
UNIVERSITE DE NICE-SOPHIA ANTIPOLIS - UFR SCIENCES

Ecole Doctorale STIC

THESE

Présentée pour obtenir le titre de

Docteur en SCIENCES
de l'Université de Nice Sophia Antipolis

Spécialité : Informatique

par

Chadi BARAKAT

Evaluation des performances du
contrôle de congestion dans l'Internet

Soutenue publiquement le 4 Avril 2001 devant le jury composé de :

M. Altman Eitan INRIA Directeur
M. Bernhard Pierre I3S Examinateur
M. Bonald Thomas France Telecom R&D Examinateur
Mme. Gravey Annie ENST-Bretagne Rapporteur
M. Lakshman T.V. Bell-Labs Rapporteur
M. Le Boudec Jean-Yves EPFL Examinateur
M. Nain Philippe INRIA Examinateur

(14:00 - INRIA)

Table of contents

1 Introduction 1

2 TCP congestion control evolution 9
2.1 Overview of TCP mechanisms . 10

2.1.1 End-to-end �ow control . 10
2.1.2 Error control . 10
2.1.3 Congestion control . 12

2.2 TCP and large bandwidth-delay product networks 17
2.2.1 Fast Recovery . 18
2.2.2 Bu�ering requirement in network routers 20

2.3 TCP and long round-trip times . 26
2.3.1 Proposed solutions to accelerate the window increase 27
2.3.2 Proposed solutions to improve the fairness 31

2.4 TCP and non-congestion losses . 33
2.4.1 Hiding lossy parts of the Internet . 34
2.4.2 End-to-end solutions . 36

2.5 TCP and bandwidth asymmetry . 37
2.5.1 Case of a single connection . 39
2.5.2 Case of multiple connections . 40

2.6 Conclusions . 41

3 End-to-end modeling of TCP congestion control 43
3.1 Measurement testbed . 45
3.2 Modeling TCP window evolution . 46

3.2.1 Dependency between window and round-trip time 47
3.2.2 Modeling timeouts and Fast Recovery . 49
3.2.3 Modeling window limitation . 51
3.2.4 Fluid models versus discrete models . 52

3.3 Modeling the network . 53

I

II Table of contents

3.3.1 Diversity of loss processes in the Internet 55
3.3.2 Modeling the loss process . 57

3.4 Separate model validation . 58
3.5 Conclusions . 60

4 Modeling TCP congestion control: a Markovian approach 63
4.1 The model . 63
4.2 Performance Analysis . 65

4.2.1 Calculation of the throughput . 70
4.3 Impact of burstiness of losses . 71

4.3.1 The reference throughput . 72
4.3.2 Variation of the throughput with burstiness 73
4.3.3 Simulation-based validation of the model 73

4.4 Case of window limitation . 75
4.5 Application of the model to real connections . 78
4.6 Conclusions . 81

5 Modeling TCP congestion control: A general approach 83
5.1 The model . 83
5.2 Performance analysis . 85

5.2.1 Calculation of the �rst two moments of Xn 85
5.2.2 Calculation of the throughput . 87
5.2.3 Generalization of the square root formula 88
5.2.4 Loss process functions and TCP performance 90
5.2.5 Examples of loss processes . 91
5.2.6 Bounds for the model with window limitation 94

5.3 Model validation . 100
5.3.1 Validation of the model for losses . 101
5.3.2 Validation of the model for TCP . 103
5.3.3 Comparison with packet-level approach 104
5.3.4 Validation of bounds for the throughput 104

5.4 Conclusions . 105

6 Modeling TCP congestion control with window limitation 107
6.1 Model and preliminary analysis . 109
6.2 Kolmogorov equation . 110
6.3 The dual M/G/1 queueing model . 111
6.4 Moments of TCP rate . 112

III

6.5 Distribution function of TCP rate . 115
6.5.1 Rate distribution for �nite M . 115
6.5.2 Rate distribution for in�nite M . 117

6.6 The probability of being at maximum rate . 118
6.7 Particular case of a Poisson loss process . 121
6.8 Model validation . 122

6.8.1 Numerical results . 122
6.8.2 Experimental results . 123

6.9 Conclusions . 126

7 TCP congestion control and large bandwidth-delay product networks 129
7.1 The model . 133

7.1.1 A model for TCP during slow start . 134
7.1.2 The over�ow window WB . 135

7.2 Impact of Wth on the performance . 138
7.3 Case of a high slow start threshold . 139

7.3.1 Calculation of W ′
th . 139

7.3.2 Interaction between bu�er size and slow start aggressiveness 140
7.4 Decreasing Byte Counting . 142
7.5 Case of multiple TCP connections . 143

7.5.1 A model for the case of multiple connections 143
7.5.2 Validation of Decreasing Byte Counting 146

7.6 Conclusions . 146

8 TCP congestion control and asymmetric networks 149
8.1 Impact of ACK �ltering threshold . 151

8.1.1 TCP and network models . 151
8.1.2 ACK �ltering threshold . 153
8.1.3 Early ACK �ltering . 153
8.1.4 Simulation . 155

8.2 Delayed ACK �ltering: Case of a single connection 156
8.2.1 Utilization Measurement . 157
8.2.2 Simulation . 158

8.3 Delayed Filtering: Case of multiple connections 158
8.3.1 Case of a large bu�er . 159
8.3.2 Case of a small bu�er . 161

8.4 Conclusions . 162

IV Table of contents

9 TCP congestion control and wireless networks 165
9.1 The model . 167

9.1.1 The model for non-congestion losses . 167
9.1.2 The FEC model . 168

9.2 The approximation of TCP throughput . 169
9.3 The case of non-correlated losses . 172

9.3.1 The analysis . 172
9.3.2 Analytical results . 173
9.3.3 Simulation results . 175
9.3.4 The tradeo� between TCP throughput and FEC cost 176
9.3.5 Number of connections and the gain in performance 177

9.4 The case of correlated losses . 179
9.4.1 Performance analysis . 179
9.4.2 Analytical results . 181
9.4.3 Simulation results . 183

9.5 Conclusions . 184

10 Conclusions and perspectives 185

Bibliography 189

Chapter 1

Introduction

Since its creation in the early 70s, the Transmission Control Protocol (TCP) has the main ob-
jective to enhance the simple Best-E�ort service provided by the IP (Internet Protocol) layer of
the Internet architecture. Indeed, the IP layer implements a simple datagram delivery service
without any guarantee in terms of the order of delivery, the correctness of the delivered packet,
or the arrival of the packet to its destination. It is this simplicity of the IP layer that makes the
success of the Internet and that permits an interconnection of a large number of transmission
media (e.g., Local Area Networks, wireless networks, satellite networks, ATM (Asynchronous
Transfer Mode) networks, etc.) into a single global network. TCP has been designed to build
over this simple network layer, end-to-end channels that provide a reliable in-order data delivery
service to the application layer [111]. It is an intelligent protocol located in hosts between the
application and the simple IP layer, and it relies in its operation on the simple delivery service
provided by IP and on the packets exchanged with the TCP peer in the receiving host. Fig-
ure 1.1 explains the role of the TCP protocol in the Internet architecture. Compared to the well
known seven-layers OSI (Open Systems Interconnection) architecture of the ISO (International
Standards Organization) [109], TCP corresponds to the transport layer known as layer 4 1. The
TCP service is used by a large number of data transfer applications (e.g., FTP for �le transfer,
Telnet for remote login, SMTP for mail transfer, HTTP for web transfers, etc.) and is accessed
via the socket interface of the operating system. This service avoids the implementation of the
reliability mechanisms in every application which facilitates the task of network programmers.

The second objective of TCP upon its creation was to control the �ow of packets so as not
to overload the receiving host. This is called the end-to-end �ow control of TCP [111]. At the
epoch, the receivers were the main bottleneck in the network and it was necessary not to send
more than the receiver bu�er can hold. A window has been used for this purpose and its value
is advertised by the receiver upon connection set-up [111]. At any moment, the sender is not

1In the Internet architecture shown in Figure 1.1, the application combines the three highest layers of the OSI
model (application, presentation, session) into a single layer. The IP protocol corresponds to the network layer
known as layer 3. The lowest layer of the Internet architecture, called Network in the Figure, corresponds to any
transmission medium between two IP routers and combines the two lowest layers (data link, physical) of the OSI
model.

1

2 Chapter 1. Introduction

Application

IP

TCP

IP

Network 1

IP

Application

TCP

IP

Network 3

Reliable in−order delivery service

Unguaranteed delivery service

Net
wor

k 3

Net
wor

k 2

Net
wor

k 2

Net
wor

k 1

Figure 1.1: TCP in the Internet architecture

Packet number

Acknowledged
Transmitted but not
yet acknowledged

Waiting for
transmission

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

window = 5
After acknowledgment of packets 7 and 8

Figure 1.2: Window-based �ow control

allowed to transmit more than the window size of data before the receipt of an acknowledgement
from the receiver saying that it has delivered some data to the application. Once the sender
receives an acknowledgement which says that the receiver has freed some place in its bu�er, the
window slides and the sender can transmit more data. Such way to control the �ow of packets
is called window-based �ow control compared to a rate-based �ow control where the source
transmits data continuously at an appropriate rate (e.g., ABR (Available Bit Rate) service in
ATM networks). Figure 1.2 depicts an example of a window-based �ow control protocol. The
window is represented by the rectangle which indicates the numbers of packets the source can
transmit before the receipt of the next acknowledgement. The left-hand side of the window
indicates the lastly acknowledged packet which slides to the right when a packet is acknowledged
allowing the right-hand side of the window to cover new packets (packets 12 and 13 in the �gure).
Indeed, the right-hand side of the window is obtained by adding the window size to the left-hand
side. Once the right-hand side of the window covers a new packet, the source is allowed to inject
it into the network.

This version of TCP has served the Internet for years. Applications using TCP got a reliable
connection-oriented in-order service at a rate determined by sender and receiver capacities. The
network status was not considered at all by TCP sources; a TCP source injected new data into
the Internet whenever it �nds an empty place in the receiver bu�er. This worked well since
the amount of Internet tra�c was small compared to the bandwidth available on network links.

3

But, the Internet grew after that (and is continuing at a fast rate) and the tra�c exceeded the
network capacity. Routers became unable to forward packets at the rate they arrive to their
interfaces. This has resulted in a series of congestion collapses by the middle of the 80s; Internet
routers dropped most of the packets and TCP sources insisted on retransmitting the lost packets
as well as new packets without backing o� their transmission rates. This has motivated Van
Jacobson in 1988 [75] to introduce his well known algorithms which delegate to TCP another
important task in addition to its previous tasks, that is the control of the rate of packets as a
function of network conditions. This has been done again with a window-based approach. A
variable window has been added to TCP [75], called congestion window, that increases when
the network is not congested and that backs o� when a congestion occurs. Another mechanism
has also been added [75] to back o� the retransmission timer2 when the network is severely
congested. The congestion of the network is inferred at the source from the loss of packets. This
congestion detection method came in compliance with the philosophy of the Internet architecture;
the network must be as simple as possible and it is for hosts to get the information they require
for their operation from the end-to-end communication between them. The congestion window
is always bounded by the window advertised by the receiver so that TCP continues to do its
end-to-end �ow control. In the following chapter, we will present with some details the di�erent
mechanisms proposed in [75] for congestion control in the Internet.

The addition of the congestion control algorithms to TCP has made of this protocol the
main part of the Internet and the main warranty for its stability and its survival. A strong
relation was born between TCP congestion control and the Internet so that some people call the
Internet architecture the TCP/IP architecture and other people confuse between TCP and its
congestion control algorithms. The importance of TCP can be seen from the importance of its
contribution to total Internet tra�c; except a small number of packets sent over the Internet for
administration, test, and control purposes, most of Internet tra�c is of TCP type (95% of all
bytes and 85 - 95% of all packets [123]). It has been also recommended [62] that applications
implementing their own congestion control should do it in a TCP-friendly manner. This strong
relation between TCP and the fate of the Internet has opened the way for a huge amount of
research works on the performance of the TCP protocol. Obviously, most of these works have
been devoted to the congestion control part of the protocol. Many researchers have studied
during the last decade how well TCP behaves and what are the required mechanisms to add
to TCP or to the network in order to approach the optimal behavior. An optimal congestion
control in a best-e�ort network as the Internet should lead to:

• An e�cient utilization of network resources (i.e., available bandwidth).

• A low level of congestion in network routers (i.e., small queues and low drop probabilities).
2As we will see later, a TCP source schedules a retransmission timer when a packet is transmitted to infer the

loss of the packet when the timer expires and the acknowledgement of the packet is not yet received.

4 Chapter 1. Introduction

• A fair sharing of resources between the di�erent �ows.

Note that di�erent fairness schemes could be envisaged for sharing network resources, see [89]
for a discussion of this issue. In the next chapter, we will address with some details the fairness
of TCP congestion control.

The di�erent works on TCP have been motivated by the degradation in performance the
protocol started to experience with the growth of the Internet. TCP is required to achieve the
above objectives whatever is the size of the Internet and whatever are the transmission media
crossed by Internet tra�c. At the beginning of the last decade, TCP was performing well since
the Internet was not so complicated and the tra�c was not so important. Low-speed good-quality
terrestrial lines (e.g., the 56 Kbps lines of the ARPANET backbone) were connecting some routers
in the United States. The last years however we have seen a tremendous growth of the Internet
which is now covering most of the planet and involving most of the markets. Moreover, di�erent
transmission media have been introduced into the Internet which has considerably increased
the heterogeneity of the network. This has given to some Internet paths completely di�erent
characteristics than those of the simple terrestrial network TCP congestion control has been
designed to. As an example of these new transmission media we cite: high speed links (�ber
optics), low speed links (dial-up modem lines), long and variable delay paths (satellite links),
lossy links (wireless networks), asymmetric paths (hybrid satellite networks), etc. This explosion
of the Internet in terms of size, tra�c, and heterogeneity has complicated the task of TCP
which is now required to ensure the stability of a large environment and at the same time to
provide a good service to all Internet users. The di�erent research works that have been done
in the last decade have revealed certain problems with the protocol and they have proposed
di�erent solutions. Some solutions only propose modi�cations to the TCP protocol while others
propose to help the protocol with some mechanisms inside the network. In the latter case, we
can distinguish between solutions that propose changes to the network without any change to
the TCP protocol � some authors tolerate changes to receivers (i.e., user machines) but insist
on not changing the sources (i.e., Internet servers) � and solutions that propose at the same
time changes to the network and to the TCP code. Some of the solutions (e.g., modi�cations
to the error recovery phase) have found their way into standardization3 while others are in the
validation process. One should expect that other problems and other solutions are going to be
found given the fast growth of the Internet and the continuous increase in its heterogeneity.

