
Fairness Analysis of TCP/IP

Eitan Altman, Chadi Barakat, Emmanuel Laborde
INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France

E-mail: {Eitan.Altman,Chadi.Barakat, Emmanuel.Laborde}@sophia.inria.fr

Patrick Brown, Denis Collange
France Telecom - CNET, 06921 Sophia Antipolis, France

E-mail: {Patrick.Brown,Denis.Collange}@cnet.francetelecom.fr

Abstract

Bandwidth sharing between multiple TCP connections
has been studied under the assumption that the win-
dows of the different connections vary in a synchro-
nized manner. This synchronization is a main result
of the deployment of Drop Tail buffers in network
routers. The deployment of active queue management
techniques such as RED will alleviate this problem of
synchronization. We develop in this paper a mathemat-
ical model to study how the bottleneck bandwidth will
be shared if TCP windows are not synchronized. This
permits to evaluate the improvement in fairness and
utilization brought by the deployment of active buffers.
Also, this indicates how much a synchronization-based
study underestimates the performance of TCP in a non-
synchronized environment.

1 Introduction

One of the main objectives of TCP is to control the con-
gestion in the Internet [11]. This control is not efficient
if it does not ensure a fair sharing of network resources.
A major problem of TCP is its bias against connections
with long round-trip times (RTT) [3, 9, 12]. These con-
nections are not able to achieve the same throughput
as the other connections sharing the same path and
having a smaller RTT. This is caused by the window
increase algorithm adopted by TCP. Indeed, TCP uses
an additive-increase multiplicative-decrease strategy for
congestion control [11, 17]. It is known that such kind
of strategies leads to fairness when all the connections
increase their rates at the same rate [6]. We are talking
here about a fairness in the sharing of the bandwidth
of the bottleneck link regardless of the volume of re-
sources consumed by a connection on the other links
of the network. This kind of fairness is called in the
literature the max-min fairness [9]. Other types of fair-
ness however exist where the objective is to share fairly
not only the resources at the bottleneck, but also the
resources in other parts of the network. In case of TCP
and in presence of connections of different RTT, a fair-
ness cannot be ensured since the window increase rate

is inversely proportional to RTT (one packet per RTT
in the congestion avoidance mode [17]) leading to an
increase in the transmission rate at a rate inversely pro-
portional to RTT 2. Note that the transmission rate of
a window based protocol as TCP can be approximated
at any moment by the window size divided by RTT.
The connections with small RTT increase quickly their
windows and grab most of the available bandwidth.

The throughput achieved by a TCP connection has
been shown to be inversely proportional to Tα with
1 < α < 2 [12]. T is the two-way propagation delay of
the connection. This throughput has been calculated
using the assumption that the windows of the different
connections sharing the bottleneck vary in a synchro-
nized manner [5, 12]. All the connections are supposed
to reduce their windows simultaneously upon a period
of congestion. This synchronization phenomenon has
been indeed observed in the case of connections of close
RTT [18]. It is mainly caused by the use of Drop Tail
(DT) buffers. A DT buffer starts to drop arriving pack-
ets when it is filled thus informing the TCP sources of
the occurrence of congestion. However, the reaction of
the sources to these congestion signals takes one RTT
to reach the congested buffer. During this time, the
sources keep injecting packets into the network which
results in losses from all the connections.

