to capture the dynamics of the protocol and to derive an
optimal “shot” � ���! "� from it. We are following this approach
for TCP flows in a parallel work. The advantage of our flow-
based model is to reduce the modeling effort of an aggregate
rate of heterogeneous flows to that of a single flow rate, pro-
vided this modeling can be achieved with sufficient accuracy.

In this paper however, we want to remain as general as pos-
sible, and hence we must resort to the second method, based on
measurements. It consists in fitting a parametric model of the
shot ������ �*�	��
 �! "� , where ��
 �� � is an a priori chosen function
parameterized by a parameter vector 
 , which must satisfy the
constraint H � �J � 
 � Q � O�Q � � � � (5)

Vector 
 is then computed to minimize some error functional
between the experimental value of the distribution (or some
moments of 2/�3��� ), and the value computed by Theorem 1 (or
Corollary 2 or 3). Since in this paper we focus on the variance,
we compute � 
 �� � so that�� � � ��-YG H � �J �  
 � Q � O�Q#S Z (6)

where
�� � is the actual empirical variance of the measured ag-

gregate rate.
Since we have two equations (5) and (6), we need therefore

two parameters: 
c� ���1Z�� � . A simple function is a power func-
tion ��
 � Q ����� Q�� , illustrated in Figure 7c and 7d. It includes, as
particular cases, the rectangular ( �7�<; ) and the triangular ( �*�
 ) shots. Solving (5) yields that � � ��� � 
 � �
� " � � � 1� , and plug-

ging this value in (6) we get
�� � � � 2 � � 1 4 5 � � 1 - t43(5�� � v . We deduce

an estimate of � , based on the measurement of
�� � (and clearly,

as before, of � and - t�3)5���� v ), which is � ��� �<
 ��� �  ��� ,

with � � �� � " � �
- t43)5�� � v � (note that because of Theorem 3,� 9^
 ). Of course, the introduction of a larger number of pa-
rameters allows to fit � 
 �! "� to more moments than simply

�� � .
We will use this expression of � in Section VI.

E. Distribution of the total rate

By inverting the LST of 2/�3��� given in Theorem 1, we can
obtain the probability density function (pdf) of the total rate.
The difficulty with such a method is that it requires the LST of
2 ����� , which in turn requires the knowledge of the distribution
of the sizes of flows and of their durations.

If we only dispose of the first and second moments of
2 ����� , we can resort to the Central Limit Theorem to approx-
imate the pdf of the total rate by a Gaussian pdf: x � ��� � �1�  
���! , .#"%$'&�(*)  ,+ - 55/.  . This approximation is justified by the large
number of active flows at a given time on a backbone link [12].

The Gaussian approximation is simple, and at the same time
very useful to dimension the links of a backbone network. For



example, it tells us that during 70% of time, the total rate is be-
tween - . 2 0+� � � � and - . 2�0�� � � � [15]. It also gives us an
approximation of the tail of the total rate (i.e., the probability
that 2/�3��� exceeds a certain level). Using this approximation,
the bandwidth of a link of the backbone can be chosen so that
congestion is avoided. Let � ���$� be the normal quantile func-
tion defined by

e & � ��� ���*�$) ��� , with ; ��� � 
 and �
a normal random variable of mean 0 and variance 1. Suppose
that we want to choose the bandwidth of the link ( � ) in such a
way that congestion occurs in less than 
 ; ;	�
��� of time, i.e.,e & 2/��������� ) �
� . The Gaussian approximation tells that �
has to be set larger than -�. 2/�3��� 0+��� ���*��� � � � . One can use
large deviations techniques [23] to find a better approximation
of the tail of the total rate.

F. Moments of 2/�3��� and averaging interval

In reality, the total measured rate 2	� ����� at a certain time � is
computed by averaging and sampling the volume of data (e.g.,
number of bytes) that cross the backbone link during a short
time interval � around � :

2�� ������� 
� H 2 g � 1 4��g � 2/� � ��y)�/Z
with � � . f � Z �-f � 
�� � � , f �	
 . � denotes the length of the av-
eraging and sampling period. The measured rate appears thus
as a piecewise constant function, with segments of length � .
It amounts to convolve the instantaneous rate 2/�3��� by a lin-
ear filter of impulse response 
�� J�� ����� � before taking the sam-
ple. Except for the first one, the moments of 2 � �3��� depend
on � : the longer the averaging interval, the smoother the to-
tal rate2. The Wiener-Khintchine relations [14] imply indeed
that the spectral densities of 2 � �3��� and 2/�3��� are linked by
����� �wx��+� � ���wx�� ������� ��� x � � " � x � �  , from which we deduce
that the variance of 2�� �3��� , i.e., the measured variance, is�� ��� 	� H �J � 
 �" " � � � � �! � y( R� (7)

Since
� � �! ��� � � , this expression is always smaller than � � .