By looking at the di�erent works on TCP performance, we can easily distinguish two main
approaches:

• The end-to-end approach which supposes that the network between the two hosts is a
black box whose content we don't know. TCP mechanisms are evaluated and improved as
a function of the di�erent forms under which packets leave the box. Some of the works in

3The Internet Engineering Task Force (IETF) is the standardization organization of the Internet and standards
are published as RFCs (Request For Comments), http://www.ietf.org/.

5

this direction are compliant with the original congestion control mechanisms and came as
a correction of some mistakes. Other works have been motivated by the heterogeneity of
the Internet and the idea that TCP must cope with the new transmission media without
any hint from the network. These latter works propose modi�cations to TCP congestion
control itself. As examples of works following this approach we �nd those that aim to
improve the error recovery phase of the protocol (e.g., [64, 90]), those that aim to improve
the slow start phase (e.g., [2, 19, 72]), etc.

• The network-speci�c approach which consists in working with some particular network
type (e.g., satellite network, wireless network, a particular bu�er management strategy)
and improving TCP performance by adding some mechanisms to the network. The TCP
protocol in the hosts may contribute to the solution via a speci�c feedback sent from the
network that speci�es the action it must take. Typical examples of works in this direction
are those that split the TCP connection within the network (e.g., [26, 24, 70]), those that
add explicit congestion and loss noti�cations to TCP sources (e.g., [26, 53, 61]), etc.

The di�erent works on TCP can be further classi�ed into four categories as a function of the
network characteristic they deal with:

• Works that study the performance of TCP in a general data network without looking at a
particular transmission technology. We �nd here all the works that correct problems in the
original mechanisms of TCP as well as the works that try to improve the congestion control
in the Internet by changing the TCP itself or by adding some mechanisms to routers (e.g.,
by improving the strategy with which Internet routers manage their bu�ers at the moment
of congestion). The growth of the Internet is the main motivation behind these works.

• Works that study the impact of the round-trip time on TCP performance. The focus is on
the increase in the round-trip time on some paths or on the di�erence in round-trip time
between concurrent TCP connections. Typical examples of such works are those that deal
with satellite networks.

• Works that study the impact of bad quality links (e.g., noisy links) on TCP performance.
Typical examples are the works on TCP over wireless networks.

• Works that study the impact of the slowness of the return path of a TCP connection. Works
on hybrid satellite networks and cable networks are typical examples of such category.

We adopt this classi�cation in four categories when we present later an overview of the di�erent
works on TCP performance. With this abstraction of the network by the characteristics of the
path of the connection, we are able to place together the di�erent contributions that treat the
same problem but that are presented in the literature in di�erent environments. For example,

6 Chapter 1. Introduction

di�erent works have studied the impact on TCP of the long round-trip time in satellite networks.
These works will be also useful for TCP connections crossing long terrestrial lines.

Concerning the tools that people use in the study of TCP performance, we can distinguish
three main ones:

• Experimentations: Real TCP connections are run over the Internet or some experimental
network. In the latter case, a background tra�c needs to be generated to emulate the
exogenous tra�c in the Internet.

• Simulations: All the network including the TCP protocol is emulated in software. The
widely used simulator for TCP studies is the ns simulator [102]. This is an event-driven
network simulator developed at Lawrence Berkeley National Laboratory and which imple-
ments with a good precision the code of TCP and other Internet protocols.

• Modeling: Analytical models are associated to TCP and to the network. Generally, stochas-
tic processes are used to model parts of the Internet of which we cannot predict exactly
the behavior (e.g., the exogenous tra�c, the round-trip time, the moments at which a
congestion is detected at a TCP source). Deterministic models are however used for TCP
which does not contain any randomness. These analytical models are solved for some per-
formance measures, for example for the average transmission rate, and some conclusions
are made on the factors impacting the performance of TCP.

Given the importance of the TCP protocol, we address in this thesis the general problem of TCP
performance evaluation. The congestion control part of TCP is considered. We focus mainly
on the modeling tool, but we use the simulation and experimentation tools for validation of our
analytical results. We shall consider the two approaches for TCP study. First, we look at the
performance of TCP from an end-to-end point of view. We elaborate some sophisticated models
where we account for the di�erent parameters that may impact the performance of TCP. Using
the machinery of stochastic processes, we solve these models for simple explicit expressions of
TCP average transmission rate. The average transmission rate, also called the throughput, is the
main performance measure that indicates how well a bulk TCP transfer (e.g., a �le transfer) is
done. In the following chapters, we explain the utility of �nding explicit expressions for TCP
throughput. Our work in this direction can be seen as a general framework for TCP modeling
that explains the di�erent issues to be considered and that is in compliance with the previous
works in this domain. Our di�erent results are validated via measurements we made on real
TCP connections over the Internet.

In the second part of this thesis, we get inside the network and we look at the performance
of TCP in some particular media. We choose the three network types that are considered by
researchers as the most challenging for TCP: large bandwidth-delay product networks, asym-
metric networks, and wireless networks. In the �rst network type, we focus on the case when the

7

round-trip time is large and when the bu�ering capacity in network routers does not scale with
the bandwidth-delay product. For each environment, we explain the problem of TCP and we try
to optimize the solution considered by researchers as the most appropriate for TCP performance
enhancement. We develop some analytical models for this purpose that capture the characteris-
tics of the di�erent networks. Our models show that the proposed solutions are not optimal and
that the performance can be further improved by some additional mechanisms. We explain how
the existing solutions need to be tuned for a better performance and we validate our conclusions
via simulations. Then, we propose for the large bandwidth-delay product network and for the
asymmetric network, two solutions that can be easily implemented and that solve the problems
with the existing solutions. As in our work on end-to-end modeling, we try in this part to stay
as general as possible and to give a framework for how to optimize the performance of TCP. Our
contribution in this direction �gures in the problems we will identify, in the analytical models
we will develop, in the guidelines we will provide, and in the practical solutions we will propose.

In the following chapter and based on our classi�cation of the di�erent works on TCP perfor-
mance, we present an overview of what has been done in this domain since the introduction of
the congestion control mechanisms in 1988 [34]. In the third chapter, we address the problem of
end-to-end modeling of TCP. We �rst explain the usefulness of this approach, then we discuss the
di�erent issues to be considered when modeling TCP [27]. After that, we present our model for
TCP dynamics which is based on a �uid approach. We also present two approaches for modeling
the network between the TCP peers: a simple approach based on some Markovian assumptions
and a general approach. In Chapters 4, 5 and 6, we solve these models for the explicit expression
of the throughput and we show [11, 12, 13, 15, 16, 27] via measurements over the Internet the
gain we obtain from considering a sophisticated model for the network rather than a simple
model as has been done in the literature. The validation of our results is based on the tech-
nique for validation we introduced earlier. In the sixth, seventh, and eighth chapters we pass,
to our network-speci�c study of TCP. Respectively, we present our contributions in case of large
bandwidth-delay product networks [29], asymmetric networks [31], and wireless networks [32].
These chapters contain a quick overview of TCP problems in the three environments as well
as an explanation of the particular problems we will address. They also contain our analytical
models, the practical solutions we came with, and the simulation results. We end this thesis
with a chapter containing our conclusions and some perspectives on our future work. Partial
conclusions and perspectives are also provided at the end of each chapter of this thesis.

8 Chapter 1. Introduction

Chapter 2

TCP congestion control evolution

We summarize in this chapter the mechanisms of TCP as well as the di�erent works on TCP
congestion control since its introduction in 1988. Some of the works on TCP consider a general
network and don't limit themselves to a particular transmission technology. Typical examples
of such works are those aiming to improve the loss recovery capacity of TCP [4, 56, 64, 90]. The
other works deal with some particular environments as the satellite environment [3, 7] or the
wireless environment [26]. Given that a contribution in one environment can be useful in another
environment possessing the same characteristics, we chose to make the summary of the works on
TCP independently of the transmission media carrying Internet tra�c. We group the di�erent
contributions as a function of the network characteristic they deal with. We identify [34] for this
reason four characteristics of an Internet path that we consider as the most challenging for TCP
and as the real motivation behind most of the works in the literature. These characteristics are:
the bandwidth-delay product, the round-trip time, the rate of losses not caused by congestion,
and the degree of bandwidth asymmetry between the forward and the reverse directions of the
TCP connection path. By bandwidth-delay product of a path we mean the product of the
bottleneck bandwidth on this path4 times the two-way propagation delay. We don't include in
this product the number of packets that can be queued in network routers. When studying this
product, we will focus on the bandwidth component and study how TCP can pro�t from the fast
increase in transmission rates. By the round-trip time characteristic, we mean paths that have
long or di�erent round-trip times. The rate of losses not caused by congestion refers mainly to
paths containing some bad quality links where packets can be lost due to transmission error or
link outage. When the congestion control has been added to TCP for the �rst time, these latter
paths were supposed not to exist in the Internet. Losses were only supposed to be caused by
bu�er over�ow in network routers [75]. In [84], losses caused by a transient congestion of a router
are also considered as non-congestion losses. A transient congestion means a non-loaded router
that drops some packets due to their arrivals in bursts. The fourth characteristic we consider
refers to asymmetric networks where the return path from the TCP receiver to the TCP sender

4Paxon in [107] de�nes the bottleneck bandwidth as the upper bound for how fast any connection can transmit
along the path due to the data rate of the slowest forwarding element along the path.

9

10 Chapter 2. TCP congestion control evolution

is not fast enough to carry the �ow of informations required for TCP operation.
In what follows we summarize the di�erent works on TCP based on the previous classi�cation.

For every one of the four characteristics, we explain its impact on TCP performance and the
di�erent solutions that have been proposed. We also mention some works on TCP that are not
really related to these characteristics. But before doing that, we outline the basic mechanisms of
TCP [111] as well as the congestion control algorithms added to TCP in 1988 [75]. The material
in this chapter has been published in [34].

2.1 Overview of TCP mechanisms

Before the addition of congestion control to TCP, the main objectives of the protocol were (and
still are) the end-to-end �ow control and the error control. The addition of congestion control
has added a third important objective to TCP. We will explain in the following sections how
these three objectives are achieved by the protocol.

2.1.1 End-to-end �ow control

The end-to-end �ow control means that the sender must not inject into the network more than
the receiver can hold in its bu�er. This will prevent a situation where a packet arrives at the
receiver and does not �nd a place to be queued in order to be held later to the application. A
sender must account for the worst case where all packets transmitted but not yet acknowledged
arrive at the destination and �nd that they have to wait a little because the application is not
ready to read them. As we explained in the previous chapter (Figure 1.2), this control is done
with a window that limits the number of packets the sender can inject into the network and that
slides when the sender receives an acknowledgment saying that the receiver has correctly received
some data and handed them to the application. This window is advertised by the receiver at
connection set-up and it is updated during the connection lifetime if the bu�er space at the
receiver changes. Figure 2.1 shows the �eld in the TCP header (window) that is used to carry
this information. It is a 16-bit �eld telling the sender the size in bytes of the window it must
use. Note here that the two sides of the window (Figure 1.2) can slide independently of each
other. Indeed, the left-hand side of the window slides to the right when data arrive correctly and
in-order at the receiver bu�er. The right-hand side, obtained by adding the window �eld to the
left-hand side, slides to the right when data are handed to the application. It is the right-hand
side which indicates whether the TCP source can transmit new packets or no.

2.1.2 Error control

The error (or loss) control means that TCP is responsible for the recovery from any loss of
information inside the network (or even in the hosts below the TCP layer). This is done by
retransmitting the lost information until it reaches correctly the receiver. The detection of

2.1. Overview of TCP mechanisms 11

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

Figure 2.1: TCP header format (one tick mark represents one bit position)

the loss in TCP is based on sequence numbers, a retransmission timer and cumulative positive
acknowledgments (ACK). The TCP receiver acknowledges the receipt of data packets. Usually,
one data packet over two is acknowledged [41]. This is called the delay mechanism and its
objective is to reduce the volume of ACKs generated by a TCP receiver. An ACK carries
(implicitly) the sequence number of the last in-order byte received. This forms a cumulative
information robust against ACK loss. An ACK sent in response to an out of order packet is
called a duplicate ACK since it carries the same information as the previous ACK. A TCP
receiver is asked to transmit a duplicate ACK in response to every out of order packet [41].
With these ACKs, the TCP source tries to estimate the round-trip time of the connection and
sets accordingly a timer when packets are sent. An Exponentially Weighted Moving Average
algorithm is used to smooth the oscillations in the round-trip time [111]. The expiration of the
timer, called a timeout, before the receipt of an ACK is considered by the sender as a loss signal.
The �rst packet sent and not yet acknowledged is directly retransmitted. Another mechanism
has been added to TCP to detect losses using duplicate ACKs without the need to wait for a
long timeout. It is called Fast Retransmit [75, 121]. According to this mechanism, the receipt of
four consecutive ACKs carrying the same sequence number � the original plus three duplicate
ACKs � indicates the loss of the packet following the lastly acknowledged packet. The receipt
of a duplicate ACK means that a packet transmitted after the packet the source is waiting for
its acknowledgement, has reached the destination which forms an indication of a potential loss.
The number four is chosen in order to minimize the probability that a reordering of packets �
which may exist in the Internet [37] � causes a wrong error detection.

12 Chapter 2. TCP congestion control evolution

2.1.3 Congestion control

Congestion control in data networks means that the di�erent sources must adapt their trans-
mission rates as a function of network load. The control must be done in a distributed manner
and must achieve the three objectives we mentioned in the previous chapter: to well utilize the
network resources while not bringing the network into congestion and while sharing fairly the
available resources between the di�erent �ows [50, 78]. We can add here another requirement for
a congestion control mechanism, that is the fast convergence to a fair regime when a new �ow
arrives or an existing �ow vanishes.

There is quite a consensus in the research community that additive-increase multiplicative-
decrease policies are appropriate for a distributed congestion control [50, 75]. The di�erent �ows
have to increase their rates in an additive manner (i.e., linearly) in the absence of congestion and
to decrease them with a multiplicative factor at the moment of congestion. A condition for the
convergence to a fair regime is that all the �ows must increase their rates with the same slope and
decrease them with the same factor. Such condition has been established in [50] for �ows that
reduce their rates at the same moments and that have to share equally the available bandwidth.
TCP is supposed to implement such a control policy. Other congestion control protocols as the
ABR (Available Bit Rate) mechanism in ATM networks [21] use similar policies.

