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Abstract. FEC is widely used to improve the quality of noisy trans-
mission media as wireless links. This improvement is of importance for
a transport protocol as TCP which uses the loss of packets as an indica-
tion of network congestion. FEC shields TCP from losses not caused by
congestion but it consumes some bandwidth that could be used by TCP.
We study in this paper the tradeoff between the bandwidth consumed
by FEC and that gained by TCP.

1 Introduction

Forward Error Correction (FEC) is widely used to improve the quality of noisy
transmission media as wireless links [2, 4]. This improvement is of importance for
a transport protocol as TCP [8, 16] which uses the loss of packets as an indication
of network congestion. A TCP packet corrupted while crossing a noisy link is
discarded before reaching the receiver which results in an unnecessary window
reduction at the TCP source, and hence in a deterioration of the performance of
the TCP transfer [2]. In the following, we will only focus on transmission errors
on wireless links and we will call the corrupted packets non-congestion losses or
link-level losses since they appear at a level below IP.

The idea behind FEC is to transmit on the wireless link, together with the
original data, some redundant information so that a corrupted packet can be
reconstructed at the output of the link without the need for any retransmission
from TCP [2, 4]. Normally, this should improve the performance of TCP since it
shields it from non-congestion losses. But, FEC consumes some bandwidth. Using
much FEC may steal some of the bandwidth used by TCP which deteriorates
the performance instead of improving it. Clearly, a tradeoff exists between the
bandwidth consumed by FEC and that gained by TCP. We analyze this tradeoff
in this paper. The question that we asked is, given a certain wireless link with
certain characteristics (bandwidth, error rate, burstiness of errors), how to choose
the amount of FEC so that to get the maximum gain in TCP performance. A
mathematical model and a set of simulations are used for this purpose.

2 Model for non-congestion losses

Consider a long-life TCP connection that crosses a network including a noisy
wireless link of rate µ. We suppose that the quality of the noisy link is improved
by a certain FEC mechanism that we will model in the next section.

Most of the works on TCP performance [10, 11, 13] make the assumption
that the loss process of TCP packets is not correlated. Packets are assumed
? A detailed version of this paper can be obtained upon request from the authors.
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Fig. 1. The Gilbert loss model

to be lost independently with the same probability P . This does not work for
wireless links where transmission errors tend to appear in bursts [3–5, 9]. The
model often used in the literature to analyze correlated losses on a wireless
link is the one introduced by Gilbert [3, 4, 7, 9]. It is a simple ON/OFF model.
The noisy link is supposed to be in one of two states: 0 for Good and 1 for
Bad. A packet is lost if it leaves the link while it is in the Bad state, otherwise
it is supposed to be correctly received. We use such a model in our work. A
discrete-time Markov chain (Fig. 1) with two states (Good and Bad) models the
dynamics of the wireless link. We focus on the loss process of link-level packets
also called transmission units. We suppose that a TCP packet is transmitted over
the wireless link using multiple small transmission units [3, 4]. A transmission
unit can be a bit, a byte, an ATM cell, or any other kind of link-level blocks
used for the transmission of TCP/IP packets. The state of the wireless link is
observed upon the arrivals of transmission units at its output. We suppose that
units cross continuously the link. If no real units exist, fictive units are inserted.

Let p denote the probability that the wireless link passes from Good state
to Bad state when a transmission unit arrives at its output. Let q denote the
probability that the link stays in the Bad state. q represents how much the
loss process of transmission units is bursty. The stationary probabilities of the
Markov chain associated to the wireless link are equal to: πB = p/(1−q+p) and
πG = (1− q)/(1− q + p). Denote by LB and LG the average lengths of Bad and
Good periods in terms of transmission units. A simple calculation shows that,

LB = 1/(1− q), LG = 1/p. (1)

The average loss rate, denoted by L, is equal to

L = LB/(LB + LG) = p/(1− q + p) = πB . (2)

3 Model for FEC

The most common code used for error correction is the block code [14, 15]. Sup-
pose that data is transmitted in units as in our model for the noisy link. Block
FEC consists in grouping the units in blocks of K units each. A codec then
adds to every block a group of R redundant units calculated from the K original
units. The result is the transmission of blocks of total size N = K + R units. At
the receiver, the original K units of a block are reconstructed if at least K of the
total N units it carries are correctly received. This improves the quality of the
transmission since a block can now resist to R losses without being discarded.