The synchronization phenomenon may disappear in fu-
ture networks. Active queue management techniques
such as RED (Random Early Detection) [10] have been
recommended [4]. These new buffers aim to overcome
the problems of DT ones. Congestion is anticipated and
packets are dropped (or marked) before the overflow of
the buffer. The drop is done early with a probability
that increases with level of congestion. This avoids a
large number of drops upon congestion. The probabil-
ity that a flow loses a packet upon congestion is pro-
portional to its share of the bandwidth. This early con-
gestion detection together with the probabilistic drop
has been shown to solve the problem of synchronization
and thus to improve TCP fairness and bandwidth uti-
lization [10]. With RED, a few number of congestion



signals is sent to flows consuming more than their fair
share of the bandwidth. The other flows are protected
from losses. Other buffer management techniques (e.g.,
FRED [14]) have been proposed to protect further flows
using less than their fair share and to improve further
TCP performance. Simple techniques as Drop from
Front ones [13] have been also shown to be a solu-
tion for the problem of synchronization. In the case
of these sophisticated buffers, a model based on the
synchronization of flows is unable to evaluate correctly
the performance of TCP congestion control.

Another problem with models assuming synchroniza-
tion is that they use a fluid approach [5, 12] which
does not account for the burstiness of TCP traffic. A
fluid approach consists in supposing that TCP packets
are spread over the path and not clustered in bursts.
But, these fluid models deal with DT buffers which are
known [10] to be unable to absorb the bursts of packets
generated by TCP. TCP bursts may fill a DT buffer
even before the full utilization of the bottleneck band-
width. Fluid models assuming synchronization may
then fail to evaluate correctly the performance of TCP
even in a synchronized environment. An advantage of
active buffers is that they are able to alleviate this bias
against bursty traffic. By using the average length of
the queue in congestion detection rather than the in-
stantaneous length, and by fixing the threshold much
lower than the total buffer size, the rapid fluctuations
in queue length due to the arrival of bursts are ab-
sorbed [10]. Thus, fluid models should behave better in
an environment where synchronization does not exist.

In this paper we develop a mathematical fluid model
to study the performance of TCP when flows are not
synchronized. This can be considered as a model for
TCP in a network where active buffers such as RED
are deployed. For simplicity of the analysis we consider
the case of two concurrent connections. A generaliza-
tion of the model to the case of multiple concurrent
connections can be found in [2]. Instead of synchro-
nization we assume that the connections reduce their
windows upon congestion with a probability equal to
their share of the bandwidth upon the congestion. A
Markovian approach is used to solve this probabilistic
model. We compare our numerical results to those of a
model assuming synchronization, then we validate them
via simulation. One of the results of our work is that
approaches assuming synchronization lead to an under-
estimation of TCP performance. The absence of syn-
chronization improves the fairness capacity of TCP. It
can be considered as a mathematical result that shows
the better fairness of TCP in case of active buffers.

In the next section we present our model. Section 3
contains the analysis. In Section 4 we compare the nu-
merical results of our approach to those of an approach
assuming synchronization. Simulation results are pre-

sented in Section 5. Section 6 concludes the work.

2 The mathematical model

Suppose that two TCP sources 1 and 2 share a path of
bandwidth µ. The two sources are assumed to have the
same packet length. Denote the RTT of these connec-
tions by T1 and T2. Denote also by W1(t) and W2(t)
the window sizes of the two connections at time t. The
rate of a connection at an instant t can be written as,

Xk(t) = Wk(t)/Tk with k = 1, 2.

We assume that the two sources run a TCP version able
to recover from losses without resorting to timeout and
slow start. A SACK version or a New-Reno version
can be used [8]. Upon loss detection, the TCP source
divides its window by two, recovers from losses, and re-
sumes then its window increase. We consider that the
transfers are very long and we put ourselves in the sta-
tionary regime. We further assume that the queuing
delay is small with respect to the propagation delay so
that the RTT is approximately constant. This is rea-
sonable with active buffers where the queue length is
maintained at small values [10]. We consider the case
when the window of TCP increases by one packet every
RTT (i.e., delay ACK mechanism [17] is disabled; the
analysis of the case of delay ACKs can be handled in
exactly the same way our analysis below). The win-
dow and the rate of each source grow then linearly as
a function of time as shown in [12] where a fluid model
for the window evolution is used. We write for k = 1, 2,

dWk(t)
dt

=
dWk(t)
dackk

× dackk

dt
=

1
Wk(t)

× Wk(t)
Tk

=
1
Tk

.