The rate control in TCP is done by changing the size of a congestion window that has been
added to the protocol [75] and that also limits the number of packets the source can transmit
before the receipt of an acknowledgement. Of course, this window is upper bounded by the
receiver window for end-to-end �ow control purposes [121]. By changing the size of the congestion
window, the source changes its transmission rate given that the rate on a TCP connection (or of
any other window-based �ow control mechanism) can be approximated at any moment by the
window size (which equals the number of packets the source has in the network) divided by the
round-trip time [18, 84].

Two algorithms are used by TCP for window increase [75, 121]: the congestion avoidance
algorithm which is the additive-increase component of the protocol, and the slow start algorithm
which is a transitory phase that aims to bring the connection safely and quickly into the con-
gestion avoidance mode. Congestion avoidance is the mode in which the TCP connection is
supposed to stay once it gets out of the slow start phase. For congestion detection and window
reduction, it has been chosen [75] to divide the window by two in both modes when a packet
is lost. Packets are supposed to be only lost (or at least in most of the cases) due to bu�er
over�ow in network routers. Thus, the loss of packets forms an implicit congestion signal that
the TCP sources use for their control. The mapping between packet losses and congestion sig-
nals is another issue that many works have addressed. As we will explain later, these works are
based on the idea that all losses in a window of packets (i.e., packets of the connection which
are present at the same time inside the network) should be considered by the TCP source as a
single congestion signal.

2.1. Overview of TCP mechanisms 13

This method for congestion detection has been chosen for its simplicity; no additional mech-
anisms have to be added to the network which facilitates the deployment of TCP congestion
control5. The network is still considered as a black box whose content we don't know and which
we don't ask for any explicit feedback. However, it has been shown that the absence of explicit
feedback from the network, combined with the simple drop-tail policy6 in network routers, is the
source for many problems. We will cite here three of them and try to present in the following
sections the solutions that have been proposed to each problem.

• The �rst problem is that the TCP sources continue to increase their rates until the network
becomes congested and here they react very conservatively by dividing their windows by
two. This results in the network oscillating periodically between periods of congestion
where the routers drop many packets and periods of non-congestion where packets are not
dropped. Long queues build up during periods of congestion and the network becomes
under-utilized during periods of non-congestion (except if there are enough packets queued
in routers upon congestion so that the network remains well utilized after the reduction of
the load). It would be better instead to maintain the load uniform so that the utilization
of network resources are maintained at high values and the queues in network routers at
small sizes. This is the main objective of active queue management techniques proposed to
replace the simple drop-tail ones [42, 65]. These techniques form a network-level solution
for one of the problems of TCP congestion control.

• The second problem with the congestion detection method of TCP is that all losses have
to be caused by bu�er over�ow in order to get good performance. This is the main reason
for the deterioration of TCP performance in noisy environments as wireless networks [26].

• The third problem with this method, which is the normal cost to pay for the absence of
an explicit congestion noti�cation and a sophisticated mechanism at the TCP source that
anticipates the congestion of the network, is the need to retransmit all packets that are
dropped in network routers. It would be better to anticipate the congestion in network
routers and to send explicit congestion signals to TCP sources so that these retransmissions
could be avoided. Some works in the literature [45, 78, 127] propose instead to anticipate
the congestion at the sources without the need for an explicit feedback from the network.
This has been simply done by observing the variation of the round-trip time as a function
of the transmission rate (or the window size).

Let us now discuss with some details the di�erent mechanisms of TCP congestion control [75,
121]. We look for this purpose at the di�erent possible scenarios of the evolution of the congestion
window since the beginning of the connection. These scenarios are summarized in Figure 2.2

5The incremental deployment is one of the main requirements for a new mechanism to be accepted in the
Internet community.

6A drop-tail bu�er drops an incoming packet when there is no place in the bu�er to queue it.

14 Chapter 2. TCP congestion control evolution

Figure 2.2: Mechanisms of TCP congestion control

for a long life TCP connection. We assume that the receiver window is large so that it does
not limit the rate of the connection. A TCP source always holds an estimate of the network
capacity that it tries to update during the lifetime of the connection. By capacity of the network
we mean the maximum number of packets (or of bytes) that can be �t on the path between the
source and the destination. This is called in the literature the pipe size [84]. It is equal to the
bandwidth-delay product plus the maximum number of packets that can be queued in network
routers. At the beginning of the connection the source sets its estimate to a default value. Most
of TCP implementations make the assumption that the receiver is the only bottleneck and set
their estimate to the window the receiver advertises [10]. Starting from one segment7, or a
larger value as we will see later, the source calls the slow start algorithm. During slow start, the
congestion window is increased by one segment for every new ACK (i.e., non duplicate ACK)
until the source estimate of the network capacity is reached. This results in an exponential
increase of the congestion window; if all packets are acknowledged and if all ACKs arrive at the
source, the window will double every round-trip time. The network capacity estimate is called
the slow start threshold since it de�nes the end of slow start. We are in the slow start mode
whenever the congestion window is less than the slow start threshold [75]. In the sequel we
denote this threshold by Wth

8.
Although the window increase is fast during slow start, the increase is still slow compared

to a direct transmission at the beginning of the connection at a window equal to Wth. It is
from here that came the name slow start [75] since the start of the transmission before the
addition of congestion control were directly at the window advertised by the receiver. Given
that TCP transmits all packets allowed by its window in a burst without any spacing, starting

7A segment is the size of data in a TCP packet.
8Most often the congestion window is denoted by cwnd, the receiver window by rwnd, and the slow start

threshold by ssthresh.

2.1. Overview of TCP mechanisms 15

directly at Wth would result in a long burst of packets and a heavy overload on the network.
Packets from the connection as well as from other connections could be lost which deteriorates
the overall performance. Slow start aims to alleviate this burstiness while trying to �ll as quickly
as possible the network capacity. Moreover, the capacity of the network may be overestimated.
A loss then occurs during slow start before reaching Wth. Here, the source updates Wth and
sets it to half the current window size. Slow start serves then in this case as a means to get a
better estimate of the network capacity. This estimation role of slow start is more pronounced
at the beginning of the connection where no idea on the network is available and where Wth

might be set to more than what the network can support. But, given the relatively fast window
increase during slow start, this estimation procedure has been shown to impact negatively the
performance of the connection as well as that of the other connections [72]. The TCP source
has to bring the network into severe congestion in order to gauge its capacity. Many packets
are lost due to the exponential window increase and the source spends long time retransmitting
the lost packets before resuming the transmission at the new capacity estimate. It has been
proposed instead [72] to estimate the capacity of the network at the beginning of the connection
via additional mechanisms (e.g., by using the �ow of ACKs) and to set the slow start threshold
to a more appropriate value. This should avoid the congestion during slow start and improve the
performance. In the chapter on TCP performance in large bandwidth-delay product networks, we
will address this issue in more details [29]. Note here that all the studies on the slow start phase
hold for short transfers for which the slow start phase forms an important part. Long transfers,
often called long-life connections [92, 96, 97, 105], are mostly impacted by the additive-increase
multiplicative-decrease behavior of the protocol and hence the slow start phase can be ignored.

Once Wth is reached, the source switches to the congestion avoidance mode where the con-
gestion window is increased slowly by one segment for every window's worth of acknowledg-
ments [75, 121]9. This rate has been chosen [75] to get a constant increase in the congestion
window every round-trip time; if all packets are acknowledged and if all ACKs arrive at the source,
the congestion window will increase by approximately one segment every round-trip time. If the
round-trip time does not change, the rate of the TCP �ow during congestion avoidance will vary
in time in an additive-increase multiplicative-decrease manner. However, this will not be the
case when the round-trip time starts to grow with the congestion window [27]. On paths where
the TCP connection has an important share of the available bandwidth, the increase in the con-
gestion window results in an increase in network load and round-trip time which makes the rate
increase sub-linear instead of linear [12, 18, 27, 78, 84]. The performance will then be di�erent
than what we would obtain if the rate increase were linear. We will address this problem later
when we study the end-to-end modeling of TCP. Note here that this change of the rate increase
from linear to sub-linear is the result of the fact that TCP congestion control is based on changing

9Let W denote the window size in segments. During congestion avoidance, W is increased by 1/W when a non-
duplicate ACK is received. This results in an increase in W by approximately one segment when W non-duplicate
ACKs are received.

16 Chapter 2. TCP congestion control evolution

the window size rather than changing the rate. The change in rate is a function of the round-trip
time of the connection. This dependency of the rate increase on the round-trip time results
in the famous problem of the unfairness of the protocol in presence of connections of di�erent
round-trip times [60, 84]. The window variation of TCP can be considered as additive-increase
multiplicative-decrease in the round-trip time space but not in the time space.

In contrast to slow start which aims to �ll as quickly as possible the network capacity,
congestion avoidance aims to probe slowly the network for any extra bandwidth [75]. The probe
continues until a loss occurs. Here, the source supposes that the network is congested and sets
its estimate of the capacity to half the current size o the window. The �rst version of TCP that
implements congestion control, called Tahoe [56, 75], sets the congestion window at this point
to one segment and uses again slow start to reach the new estimate of the capacity. But, slow
starting after every congestion event deteriorates the performance given the small window, and
hence the low bandwidth utilization, during the slow start phase. This slow start is necessary
when the loss is detected via timeout; a timeout means that the ACK stream has stopped
(otherwise the loss would be detected with Fast Retransmit [121]) and slow start must be used
to �ll again smoothly the network capacity. However, in the Fast Retransmit case, slow start
could be avoided since the ACK stream is still active. The source can inject new packets into the
network upon ACK arrivals so that the network does not drain and the utilization is kept at high
values. New packets are injected at a rate controlled by the new value of the congestion window
after the reduction. They are also injected in a network-friendly manner given the smooth rate
at which ACKs arrive at the source (the rate of ACKs matches the available bandwidth in the
network). The avoidance of slow start in case of Fast Retransmit is exactly what the later
versions of TCP (Reno [121], New Reno [64], SACK [56], FACK [90], etc.) try to do. When
three duplicate ACKs are received, these versions call a Fast Recovery algorithm. Fast Recovery
tries to retransmit the losses in the current window while maintaining a number of packets in the
network equal to the new estimate of network capacity. Once losses are recovered, this algorithm
ends and a normal congestion avoidance phase is called without the need for slow start. As it is
always the case with TCP, new packets and retransmissions are transmitted during Fast Recovery
only upon the receipt of ACKs. If Fast Recovery fails, the ACK stream stops, a timeout occurs
and the source resorts to a slow start phase as in the Tahoe version. The variety of versions of
TCP is due to a variety of implementations of the Fast Recovery phase. All the versions try to
approach the following idle behavior when a packet loss is detected via Fast Retransmit:

• Divide the window by two.

• Retransmit as fast as possible all the packets that have been lost between the transmission
of the lost packet and the detection of its loss.

• While recovering from losses, maintain a number of packets in the network equal to the
new network capacity estimate.

2.2. TCP and large bandwidth-delay product networks 17

• When all losses are recovered, get out of Fast Recovery into congestion avoidance. The
network should contain at this point Wth packets. If it is not the case, the proposition [64]
is to use slow start until reaching this number.

The di�erent losses in the same window (i.e., between the �rst loss and the reaction of the source)
should be considered at the source as the result of the same congestion event and the congestion
window should be divided once by two. We will explain later how well the di�erent versions of
TCP approach this idle behavior.

In addition to the di�erent algorithms for changing the window size, TCP congestion control
contains other mechanisms for setting the retransmission timer [75, 108]. Finding the appropriate
value for the retransmission timer is an important issue since it determines how correctly the
source infers network congestion and how fast it reacts to this congestion. Whenever the source
receives a new ACK that slides the left-hand side of its window (Figure 1.2), the retransmission
timer is rescheduled with a value calculated from the average (SRTT) and the mean deviation
(RTTVAR) of the round-trip time samples seen so far. The use of the mean deviation has been
introduced in [75] and has been shown to be necessary to avoid wrong timeouts caused by round-
trip time oscillations10. When a timeout occurs, the source retransmits the �rst unacknowledged
packet and reschedules the retransmission timer with twice its current value. This is called the
exponential back o� of the timer [75]. An upper bound exists for the timeout duration (e.g., 64s)
as well as on the number of successive timeouts for the same packet. The exponential back o�
of the retransmission timer in case of sever congestion is considered [75] as an important action
for network stability.

2.2 TCP and large bandwidth-delay product networks

The bandwidth-delay product has considerably increased the last decade due to the expansion
of the Internet and the increase in transmission rates. This has caused many problems to TCP.
We will cite in this section the di�erent mechanisms that have been proposed to help TCP to
utilize e�ciently the bandwidth available in today's networks.

The �rst problem that TCP encounters on large bandwidth-delay product paths is that the
window must be able to reach large values in order to use e�ciently the available bandwidth. But,
the congestion window cannot exceed the receiver window which in turn is limited to 64 Kbytes
(16-bit �eld, see Figure 2.1). This problem has been solved with the introduction of the window
scale TCP option [77]11. This new option carries a scale factor that the source multiplies by the
old window �eld to get windows up to 230 Bytes.

Another problem with operating at large windows is that a congestion event may lead to
10A wrong timeout is one that appears when the source under-estimates the round-trip time. The acknowl-

edgement arrives after the expiration of the timer which could be avoided if the timer were correctly set.
11A TCP option is a set of �elds attached to the header of a TCP packet. The source and the receiver agree

on the addition and the structure of these �elds upon connection set-up.

18 Chapter 2. TCP congestion control evolution

the loss of multiple packets from the same connection. An e�cient Fast Recovery phase is then
required in order to correct multiple losses in the same window and to avoid as much as possible
the timeout and the slow start phase.

At large bandwidth-delay product, network bu�ers also have an important impact on the
performance. These bu�ers must be well dimensioned and must be large as well. But, large
bu�ers mean long queueing time which is undesirable for delay sensitive applications and short
TCP transfers. We wish to keep the queueing time in network routers small especially on paths
where the propagation delay is important. Indeed, for the same bandwidth-delay product, the
queueing time increases with the propagation delay since the bandwidth is then smaller and
more time is required to transmit packets. Some limitations may also exist on the bu�ering
capacity of network routers (e.g., on board of satellites) which urges for mechanisms that reduce
the bu�ering requirement. We will address all these issues in the following subsections.