The scaling factor between � � and
�� � requires the knowledge

of
� � �- � , which is given in Theorem 2. Clearly, if

� � �! � does
not decrease too rapidly in . ;RZ � 0 , both variances will remain
close to each other. Consequently, we do not take into account
the averaging of the data rate in the model, but we rather keep� small so that

� � �- � remains close to
� � �-; � � � � in . ;#Z � 0 .

By taking � small, the instant at which a flow arrives or leaves
the backbone within a single averaging interval does not have
a big impact on the total rate. This is because the volume of
data transmitted by a flow during an averaging interval is small
compared to the size of the flow, or equivalently, the averaging
interval is small compared to the duration of the flow. � � can
then be safely used as an approximation of

�� � , which models
the variance of the measured samples of the total rate. Note that
one can always compute the exact value of

�� � by plugging the
expression of

� � �- � (Theorem 2) in (7).
 
The only exception is when the traffic is strongly self-similar (Hurst pa-

rameter equal to 1) [19]: increasing the averaging interval will not reduce the
burstiness of the total rate.
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Fig. 8. Auto-correlation coefficient of the total rate computed by Theorem 2

Before using our model, an ISP has to choose a value � of the
averaging interval. It can be the longest busy period (i.e., period
where the utilization of the link is 100%) allowed by the ISP. It
is also the interval below which the ISP does not care about
the congestion of the network, possibly because this short-term
congestion is absorbed by the buffers at the inputs of links. If
the chosen value � is small enough so that the auto-covariance
function

� � �! � slowly decreases in . ;#Z � 0 , � � can be used as
an approximation of the measured variance, otherwise

�� � has
to be computed and used. In what follows, we will choose as
averaging interval the (average) round-trip time of flows (200
ms), since we know that most of the flows take more than one
round-trip time to end. Our choice is also motivated by the fact
that TCP flows update their transmission rates approximately
once per round-trip time. Recall that the averaging interval is
a parameter that can be set by the ISP to any other value than
the round-trip time, depending on the maximum burstiness it
tolerates at the inputs of the links of its backbone.

We checked the decrease of the autocorrelation coefficient� � �! � " � � in . ;RZ � 0 by applying Theorem 2 to the traces. We
consider the three shots that correspond to � � ; , � � 
 , and�*� 	 . Figure 8 shows the results for one 30 minutes trace. The
graph on the left-hand side corresponds to 5-tuple flows, and the
one on the right-hand side corresponds to /24 prefix flows. We
plot the results for  � [0,400]ms. Indeed, the auto-correlation
coefficient slowly decreases, especially for /24 prefix flows due
to their longer durations.

G. Complexity of the model

Our model requires few parameters to characterize the back-
bone traffic. To compute the average traffic, we need the arrival
rate of flows � and their average size - . � �10 (Corollary 1). The
variance of the total rate requires one more parameter: the ex-
pectation of the ratio between the square of the size of a flow
and its duration -+� �  � " � � $ (for the shots of Figure 7). The av-
erage and the variation of the traffic can therefore be computed
with only three parameters: � , - . � �10 , and -+� �  � " � � $ .

In this paper, we compute the parameters of the model off-
line. We infer their values from statistics on the processes & � �,)
and & � �+) . The computation is simple and it only requires an



averaging over the different samples of the processes. An im-
plementation of the model would require an online computa-
tion of these parameters with, for example, an Exponentially
Weighted Moving Algorithm, such as the one used by TCP to
estimate the average round-trip time.

Suppose that we have a tool that gives us the size and du-
ration of a flow as soon as it ends. Let

�
� denote the estimate

of -�. � � 0 . When the tool indicates the departure of a flow of
size � , the estimate

�
� can be updated in the following way�

��� � 
 ��� � �� �	� � , with ; � � � 
 . The smaller � , the
slower the reaction of the estimator to a change in the average
flow size. A similar algorithm can be applied to estimators of �
and - � �  � " � � $ .

We keep the problem of the online estimation of the param-
eters of our model for future research. Our main objective in
this paper is to validate the model and to show its usefulness for
provisioning and managing IP networks. Given that our model
requires few parameters, we believe that it simpler (in term of
computation cost and implementability in an operational envi-
ronment) than a packet level model that would provide the same
information about the traffic.