This linear growth continues until a congestion occurs.
Due to our assumption that queueing time is small, it
is possible to consider that congestion occurs when the
sum of the rates of the two connections reach the bot-
tleneck bandwidth µ. The difference in our model from
previous models is the elimination of the synchroniza-
tion hypothesis. A congestion event causes losses to one
connection and only this connection divides its window
by two. The window growth of the other connection is
not affected. Given the probabilistic drop of packets at
the onset of congestion, the probability that a specific
connection is affected can be approximated by its share
of the bottleneck bandwidth upon congestion.

Definition 1 Denote by tn the instant at which the nth
congestion event occurs. Let W1(tn) (resp. W2(tn)) be
the window size of source 1 (resp. 2) just prior to this
event. We assume that instants tn are given by,

X1(tn) + X2(tn) = W1(tn)/T1 + W2(tn)/T2 = µ. (1)

We take the probability that a source k (k=1,2) reduces
its window at instant tn equal to,

pk = Xk(tn)/µ = Wk(tn)/(µTk).



We proceed now to the analysis of the performance of
the two transfers. The aim is to calculate how fair they
share the bottleneck bandwidth µ, how well they utilize
this bandwidth, and how much the network parameters
affect the overall performance.

3 Throughput calculation

Given that the two processes W1(tn) and W2(tn) are
related to each other by equation (1), we can transform
the problem from a two-dimensional problem to a one
dimensional-one. The study of one of the two processes
is sufficient to describe the other. In the sequel we focus
on the study of connection 1. We start by calculating
the relationship between W1(tn) and W1(tn+1) as well
as the time (tn+1 − tn) between two consecutive con-
gestion events. The window variation as a function of
time and the sum of the rates at instants tn and tn+1

are used. First we state the main results,

Theorem 1 If connection 1 is hurt by congestion at
instant tn, the next congestion will appear after a time,

tn+1 − tn =
T1T

2
2

T 2
1 + T 2

2

× W1(tn)
2

,

and the window size of connection 1 prior to this next
congestion event will be equal to,

W1(tn+1) =
T 2

1 + 2T 2
2

2(T 2
1 + T 2

2 )
×W1(tn). (2)

If connection 2 is hurt by the congestion, connection 1
continues to increase its window without reduction until
the next congestion event which occurs after a time,

tn+1 − tn =
T 2

1 T 2
2

2(T 2
1 + T 2

2 )
×

(
µ− W1(tn)

T1

)
.

In this case, the window of connection 1 prior to the
next congestion event will be equal to,

W1(tn+1) =
T1T

2
2

2(T 2
1 + T 2

2 )
×

(
µ− W1(tn)

T1

)
+ W1(tn).

(3)

Proof: Suppose first that it is connection 1 which
suffers from losses at time tn. It divides its window
by two while source 2 continues to increase its window
without reduction. At time tn+1 we can write,

W1(tn+1) = W1(tn)/2 + (tn+1 − tn)/T1

W2(tn+1) = W2(tn) + (tn+1 − tn)/T2

W2(tn+1) = T2 (µ−W1(tn+1)/T1)

W2(tn) = T2 (µ−W1(tn)/T1)

The solution of this system of equations in W1(tn+1)
and (tn+1 − tn) as a function of W1(tn) concludes the

first part of the proof. The second part corresponds to
the case when connection 2 is hurt by losses. At time
tn+1 we can write,

W1(tn+1) = W1(tn) + (tn+1 − tn)/T1

W2(tn+1) = W2(tn)/2 + (tn+1 − tn)/T2

W2(tn+1) = T2 (µ−W1(tn+1)/T1)

W2(tn) = T2 (µ−W1(tn)/T1)

The solution of this system concludes the proof.