2.2.1 Fast Recovery

Fast Recovery is called when a loss is detected with Fast Retransmit. Some ACKs (duplicate
ACKs) still arrive at the source indicating that some packets are still reaching the destination.
Fast Recovery tries to use the information carried by ACKs to estimate the number of packets in
�ight while recovering from losses. New packets are sent if this number falls below the network
capacity estimate. This keeps the network well utilized and the ACK stream active so that
timeout and slow start would be avoided. The network capacity is estimated after the loss
detection to half the window size when Fast Recovery is called. The injection of new packets
continues until all the losses in the same window of the �rst loss are recovered. Here, the source
leaves the Fast Recovery phase and resumes its transmission in the congestion avoidance mode.
Ideally, the source must have Wth packets in the network when Fast Recovery ends. It happens
that due to the loss of ACKs on the return path, the source �nds that it has less than Wth

packets in the network when it exits Fast Recovery. The solution here [64] to avoid a burst of
packets is to set the congestion window to the number of packets the source �nds in the network
and to use slow start until reaching Wth.

The di�erence between the di�erent versions of TCP which implement Fast Recovery is in
the way they estimate the number of packets in �ight during the recovery phase. The Reno
version of TCP [121] considers that every duplicate ACK is an information that a packet has left
the network and it injects a new packet if the window allows. The problem with Reno, which
is widely deployed in operating systems, is that it supposes that only one packet is lost upon
congestion and leaves Fast Recovery when an ACK for the �rst loss is received. Leaving Fast
Recovery early prohibits the source from detecting more than two losses in the same window
with Fast Retransmit [56]. The number of new packets sent during recovery is too small so that
three duplicate ACKs will not be received to trigger Fast Retransmit. The network drains, the
ACK stream stops and a timeout is required to detect the other losses. Moreover, the slow start

2.2. TCP and large bandwidth-delay product networks 19

phase after the timeout is called with a small threshold due to the division of Wth by two at
every loss detection. In the case of multiple losses per window, it has been shown that Reno
performs worse than the Tahoe version which always resorts to slow start [56]. The Reno version
must be seen as a �rst and important step towards an e�cient Fast Recovery phase.

New-Reno [64, 72] has been proposed to overcome the problems of Reno when multiple packets
are lost in the same window. The idea is simple and consists in staying in Fast Recovery until
all the losses in the same window are recovered. If all ACKs arrive at the source, the New-Reno
version is able to keep Wth packets in the network while recovering from losses. This avoids the
timeout and the slow start but cannot result in a recovery faster than one loss per round-trip
time. This is simply because cumulative ACKs used by TCP cannot inform the source of more
than one loss per round-trip time. The source needs to wait for the ACK of the retransmission
of a loss to discover the next loss in the same window. Moreover, relying on ACKs to estimate
the number of packets in �ight leads to a problem when ACKs are lost on the return path. The
loss of ACKs results in an underestimation of the number of packets that have left the network,
thus in a small number of packets transmitted and a low utilization of the available bandwidth
during the recovery. A smaller number of packets than what we intend (i.e., Wth packets) is kept
in �ight.

More information is needed at the source to recover faster than one loss per round-trip time
and to estimate more precisely the number of packets in the pipe. This information is now
provided by SACK (Selective ACK) [91]. SACK is a TCP option containing the three blocks
of contiguous data most recently received at the destination. With this information, the source
is able to detect more than one loss in a single round-trip time. Also, it can calculate more
precisely the number of packets that have left the network without relying on the ACK stream.
Many algorithms have been proposed to use this information during Fast Recovery. We �nd
TCP-SACK [56] that uses ACKs for the estimation of the number of packets in the network
as Reno, and SACKs to retransmit more than one loss per round-trip time. This leads to an
important improvement in the performance when bursts of losses appear in the same window.
But, the recovery is always sensitive to the loss of ACKs. As a solution to this latter problem
we �nd FACK (Forward ACK) [90] that relies on the SACK information in the estimation of the
number of packets in the pipe. Thus, FACK resolves the sensitivity of TCP-SACK to the loss
of ACKs on the reverse path. The number and the identities of packets to transmit during the
recovery phase is then decoupled from the ACK stream12. But, ACKs are still used to trigger
the transmission of TCP packets. Later, we will see another proposition to decouple another
mechanism of TCP from the ACK stream. The aim of all these works is to make TCP operation
insensitive to any disturbance of ACKs on the reverse path. Such disturbance is harmful for
TCP mechanisms that use the �ow of ACKs to infer what is happening to data packets in the

12With Reno and New-Reno, both the number and the identities of packets to transmit during Fast Recovery
are coupled with the ACK stream. With TCP-SACK, only the number of packets to transmit is coupled.

20 Chapter 2. TCP congestion control evolution

forward direction (e.g., Fast Recovery).

2.2.2 Bu�ering requirement in network routers

The size of bu�ers in network routers must scale with the bandwidth-delay product. These
bu�ers serve to two main things:

• Absorb bursts of packets that arrive at a router at a rate higher than the rate of its output
interface. This absorption should continue whenever the output link in not fully utilized.

• Provide a certain backlog of packets in routers that ensures the well utilization of the
available bandwidth when the TCP sources back o� their transmission rates.

But, the bu�ering must be limited to a small number of packets otherwise the end-to-end delay
will reach high values and delay-sensitive applications (e.g., Telnet) will su�er. A certain tradeo�
exists between increasing the bu�er size to realize the above two objectives and reducing it to
reduce the end-to-end delay. As we will see later, the bu�er management technique plays an
important role in this tradeo�. Such techniques indicate how to share the bu�er size between
the di�erent �ows, when to drop a packet, and from which �ow to drop it. Given that TCP �ows
react to packet losses, changing the way with which packets are dropped changes the reactions
of TCP �ows which in turn changes the performance that we could obtain with a certain bu�er
size.

In the rest of this section, we explain how the bu�er in a router must be dimensioned and
the problems that result from an under-provisioning of bu�ers. We consider for this purpose the
two modes of a TCP connection: the slow start mode and the congestion avoidance mode. First,
the bu�ering requirement is studied under the classical drop-tail policy. For the �rst mode, we
explain the problem of TCP burstiness and the required bu�er size to absorb these bursts [84].
This analysis will be the basis of our work in Chapter 7 [29] on improving the performance of
TCP in large bandwidth-delay product networks. For the second mode, we study the required
bu�er size to provide a su�cient backlog that ensures a full utilization of the available bandwidth.
We explain the problem of synchronization of congestion control of TCP connections sharing a
common bottleneck and its impact on the utilization [65, 128]. We then sketch about some bu�er
management techniques proposed to alleviate this problem of synchronization and to improve
the utilization for a given bu�er size.

Bu�ering requirement during slow start

The exponential growth of the congestion window during slow start results in bursts of packets
sent at a rate exceeding the bottleneck bandwidth. Without loss of generality, suppose that the
destination acknowledges all data packets. The case of other acknowledging strategies will be
studied in Chapter 7 when we present our model for the variation of the queue in the bottleneck
router during the slow start phase. ACKs then return to the source at the rate of the bottleneck.

2.2. TCP and large bandwidth-delay product networks 21

Every ACK increases the congestion window by one segment and triggers the transmission of a
burst of two packets. This will result in the source transmitting long bursts of packets with the
rate of packets within each long burst equal to twice the bottleneck rate and with a frequency
of one long burst per round-trip time [84]. A long burst corresponds in fact to a window size
of packets. For explanation see Figure 7.2 for how packets circulate in the network in long
bursts. These bursts are unavoidable since the current implementations of TCP don't provide
any kind of spacing between packets. Sometimes the size of a burst is limited [56] but in general
when the source decides to transmit multiple packets in response to an ACK, it sends them in
a single burst at the maximum rate allowed by its output interface whatever is the bottleneck
bandwidth. Arriving at the input of the bottleneck link, packets sent in bursts must wait till
their predecessors get served. A queue builds up in network routers during slow start even if the
congestion window is still smaller than the bandwidth-delay product. The length of this queue
increases with the increase in the bandwidth-delay product of the connection's path. If the
bu�ers are small, an over�ow will occur during slow start before reaching the network capacity.
We call this phenomenon an early bu�er over�ow [29]. It is early because an over�ow should
normally occur when the pipe between the source and the destination is �lled not before as with
this over�ow. The TCP source considers here that the network is congested and reduces its slow
start threshold which deteriorates the performance since the capacity of the network is under-
estimated. Slow start fails in this case in smoothing the transmission rate. A slower window
increase is necessary to avoid the early over�ow. But, a slower window increase means a longer
slow start phase. This raises another tradeo� of TCP congestion control, that is the choice of the
window increase rate. We will try to investigate this tradeo� in Chapter 7. We have to retain
here two things. First, TCP is bursty for any window increase rate (even during congestion
avoidance) and the burstiness (i.e., the ratio of the transmission rate of TCP and the rate of
the bottleneck) increases with the acceleration of the window growth. Second, for any window
growth rate, there exists a router bu�er that is not able to absorb the resulting burstiness. The
bu�ering requirement in the router increases with the window growth rate. It is approximately
negligible during the congestion avoidance mode as we have shown in [28] (a bu�er equal to one
packet). It could be important during slow start especially if the bandwidth-delay product and
the slow start threshold are large.

To illustrate this burstiness of TCP, we plot in Figure 2.3 the occupancy of the bu�er in the
bottleneck router while a Reno TCP connection progresses in the slow start mode (between 0
and 1.5s). We also plot in the same �gure the variation of the bandwidth utilization. Bandwidth
utilization is calculated by averaging the rate of packets over one round-trip time intervals. The
utilization is multiplied by the bu�er size to �t with the bu�er occupancy on the same plot. The
simulation scenario in Figure 7.3 is considered for this purpose (B=20 packets, ACKs delayed).
We see clearly how a queue builds up due to slow start long bursts and how the bu�er over�ows
before the full utilization of the bottleneck bandwidth.

22 Chapter 2. TCP congestion control evolution

0

2

4

6

8

10

12

14

16

18

20

0 0.5 1 1.5 2 2.5 3 3.5 4

B
uf

fe
r

oc
cu

pa
nc

y
(p

ac
ke

ts
)

Time (s)

20*(Bandwidth utilization)
Bottleneck buffer occupancy

Figure 2.3: Queue length and utilization during slow start

DestinationSource B

T

µ

Figure 2.4: Single-node network model

The problem of early losses during slow start has been �rst studied in [18, 84]. The authors
consider a long-life TCP Tahoe connection where slow start is called after every loss detection.
They found a condition on the required bu�er size to avoid an early bu�er over�ow in the
stationary regime of the connection. They modeled the network with a single bottleneck node
of bandwidth µ packets/s and of bu�er size B packets (Figure 2.4). T represents the two-way
propagation delay. They calculated the maximum window size of a Tahoe connection (i.e., the
pipe size) as being Wmax = B + µT . Slow start should then end at Wth = Wmax/2. Given that
packets are transmitted during slow start at twice the bottleneck rate µ, half the window size is
supposed to be queued in bu�er B. Thus, B must be taken larger than Wth/2 in order to avoid
an early bu�er over�ow. Using that Wth = (B +µT)/2, this gives a bu�er size larger than µT/3

(one third the bandwidth-delay product).
The analysis in [18, 84] is not applicable to the other versions of TCP (e.g., Reno [56]) where

slow start is only called at the beginning of the connection and after a timeout. This is simply
because Wth is di�erent. For example, in case of timeout, the slow start threshold might be
divided multiple times by two resulting in a less important bu�ering requirement. For the slow
start at the beginning of the connection, the required bu�er size depends on the value we give to
Wth. For a slow start threshold equal to the bandwidth-delay product as proposed in [72], the
router must be able to queue more than half the bandwidth-delay product to avoid early losses.
For a slow start threshold set to larger than the network capacity (Wth > Wmax), a bu�er size

2.2. TCP and large bandwidth-delay product networks 23

larger than the bandwidth-delay product is required so that TCP can �ll the network capacity
during slow start. These numbers are given for a receiver that acknowledges all data packets. A
thorough analysis of the interaction between slow start (or window increase rate) and bu�er size
is presented in Chapter 7.

We still have to say some words about the single-node network model used to derive conditions
on B. This model makes the assumption that packets are queued in only one router which is
the slowest one on the path of the connection. This is true if all upstream routers are too fast
compared to the bottleneck. However, we have shown in [28] that if one of the upstream routers
has a rate less than the transmission rate of TCP during slow start (i.e., twice the bottleneck
rate if all packets are acknowledged), packets will be also queued in this router. In this case,
the burstiness of TCP will be absorbed by both routers not only by the bottleneck one. Thus,
the upstream routers must be also well dimensioned. In [28], we derived conditions on how to
dimension the bu�er in the bottleneck as well as in upstream nodes. We proposed an equivalent
model of two-nodes that gives the same performance for TCP when used instead of a network of
multiple routers in tandem. The second node is the same as the one in the single-node model.
The �rst node represents all upstream routers that may participate in the absorption of TCP
burstiness. Later, we assume that upstream routers are quite fast so that a single-node model
for the network works correctly. This can be seen as the worst case when the bursts of TCP are
only absorbed by the router we focus on.

Bu�ering requirement during congestion avoidance

In this mode, packets on a TCP connection are transmitted at approximately the bottleneck rate.
A simple calculation [28, 29] (one can use our result in Chapter 7) shows that the rate of TCP
packets within long bursts is equal to (bW +1)/(bW) the bottleneck rate, where W is the current
window size and b is the number of data packets covered by an ACK. Thus, the burstiness of
TCP is easily absorbed and a queue starts to build up in routers only when the window exceeds
the bandwidth-delay product (µT in Figure 2.4). In contrast to slow start where congestion
may occur early, congestion occurs during congestion avoidance when the pipe between the
source and the destination is �lled. The source then divides its window by two and starts a
new congestion avoidance cycle, of course if the Fast Recovery algorithm works as desired. To
get a throughput approximately equal to the bottleneck rate (i.e., a full bottleneck utilization),
the new window after the reduction must be larger than the bandwidth-delay product. This
requires a network pipe (B + µT) in Figure 2.4 larger than twice the bandwidth-delay product
(µT), hence a large bu�er size at least equal to the bandwidth-delay product. This important
bu�ering requirement is the normal consequence of the conservative reaction of TCP (division
of the window by two). In reality, the conservative reaction of TCP was the result of the large
bu�ers that were deployed in routers when congestion control has been added to TCP [75]. It
was observed that a conservative reaction is required to reduce the number of queued packets.

24 Chapter 2. TCP congestion control evolution

But, with the increase in link rates and with the expansion of the Internet, the queueing of a
bandwidth-delay product of packets has become a problem. First, it means a storage of a large
number of packets which can be di�cult in some environments due to memory constraints (e.g.,
on board of a satellite). Second, the queueing of a bandwidth-delay product of packets means
a queueing time equal to the propagation delay which is unacceptable for some delay sensitive
applications (e.g., Telnet). Clearly, the second problem is more pronounced on long delay paths.
Hence, a tradeo� exists between increasing bu�ers to improve the utilization and decreasing
them to deliver quickly TCP packets.

