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Abstract

Many works have studied the performance of TCP by
modeling the network as a single bottleneck node. In
this paper, we present a more general model taking into
account all the nodes on the path not only the main
bottleneck. We show that, in addition to the main bot-
tleneck, the other nodes can seriously affect the perfor-
mance of TCP. They may cause an improvement in the
performance by decreasing the burstiness of TCP traf-
fic arriving at the main bottleneck. But, if the buffers
in these nodes are not well dimensioned, the congestion
may be shifted to them which deteriorates the perfor-
mance even though they are faster than the main bot-
tleneck. We conclude our analysis by guidelines for the
dimensioning of network buffers so as to improve the
performance of TCP.

Introduction

Because of its crucial role in the stability of the Inter-
net, the performance of TCP has been extensively stud-
ied [1, 4, 6, 7]. These works often model the network
as a single bottleneck node, the one having the slowest
outgoing rate on the path between the source and the
destination (we call it the main bottleneck in the sequel).
This model is correct if the buffering capacity and the
available bandwidth in the other nodes are very large
compared to those in the main bottleneck. However,
due to the fluctuations in real networks, these quanti-
ties can be very close to each other which may result in
a different performance. It is known that TCP trans-
mits bursts of packets especially during the Slow Start
(SS) phase [1, 4, 7]. These bursts may cause a queue
building in many nodes not only in the main bottleneck.
This may avoid a buffer overflow predicted by the single
bottleneck model which will result in an improvement
in the performance. But also, this may cause an un-
predicted overflow if the buffers in these nodes are not
enough large. The single node model overestimates the
real performance in this later case.

In this paper, we study the performance of TCP as a
function of the parameters of all the nodes crossed by

the connection. As node parameters, we consider the
available bandwidth and the buffering capacity. Drop
Tail buffers are considered because they are widely used
in the Internet. We present a general model of the net-
work consisting of many nodes, then we simplify it to
a model with two nodes without changing the perfor-
mance of TCP. We use the Network Simulator ns [8]
to validate our analytical results. Among our results,
we show that the other nodes affect the Slow Start (SS)
phase much more than the Congestion Avoidance (CA)
one. To eliminate the effect of the other nodes, their
buffers must scale linearly with that of the main bottle-
neck. Although the buffers required in these nodes are
not as important as in the main bottleneck, they are
necessary to absorb TCP bursts when the output rates
of these nodes get close to the main bottleneck rate.

The multiple node model

Let µ (packets/s) be the main bottleneck rate on the
path of a TCP connection. This connection transfers
data between a source Sr and a destination D and
crosses many nodes. We denote by NR a node of avail-
able bandwidth R (or of rate R). In order to consider
the burstiest case, we suppose that ACKs are not de-
layed at D. The modification of our model to the Delay
ACKs case is straightforward. We suppose also that
the return path is not congested. µ is then the rate at
which ACKs return to Sr. Because all the nodes be-
tween Nµ and D receive packets at a rate slower than
their available bandwidth, their parameters don’t affect
the performance of TCP. The following analysis focuses
on the impact on TCP of nodes between Sr and Nµ.

According to TCP congestion control algorithms [5, 9],
if ACKs are not lost nor delayed, an ACK triggers
maximum the transmission of a burst of two packets.
This happens upon every ACK reception during SS and
when the congestion window W increases by one seg-
ment during CA. If the nodes between Sr and Nµ have
an available bandwidth > 2µ, the two-packets bursts
will cross these upstream nodes as if they don’t exist.
In this case, we can ignore these nodes and suppose that
Nµ is fed directly by Sr. This is what the single node
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Figure 1: The multiple node network model

model assumes. Now, if one of the upstream nodes has a
rate < 2µ, the bursts will be slowed. A queue will build
up in this slow node which reduces the queue building
rate in the main bottleneck Nµ. We say here that TCP
bursts are partially absorbed by this upstream node.
This partial absorption may overflow the buffer in this
intermediate node and it may avoid a buffer overflow in
another node. Thus, to study the performance of TCP,
the network model must take account of the nodes pre-
ceding Nµ and having a rate < 2µ. In Figure 1, we
show our model where, in addition to Nµ, n nodes of
buffers Bi and of bandwidth µi are considered. The µi

satisfy
µ < µn < µn−1 < · · · < µ1 < 2µ.

This assumption is without loss of generality since if a
node is faster than its predecessor, then no queueing
will occur there, so the related node can be ignored
while analyzing the performance of the connection. The
restriction µ1 < 2µ is without loss of generality as well,
since a node of rate µ1 > 2µ would mean that a queue
never builds up in Nµ1 , since the input rate to that
node, even at bursty periods, is upper-bounded by 2µ.