The state distribution of connection 1 at instant tn+1

is only a function of its state at time tn. Thus, the
stochastic process W1(tn) forms a Markov process. In
order to calculate numerically its stationary distribu-
tion, we discritized the space of this process and we de-
scribed it with a Markov chain. Let I ⊂ [1,WMax

1 ] de-
note the state space of this chain and let P = (pij)i,j∈I
denote its transition matrix. The window of the con-
nection is assumed to have a minimum size of 1 packet
and a maximum size of WMAX

1 packets. WMAX
1 is cal-

culated using equation (1) when the other connection
is at a window of 1 packet. Using Theorem 1 as well
as the probability that a connection suffers from con-
gestion at instant tn, we can find the transition matrix
P .

Suppose that connection 1 is in state i at time tn. De-
fine g(i) as the state of this connection at time tn+1

when it is hurt by the congestion at time tn. ĝ(i) de-
notes its state if connection 2 is hurt by the congestion
at time tn. Thus, using equations (2) and (3),

g(i) =
T 2

1 + 2T 2
2

2(T 2
1 + T 2

2 )
× i (4)

ĝ(i) =
T1T

2
2

2(T 2
1 + T 2

2 )
×

(
µ− i

T1

)
+ i (5)

Matrix P = (pij)i,j∈I can then be written as,

pij =





p1 = i
µT1

if j = g(i)
p2 = 1− p1 = 1− i

µT1
if j = ĝ(i)

0 otherwise

In almost all cases, the Markov chain {W1(tn)} turned
out to be irreducible. To check this, we used techniques
that calculate the transitive closure of a graph [7].
When the Markov chain is irreducible, it has a unique
stationary regime. Let π = (πi)i∈I denote its station-
ary distribution. In the following sections we show how
to calculate the throughput from the stationary regime
of this Markov chain. We define for this purpose a
semi-Markov process and some cost functions.



3.1 Definition of a semi-Markov process
Let us define the process A(t) as being equal to,

A(t) = W1(tn) for tn ≤ t < tn+1.

The transition time of this process depends on the cur-
rent and the next state, and this time is not exponen-
tially distributed. A(t) forms then a semi-Markov pro-
cess. Its average over a long time interval is differ-
ent from the average of process W1(t) given that W1(t)
varies linearly between two jumps of A(t). To eliminate
this discrepancy between A(t) and W1(t), we defined
some cost functions that depend on the current state of
process A(t). We weighted then the integral of process
A(t) over a long time interval with these cost functions
in order to transform it to the integral of process W1(t).

3.2 Definition of cost functions
Suppose that A(t) visits state i then jumps to state j on
the next congestion event. We define fij as the integral
of W1(t) between these two transitions. We denote the
time between these transitions by τij . Our cost function
associated to state i is defined as the expected value of
fij over all the possible values of j. We denote this cost
function by fi. Using (4) and (5), it follows that

fi =
∑

j∈I
fijpij = fig(i)pig(i) + fiĝ(i)piĝ(i)

= i/(T1µ)
∫ τig(i)

0

(t/T1 + i/2) dt

+(1− i/(T1µ))
∫ τiĝ(i)

0

(t/T1 + i) dt

where τig(i) and τiĝ(i) are given by Theorem 1. We
denote by τi the average time A(t) stays in state i,

τi =
∑

j∈I
τijpij = τig(i)pig(i) + τiĝ(i)piĝ(i).

3.3 Calculation of the throughput
The throughput of connection 1 is equal to the time
average of its congestion window divided by T1

X1 = lim
t→∞

1
t

∫ t

0

Wi(τ)
T1

dτ

Using the theory of Markov reward processes (or of de-
layed regenerative processes) [15], it can be proved that
this limit exists and is equal to

X1 =
∑

i∈I πifi∑
i∈I πiτi

, P − a.s.