In our work, we consider a block FEC implemented on the wireless link in
the layer of transmission units. We ignore any FEC that may exist below this
layer (e.g., in the physical layer). The input to our study is the loss process of
transmission units which is assumed to follow the Gilbert model. In what follows,
we will show how much the parameters of the FEC scheme (N, K) impact the
performance of TCP transfers.

4 Approximation of TCP throughput
Consider the throughput as the performance measure that indicates how well
TCP behaves over the wireless link. Different models exist in the literature
for TCP throughput [1, 10, 11, 13]. Without loss of generality, we consider the
following simple expression for TCP throughput in terms of packets/s: X =
(1/RTT )

√
3T/2 = (1/RTT )

√
3/(2P ) [11]. This expression is often called the

square root formula. T = 1/P denotes the average number of TCP packets cor-
rectly received between packet losses. P denotes the probability that a TCP
packet is lost in the network. In case of bursty losses, P represents the proba-
bility that a TCP packet is the first loss in a burst of packet losses [13]. This is
because the new versions of TCP (e.g., SACK [6]) are designed in a way to divide
their windows one time by two for a burst of packet losses. RTT is the average
round-trip time seen by the connection. Note that it is also possible to use in our
analysis other more sophisticated expressions for TCP throughput (e.g., [1]).

Suppose that the wireless link is the bottleneck on the path of the connection.
Thus, in the absence of FEC, the throughput of TCP is upper bounded by µ.
We write X = min

(
(1/RTT )

√
3T/2, µ

)
.

Our objective is to express the throughput of TCP as a function of the
parameters of the loss process of transmission units (p, q) and the parameters of
the FEC scheme (N,K). We already have the expression of the throughput as
a function of what happens at the packet level (P ). What we still need to do
is to relate the loss process of TCP packets to the loss process of transmission
units. To simplify the analysis, we consider the best case when packets are only
lost on the wireless interface whenever the wireless bandwidth µ is not fully
utilize (possible since the wireless link is assumed to be the bottleneck). In
the case when transmission units are lost independently of each other (p = q),
P = 1/T is simply equal to the probability that a TCP packet is lost while
crossing the wireless link. This case is studied in the next section. In the case
when transmission units are lost in bursts, T must be calculated as the average
number of TCP packets correctly transmitted between bursts of packet losses.
This is done in Section 6 where we study the impact of the correlation of unit
losses on the performance of TCP.

Now, even though it increases T , the addition of FEC consumes some band-
width and decreases the maximum throughput the TCP connection can achieve.
Instead of µ, we get Kµ/N as a maximum TCP throughput. If we denote by S
the size of a TCP packet in terms of transmission units, the throughput of TCP
in presence of a FEC scheme (N, K) and in terms of units/s can be written as,

X
N,K

= min
(
(S/RTT )

√
3T

N,K
/2,Kµ/N

)
. (3)
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Fig. 2. Model: X vs. N/K and K
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Fig. 3. Simulation: X vs. N/K and K

5 The case of non-correlated losses

Consider the case when transmission units are lost independently of each other
with probability p (p = q). Thus, TCP packets are also lost independently of
each other but with probability PN,K = 1/TN,K which is a function of the amount
of FEC (N,K). The throughput of TCP can be approximated by using (3).

5.1 The analysis

Suppose that TCP packets are of the size of one link-level block (S = K units).
Given a certain block size (K) and a certain amount of FEC (N, K), the choice
of the size of the TCP packet in terms of blocks is another problem that we
will not address in this paper. A TCP packet is then lost when more than R
of its units are lost due to transmission errors. This happens with probability
PN,K =

∑K−1
i=0

(
N
i

)
(1− p)ipN−i.