VI. EXPERIMENTAL VALIDATION

In this section we validate our model using the traces col-
lected on the Sprint IP backbone, and presented in Section III.

We compare the real coefficient of variation of the total rate

��� � � ��  k � �1� , with the results obtained from our model � � �� jIk .���� �� K 5� 2�M 4
	 M 0jIk � 3 � � , when the input data (i.e., flow arrival rate

� and the expectation of �  �#" � � ) are directly derived from the
traces. Samples of the total rate are computed using averaging
intervals of 200 ms. This is comparable with the average round-
trip time we measure on these links (Section V-F).

Even if Assumptions 1 and 2 hold, the measurement process
introduces two differences with the model of Section V. We
already addressed these two differences.� The first difference is the averaging and sampling of the

measured rate at a periodicity of 200 ms, which will lead
to an experimental value of variance

�� � smaller than the
variance of the instantaneous rate � � , as explained in
Section V-F. We have indeed observed on experimental
data that the longer the averaging interval, the smaller

�� � .
Therefore, we expect to find a few occurrences of an em-
pirical value

�� � smaller than the lower bound obtained
with a rectangular shot (Theorem 3). A better matching
would be obtained by comparing the experimental vari-
ance to the value

�� � given by (7), instead of comparing it
to the variance predicted by Corollary 2. This will compli-
cate a little the analysis since it will require the computa-
tion of the integral in (7), using the value of

� � �- � given
in Theorem 2. A better matching would also be obtained
when the averaging interval tends towards 0.� The second one is the splitting of flows located on the
boundaries of the 30 minutes intervals. As we explained in
Section III, the number of these flows is very small com-
pared to the total number of flows that arrive in the inter-
vals, and the splitting has therefore a negligible impact.
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Fig. 9. Coefficient of variation of the total rate with triangular shots and flows
defined by the 5-tuple

These two sources of errors are unavoidable: the first one be-
cause traffic is packet-based and not fluid, so that the measure-
ments must be averaged over intervals of some minimal length,
and the second one because we need to divide the trace in inter-
vals short enough to keep the arrival process stationary and to
reduce the volume of data to manipulate.

A. Results

In this section we do not present results on the first moment
of the total rate, since they are computed by our model and by
measurements in exactly the same way.

In Figures 9 and 10 we compare the coefficient of variation
computed via measurements with that given by our model with
triangular ( �V� 
 ) and parabolic ( �V� 	 ) shots. These results
refer to the first definition of flow using the 5-tuple. Each point
in the figures correspond to a 30 minutes interval. A cross in-
dicates that the average rate during that interval is below 50
Mbps; a triangle is used for those intervals with an average rate
between 50 and 125 Mbps; the dots are used for rates above 125
Mbps. The x-axis shows the measured coefficient of variation
of the total rate, while the y-axis shows the coefficient of vari-
ation given by the model. A point on the diagonal crossing the
figures represents a perfect match between the model and the
measurements. The two dashed lines identify the bounds for an
error in the estimate of 20%.

There is a good match between the model and the measure-
ments with better results for the parabolic case; the triangular
case often under-estimates the real coefficient of variation since
it does not capture all the dynamics of flow rate.

The above two figures show three clusters of points, that can
be easily distinguished. The interpretation is simple and is re-
lated to the fact that we are collecting traces on many diverse
links, with three main different utilization levels (Section III).
As we will explain in Section VII-A, backbone traffic becomes
smoother when the arrival rate of flows � increases. An in-
crease in the arrival rate of flows is the main responsible for the
increase in the utilization among the links, since it is safe to
assume that the average file size is the same on all links of the
backbone (Corollary 1). Links with higher utilization (above
125 Mbps) exhibit very low variation, and, thus contribute to
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Fig. 10. Coefficient of variation of the total rate with parabolic shots and flows
defined by the 5-tuple
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Fig. 11. Power � of flow rate functions with flows defined by the 5-tuple

the first cluster of points at the bottom-left corner of the figures.
Those links with a medium utilization (between 50 Mbps and
125 Mbps) are represented in the cluster in the middle. Finally,
the links with the lowest utilization (below 50 Mbps) exhibit the
highest traffic variability (around 30%), and yield the cluster of
points on the right-hand side of the figures.