The behavior of TCP during CA

We suppose that, during CA, W increases by one seg-
ment every Round Trip Time (RTT). The receiver win-
dow is set to a high value so that W is only limited by
network parameters. After the transmission of a burst
of two packets as a result of the window increase from
W−1 to W , the source transmits W−1 packets at a rate
µ followed by a new burst of two packets when the last
ACK of the window W is received. Here, the window
increases to W + 1. Let T be the constant component
of RTT (propagation delay plus service time). If W is
smaller than the Bandwidth-Delay Product (BDP) µT ,
the two bursts are separated by a time T . No queue
builds up and the window continues growing up linearly
by one segment every T .

When the window exceeds µT , ACKs start to arrive
continuously at the source. Thus, there will not be
enough time for the nodes of rate slower than 2µ to
serve the two packets of a burst. A queue starts to
build up in the network. According to the single node
model, the queue is seen only in the node of rate µ and
CA ends when B overflows. This happens at a window
W = Wmax = B + µT . Such assumption is true if

the upstream nodes are faster than 2µ. However, if one
upstream node has a rate slower than 2µ, a queue builds
up in this node in addition to node µ which results in a
different value of Wmax, thus in an different throughput
of the connection.

Consider the two bursts sent when the window increases
from W − 1 to W and from W to W + 1. In the case
W > µT , the time between these two bursts is equal to
W/µ and the number of packets is equal to W + 1. We
can say that at a window W > µT , the source transmits
packets at an average rate RCA = (W + 1)µ/W . This
rate is always greater than µ and then the number of
packets waiting in the network always increases during
CA. These waiting packets are distributed between Nµ

and the upstream nodes having a rate < RCA. Thus,
the queue in Nµ builds up at a rate slower than one
packet per RTT as long as there is a µi (1 ≤ i ≤ n)
satisfying µi < RCA. Given that RCA is a decreasing
function of W , the effect of Nµi

on the performance
decreases when W moves away from µT . Once we reach
a window W that results in a RCA smaller than all the
µi, all the waiting packets move to B which puts us in
the case of the single node model.

Because RCA is very close to µ, the most interesting
case is when there exists a µi = µ. Let Nµi be the
closest node to the source having a rate µi = µ and
suppose that all the nodes between Sr and Nµi have a
rate > RCA. Only node Nµi in the network is fed at a
rate faster than its service rate. TCP bursts during CA
are then completely absorbed by this node and a queue
doesn’t build up in the other nodes. Thus, if many
nodes in the network have the same rate µ, the queue
builds up in the buffer of the closest node to the source.
The capacity of this buffer determines alone the value
of Wmax. In the next sections, we suppose that all the
µi are larger than RCA. B represents the buffer size of
the closest node to the source having a rate equal to µ.

To illustrate our conclusions, we simulate a TCP con-
nection across two nodes of rate µ1 and µ. We take
T = 560ms (case of a GEO satellite), µ = 1.5Mbps
(T1 link), packet size=512Bytes, B1 = 100packets and
B = 50packets. First we set µ1 to µ, then we increase
it slightly in order to get RCA < µ1. We plot in Fig-
ure 2, W as a function of time for two values of µ1,
1.5Mbps and 1.6Mbps. Although we increased µ1, the
average window size decreases resulting in a decrease in
the average throughput from 1.371Mbps to 1.247Mbps.
Indeed, the increase in µ1 has moved the queue from
B1 to B. Given that B < B1, Wmax decreases from
(B1 + µT ) to (B + µT ) which explains this deteriora-
tion in the throughput.
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Figure 2: TCP performance as a function of µ1

The behavior of TCP during SS

During SS, the source sends long bursts of packets at
twice µ due to a burst of two packets in response to ev-
ery new ACK [1, 7]. A queue may then build up in any
node not only in Nµ. If the buffers in these nodes are
not well dimensioned to absorb the bursts sent during
SS, they might overflow early before filling the available
capacity in the network. Given that TCP considers all
losses as a signal of congestion and reacts by reducing
its window, an early buffer overflow results in an un-
derestimation of the available resources in the network.
This problem occurs when the SS Threshold (Wth) is
very large so that the buffers overflow before getting
in CA. It is a typical problem of networks with small
buffers compared to their BDP [1, 3, 7]. An example of
such networks are satellite networks where the BDP is
large and where there are many limitations on the size
of buffers on satellite board.