The previous analysis holds in the case of a single connection. However, when multiple con-
nections share the same bottleneck, the decrease in the load at the moments of congestion should
be less than that in the case of a single connection; ideally, only a small number of connections
should reduce their windows and those are the connections that consume the maximum band-
width. Given that the window size of a connection is much smaller than if a single connection
shares the bottleneck bandwidth, the decrease in the total load is less important. Hence, the
presence of multiple connections should smooth the load on the network and reduce the bu�ering
requirement. Unfortunately, this is not the case with classical drop-tail routers. A congestion
event causes losses from most of the connections (if not of all of them) and the load is again
divided by approximately two as in the case of a single congestion. This is the famous problem
of synchronization of TCP congestion control [46, 65, 84, 128]. It can be explained as follows.
A drop-tail router discards packets only when the bu�er is full. A complete round-trip time is
required between the drop of a packet and the reaction of the source to which the packet belongs.
During this round-trip time, the bottleneck router remains congested and drops all packets ex-
ceeding the network capacity. Those packets belong to the di�erent connections that increase
their windows during this round-trip time. Hence, multiple connections divide their windows at
the same time which results in an important decrease in load until the next congestion event.
Due to this synchronization, the presence of multiple connections does not reduce the bu�ering
requirement and a bu�er size equal to the bandwidth-delay product is still required to achieve
full bottleneck utilization.

The solution to this bu�ering requirement problem has been brought by active queue man-
agement bu�ers [42] and namely by Random Early Detection (RED) ones [65]. The main idea
behind these queues is to solve the problem of synchronization by distributing packet drops over
time, not to wait until the last minute and drop a large number of packets as with drop-tail
bu�ers. Distributing drops over time will decrease the amount by which the load is reduced
upon congestion since the connections will no longer reduce their windows simultaneously. This
makes the load in the network more uniform (i.e., less oscillatory) and the number of packets to
queue in routers smaller. The queues in network routers will oscillate more frequently (due to
the distribution of drops) but with smaller variations and a smaller average value. Ideally, the
queue oscillations should disappear when the number of connections becomes very large.

2.2. TCP and large bandwidth-delay product networks 25

Active queues consist of three main algorithms which, combined together, lead to the desired
behavior. The �rst algorithm consists in anticipating the congestion by setting some thresholds
lower than the bu�er size. The congestion is considered as not severe when (some averaged version
of) the queue exceeds a minimum threshold and it is considered as severe when the queue exceeds
a maximum threshold. An active queue is supposed to operate between the two thresholds. The
second algorithm consists in dropping packets randomly when the congestion in the network is
not severe and dropping all packets as a drop-tail queue when the congestion is severe. The third
algorithm consists in absorbing the oscillations of real queue by some averaging algorithm. An
Exponentially Weighted Moving Average algorithm is used for this objective. The average queue
is used in the decision on the congestion level and in the calculation of the probability with which
incoming packets have to be dropped. This probability is an increasing function of the average
queue. If well designed, the oscillations in the real queue should be completely absorbed which
permits a constant average queue and hence a dropping of all packets with approximately the
same probability. This yields the best distribution of congestion events over time and thus the
best uniformization of load and queues.

Although they bring a solution in the case of multiple connections, active queues worsen the
situation in the case of a small number of connections. The use of a low threshold causes an
important decrease in load as if a small bu�er is used. In fact, active queues has been designed for
backbone routers where a large number of connections exist at the same time. With the current
conservative reaction of TCP sources, it seems impossible to �nd a solution to the problem of
utilization in the case of a small number of connections without queueing a large number of
packets in routers. The number of packets to queue depends on what we intend to optimize:
the end-to-end delay or the utilization. A possible solution could be to scale the thresholds of
the active bu�er queue as a function of the number of connections. Another possible solution
could be to change the reduction factor of TCP congestion control so that the load does not drop
drastically when a congestion occurs. This latter solution will reduce considerably the bu�ering
requirement. The Vegas version of TCP [45] works in this direction. It solves this dependency
of the utilization and the delay on the bu�er size by not basing the congestion control only on
losses. The increase in the round-trip time is used to maintain the window at a size equal to the
bandwidth-delay product plus some packets (between 1 and 3) in the bottleneck router. Except
when the congestion is inferred from the loss of packets, the window is reduced by one packet
rather than by half. Thus, the utilization is most of the time close to the bottleneck bandwidth
and the end-to-end delay is kept close to the propagation delay. This is in theory how TCP Vegas
should operate. The reality has shown [38, 88, 116] that the variation in round-trip time is not
a reliable information for inferring network congestion. An explicit feedback from the network
is required if we want the TCP source to react to di�erent levels of congestion with di�erent
reduction factors.

Before ending this section, we will refer to other simple bu�er management techniques that

26 Chapter 2. TCP congestion control evolution

can alleviate the problem of synchronization and reduce the bu�ering requirement. Recall that
the synchronization is the result of the drop-tail policy. Thus, dropping a packet from the queue
when a new packet arrives and �nds the queue full will alleviate the problem. One could drop
the packet at the head of the queue [86] or that at a random position [69]. The number of
packets dropped at the moment of congestion remains approximately the same as in the case of
a drop-tail bu�er. The di�erence is that these drops will be distributed on a small number of
connections (those having a large number of packets in the bu�er at the moment of congestion)
and not on all the connections. The decrease in the load is then smaller which should improve
the utilization for a given bu�er size. This will reduce the required bu�er size to achieve a certain
utilization.

2.3 TCP and long round-trip times

The geographical expansion of the Internet and the introduction of satellite networks have led
to paths of long round-trip times. For example, the one-way propagation delay across a GEO
satellite is in the order of 250 ms. The �rst problem with these long delay paths is not particular
to TCP but it is common to any other closed-loop congestion control mechanism. The reaction
of TCP to network congestion takes e�ect one round-trip time later. At long round-trip time,
this reaction may become unnecessary or insu�cient which results in an ine�cient utilization of
network resources. The other problems however are proper to TCP and are due to the fact that
the window increase is only a function of the number of ACKs received and not the round-trip
time. This results in a window increase rate inversely proportional to the round-trip time. The
longer the round-trip of the connection, the longer the time the source requires to pass from
a window size to another. In principle, this has no great impact on the congestion avoidance
phase since the source is supposed to operate in this phase at a large window. However, this has
a large impact on the slow start phase which is a transitory phase designed to �ll quickly the
network capacity. The slow start phase will last longer. Given that the network is underutilized
during slow start due to the small size of the window, the performance of TCP degrades [3, 7].
This degradation is more important in case of short transfers such as Web transactions. These
transfers complete in general in slow start and su�er from a long delay and a low throughput.
Accelerating the window increase during slow start without overwhelming network bu�ers has
been considered in the literature as the most important issue for improving the performance of
short TCP transfers in a satellite environment [3].

Another problem caused by the dependency of the window increase on the round-trip time
is the unfairness in the allocation of the bottleneck bandwidth between connections of di�erent
round-trip times. As we explained before, this is due to the fact that the di�erent connections
increase their windows at di�erent rates [50]. Many works have shown the bias of TCP against
connections with long delay paths [60, 71, 84]. Short delay connections increase their rates more

2.3. TCP and long round-trip times 27

quickly and grab most of the available resources. In case of drop-tail bu�ers and in presence
of the synchronization phenomenon, the throughput of a connection has been shown [84] to be
inversely proportional to the square of its average round-trip time. We can say that it is inversely
proportional to Tα, where T is the two-way propagation delay and α a factor between 0 and 2.
The factor α is the result of all the connections having approximately the same queueing time
in the bottleneck router [84]. The larger the bu�er size at the bottleneck, the smaller the factor
α. Ideally, when the bu�er size in in�nite, all the connections should get the same throughput
whatever are their propagation delays. We will only focus in this section on the unfairness of TCP
caused by round-trip times. Another unfairness problem has been addressed in the literature,
that caused by the di�erence in the number of routers crossed by the connections [60, 74]. A
TCP connection crossing a large number of routers has been shown to get less throughput than
a connection crossing a small number of routers. This is simply because the probability that
a packet is lost is larger in the �rst case. In our study, we assume that connections cross the
same number of congested routers and hence they have to realize the same throughput whatever
are the resources they consume in other parts of the network. We present the di�erent schemes
proposed in the literature to achieve this fairness objective. We don't address the case of di�erent
congested routers where other fairness objectives could be envisaged [89]. The fairness objective
we consider is often called in the literature the max-min fairness and it brie�y consists in always
helping the TCP connection with the lowest throughput.

2.3.1 Proposed solutions to accelerate the window increase

Many propositions have been made to accelerate the window increase at the beginning of a TCP
connection. These propositions try to reduce the number of round-trip times required to reach
the network capacity estimate. In the absence of any kind of packet pacing, this problem seems
to be unsolvable on an end-to-end basis. We must reach as fast as possible a certain window
(Wth) but we are only allowed to transmit packets in bursts. The acceleration of window growth
increases the burstiness of the protocol which overloads the network routers and impairs the
performance of the connection and that of other connections. Note here that the problem of slow
window increase on long delay paths is exacerbated when ACK are lost or when they are delayed
at the receiver. The proposed solutions to this problem can be divided into three categories:
some of them change the window increase algorithm of TCP. This is the kind of solutions that
we will study in Chapter 7. Other solutions solve the problem at the application level and the
others solve it inside the network.

TCP-level solutions

The �rst proposition was to use a window larger than one segment at the beginning of slow
start [3, 6]. This large window has been proposed for the �rst slow start phase not those
following a timeout. After a timeout, the network is supposed to be severely congested so that a

28 Chapter 2. TCP congestion control evolution

transmission at a window of one packet is required. An initial window of maximum 4 segments
has been proposed [6]. Another proposition, called Byte Counting, consists in accounting for
the number of bytes covered by an ACK while increasing the window [2, 3]. The congestion
window is increased as a function of the number of data packets acknowledged rather than the
number of ACKs received at the source. The main motivation behind this solution was to recover
from the negative impact of the delay ACK mechanism [41] on TCP performance in a satellite
environment. It decouples the window increase algorithm from the ACK clock. We already saw
how the SACK option [91] decouples the Fast Recovery algorithm from the ACK clock. But,
Byte Counting may result in bursts when an ACK covers many packets as when doing a slow
start after a timeout period. For this reason, a limit has been proposed on the amount by which
an ACK can increase the window (Limited Byte Counting) [2]. In addition to decoupling the
window increase from the ACK clock, the Byte Counting solution can be seen as an attempt
to accelerate the window increase. It improves the performance in some situations. However, it
increases the burstiness of slow start which may deteriorate the performance if network routers
are not well dimensioned. In chapter 7 we study the problem of slow start burstiness for any
window increase policy including those proposed by standard TCP and Byte Counting. We
de�ne the optimal policy for window increase and based on it, we present an improvement of
Byte Counting we call the Decreasing Byte Counting solution.

The natural solution to the problem of TCP on long delay paths is to eliminate the burstiness
of the protocol by pacing packets at the rate of the bottleneck. This will also form a solution
to the problem of large bu�ering requirement during slow start that we already studied. It
is proposed [9, 19, 72] to use the �ow of ACKs at the beginning of the connection to get an
estimate of the bottleneck rate. Once this estimate is obtained, the source can set its slow
start threshold to an appropriate value (to the bandwidth-delay product for example) and can
transmit directly Wth packets at the bottleneck rate. Once the slow start threshold is reached,
the source switches to a normal congestion avoidance phase. This should shorten the slow start
phase while not overloading the network. An important gain in performance has been noticed
with this solution [19]. The question here is how reliably we can estimate the bottleneck rate
from end-to-end measurements. Another question is how much a jump of the window impacts
the performance of other connections using classical slow start. There is also the question of
the load caused by �ne granularity timers required for packet pacing at the TCP source. Pacing
packets seems to be the best direction for solving all the problems related to the slow start phase
of TCP, but more works are still required for such direction to be adopted.

Application-level solutions

These solutions try to solve the problem of long slow start duration at the application level
without changing TCP. The application manages the data to transfer and the establishment
of TCP connections in a way to improve the overall performance. The �rst solution, called

2.3. TCP and long round-trip times 29

XFTP [8], consists in establishing multiple simultaneous TCP connections for the transfer of a
single �le. This should improve the performance since the increase rate of the overall window
is larger. Also, the distribution of losses on multiple connections instead of one makes the error
recovery algorithm of TCP more e�cient and the decrease in load upon congestion less important.
However, this solution increases the aggressiveness of the transfer and hence the losses in the
network. An adaptive mechanism has been proposed [8] to change the number of connections
as a function of network congestion. Such solution can be seen as an unsocial behavior where a
user cheats the network to get the rate of multiple users.

Another solution has been proposed to accelerate the transfer of WEB pages. It can be also
used for any other application desiring the download of a set of small �les from the same server.
The objective of this solution is not to accelerate the slow start phase of a transfer as with the
previous solution, but rather to optimize the transfer of the set of objects in a WEB page (text
zones, images) on a single TCP connection. Instead of using an independent TCP connection
to fetch every object (which is so costly since the objects are in general of small size and since
a connection establishment procedure and a slow start phase are required for every object),
the client establishes a persistent connection and asks the server to send all the objects on it
(HTTP 1.1 [57]). With this persistent connection, only the �rst objects of the page su�er from the
long slow start phase, but once slow start is terminated and the connection passes to congestion
avoidance, the remaining objects are transfered at a high rate. Hence, the low rate during slow
start is compensated by the long time the connection stays in the congestion avoidance mode.
Recently, a proposition has been made [54] to accomplish this aggregation of transfers at the
TCP level rather than at the application level. The advantage of such aggregation is that it can
be used by di�erent applications of di�erent versions, not only HTTP. Applications continue to
establish a TCP connection per object. At the TCP level, connections to the same destination
are grouped together and their congestion windows are changed in a way that their sum behaves
as that of a single TCP connection. When a new object is to be transfered, the corresponding
connection starts with a window that depends on the priority of the object, and this is without
changing the total window of the group. One possible scenario is to divide the total window of
the group equally between the di�erent connections. The �rst packets of the object are paced at
a rate calculated from the associated window and from the average round-trip time of the group.

As a further application-level solution, we �nd the caching (i.e., the use of a proxy server) [129].
The TCP connection initiated by the client is established to a nearby cache which maintains a
copy of recently downloaded �les. If the requested �le exists in the cache, it is directly delivered
to the client which results in a short transfer time. If not, the �le is downloaded from the server
(or from a higher-level cache), stored in the cache for future requests, and then delivered to the
client. If the caching policy is appropriately tuned, this should accelerate slow start and improve
the performance of most of the transfers. Note here that caching is better supported by satellites
due to their broadcast nature. Once a cache searches a �le, all the caches in the satellite scope

30 Chapter 2. TCP congestion control evolution

TCP
Connection 1 Connection 2

TCPA B

Long Delay LinkSource Destination

Generation of ACKs Suppression of
Destination ACKs

No Slow Start

Optimized Transport Protocol

Figure 2.5: TCP-Spoo�ng: elimination of the long delay link from the feedback

receive it.