It is clear that the addition of FEC at the link level reduces the loss proba-
bility of TCP packets. This addition improves the throughout whenever the first
term of the minimum function in (3) is smaller than the second term. When these
two terms are equal, the quantity of FEC added to the wireless link is sufficient
to eliminate the negative effect of non-congestion losses on TCP. We say here
that FEC has cleaned the link from TCP point of view. Any increase in FEC
beyond this point results in a throughput deterioration. There will be more FEC
than what is needed to clean the link. Given µ, K, and p, the optimal quantity
of FEC from TCP point of view is the solution of the following equation,

(N/(KRTT ))
√

3/(2P
N,K

) = µ. (4)

5.2 Analytical results

We show in Figure 2 how the throughput of TCP varies as a function of the ratio
N/K (FEC rate) for different values of K (10, 20, and 30 units). RTT is taken
equal to 560 ms and the wireless link bandwidth µ to 3000 units/s. We can see
this scenario as the case of a mobile user downloading data from the Internet
through a satellite link. This value of µ is approximately equal to the maximum
ATM cell rate on a T1 link (1.5 Mbps). p is set to 0.01.
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Fig. 4. Model: Optimal FEC vs. µ
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It is clear that the performance improves considerably when FEC is added
and this improvement continues until the optimum point given by (4) is reached.
Beyond this point, any increase in FEC deteriorates the throughput. Also, we
notice that for a certain quantity of FEC, an increase in K improves the per-
formance. An increase in K results in a faster window growth. TCP window
is increased in terms of packets rather than bytes [16]. The TCP source then
returns faster to its rate prior to the detection of a non-congestion loss.

In Figure 4, we plot the left-hand term of (4) as a function of N/K for the
same three values of K. These curves provide us with the optimal amount of FEC
for given µ, p, and K. We see well how the increase in K reduces considerably
the amount of FEC needed to clean the wireless link from TCP point of view.
Given µ, a compromise between K and FEC rate must be done. First, we choose
the largest possible K, then we choose the appropriate amount of FEC.

For µ = 3000 units/s and K = 20, we show in Figure 6 how the through-
put of TCP varies as a function of p for different values of N . It is clear that
adding just one redundant unit to every FEC block results in a considerable
gain in performance especially at small p. Adding more redundancy at small
p deteriorates slightly the performance since the link is already clean and the
additional redundancy steals some of the bandwidth used by TCP. This is not
the case at high p where much redundancy needs to be used in order to get good
performance. Note that even though an excess of FEC reduces the performance
of TCP when losses are rare, the reduction is negligible in front of the gain in
performance we obtain when losses become frequent. When the link is heavily
lossy (log(p) > −1.7), the three amounts of FEC plotted in the figure become
insufficient and all the curves converge to the same point.

5.3 Simulation results

Using the ns simulator [12], we simulate a simple scenario where a TCP source
is connected to a router via a high speed terrestrial link and where the router
is connected to the TCP receiver via a noisy wireless link. The Reno version
of TCP [6] is used. The TCP source is fed by an FTP application with an
infinite amount of data to send. We add our FEC model to the simulator. The
transmission units on the wireless link are supposed to be ATM cells of size



53 bytes. We choose the bandwidth of the wireless link in a way to get a µ equal
to 3000 cells/s. RTT is taken equal to 560 ms and the buffer size in the middle
router is set to 100 packets. This guarantees that no losses occur in the middle
router before the full utilization of µ.

Figures 3 and 7 show the variation of the simulated throughput as a function
of the amount of FEC (N/K) and the unit loss probability p respectively. In
the first figure, p is set to 0.01. We clearly notice the good match between these
results and the analytical ones. The small difference is due to the fact that
the expression of the throughput we used does not consider the possibility of a
timeout when multiple packet losses appear in the same TCP window [6]. Also,
in our analysis, we considered that RTT is always constant which does not hold
when the throughput of TCP approaches the available bandwidth.

5.4 The tradeoff between TCP throughput and FEC cost

We compare in this section the bandwidth gained by TCP to that consumed by
FEC. Let G be the ratio of these two bandwidths,

G = (X
N,K

−X
K,K

)/(X
N,K

(N−K)/K) = (1−X
K,K

/X
N,K

)×(K/(N−K)). (5)

This ratio indicates how much beneficial is the addition of FEC. It can be seen
as a measure of the overall performance of the system TCP-FEC. A value close
to one of G means that we pay for FEC as much as we gain in TCP throughput.
A negative value means that the addition of FEC has reduced the performance
of TCP instead of improving it.

In Figure 5 we plot G as a function of the amount of FEC for different
unit loss probabilities. Again, we take µ = 3000 units/s and K = 20. This figure
shows that the gain in overall performance is important when the loss probability
and the amount of FEC are small. Moreover, with small amounts of FEC, the
gain decreases considerably when the loss rate (L = p) increases. Now, when the
FEC rate increases, the curves converge approximately to the same point with
a slightly better gain this time for higher loss probabilities.