In Section V-D, we explained how the optimal power � can
be computed from a trace so that the variance of the total rate
given by our model matches that given by measurements. For
the different 30 minutes traces, we compute this optimal power
and we plot its histogram in Figure 11. The average value of �
over all the traces is equal to 
 � ��� , which means that parabolic
shots are in average the most suited to model traffic when flows
are defined by the 5-tuple (from variation point of view). We
are currently working on the interpretation of the difference in
the value of � among the traces. A possible reason could be the
difference in file sizes: small files require a large value of � due
to the slow start phase of TCP, and large files require a small
value of � due to the slow window increase in TCP congestion
avoidance mode.

Figures 12 and 13 provide the coefficient of variation for the
second definition of flow based on destination address prefixes.
We plot the cases with rectangular shots ( � � ; ) and triangular
shots ( � � 
 ). The use of rectangular shots seems to be able
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Fig. 12. Coefficient of variation of the total rate with rectangular shots and
flows defined by destination address prefix
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Fig. 13. Coefficient of variation of the total rate with triangular shots and flows
defined by destination address prefix

to capture the variability of the traffic aggregate at the level of
destination address prefixes. This is probably due to the fact
that such a level of aggregation “dilutes” the impact of specific
transport protocol mechanisms on the total rate.

This result shows that our model can estimate the total rate
and its variance independently of the protocol or application
characteristics. The ability of defining a flow through the des-
tination prefix greatly reduces the complexity of a possible im-
plementation. Indeed, on our traces, the number of flows of
which a router would need to keep track is reduced on average
by one order of magnitude when using a /24 destination pre-
fix. A straightforward extension to this flow definition would
be the use of “routable” prefixes (i.e., prefixes present in the
forwarding table of the router) to define flows. Such an exten-
sion would result in an additional decrease of the burden for the
router given the level of flow aggregation (with /8 and /16 pre-
fixes, for example) that could be achieved. Moreover, it would
give the possibility to use flow information in conjunction with
routing information in order to infer the variation of the rate
over all the links of the same network from the measurement of
only a subset of the links. We discuss later the issue of combin-
ing our model with routing information.



VII. APPLICATIONS OF THE MODEL

We present three possible applications of our model to high-
light the role that such a model may have in the engineering and
management of an IP backbone network.

A. Network dimensioning and provisioning

This is the first and the most intuitive application of our flow-
based model. Suppose that an ISP collects statistics on flow
sizes, flow durations, and flow arrivals (for example with tools
such as Cisco NetFlow). With this sole information, the ISP is
able to compute the moments of the total rate, in particular its
average and its variance. This way, the ISP would have more
detailed information than that provided by SNMP (one of the
problems of SNMP is that it does not capture traffic variation at
short time scales).

The information on flows can be collected on the link we
want to monitor. It can also be collected at the edges of the
backbone. Combined with the routing information in the edge
routers, this will give us information on flows on each link of the
backbone. Our model can then be used to compute the traffic
on the links of the backbone, by only monitoring the edges.

The detailed information provided by our model on the traffic
helps to dimension backbone links, as explained in Section V-E.
Rate variation at short time scales are very useful in the defini-
tion of the buffer size and in the evaluation of the maximum
queuing delay. In the case we collect information on flows at
the edges, our model can help in routing flows in the backbone,
with the objective to optimize the utilization of the available
resources.

Computing the traffic in the backbone using information on
flows is not the only application of our model to network di-
mensioning and management. The model enables to study the
impact of a change on backbone link utilization by other vari-
ables, such as the distribution of flow sizes, the distribution of
flow durations, the flow arrival rate, etc. This study is very use-
ful for upgrading backbone links. For example, we can evaluate
the effect caused by a new application resulting in large transfer
sizes, or by an increase in the number of users in the congested
access networks, resulting in longer flow durations. We can also
evaluate the impact on the traffic of a change in the shot shape
�����! "� , which may follow a change in the application or in the
transport protocol.