Now for connection 2, the relationship between
{W1(tn)} and {W2(tn)} is used to avoid the repetition
of all the work. To every state of the Markov chain
associated to connection 1 corresponds a state of the
Markov chain associated to connection 2. Only the cost
functions for connection 2 need to be recalculated. The

0

50

100

150

200

250

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
C

P 
th

ro
ug

hp
ut

 (
pa

ck
et

s/
s)

Ratio of round-trip times

Fast connection - Our model
Slow connection - Our model
Fast connection - Synchronization
Slow connection - Synchronization

Figure 1: Comparison of throughputs

stationary distribution as well as the average time be-
tween congestion events don’t change. The throughput
of connection 2 is again calculated by dividing the time
average of W2(t) by T2.

4 Numerical results

We solved numerically our model for the throughputs
of the two connections. We compare then our results
to those of a model assuming synchronization between
flows. We chose the model in [12] and we simplified it
to match our hypothesis on the queuing time.

4.1 The synchronization case
In [12] the authors suppose that in the stationary
regime, the window of connection k (k = 1, 2) varies
in a linear and periodic manner between two values wk

and 2wk. They approximate the throughput of a con-
nection by, Xk = 3wk/2Tk. Using the synchronization
assumption, they showed that the window of a con-
nection is inversely proportional to its RTT. The sum
of the rates of the two connections upon congestion is
taken equal to the bottleneck bandwidth. They wrote

w1/w2 = T2/T1, 2w1/T1 + 2w2/T2 = µ,

which yields

X1 =
3
4

T 2
2

T 2
1 + T 2

2

µ, X2 =
3
4

T 2
1

T 2
1 + T 2

2

µ.

4.2 Comparison of numerical results
In Figure 1, we plot the throughputs of the two con-
nections as a function of the ratio of their RTT. We
mean by slow connection the one with the long RTT.
The other connection is called the fast connection. Four
lines are plotted, two for our model and two for the syn-
chronization case. The bottleneck bandwidth is taken
equal to 1.5 Mbps together with TCP packets of total
size 576 bytes. The RTT of the slow connection is fixed
to 0.5 s. That of the fast one is varied. The X-axis
represents the ratio of the small RTT and the long one.

We notice first that the throughput achieved by the
slow connection is better in our case. Given that it has



160

180

200

220

240

260

280

300

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 T

C
P 

th
ro

ug
hp

ut
 (

pa
ck

et
s/

s)

Ratio of round-trip times

Utilization - OurModel
Utilization - Synchronization

Figure 2: Comparison of utilizations

a small throughput, there is a small probability that
the slow connection reduces its window upon conges-
tion. This gives it better performance. However, when
the two connections are synchronized, the slow connec-
tion is obliged to reduce its window with the fast one.
This is equivalent to a drop probability equal to one in-
stead of the bandwidth share. Given that it increases its
window much slower, the slow connection gets poorer
performance when we force it to reduce always its win-
dow.

The increase in the performance of the slow connection
in our case is accompanied by a decrease in the per-
formance of the fast one. However, the deterioration
in the performance of the fast connection is not as im-
portant as the improvement in the performance of the
slow one. This means that our model predicts better
utilization of the bottleneck bandwidth than the model
in [12]. This is illustrated in Figure 2. Indeed, when a
congestion occurs, the sum of the rates is equal to µ. In
our case, one of the two connections reduces its window
and then the reduction in the total rate is less than half
µ. However in the synchronization case, the two con-
nections divide their windows simultaneously and the
reduction in the total rate is equal to µ/2. Thus, in our
case, the utilization is kept at higher levels.

The synchronization model predicts that the through-
put of a connection is inversely proportional to RTT 2.
One must predict that our model will give something
less than that. The ideal case is when the performance
of a connection is independent of RTT. We plot in Fig-
ure 3 the ratio of the throughput of the fast connection
and that of the slow connection. These are the through-
puts shown in Figure 1. We plot on the same figure dif-
ferent powers of T2/T1 to see to which power our model
is close. The X-axis is that of T1/T2. The numerical re-
sults of our model are located between the line of power
0.8 and that of power 0.9. The throughput of a connec-
tion can be then supposed to be inversely proportional
to (RTT )0.85 in case flows are not synchronized instead
of RTT 2 in the synchronization case.