5.5 Number of connections and the gain in performance

We notice in Figure 5 that using a small amount of FEC gives the best gain in
overall performance. Thus, in order to maintain a high gain, one can use a small
amount of FEC and fully utilize the available bandwidth on the wireless link by
opening multiple TCP connections. But, in practice we cannot always guarantee
that there are enough TCP connections to fully utilize the available bandwidth.
A TCP connection must be able to use alone all the available bandwidth. For
this reason, FEC has to be added in large amounts so that to make the noisy
link clean from the point of view of a single TCP connection even if the achieved
gain is not very important.

6 The case of correlated losses

In this section we study the influence of burstiness of transmission unit losses on
the efficiency of a FEC scheme. It is clear that when unit losses tend to appear
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Fig. 6. Model: X vs. p and N/K
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Fig. 7. Simulation: X vs. p and N/K

in bursts, more FEC is needed to clean the link. Packets are hurt by bursts of
losses and they require a large number of redundant units per packet (R) to
be corrected. But, for the same average loss rate (L), the burstiness of losses
reduces the probability that the link passes to the Bad state (p decreases when
q increases). This reduces the probability that a TCP packet is hurt by a burst
of losses. TCP throughput may then improve and the amount of FEC could be
reduced. An analysis is needed to understand these opposite effects of burstiness.

6.1 Performance analysis

Let us calculate T , and hence the throughput of TCP using (3), as a function
of the amount of FEC, K, the average loss rate, the burstiness of losses, and µ.
Recall that T in this case denotes the average number of TCP packets correctly
transmitted between bursts of packet losses.

Let t be the number of good TCP packets between two separate bursts. The
minimum value of t is one packet and its expectation is equal to T . Let Yn be
the state of packet n. 0 is the number of the first good TCP packet between the
two bursts. Yn takes two values B (Bad) and G (Good). We have Y0 = G. T can
be written as

∑∞
n=0 P (t > n|Y0 = G) = 1 +

∑∞
n=1 P (t > n|Y0 = G).

The computation of T is quite complicated since the TCP packets are not
always transmitted back-to-back. Another complication is that {Yn} does not
form a Markov chain. Indeed, if we know for example that a packet, say n, is of
type B then the probability that packet n + 1 is of type G also depends on the
type of packet n−1. If packet n−1 were G rather than B, then the last units of
packet n are more likely to be those that caused its loss. Hence, the probability
that packet n + 1 is B is larger in this case. This motivates us to introduce
another random variable which will make the system more “Markovian” and
will permit us to write recurrent equations in order to solve for T . We propose
to use the state of the last transmission unit received, or fictively received, before
the nth TCP packet. The knowledge of the state of this unit, denoted by Y −1

n

(which may again take the values B and G), fully determines the distribution of
the state Yn of the following TCP packet. We write T as 1 + αP (Y −1

1 = G|Y0 =
G) + βP (Y −1

1 = B|Y0 = G), where α =
∑∞

n=1 P (t > n|Y0 = G,Y −1
1 = G) and

β =
∑∞

n=1 P (t > n|Y0 = G,Y −1
1 = B). We shall make the following assumption,



Assumption 1: P (Y −1
1 = G|Y0 = G) ≈ πG and P (Y −1

1 = B|Y0 = G) ≈ πB .

Assumption 1 holds when the time to reach steady state for the Markov chain
in the Gilbert model is shorter than the time between the beginning of two
consecutive TCP packets (either because the TCP packets are sufficiently large
or because they are sufficiently spaced). Assumption 1 also holds when πB and
the loss probability of a whole TCP packet are small. Indeed, we can write,
πG = P (Y −1

1 = G|Y0 = G)P (Y0 = G) + P (Y −1
1 = G|Y0 = B)P (Y0 = B) ≈

P (Y −1
1 = G|Y0 = G) · 1 + P (Y −1

1 = G|Y0 = B) · 0.
In view of Assumption 1, the probability that the unit preceding a TCP

packet is lost can be considered as independent of the state of the previous
packet. It follows that T = 1 + απG + βπB , with

α = (1− P (Y1 = B|Y −1
1 = G))(1 + απG + βπB),

β = (1− P (Y1 = B|Y −1
1 = B))(1 + απG + βπB).