We illustrate this latter application by the following example,
which shows the impact of a change in the flow arrival rate �
on the traffic, and hence on the dimensioning of the backbone.
Consider the case when the joint distribution of flow sizes and
flow durations is stationary over long time intervals, and does
not depend on the flow arrival rate3. Suppose that the ISP sets
the bandwidth of its links to -�. 2 ����� 0�� � ���*� � � � , where � ���*�
is the � -quantile of the centered and normalized total rate 2/�3��� ,
i.e., the value such

e�� 2/�3��� ����- . 2/�3��� 0�� � ���*� � � �����<� � ,; � � � 
 . � is the congestion probability. The moments
of 2/�3��� in this expression of the bandwidth are given by our
�
In the other case, a model has to be developed for the rest of the Internet, to

evaluate the impact of a change in the arrival rate of flows on the joint distribu-
tion of flows sizes and flow durations. We will address this problem in a future
research.

model (Corollary 1 and 2). The function � ���*� can be com-
puted using the Gaussian approximation of Section V-E, which
gives for example � �8;#� ;�	 �V� 
 � ��
 . When the arrival rate of
flows increases, the bandwidth of the backbone links has to be
increased as well, since the first and second moments of 2/�3���
increase with � . However, while the first moment of 2/����� in-
creases as � , the standard deviation of 2/�3��� increases as � � .
This indicates that the coefficient of variation of 2/�3��� decreases
as 
 " � � . Concretely, this means that the traffic in the backbone
becomes smoother and smoother when more and more flows are
multiplexed. The consequence of this smoothing is that the ISP
does not need to scale the bandwidth of its links linearly with � .
(S)He can gain in bandwidth by accounting for the smoothing
of the traffic.

B. Prediction of the total rate

The fact that our model gives the auto-covariance function
of the total rate

� � �! � , allows us to propose predictors for its
future values. To get a small error, the prediction has to be done
on intervals of the same order of magnitude as the average flow
duration. Prediction over longer time intervals is difficult as
traffic becomes uncorrelated.

Predicting the future values of the total rate would help an
ISP in the real-time management of the resources of its back-
bone. For example, an ISP can take the decision to route any
new flow on a different path when the predicted total rate ex-
ceeds the available bandwidth, and to re-use the old path when
the predicted total rate drops below the available bandwidth.
This will prevent the congestion of the network and will ensure
an efficient utilization of resources on the main paths.

The auto-covariance function of the total rate is computed
from statistics on flows using (2). The prediction of the total
rate after a certain time  in the future can be done using the
present and the past values of the total rate itself. It can also
be done using the present and the past values of the number
of active flows & ����� . We will only consider the first kind of
predictors in this section, however the second kind of predictors
is a straightforward extension of the first one.

In this section we will consider one possible predictor for the
total rate: the Moving Average predictor [14]. Let  denote the
time between two predictions, and let 2 g denote the total rate
sampled at f  : 2 g � 2 �wf$ � , with f � 
 . We denote the esti-
mate of 2 g made by the predictor by

�
2 g . We take the predic-

tion of the total rate as a linear function of the last � values of
the process & 2 g ) : �

2 g � 1 � ��
 .21� p J � � 2 g . � � Then, we look for
the coefficients � � that minimize the mean square error between�
2 g and 2 g , i.e., - t � �2 g � 2 g �  v . The desired coefficients are

the solution of the following set of � linear equations, called
normal equations in linear prediction theory [14],


 . 1�
� p J � � � � ��� ��� ����� �����,�A
 ��Z�� �A;RZI
/ZI� �I�CZ�� �?
 � (8)

� � ��� � is the lag- � auto-correlation function of the process & 2 g ) ,
which is here � � ��� ��� � � ���- � ���3- . 2 ����� 0��  , with

� � ���! � given
by Theorem 2.



The value of � depends on how much the total rate is cor-
related; a significant correlation requires a large value of �
to obtain a good prediction. But the value of � also depends
on the number of samples available for the estimation of the
auto-correlation functions of & 2 g ) . If the number of samples is
small, the estimated auto-correlation functions will contain an
important error. A large value of � may give a worse predic-
tion error than a small value, since the number of lags of the
auto-correlation function involved is larger in the former case.
To choose an appropriate value for � , we increase it starting
from one, then we take the lowest value that precedes an in-
crease in the mean square error.

A natural approach for rate prediction is to compute the
auto-correlation function � � ��� � and the prediction coefficients� �cZ ; � � � ��� 
 , directly from the past samples of the mea-
sured rate &�2 g ) , instead of using Theorem 2, which requires
additional information on flows. The advantage brought by our
model is its ability to make use of a larger number of samples
(since it uses samples of flow sizes and flow durations to com-
pute the auto-correlation functions), and hence of a larger value
of � , than a direct prediction from &�2 g ) . This is helpful when
the prediction interval  gets large, as in this case the number
of samples of the measured process & 2 g ) rapidly decreases,
making a prediction using the samples of the process &�2 g ) not
accurate. A solution could be to take samples of the process
&�2 g ) over longer periods, but this is not feasible because of the
stationarity problem.