Network-level solutions

This approach consists in solving the problem of slow start inside the network rather than in
hosts. It is worthy when a long delay link (e.g., a satellite link) is located on the connection's
path. In order to decrease the round-trip time of the connection, the long delay link is eliminated
from the feedback loop by acknowledging packets by the router at the input of this link (A in
Figure 2.5). The packets are then transmitted on the long delay link (A-B) using an optimized
transport protocol (e.g., the STP protocol proposed in [70]). A modi�ed version of TCP can be
also used [94]. Given that the bandwidth between the two ends of the long delay link (between
A and B) and the bu�ering capacity at its input (at A) are known, the transport protocol to
be used on the long delay link can be tuned in order to increase quickly the transmission rate
without the need for a long slow start phase. Once arriving at the output of the link (at B),
another TCP connection is used to transmit the packets to the destination. The long delay link
may lead directly to the destination as when a satellite network is used to access the Internet.
The second TCP connection is not required in this latter case. Now, given that packets are
acknowledged by the router at the input of the long delay link (A), any loss between the input
of the link (A) and the destination must be retransmitted on behalf of the source. Also, ACKs
from the receiver must be silently discarded (on B) so as not to confuse the source. Such solution
is called TCP-Spoo�ng since the source is spoofed by the router at the input of the long delay
link.

The main gain in performance with Spoo�ng comes from not using slow start (or from using
a faster version) on the long delay link. This, together with the fast increase in the congestion
window on both sides of the long delay link, improves the performance of the transfer. Another
advantage of Spoo�ng is that it shortens the feedback loop of TCP and improves its reaction to
network conditions. A similar solution has been proposed in ATM networks for the improvement
of ABR rate control over long delay paths [21]. A long end-to-end ABR connection is divided
into small ones. The switch at the input of a small connection behaves as a Virtual Source (for
example, node B in Figure 2.5), and the switch at its output behaves as a Virtual Destination. A

2.3. TCP and long round-trip times 31

virtual destination returns a feedback (Resource Management cells) to the virtual source located
before it which in turn controls the rate of ATM cells as a function of the available bandwidth
between them. This is claimed [21] to improve the overall rate control. As we will see later,
splitting a TCP connection into small ones also results in a better resilience against losses not
caused by congestion.

Despite these advantages, Spoo�ng still has a lot of drawbacks. First, it violates the end-to-
end semantics of TCP. A packet is acknowledged (by A) before reaching its destination. Also, it
does not work when encryption is accomplished at the IP layer and it introduces a heavy load
on intermediate routers (A and B). Furthermore, the transfer is vulnerable to path changes and
ACKs have to follow the same path as data packets (of course in an opposite direction) in order
to be discarded by intermediate routers before reaching the source.

2.3.2 Proposed solutions to improve the fairness

TCP is known to be unfair against connections with long round-trip time [60, 84]. Two trends
exist to improve the fairness of the protocol. The �rst trend tries to solve the problem at the
TCP level by accelerating the window growth for long delay connections. The second trend
keeps TCP unchanged and tries to solve the problem inside the network. Some mechanisms are
proposed for network routers so that to allocate the available bandwidth fairly between di�erent
connections.

As TCP-level solutions, we �nd �rst the proposition made in [60] and called Constant Rate
algorithm. The author proposes to increase the window W in the congestion avoidance mode by
a factor proportional to the inverse of the square of the average round-trip time (RTT):

When a non-duplicate ACK is received: W = W + c/[W (RTT 2)].

Note that current versions of TCP increase the window by 1/W when a non-duplicate ACK is
received [75]. The result of this new algorithm is a constant increase rate (equal to c) of the
connection transmission rate regardless of the round-trip time. According to [50], this should lead
to fairness. Recall that current versions of TCP are not fair since they increase their transmission
rates with a slope inversely proportional to RTT 2. The �rst problem with this new algorithm is
the choice of the factor c. Second, accelerating the window increase while preserving the ACK
clock results in large bursts for long delay connections. In [71], the authors show that with
drop-tail bu�ers, this increase in burstiness may impair the fairness instead of improving it. To
solve the problem, they propose instead an increase-by-K algorithm: the window is increased by
K segments every round-trip time and this is only for long delay connections. The performance
of long delay connections improves without a�ecting that of the others when K is given small
values.

Now, in order to improve the fairness inside the network without changing TCP, �ows of
di�erent connections must be isolated from each other in network routers. Given that congestion

32 Chapter 2. TCP congestion control evolution

control in TCP is based on losses, isolation means that a congested node must distribute losses
between the di�erent TCP connections in such a way that they get the same throughput. The
best isolation is achieved by accomplishing a per-connection queuing with a Round Robin service
discipline [120]. Such solution ensures fair share of bandwidth at short time scales but it is very
hard to implement given the large number of TCP connections that cross an Internet router. An
easier solution for implementation is to serve all packets in a FIFO (First In First Out) manner
and try to ensure fairness by managing intelligently the bu�er space. With the FIFO service
discipline and on long time scales, the bandwidth of a link and the bu�er at the input of the
link are shared in the same way between the di�erent connections. Many bu�er management
policies have been proposed. Some of these policies, as ERD (Early Random Drop) [69] and
RED [65], choose to drop incoming packets with a certain probability when the queue length or
its average exceed a certain threshold. The aim is to distribute losses on the di�erent connections
proportionally to their rates. These policies improve the fairness while not requiring any per-
connection state. As we will see in the next chapters when we address the end-to-end modeling of
TCP, dropping packets of di�erent connections with the same probability makes the throughput
inversely proportional to RTT instead of being inversely proportional to RTT 2 in case of classical
drop-tail bu�ers. Other works [87, 120] suggest that dropping packets proportionally to the rate
of �ows is not su�cient for isolating TCP �ows from each other or from other non-TCP �ows.
Given that packets are dropped randomly, it is possible that a connection with a small window
loses its packets which pushes her into a sequence of timeouts. Also, it is possible that a non-
TCP �ow not sensitive to packet losses grabs most of the bandwidth and the bu�er space,
and shuts down all the TCP connections. These latter works conclude that a better isolation
between �ows requires a fair sharing of the bu�er space between di�erent connections [87, 120].
Aggressive connections must be prevented from monopolizing the bu�er space and a connection
with a small window must be guaranteed to �nd some places in the bu�er. We �nd here the
other set of bu�er management policies [68, 87, 120] (Flow RED, Fair Bu�er Allocation, Virtual
Queueing, Longest Queue Drop, etc.) that try to achieve fairness by sharing the bu�er space
fairly between connections. A long delay connection is now sure to �nd some places in the bu�er
which permits it to proceed without being shut down by short delay connections. Note here that
the overhead from fair bu�er sharing is less than the overhead from per-connection scheduling
since we only need to account for the connections that have packets in the bu�er not for all
the active connections. Clearly, such overhead is more than the overhead of policies that don't
consider bu�er sharing (e.g., drop-tail, RED, etc.).

Solving the fairness problem at the TCP level has the advantage of keeping routers simple.
But, it is not enough in a network where non-TCP �ows exist [62]. Some mechanisms inside the
network are required to protect conservative TCP �ows from aggressive ones. These mechanisms
are also required to ensure fairness at a level above TCP, say at the user or at the application
level. A user (e.g., someone running XFTP [8]) may cheat the network and establish multiple

2.4. TCP and non-congestion losses 33

TCP connections in order to increase its share of the bandwidth. In such situation, the total
�ow of packets generated by these connections should be considered by the network as a single
�ow, and the network should manage to divide fairly its resources between �ows not connections.
This requires an aggregation in �ows of TCP packets crossing a router. The level of aggregation
determines the level of fairness we want. The source and destination IP addresses, the transport
protocol used, the source and destination port numbers, etc., could help the network in the
identi�cation of �ows.

2.4 TCP and non-congestion losses

TCP congestion control is based on the loss of packets. This results in a severe throughput
deterioration if packets are lost on the path of the connection for other reasons than congestion.
Non-congestion losses involve all kinds of losses that are not caused by a sustained congestion of
network routers and thus that don't require a reduction of the rates of TCP �ows. Their negative
impact on TCP performance increases with the bandwidth-delay product of the connection's
path [84]. A non-congestion loss that occurs when TCP is transmitting at a large window
reduces the load more than when TCP is transmitting at a small window. In the former case,
the source requires more time to return to its rate before the reduction of the window.

Non-congestion losses are mostly caused by transmission errors. A packet may be corrupted
while crossing a bad quality link (i.e., a link with a low signal to noise ratio). The corrupted packet
is discarded at the link level, IP level, or TCP level without being handed to the application. Most
of the corrupted packets are discarded at the link level, but it happens that some of them pass
the link-level test and reach the higher layers where they are discarded [122]. The detection of
corruption in a layer is done by recalculating a checksum (on all the packet or only on the header
as in the IP layer) and comparing it to that carried in the packet header. The packet is discarded
if checksums di�er. Bad quality links involve mainly wireless links where many phenomena such
as interference, absorption, obstacles and others [55], may reduce the power of the signal at
the receiver and cause a misinterpretation of the arriving information. Wireless links are now
widely seen in the Internet. We �nd them in satellite and terrestrial mobile networks. In mobile
networks, the mobility of users induces other phenomena that increases the loss probability of a
packet. Fading, shadowing, handover, etc. [106], may put the wireless link in a bad state for a
non negligible time which results in bursts of losses.

In [84] losses due to a transient congestion of network routers are also considered as non-
congestion losses. A transient congestion is de�ned as being a congestion event that lasts for a
small time compared to the round-trip time of the connection and that disappears before a TCP
�ow reduces its rate. A TCP reaction to this short congestion is not necessary. Such losses can be
caused by a low rate bursty source sharing the bottleneck with a TCP connection. Losses inside
an ATM backbone providing an ABR service to carry TCP tra�c [68] can be also considered as

34 Chapter 2. TCP congestion control evolution

transient congestion events. In this latter case, the rate of TCP should only be reduced when
the bu�er at the input of the ATM cloud over�ows.

The solutions proposed to the problem of non-congestion losses can be divided into two
main categories. The �rst category consists in hiding the lossy parts of the Internet so that only
congestion losses are detected by TCP sources. These solutions require some work in the network
but have the advantage of not requiring any change to TCP. They are compliant with current
TCP congestion control which requires that the network only contains good quality links below
the IP layer. The second type of solutions consists in enhancing TCP with some mechanisms
to help it to distinguish between di�erent the two types of losses. The latter solutions can be
considered as an attempt to decouple congestion control of TCP from its error control.

2.4.1 Hiding lossy parts of the Internet

This set of solutions consists in recovering non-congestion losses locally without the intervention
of TCP sources. Hence, the source sees a clean path and continues to increase its rate until a real
congestion occurs. A local recovery can be accomplished at the link level or at TCP level. From
IP point of view, a link is any transmission medium located between two adjacent routers. If a
link-level solution is not possible (i.e., di�culty of the modi�cation of the link layer protocol), a
recovery at the TCP level can be used instead. A TCP agent in an intermediate router monitors
TCP packets, detects losses and retransmits them on behalf of the source. This agent must
deal with congestion control and resource sharing in the lossy part it is hiding from the TCP
connection, otherwise it must be intelligent so as to only hide non-congestion losses and let the
TCP source react to congestion losses. In general, the lossy part is the last hop to the destination
and a local congestion control is not required.

Link-level solutions

Two well known mechanisms exist for the improvement of a link quality: Retransmissions (ARQ)
and Forward Error Correction (FEC). ARQ is e�cient when losses are not frequent and when
the propagation delay is not important. An extra bandwidth is only consumed when a packet
is retransmitted. However, link-level retransmissions may interfere with TCP mechanisms [26].
If the link layer does not provide an in-order delivery of packets to the IP layer, TCP packets
following the loss reach the destination before the retransmission and trigger the transmission of
duplicate ACKs. Duplicate ACKs may reach the source while the link layer is trying to retransmit
the packet. This causes an unnecessary window reduction and an unnecessary retransmission of
the lost packet at the TCP source. The proposed solution to this problem is to use a link layer
protocol aware of TCP mechanisms (Figure 2.6). The link layer suppresses the duplicate ACKs
(at router R) so that they don't reach the source. If the link layer fails to retransmit the packet,
the source will timeout and retransmit the packet itself. Note here that this solution is only
applicable when the lossy link is the last hop to the destination. If the lossy link is followed by

2.4. TCP and non-congestion losses 35

Source Destination

Lossy LinkR

Duplicate ACKs
Suppression of

Figure 2.6: A TCP-aware link layer

other routers, congestion losses will be hided which we must not allow.
Now, FEC consists in sending in addition to the useful data, some redundant information in

order to rebuild the corrupted part of the packet at the output of the lossy link. For example,
one could send in addition to two blocks of data A and B, the result C of an XOR operation
on these two blocks [119]. If either A or B is lost, the lost packet can be rebuild from an
XOR operation on C and the other received packet. The drawback of this technique is that the
redundant information is not used when the link is in a good state (e.g., when A, B and C are
correctly received). Thus, it represents a certain waste of bandwidth. Also, the computation
of the redundant information requires extra CPU processing time, memory and blocking delay.
However, the advantages of FEC are in general worth the cost. First, corrupted packets are
corrected runtime without any retransmission which is important for long delay links. Also,
FEC does not interfere with TCP mechanisms. Packets are corrected on runtime without any
increase in end-to-end delay and without any reordering of packets. For these reasons, this
technique has been recommended in a satellite environment [7]. Convolutional coding, Viterbi
decoding together with interleaving techniques and Reed-Solomon encoding, are widely used
to render satellite links as clean as terrestrial ones. Given this importance of FEC for TCP
congestion control, we will dedicate Chapter 9 to the evaluation of the gain in TCP performance
for given FEC parameters. We will also study the variation in TCP/FEC performance when the
state of the wireless link changes. We conclude our analysis in Chapter 9 by some guidelines on
how to dimension FEC for a better TCP congestion control.