This yields, 1/T = πGP (Y1 = B|Y −1
1 = G) + πBP (Y1 = B|Y −1

1 = B). The
calculation of T is then simplified to the calculation of the probability that a
TCP packet is lost given the state of the unit just preceding it. Again, it is
difficult to find an explicit expression for this probability. A TCP packet can be
lost by a single long burst of unit losses as well as by multiple separate small
bursts. To further facilitate the analysis, we assume that bursts of losses at the
unit level are separated so that two bursts rarely appear within the same packet.
This holds if,

Assumption 2: (1− q) · L ·N << 1.

Indeed, a TCP packet is supposed to be lost if it is hurt by a burst of unit
losses larger than R. We don’t consider the probability that multiple small and
separate bursts at the unit level contribute to the loss of the packet. This is
possible when the sum of the average lengths of the Good state (LG) and the
Bad state (LB) is much larger than the packet length N . Using (1) and (2), we
get the condition in Assumption 2. If this condition is not satisfied, many bursts
may appear within the same packet leading to a higher loss probability than the
one we will find, hence to a lower throughput.

Consider first the case Y −1
1 = B. In view of Assumption 2, packet 1 is lost

if its first R + 1 units are also lost. Thus, P (Y1 = B|Y −1
1 = B) = qR+1. For the

case Y −1
1 = G, packet 1 is lost if a burst of losses of length at least R + 1 units

appears in its middle. Thus,
P (Y1 = B|Y −1

1 = G) = qRp
(
1 + (1− p) + · · ·+ (1− p)N−R−1

) ' KqRp.
We used here the approximation (1 − (1 − p)N−R) ' Kp. Substituting p by its
value as a function of q and the loss rate L (Equation (2)), we get

1/T = qN−KL ((1− q)K + q) . (6)

6.2 Analytical results

Using (3) and (6), we plot in Figure 8 the throughput of TCP as a function of
burstiness and this is for different amounts of FEC. The burstiness is varied by
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Fig. 8. Model: X vs. q and N/K
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Fig. 9. Simulation: X vs. q and N/K
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Fig. 11. Model: X vs. q at constant R

varying q which is called the Conditional Loss Probability in the figure. K is set
to 20 and the loss rate L to 0.01. The other parameters of the model are taken as
in the previous section. We see well that a large amount of FEC gives always the
best performance. The difference in performance is important for small bursts
(small q). We also see that when burstiness increases, the throughput of TCP
decreases drastically for the three FEC schemes we consider in the figure. This
is because the length of bursts becomes larger the number of redundant units
per packet (R). Here, much FEC must be added to clean the link. But, much
FEC reduces the throughput of TCP when burstiness decreases given the band-
width it consumes. A compromise must be made between much FEC to resist to
bursts and a small amount of FEC to give better performance when burstiness
decreases. One can think about implementing some kind of adaptive FEC that
adjusts the amount of redundancy as a function of the degree of burstiness.

Now, we show in Figure 10 how the block size K can help TCP to resist
to burstiness. First, we take the same amount of FEC (N/K = 11/10) and we
vary K. Increasing K increases the number of redundant units in a TCP packet
and thus helps TCP to resist to larger bursts. Better performance is obtained
even though the amount of FEC is not changed. The benefit of large packets is
also illustrated in Figure 11. In this figure we plot for the same R, the variation
of the throughput for different packet sizes. Surprisingly, a large packet size



gives better performance than a small one even though the amount of FEC is
smaller. From (6), increasing K for the same R decreases T , but this decrease is
small compared to the gain we get from the increase in the packet size. In other
words, the throughput in terms of packets/s deteriorates when we increase K at
a constant R, but it improves in terms of units/s.
6.3 Simulation results
Our intention is to validate by simulation the analytical results we plotted in
Figure 8. We consider the same simulation scenario as that in the non-correlation
case. The results are plotted in Figure 9. The curves show the same behavior as
those in Figure 8. But, we see some mismatch at low burstiness. This is due to our
assumption that a packet can only be lost by a single burst not by multiple small
and separate bursts of losses at the unit level. As one must expect, the simulation
gives a lower throughput in this region given that we are overestimating T .
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