Buffers in the networks must be large enough to ab-
sorb the bursts sent during SS. If SS Threshold Wth

is a good estimation of the network capacity, SS must
end without suffering from losses. In contrast, if Wth

is set to a high default value as at the beginning of
a TCP connection, losses during SS are unavoidable.
They serve to give Wth a more accurate value. How-
ever, these losses must not appear early otherwise the
available bandwidth will be underestimated. In this
paper, we concentrate on the first case where Wth is a
correct estimation of the network capacity and where
the aim of SS is to fill quickly this capacity. The other
case will be the subject of future work.

We suppose that Wth is set to half Wmax = µT + B.
This is the value TCP gives to Wth after a congestion
during the connection lifetime. The same analysis can
be applied to other values of Wth. A condition to not
encounter the problem of losses during SS has been cal-
culated in [1, 7]. This condition accounts only for the

main bottleneck. In this section, we recalculate this
condition with our general model. As in these works,
we consider a Tahoe version of TCP [5, 4] where SS is
frequently called.

We divide a SS phase into mini-cycles of duration T [7].
W doubles every T . During mini-cycle n, Sr sends a
burst of 2n packets at rate 2µ. Mini-cycle n + 1 starts
when the ACK for the first packet of this burst reaches
Sr. These bursts propagate from node to node and
create queues in the different buffers of Figure 1. These
queues build up at a rate (2µ − µ1) in B1, at a rate
(µi−1 − µi) in Bi (i = 2 . . . n), and at a rate (µn − µ)
in B.

Given these rates, we can calculate the number of pack-
ets sent in a burst and required to overflow each buffer

S1 = 2µB1/(2µ− µ1) for B1,
Si = µi−1Bi/(µi−1 − µi) for Bi (i = 2 . . . n),
S = µnB/(µn − µ) for B.

We get a loss if in a given mini-cycle, Sr sends a burst
of packets at rate 2µ larger than at least one of the Si

(i = 1 . . . n) and S. Let SB = mini=1...n(S, Si). The
loss occurs in mini-cycle nB given by

2nB−1 < SB ≤ 2nB ,

and the window size WB at which this loss happens is

WB = 2nB−1 + SB/2 =⇒ 2WB = 2nB + SB .

The condition to avoid a buffer overflow during SS is
for W to reach Wth before WB . Thus, Wth < WB .
In contrast to that found in [1, 7], we see well that
this condition involves the parameters of all the nodes
not only those of the main bottleneck. We notice that
even if we supply Nµ with a large buffer so as to avoid
the overflow according to the condition found in [1, 7]
(β = B/µT > 1/3), the other network parameters can
result in a WB smaller than Wth, then in an occurrence
of losses and a deterioration of the performance. Also,
because its input rate is bounded by µn which is smaller
than 2µ, the queue in buffer B builds up slowly resulting
in a higher value of S. Depending on the values of Si,
this may avoid an overflow predicted by the condition
β < 1/3 which results in a better performance.

Now, if the buffers are large enough so that Wth < WB ,
the bursts sent during SS will not cause an overflow and
the source will get in CA with one SS phase. The win-
dow then increases slowly from Wmax/2 to Wmax where
a normal loss occurs. We get here the same behavior
as with the single node model, of course if β > 1/3.



A simplified model with two bottleneck nodes

Any model must consider node Nµ because it deter-
mines TCP behavior during CA, particularly the value
of Wmax. However, to predict the behavior during SS,
the upstream nodes which have a rate between µ and
2µ must also be considered. To simplify the analysis
without changing the results, the upstream nodes can
be replaced by an equivalent node which gives a simple
model consisting of two bottleneck nodes (Figure 3).

The idea is to replace nodes N1 to Nn by that having
the smallest burst size Si, since that node is the candi-
date to see the first overflow during SS. The buffer size
B′ and the service rate µ′ of the equivalent node are
chosen as follows as a function of Bi and µi (i = 1 . . . n).

We take µ′ equal to µn and we suppose that the equiv-
alent node is directly fed by the source. The reason
for taking µn as a rate is that we don’t wish to change
the behavior of the main bottleneck whose input rate
in the original problem was bounded by µn. For B′, we
choose it in a way that the equivalent node, which has
an input rate bounded by 2µ and an output rate µn,
requires a burst of size mini=1...n(Si) to be filled. Thus,

S′ = 2µB′/(2µ− µ′) = min
i=1...n

(Si).

We use ns to prove the correctness of the equivalent
node approach. We take for µ, T and packet size the
same values as in the previous section and we set B to
20packets. The nodes are placed on the path between
Sr and D in a way that T is always equal to 560ms. We
vary n, the number of nodes preceding Nµ, between 1
and 10. For each n, we distribute the µi uniformly on
the segment [µ, 2µ]. Thus, µi = 2µ− iµ/(n + 1) for i =
1 . . . n. A simple calculation shows that S = B×(n+2)
and Si = Bi × [2(n + 1)− (i− 1)], i = 1 . . . n.