1

1.5

2

2.5

3

3.5

4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 o

f A
ve

ra
ge

 T
hr

ou
gh

pu
ts

 (
F

as
t C

on
ne

ct
io

n/
S

lo
w

 C
on

ne
ct

io
n)

Ratio of Round Trip Times (Fast Connection/Slow Connection)

Our model
Power = 1.1
Power = 1
Power = 0.9
Power = 0.8
Power = 0.7
Power = 0.6

Figure 3: The ratio of throughputs

S

S

DR

2

1

10 ms

2 Mbps250 ms

2 M
bps

X ms

1.5 Mbps

Figure 4: The simulation scenario

5 Simulation

5.1 Simulation scenario
We simulate two long TCP transfers over a bottleneck
node using the ns-2 simulator [16]. The version TCP-
SACK [8] is used. The simulation scenario is shown
in Figure 4. Two sources S1 and S2 are connected to
a router R in order to reach the destination D. We
vary the propagation delay of the link between S1 and
R between 40 ms and 200 ms. Simulations are run for
500s each. The receiver windows are set large enough so
that the window is only limited by network parameters.

5.2 Case of a RED buffer
We supply router R with a RED buffer of a total size
of 20 packets, a minimum threshold of 5 packets and a
maximum threshold of 10 packets. The maximum drop
probability is taken equal to 0.1 and the weight used in
the calculation of the average queue size is taken equal
to 0.002. The reason for taking small thresholds is to
minimize the queuing time.

In Figure 5 we plot the throughput of every connec-
tion as a function of the propagation delay between S1

and R. The results are closer to those of our model es-
pecially for the slow connection. This connection gets
more bandwidth than what is predicted in the synchro-
nization case. The RED buffer with its probabilistic
drop alleviates the problem of synchronization and im-
proves the fairness of TCP. This improvement is better
observed for small RTT of connection 1. When the RTT
of this connection increases, its reaction to packet losses



0

50

100

150

200

250

300

40 60 80 100 120 140 160 180 200

T
C

P 
th

ro
ug

hp
ut

 (
pa

ck
et

s/
s)

Propagation delay of the link between S1 and R (ms)

Fast connection - Our model
Slow connection - Our model
Fast connection - Synchronization
Slow connection - Synchronization
Fast connection - Simulation
Slow connection - Simulation

Figure 5: Throughputs in case of RED buffer

becomes slower. The reaction of the slow connection is
already slow. Then, it becomes more likely that upon
a congestion period the RED buffer drops packets from
both connections. The two connections start to reduce
their windows simultaneously which is not considered
by our model. Here, the simulation results get closer to
those of a model assuming synchronization.

5.3 Case of a Drop Tail buffer
We repeat our simulation with a small DT buffer in
router R. We set the buffer size to the minimum thresh-
old of the RED buffer in the previous simulation. Re-
sults are plotted in Figure 6. The bias of DT buffers
against bursty traffic leads to a poor performance for
both connections. The fluid models don’t work cor-
rectly in this case. The congestion appears when two
bursts arrive simultaneously at the buffer and not when
the bandwidth is fully utilized. A model assuming syn-
chronization can be used in this case but the instants
of congestion cannot be predicted. All that we can say
with a fluid model is that the windows of the two con-
nections are inversely proportional to their RTT.

6 Conclusions

We proposed a Markovian fluid model to study the fair-
ness of TCP when connections are not synchronized.
The absence of synchronization is claimed to be one
of the main results of active queue management tech-
niques such as RED. We showed that the fairness of
TCP improves in a non-synchronized environment. We
showed also that the absence of synchronization im-
proves the utilization of network resources. We vali-
dated these results with simulations. The burst absorp-
tion capacity of active buffers improves the accuracy
of fluid models for TCP. Drop Tail buffers are biased
against bursty traffic and fluid models don’t work well
especially in case of small buffers.