TCP-level solutions

These solutions propose to retransmit packets inside the network at the TCP level instead of
the link level. The bene�t is that we don't violate the principle of layering as with TCP-aware
link layers. According to these solutions, a TCP agent in the router at the input of the lossy
link keeps a copy of every data packet. It discards this copy when it sees the ACK of the packet
and it retransmits the packet on behalf of the source when it detects a loss via duplicate ACKs.
The retransmission is accompanied by a discarding of duplicate ACKs. This technique has been

36 Chapter 2. TCP congestion control evolution

proposed [24, 26] for terrestrial wireless networks where the delay is not very important to require
the use of FEC. The TCP agent is placed in the base station at the entry of the wireless network.
Two possible implementations of this agent have been proposed.

The �rst implementation (Indirect TCP [24]) consists in terminating (or splitting) the origi-
nating TCP connection at the entry of the lossy link. The intermediate agent then acknowledges
the packets and takes care of handing them to the destination. Another connection well tuned to
a lossy environment (e.g., TCP-SACK [56]) is established across the lossy part of the network. A
di�erent transport protocol can be also used across this lossy part. Such solution is similar to the
Spoo�ng solution described in Section 2.3.1. It aims to eliminate the lossy link from the feedback
loop, whereas with Spoo�ng the objective is to eliminate the long delay link. As with Spoo�ng,
this solution violates the end-to-end semantics of the Internet. Also, it causes di�culties during
handover since a large state must be transfered between base stations.

The second implementation, called Snoop protocol [26], respects the end-to-end semantics.
The intermediate agent does not terminate the TCP connection. It just keeps copies of data
packets without generating any arti�cial ACK. New ACKs sent by the destination are forwarded
to the source. However, duplicate ACKs are stopped. A packet is locally retransmitted when
three duplicate ACKs are received or when a local timeout expires. This local timeout is set of
course to a value less than that of the source. The drawback of Snoop is that an interference
may occur between the source and the agent mechanisms as in the link-level case. In fact, the
Snoop protocol is no other than a link-level recovery implemented at the TCP level.

2.4.2 End-to-end solutions

Some authors have investigated the possibility of enhancing TCP congestion control to cope
with non-congestion losses on end-to-end basis. They try to �nd a solution to the well known
problem: how to decouple TCP congestion control from error control so that TCP will no longer
use losses to infer network congestion. Two directions exist in the literature. The �rst one keeps
TCP congestion control unchanged and tries to infer non-congestion losses at the source either
via an explicit signal sent from the network or via the observation of round-trip time variations.
The second direction consists in changing TCP congestion control so as to use other means for
congestion detection. Even though the works in the second direction are not motivated by the
problem of non-congestion losses, they will form a solution to this problem if they work correctly.

For the �rst direction, an Explicit Loss Noti�cation (ELN) signal has been proposed [53, 116]
to infer the source explicitly of the occurrence of a non-congestion loss. The source then reacts by
retransmitting the lost packet without reducing its window. An identical signal has been proposed
to halt the congestion control at the source when a disconnection appears due to handover in
cellular networks. In [47], the problem of disconnection has been solved intelligently without the
need for an extra signal. The sources are halted by setting to zero the window �eld in ACKs.
The di�culty with ELN is that a packet corrupted at the link level is discarded before reaching

2.5. TCP and bandwidth asymmetry 37

TCP and hence it is di�cult to know about this corruption. Another problem with ELN is that
the information in the header of a corrupted packet may not be valid, so the ELN signal may
be sent to another source or may request the retransmission of another packet. It seems di�cult
to solve the problem of non-congestion losses with explicit signals. For this reason, it has been
proposed in [38] to observe the variation of the round-trip time with the congestion window and
to try to infer from this variation if a loss is caused by a network congestion or no. No explicit
signals and no mechanisms in the network are required. Unfortunately, the results were negative
and the distinction between the two types of losses was not possible. This simply because the
variation of the round-trip time with the window has been shown not to be an e�cient method
for the anticipation of network congestion [88].

Concerning the second direction, the objective is to �nd another means for congestion de-
tection than losses. This can be done either by sending an explicit signal from network routers
to TCP sources as with the Explicit Congestion Noti�cation (ECN) proposal [61, 112], or by
tracking the variation in round-trip time as with the Vegas proposal [45]. The objective of
these proposals is to anticipate the congestion of the network and to react before the over�ow
of bu�ers. If all the sources, receivers and routers are compliant (according to Vegas or ECN),
this will reduce drastically the number of congestion losses. The remaining losses could be then
considered as mostly due to non-congestion. Moreover, if some averaging on the queue length
is accomplished while detecting the congestion as with RED [65], transient over�ow of bu�ers
will not be detected by the sources as congestion events and hence the losses that result will
be considered as not caused by congestion. Given that non-congestion losses only require re-
transmission without window reduction, the disappearance of congestion losses will lead to the
de�nition at the source of a new TCP congestion control that reacts less seriously to losses. The
congestion window can be reduced slightly or even not reduced upon the occurrence of a loss.
However, it must be reduced by a factor of two in response to explicit congestion signals. This
would provide an end-to-end solution to the problem of non-congestion losses.

Unfortunately, this ideal behavior does not exist in today's networks. In the absence of any
explicit feedback from the network as with Vegas, congestion detection mechanisms at the sources
may fail and here congestion losses are unavoidable. If the sources base their congestion control
on an explicit information from the network as with ECN, some non-compliant routers will not
provide the sources with the required information and drop packets upon congestion instead. A
reduction of the window upon loss detection is necessary in these cases. For these reasons, end-to-
end approaches still consider losses as congestion signals and reduce their windows respectively.

2.5 TCP and bandwidth asymmetry

The operation of TCP is strongly dependent on how well and how fast ACKs reach the source.
Any loss or delay of ACKs will impact the window increase and the smoothness of the trans-

38 Chapter 2. TCP congestion control evolution

Figure 2.7: Example of an asymmetric path

mission. The reverse path from the destination to the source must be fast enough to carry the
relatively high rate of ACKs generated by a TCP receiver. However, in today's Internet, many
paths are presenting some bandwidth asymmetry between the two directions: high speed links
(e.g., satellite down-links or cables) are used to download data from the Internet, and low speed
channels (e.g., dial-up modem lines) are used to carry ACKs back to the sources (Figure 2.7). As
examples of such paths we see the Direct Broadcast Satellite networks and Asymmetric Digital
Subscriber Loop (ADSL) networks. Even if ACKs are of small size with respect to data packets,
the slow reverse channel might be unable to carry the high rate of ACKs. This results in a
congestion and losses of ACKs at its input (at point A in Figure 2.7) [3, 26]. If the reverse
channel is also used for data, the problem of asymmetry will be exacerbated. Given the large
size of data packets, this will also result in a problem of ACK compression [128]. Moreover, the
contention between many connections for the small bandwidth of the reverse channel results in
an unfairness between the di�erent �ows [85].

Before studying these points and the proposed solutions, let us de�ne the asymmetry factor
K. In [85], K is de�ned as the ratio of the bottleneck rate in the forward direction in terms of
data packets per unit of time and the bottleneck rate in the reverse direction in terms of ACK
packets per the same unit of time. This factor represents the tra�c load on the reverse channel.
A path is presenting some bandwidth asymmetry if

K =
Forward bandwidth
Reverse bandwidth

× ACK packet size
Data packet size

> 1.

First, we study the case of a single connection using the slow reverse channel for its ACKs. The
impact of the congestion at the input of the slow channel is explained together with the proposed
solutions. Second, we study the problems that appear when multiple connections contend for
the reverse channel. The interaction between forward connections as well as between forward
and reverse connections is highlighted.

2.5. TCP and bandwidth asymmetry 39

2.5.1 Case of a single connection

The high rate of ACKs causes a queue building in the bu�er at the input of the reverse channel
(A in Figure 2.7). This increases the round-trip time of the connection and causes the loss of
ACKs. The increase in the round-trip time results in a throughput deterioration [31] given that
a TCP source is authorized to only transmit one window of packets every round-trip time. Also,
it slows the growth of the window which impairs further the performance when operating on a
long delay path or in a lossy environment.

Now, the loss of ACKs disturbs one of the main functionalities of the ACK stream, that of
smoothing the transmission of TCP packets. When an ACK covering multiple packets arrives at
the source, the window slides quickly and a burst of packets is transmitted. This may overwhelm
the routers in the forward direction and deteriorate the performance [25, 85]. If the receiver
acknowledges every data packet, it has been shown in [85] that one ACK over K is correctly
received at the source. K is the asymmetry factor already de�ned. The result is the transmission
of packets in bursts of K packets. The connection is supposed to be in the congestion avoidance
mode. Thus, the bu�ers in forward routers must be at least of the size of the asymmetry
factor [85]. Also, the loss of ACKs slows down the growth of the congestion window which
results in a poor performance in case of long delay paths and lossy links. It has been shown
in [85] that the throughput of a TCP connection is inversely proportional to the square root of
K.

The proposed solutions to the problem of bandwidth asymmetry can be divided into two
categories according to which side of the slow channel they are applied. Receiver side solutions
try to solve the problem by reducing the congestion at the input of the reverse channel. The
�rst solution, called header compression (e.g., SLIP [76]), compresses the header of ACKs on the
slow channel (A-B in Figure 2.7) so that to increase its capacity in terms of ACK packets per
unit of time. This solution pro�ts from the fact that most of the informations carried by ACKs
don't change during the connection lifetime.

The other solutions propose to reduce the rate of ACKs so that to avoid the congestion [25].
This alleviates the problem of the increase in RTT. Also, as we will see later, this solves the
problem of fairness when many connections contend for the reverse channel. However, the loss
of ACKs still exist (since the rate of the slow channel is not increased) and some solutions at
the sender are required.

The �rst proposition to alleviate the congestion is to delay ACKs at the destination [25]. An
ACK is sent every d packets and an adaptive mechanism has been proposed to change d as a
function of the congestion on the reverse path. Another proposition [25] keeps the destination
unchanged and solves the problem in the bu�er at the input of the reverse channel (A). This
solution pro�ts from the fact that the information carried by ACKs is cumulative. When an
ACK arrives at the slow channel (A), the bu�er is scanned to see if another ACK from the same
connection is queued. The old ACK is substituted by the new one. The queue is then maintained

40 Chapter 2. TCP congestion control evolution

at a small length which reduces the congestion and improves the performance. This solution is
called ACK �ltering since the �ow of ACKs is �ltered to match the rate of the reverse channel.
The Chapter 8 of this thesis is devoted to this latter solution. ACK �ltering looks as the most
promising for improving the performance of TCP congestion control in asymmetric networks
without the need to change the TCP protocol. We present �rst some problems with the scheme
studied in the literature. We then propose some adaptive ACK �ltering schemes together with
an analytical model for optimization and performance evaluation.

Now, a solution at the source to the problem of burstiness caused by the loss of ACKs is
not possible without any kind of packet spacing. The burstiness can be alleviated by imposing a
limit on the size of bursts. But, in this case when ACKs are systematically lost, limiting the size
of bursts will limit the throughput of the connection. Another solution has been proposed [25]
to reconstruct the lost ACKs at the output of the slow reverse channel (B). When an ACK
leaves the slow channel, all the missing ACKs between it and the previously received ACKs are
generated. The generated ACKs are paced at a rate calculated from the average rate at which
ACKs leave the reverse channel. This reconstruction may consist a solution to the problem of
burstiness in asymmetric networks. However, the general problem of TCP burstiness upon ACK
loss still exists.

2.5.2 Case of multiple connections

Consider �rst the case when multiple forward connections contend for the reverse channel (A-B
in Figure 2.7). In the absence of any ACK �ltering, the �rstly starting connections will �ll the
bu�er at the input of the slow channel (A). When a new connection arrives, it is very probable
that its �rst ACKs get lost. The new connection then su�ers from a slow window increase and
possibly from timeouts. This results in a blockage of the new connection until the dominant
connections end or reduce their rates [85]. The main cause for this blockage is that a drop-tail
bu�er treats all packets in the same manner. ACKs of a new connection, or those of a connection
transmitting at a small window, must be given a certain priority until the congestion window
reaches a large value. Once a large window is reached, the e�ect of ACK losses becomes less
important. Such isolation requires an active bu�er management technique (e.g., Flow RED [87])
that ensures fairness between the di�erent �ows of ACKs. We will address the problem of fairness
between ACK �ows with some details in Chapter 8.

Now, a forward connection can contend for the slow channel with a connection sending data
in the reverse direction. But, the transmission time of a data packet on the reverse link is
much longer than that of an ACK. This will decrease considerably the bandwidth available to
ACKs which increases the asymmetry factor K. Also, ACKs are delayed after data packets
which increases the round-trip time and the ACK loss rate. Now, if the forward connection is
transmitting at a high rate so that its ACKs �ll the bu�er at the input of the slow channel,
the data packets of the reverse connection will be frequently lost. The reverse connection then

2.6. Conclusions 41

reduces its rate whereas the forward connection continues increasing it since TCP congestion
control does not react to the loss of ACKs. Again, this will result in a blockage of the reverse
connection until the forward one ends [85]. An intelligent drop policy is required to prohibit a
connection from occupying all the bu�er. Now, to prohibit data packets from blocking for long
time the reverse path, an intelligent scheduling policy can be envisaged at the input of the slow
channel. The aim must be to serve packets according to their sizes. Many ACKs could then be
served between data packets.

Another phenomenon noticed when many connections exist in the two directions is the com-
pression of ACKs [128]. When ACKs arrive to a bu�er after a data packet, they will be queued
until the data packet is transmitted. The ACKs then reach the source in batches which results
in an increase in burstiness and possibly in performance deterioration.

2.6 Conclusions

In this chapter we presented an overview of the di�erent mechanisms of TCP congestion control.
We summarized the di�erent problems of the protocol that prohibit it from scaling to a large and
heterogenous Internet. The di�erent works in this wide area of research are outlined. We grouped
the di�erent works as a function of the network characteristic they deal with. We pro�ted from
this study to introduce the problems we will address in Chapters 7, 8, and 9. We also highlighted
the importance of an analysis of TCP performance for the evolution of the Internet. We start
this analysis in the next chapter by the end-to-end approach. We address the issue of end-to-end
modeling of TCP and we seek for �ne explicit expressions of the throughput. Before that, we
detail on the bene�ts of these explicit expressions as well as on the di�erent issues to be considered
for a correct modeling of TCP congestion control. In the following three chapters (7, 8 and 9),
we focus on the performance evaluation of the protocol in three challenging environments. Recall
that the main tool we will use in our analysis is the modeling tool. Simulation and measurements
will be used for validation of results and proposals.