We apply our predictor on a 30 minutes trace taken on one
of the OC-12 links described in Table I. Similar results were
found on the other traces.

First, we find the optimal value of � , and the optimal pre-
diction coefficients � � , ;�� � � � �A
 , using our model in
the case of triangular shots. Then, we find the optimal Mov-
ing Average predictor using the measured process &�2 g ) . The
optimal value of � is computed as explained above, and the op-
timal coefficients of the predictor are computed using (8). For
each predictor, we compute the prediction error that we define

as

� k . 2 �� � . � � 4 5 0k � � � � . We show the results in Table II for different
values of the prediction interval  . We deduce that our model
allows a good prediction of the total rate; the error is close to
what we obtain when we do the prediction using the samples of
the total rate itself. For large  , our model behaves even bet-
ter than using the measured process &�2 g ) , since the number
of samples of the process & 2 g ) becomes small. In opposite to
using the measured process & 2 g ) , our model relies in the com-
putation of the auto-correlation function � � ��� � on the number
of flows, which does not change when the prediction interval  
changes. The graphs in Figure 14 better illustrate the results of
the prediction for  ���
 ; . The dashed lines plot the total rate
measured on the link every 10 seconds. The thick lines show
the prediction of the rate using the two techniques.

C. Generation of backbone traffic

The third application of our model is the generation of back-
bone traffic. We want to use statistics on flows to generate a
traffic (e.g., in a simulation tool) that looks like the real Inter-
net traffic. We want both traffic to possess the same statistical

Prediction interval  (s)
2 5 10 30 60

Using M 6 2 2 2 3
& 2 g ) error (%) 3.9 4.2 4.68 4.74 5.61

Using the M 6 4 5 3 3
model error (%) 3.93 3.88 4.01 4.55 5.21

TABLE II
PERFORMANCE OF OUR MODEL IN PREDICTING THE TOTAL RATE
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Fig. 14. Prediction of backbone traffic using our model (top) or rate measure-
ments (bottom)

properties, for example, the same second order moments. The
simplest method is to generate flows as a homogeneous Poisson
process, and then, for each flow, to pick up a size � and a du-
ration � using some distribution, and finally to transmit data at
a constant rate equal to � " � during a time � . The intensity of
the Poisson process and the distribution used to generate � and
� are obtained from the statistics we have on the real traffic.

The traffic generated in this way models correctly the back-
bone traffic only when shots (i.e., flow rate functions) are really
rectangles. We get a different traffic in the other cases. To im-
prove the quality of the generated traffic, one has to transmit
data during the lifetime of flows using a better model for shots,
for example, using the power � model, � �� ; . Here resides the
main contribution of our model. It introduces a new compo-
nent into traditional traffic models, that is, the shot � ���! "� . In
addition to � , � � and � � , one has to find the optimal value of
� � �� � to be used for the transmission of data during the life-
time of flows. We discussed this issue in Section V-D. The
optimal � � �� � depends on which property of the total rate we
want to capture. The shot that captures the variance of the to-
tal rate would be different from the one that captures the auto-
correlation of the total rate, or from the one that captures the



distribution of the total rate. Our model opens the door to many
future research works on the characterization of the appropriate
shot to be used to simulate Internet traffic.

VIII. CONCLUSIONS

We proposed a traffic model for uncongested backbone links
that is simple enough to be used in network operation and en-
gineering. The model relies on Poisson shot-noise. With only
3 parameters ( � , arrival rate of flows, -�. �
��0 , average size of a
flow, and - � �  �#" � � $ , average value of the ratio of the square of
a flow size and its duration), the model is able to find good ap-
proximations for the average of the total rate (the throughput)
on a backbone link and for its variations at short timescales.
The model is designed to be general so that it can be easily
used without any constraint on the definition of flows, nor on
the application or the transport protocol.

We are working on various extensions of the present work.
We stated in the paper a result for the auto-covariance function
of the total rate. Using this result, we are investigating the cor-
relation of Internet traffic and its relation with the flow arrival
process and the distributions of flow sizes and flow durations.
We are further investigating the three applications of our model
sketched in the paper. We are also studying the gain of intro-
ducing classes of flows with a different shot for each class. This
will solve the problem when the flow rate functions do not have
the same distribution. Finally, we are evaluating the worthiness
of considering more complex flow arrival processes than Pois-
son. The challenge is to improve our evaluation of the total
data rate without much increasing the complexity of the model.
We want the model to be usable with current management tools
used by ISPs.
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