References
[1] E. Altman, J. Bolot, P. Nain, D. Elouadghiri- M. Er-
ramdani, P. Brown, and D. Collange, “Performance Model-
ing of TCP/IP in a Wide-Area Network”, IEEE Conference
on Decision and Control, Dec 1995.

0

50

100

150

200

250

300

40 60 80 100 120 140 160 180 200

T
C

P 
th

ro
ug

hp
ut

 (
pa

ck
et

s/
s)

Propagation delay of the link between S1 and R (ms)

Fast connection - Our model
Slow connection - Our model
Fast connection - Synchronization
Slow connection - Synchronization
Fast connection - Simulation
Slow connection - Simulation

Figure 6: Throughputs in case of DT buffer

[2] C. Barakat and E. Altman, ”A Markovian Model for
TCP Analysis in a Differentiated Services Network”, Work-
shop on Quality of future Internet Services, Sep 2000.

[3] C. Barakat, E. Altman, and W. Dabbous, “On TCP
Performance in a Heterogenous Network: A Survey”, IEEE
Communications Magazine, Jan 2000.

[4] B. Braden, et al.,“Recommendations on Queue Man-
agement and Congestion Avoidance in the Internet”, RFC
2309, Apr 1998.

[5] P. Brown, ”Resource sharing of TCP connections
with different round trip times”, IEEE Infocom, Mar 2000.

[6] D. Chiu and R. Jain, “Analysis of the In-
crease/Decrease Algorithms for Congestion Avoidance in
Computer Networks”, Journal of Computer Networks and
ISDN, Jun 1989.

[7] T. Cormen, C. Leiserson, and R. Rivest, “Introduc-
tion to Algorithms”, The MIT Press, Cambridge, Mas-
sachusetts.

[8] K. Fall and S. Floyd, “Simulation-based Comparisons
of Tahoe, Reno, and SACK TCP”, Computer Communica-
tion Review, Jul 1996.

[9] S. Floyd, “Connections with Multiple Congested
Gateways in Packet-Switched Networks Part 1: One-way
Traffic”, Computer Communication Review, Oct 1991.

[10] S. Floyd and V. Jacobson, “Random Early Detection
gateways for Congestion Avoidance”, IEEE/ACM Transac-
tions on Networking, Aug 1993.

[11] V. Jacobson, “Congestion avoidance and control”,
ACM SIGCOMM, Aug 1988.

[12] T.V. Lakshman and U. Madhow, “The performance
of TCP/IP for networks with high bandwidth-delay prod-
ucts and random loss”, IEEE/ACM Transactions on Net-
working, Jun 1997.

[13] T.V. Lakshman, A. Neidhardt, and T.J. Ott, ”The
Drop from Front Strategy in TCP over ATM and its Inter-
working with other Control Features”, IEEE INFOCOM,
1996.

[14] D. Lin and R. Morris, “Dynamics of Random Early
Detection”, ACM SIGCOMM, Sep 1997.

[15] S. M. Ross, “Applied Probability Models with Opti-
mization Applications”, Holden-Day, San Francisco, 1970.

[16] Network Simulator v.2, University of California at
Berkeley, Available via http://www-nrg.ee.lbl.gov/ns-2.

[17] W. Stevens, “TCP Slow-Start, Congestion Avoid-
ance, Fast Retransmit, and Fast Recovery Algorithms”,
RFC 2001, Jan 1997.



[18] L. Zhang, S. Shenker, and D.D. Clark, “Observations
on the Dynamics of a Congestion Control Algorithm: The
Effects of Two-Way Traffic”, ACM SIGCOMM, Sep 1991.