If we take all the Bi equal to B, then SB will be al-
ways equal to S and the overflow will always occur in
node Nµ. To change a little the network behavior while
varying n, we choose the Bi in a way that the overflow
moves to one of the upstream nodes for some values of
n. By taking the Bi equal to 17packets, we make SB

equal to Sn for n ≥ 4. For this value of Bi we find,

µ′ = µn = µ + µ/(n + 1),
S′ = min

i=1...n
(Si) = Sn =⇒ B′ = 8.5n(n + 3)/(n + 1).

In Figure 4 we plot, for the different values of n, TCP
throughput with the multiple node model and the sim-
plified model. We plot also the throughput obtained
when only the main bottleneck is considered. We see
well that the results are very close for our two models.

Sr DB’ B
µ’µ

Source Destination

Figure 3: The simplified two-nodes model
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Figure 4: Simulation: Comparison between models

We see also an increase in the throughput when the
network contains five nodes and more. Indeed, a large
n increases Sn and S, then WB , which causes a disap-
pearance of the losses during SS and an improvement
in the performance. SS bursts are absorbed by more
and more nodes which eliminates the possibility of an
overflow observed at small n.

The figure shows also that considering only the
main bottleneck leads to an underestimation of TCP
throughput. A single node model considers only node
Nµ and supposes that it is fed directly by Sr. In our
case, this reduces S from 20(n + 2) to 2B = 40. This
new value of S is always smaller than the real value of
SB when the nodes 1 to n are considered. A smaller
S means a smaller window at the end of SS and at the
beginning of CA. This explains the reduction in the
predicted throughput. In fact, the single node model
doesn’t consider the likelihood of a partial absorption
of the bursts by the upstream nodes. It represents the
worst case where the bursts are only absorbed by the
main bottleneck.

TCP performance with the simplified model

In Figure 5, we plot S and S′ as a function of µ′. µ′

takes its values between µ and 2µ. It is clear that the
minimum value of S (resp. S′) is 2B (resp. 2B′) and it
corresponds to µ′ = 2µ (resp. µ′ = µ). Thus, to solve
the problem of losses during SS for all the values of µ′,
we must chose B and B′ in a way that

µT + B < 2nB + 2B, 2nB−1 < 2B ≤ 2nB ,



2µ

S S’

µ

T
he

 r
eq

ui
re

d 
bu

rs
t s

iz
e

µ’

2 B’
2 B

BS   = min(S,S’)

Figure 5: The variation of S and S′ as function of µ′
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µT + B < 2n′B + 2B′, 2n′B−1 < 2B′ ≤ 2n′B .

If we approximate 2nB by 2B and 2n′B by 2B′ as in [7],
we get the following condition on B and B′ to avoid
always the losses during SS,

B > µT/3 and B′ > (µT + B)/4.

The shaded region in Figure 6 represents the appropri-
ate values of B and B′ for a given µT . It is clear that
any increase in B beyond µT/3 doesn’t require an in-
crease in the buffer size in node µ′ by the same amount.

Now, if the problem appears at µ′ = 2µ (resp. at µ′ =
µ), it can be avoided by decreasing (resp. increasing)
µ′ if B′ (resp. B) is enough large. A µ′ between µ and
2µ spreads the queue over the two buffers reducing the
likelihood of an overflow during SS.

In Figure 7, we plot simulation results showing how
the throughput varies as a function of µ′. We take
the network parameters so that an overflow appears
in B when µ′ = 2µ. For a large B′ (80packets), the
throughput jumps up at a certain µ′ < 2µ due to the
disappearance of the overflow during SS but it doesn’t
decrease if we further decrease µ′. This is because B′

is large enough to absorb alone the bursty traffic when
µ′ = µ. For a medium B′ (45packets), the throughput
increases as we decrease µ′ only in some intermediate
range. If we further decrease µ′, it then decreases too
due to the reappearance of losses during SS. However,
for a small B′ (20packets), the problem is not only not
solved in the middle but also worsened as µ′ decreases.
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Figure 7: Simulation: TCP Throughput vs. µ′

Conclusion

In this paper, we developed a model that accounts for
all the nodes on the path of a TCP connection. We
showed that the nodes upstream the main bottleneck
may affect the performance of TCP especially of its
Slow Start phase. They may improve the performance
by reducing the burstiness of TCP traffic. They may
also deteriorate the performance if they are not well
dimensioned. At the end, we showed that the required
buffer size in these nodes is not as important as in the
main bottleneck.
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