42 Chapter 2. TCP congestion control evolution

Chapter 3

End-to-end modeling of TCP
congestion control

The modeling of TCP congestion control is an important task for improving the service provided
to Internet users and the e�ciency of network resource utilization. A TCP source controls the
rate of application packets as a function of the way the network treats or reacts to these packets.
The main objective of modeling is to come up with simple explicit expressions of TCP throughput
for a certain network reaction. This has two main advantages. First, it determines the factors
impacting the performance of the protocol which gives people working on TCP, insights on how
the congestion control has to be improved. For example, the modeling has shown that in case
of drop-tail bu�ers and synchronized �ows, the throughput of a TCP connection is inversely
proportional to the square of the average round-trip time [84]. This has given an explanation
to and an evaluation of the bias of TCP against connections with long round-trip times. The
modeling has also shown that dropping packets randomly in network routers as with active
queues (e.g., RED [65]), improves the fairness by making the throughput inversely proportional
to the average round-trip time [12, 84, 92, 105]. Another possible use of an explicit expression
of TCP throughput could be the study of a change of the parameters of TCP congestion control
so that to minimize the variation of the window without adding to the aggressiveness of the
protocol. This will be useful for multimedia applications using TCP, or possibly a new version
of TCP adapted to such applications.

The second advantage of TCP modeling is that it permits network designers to improve the
reaction of their network to incoming packets at the moment of congestion, given the current
control policy of TCP. Important work has been done in this direction (e.g., [48, 58, 95, 97, 98]).
The focus was and is always on the dimensioning of bu�ers in network routers and on the
management of their occupancy. A typical problem in this direction is the tuning of RED
(Random Early Detection) parameters [48, 58, 97]. For example, using an explicit expression
of TCP throughput, it has been shown in [58] that when the number of connections exceeds
a certain threshold, the RED bu�er gets into an unstable regime. This instability has been
explained by the sudden jump in the drop probability from pmax to 1 (see [65] for details on

43

44 Chapter 3. End-to-end modeling of TCP congestion control

RED parameters) when the average queue length exceeds the maximum threshold. This has
motivated the introduction of a new parameter to RED (the gentle_ parameter) in order to
avoid such a jump. Other works have used the explicit expressions of TCP throughput to
improve other parts of the network as the link layer on a wireless interface [32, 49]. Our work in
Chapter 9 is a typical example of such works where we try to optimize the amount of FEC to be
added to a bad quality link [32].

Recently, a new application of TCP modeling has emerged [62, 63]. It consists in using the
explicit expressions of TCP throughput to control the rate of real time �ows (e.g., audio �ows)
in a TCP-friendly way. The reaction of the network (e.g., packet drop probability) is averaged
over a certain time interval and the rate of the real time �ow is set to the expected throughput
of a TCP connection running in the same network conditions. Clearly, a tradeo� exists between
choosing a long averaging interval to get a smooth variation of the rate (hence a low jitter and a
good quality at the receiver), and choosing a short interval to get a fast reaction to changes in
network conditions.

The end-to-end modeling of TCP can be seen as a two-step procedure. First, we �nd the
modeling of the evolution of TCP window between congestion events as well as upon congestion.
This includes the modeling of some particular mechanisms of TCP such as the timeout and the
limitation of the rate due to the window advertised by the receiver. Second comes the modeling
of network reaction which consists, directly or after some transformation, in a modeling of the
process of congestion events. The connection lifetime can be seen to be a succession of congestion
events between which TCP increases its window and upon which it reduces it. As we will see
later, a model for the network also has to describe how the round-trip time of the connection
varies. The variation of the round-trip time determines the variation of the window and rate
between congestion events. Note that TCP increases its window by the same amount during a
round-trip time regardless of its length. An example of congestion events and window variation
is depicted in Figure 2.2.

If the network is well de�ned (e.g., a single RED bu�er), the modeling of TCP can be
achieved with a considerable degree of correctness. One can come up with an accurate model for
the network, combine it with a model for TCP, and solve the overall model for TCP performance.
All the works assuming a single bottleneck router crossed by only TCP connections are of this
type (e.g. [58, 95]). The di�culty exists when we want to approximate the throughput of TCP
in the real Internet. Some assumptions are required in this case to model the reaction of this
huge and heterogeneous environment. The di�culty of the analysis as well as the accuracy of
the modeling change with the assumptions we make. For a given assumption, we must expect
our results to hold on some Internet paths while not on others. The results may hold due to
the correctness of our modeling on these particular paths. They may also hold due to another
phenomenon that we observed during our work in this direction, that is the cancellation of errors
introduced by the di�erent blocks of a model for TCP. A good model for TCP must have all its

3.1. Measurement testbed 45

Figure 3.1: Measurement testbed

blocks validated separately and these blocks must work well on a wide range of Internet paths.
We address in this chapter the problem of TCP modeling in its general form. We focus

mainly on the modeling of TCP in a real network rather than a particular environment as a
single drop-tail bu�er or a RED bu�er. Based on measurements we conducted over the Internet,
we discuss the di�erent issues to be considered for a correct modeling of TCP. We outline the
di�erent approaches in this domain and we show the need for a general approach that copes with
the heterogeneity of network reaction we observed. Along the discussion, we de�ne our model
for TCP window evolution as well as two models for the network: a simple Markovian model
and a general model. We solve the two models for the explicit expression of the throughput in
the following two chapters. At the end of this chapter, we introduce the technique we will use
for the validation of our results. It consists in a separate validation of each block of a model for
TCP instead of an overall model validation. But before starting, we present brie�y the testbed
we used for our measurements over the Internet. These measurements are only used in the �rst
part of these thesis which deals with end-to-end performance evaluation of TCP. The results in
the network-speci�c part are validated with simulations.

3.1 Measurement testbed

Our testbed consists of three long-life TCP connections run between a machine at INRIA Sophia
Antipolis in the south of France and three other machines over the Internet (Figure 3.1). The
�rst machine is located at ESSI next to INRIA. The second machine is located in Paris at about
800 Km from INRIA. The third machine is located at the University of South Australia. These
can be considered as respectively LAN, MAN and WAN environments. In the sequel, we use the
terms LAN, MAN and WAN to distinguish between the three connections. The source is located
at INRIA and runs the New-Reno version of TCP [56, 64]. Recall that New-Reno is a recent
version able to recover from multiple packet losses without timeout and with only one division of
the window by two. The source is fed by a simple application that we wrote and that always has
data to send. The connections were run for many hours in di�erent days during the month of
January 2000. We developed and ran a tool at INRIA that looks at the trace of every connection

46 Chapter 3. End-to-end modeling of TCP congestion control

(packets and ACKs) and calculates a certain number of statistics on the connection such as the
total number of packets acknowledged, the total number of retransmissions, the moments at
which the window is reduced, the variation of window and round-trip time over time, etc. We
accounted for all the mechanisms of New-Reno when developing our tool, particularly the fact
that a New-Reno source can recover from multiple packet losses in the same window of data. We
stored the statistics at �xed intervals in separate �les. We chose these intervals in a way to get
enough data in each �le. We shall assume that the network conditions are approximately the
same during each interval. These intervals are set to 20 minutes for LAN, 40 minutes for MAN,
and 60 minutes for WAN.

3.2 Modeling TCP window evolution

Most of the e�ort on TCP modeling [84, 92, 96, 97, 104, 105] has been devoted to long transfers,
namely to the congestion avoidance mode of TCP. The slow start mode, due to its fast window
increase and its short duration, has been often ignored. The small e�ect of slow start on long
life connections compared to the e�ect of congestion avoidance can be seen in Figure 2.2. The
window is assumed to increase linearly in time between congestion events and to decrease to
half its size upon congestion. The moments of congestion are determined by the underlying
model for the network. These are the moments at which the source detects the loss of a packet
and decides to reduce its window. Ideally, and this is what the new versions of TCP try to
approximate [56, 90], these must be the moments of detection of the �rst loss in a window of
data packets.

TCP is known to increase its window in congestion avoidance mode in a linear manner but as
a function of round-trip number rather than time (see Chapter 2). This increase is approximately
equal to 1/b packets per round-trip time, where b is the number of packets covered by an ACK. For
the time linear increase to hold, the round-trip is supposed to be constant or vary independently
of the window, so it is substituted in the analysis by its average during the transfer [84, 92, 105].

For the multiplicative decrease factor, it is indeed equal to one half when Fast Recovery
succeeds. If it is not the case, a timeout occurs, the window is set to one packet, and slow start
is called to reach quickly the slow start threshold [121]. Some authors [105] keep the decrease
factor in the case of timeout equal to one half while others [96] set the window to one packet
and assume a linear increase from this low value. We believe that there will be no di�erence
between the two approaches in the future given the expected low probability of timeout with
the new enhancements proposed to TCP congestion control [4]. Our measurements showed that
on WAN, most of the losses are detected with timeout and this is due to the small size of TCP
window. The same result is noticed in [105]. On LAN and MAN, the window is large and the
timeout phenomenon is quite absent.

In our work, we follow the same direction as the other works [84, 92, 96, 104, 105] concerning

3.2. Modeling TCP window evolution 47

the long duration of the TCP connection and the linearity of the window increase (or rate
increase) between congestion events. We assume that the round-trip time is independent of the
window size and we use its average in the analysis. Denote this average by RTT . Hence, the
congestion window, that we denote by W , increases linearly with time at a rate 1/(bRTT). The
rate of the TCP connection, which we denote by X and which is equal to the window size divided
by RTT , also increases linearly with time at a rate 1/(bRTT 2). Concerning the multiplicative
decrease factor, we take it equal to a constant value ν (0 < ν < 1) for both kind of congestion
detection methods (timeout and duplicate ACKs). Typically, ν is equal to 0.5. We will try in
our analysis to avoid as much as possible the particular values of model parameters. This will
make our results applicable to other congestion control policies of TCP.

Clearly, the above model is simple since it only accounts for the linear-increase multiplicative-
decrease part of TCP congestion control. Other issues have to be considered for a better modeling
of TCP. We will enumerate the most important ones in the following sections and introduce them
into our model when possible.

3.2.1 Dependency between window and round-trip time

On paths where the window of the TCP connection is small compared to the bandwidth-delay
product and where packets cross multiple congested routers, one should expect that the assump-
tion on the linearity of the window increase will hold. Indeed, on such paths the connection does
not contribute to the queueing time in network routers and the congestion is mostly caused by
other aggressive connections. The round-trip time then varies independently of the window size
and can be substituted in the analysis by its average [105] resulting in a time linear growth of the
window (and hence of the rate) at a rate 1/(bRTT). However, this independency is not expected
to hold on paths where the window of the connection is large compared to the bandwidth-delay
product. The increase in the window in this latter case will result in a increase in the round-trip
time which in turn will result in a sub-linear increase in the window (hence in the rate) with
time [18]. Here, the over�ow of network bu�ers will be mainly caused by the aggressiveness of
the connection we are looking at. One should expect that, in presence of a linear model for TCP
window evolution that uses the average round-trip time for the calculation of the window slope,
this sub-linearity will result in an overestimation of the real throughput.

To understand such dependency, we plot the variation of the round-trip time as a function
of the congestion window on our WAN and LAN connections (Figures 3.2 and 3.3). The WAN
connection is a typical example of the �rst connection whereas the LAN connection is a typical
example of the second one. We measure the round-trip time for one packet per window of
packets and we note the window size upon this measurement. We then average the round-trip
times obtained for close window sizes. This gives the thick line in both �gures. We see clearly how
on WAN, the round-trip time is on average constant and independent of the window. However, it
is an increasing function of the window on LAN and a sub-linear window increase should be seen

48 Chapter 3. End-to-end modeling of TCP congestion control

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

R
ou

nd
-t

ri
p

tim
e

(s
)

Window size (bytes)

INRIA - Australia (day)

Average round-trip time

Figure 3.2: WAN: RTT vs. window

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10000 20000 30000 40000 50000 60000 70000

R
ou

nd
-t

ri
p

tim
e

(s
)

Window size (bytes)

INRIA - ESSI (day)

Average round-trip time

Figure 3.3: LAN: RTT vs. window

0

10000

20000

30000

40000

50000

60000

70000

1755 1760 1765 1770 1775 1780

In
st

an
ta

ne
ou

s
T

C
P

 W
in

do
w

 (
B

yt
es

)

Time (s)

Exact Fluid Model Window
Real Window

Figure 3.4: LAN: window vs. time

on this connection. Indeed, Figure 3.4 shows well this sub-linear behavior. We plot in this latter
�gure the variation of the real window on LAN for some seconds. The straight line corresponds
to the expected window evolution if the round-trip time were independent of the window size.
This line is given by our time linear model for TCP window evolution.

The problem with the sub-linearity of window increase is that it makes the analysis quite
complicated and may be intractable within the general framework that we shall use. Moreover,
it is not clear for the moment how it can be modeled. Its importance depends on many factors
as the intensity of exogenous tra�c sharing the path with the TCP connection, the bu�ering
capacity in network routers, and the available bandwidth on the path. For these reasons, we
skip this issue in this thesis and we keep it for our future research.

3.2. Modeling TCP window evolution 49

3.2.2 Modeling timeouts and Fast Recovery

The above model does not consider these two mechanisms of TCP [75, 121]. Due to the coarse
granularity of TCP timers (500 ms in most implementations), the �rst mechanism introduces a
certain idle time between a congestion and its detection. The second mechanism also introduces
a certain time between the detection of a congestion with duplicate ACKs and the resumption
of the window increase. During this latter time, the source is supposed to recover from losses
and to transmit new packets in order for the ACK clock not to stop. The number of packets in
the network during Fast Recovery has to be equal to the slow start threshold.

The modeling of these two mechanisms of TCP require a detailed description of the protocol
behavior at the packet level. This behavior is quite complicated to model and varies from one
version to another (see Chapter 2). The Fast Recovery phase has been always ignored due to
the complexity of its modeling, also because it adds a negligible contribution to the throughput
when it works well. It has been assumed in [105] that once the source receives three duplicate
ACKs, the window resumes its increase until the next congestion event. This seems reasonable
with the new versions of TCP (e.g., SACK [56]) where the Fast Recovery phase is quite robust
and fast, but it is not true with the other versions as Reno where Fast Recovery may fail due
to multiple losses per window. A failure of Fast Recovery results in a timeout and a slow start
from a window of one packet. A model which does not account for the Fast Recovery phase will
lead to throughput overestimation if such failures are frequent. Given the complexity and the
continuous evolution of this phase, we skip it from our model.

The timeout mechanism is studied in [105] using the probability that a packet is dropped.
Denote this probability by p. The authors focus on the calculation of the probability that the
source fails to receive three duplicate ACKs to trigger Fast Recovery. This has been assumed to
be the necessary and su�cient condition for the occurrence of a timeout. Timeouts are assumed
not to occur during the Fast Recovery phase. We believe that this will be the case with the
new versions of TCP that use the SACK option [91] and that have a robust and a quick Fast
Recovery phase. We also believe that with the modi�cations proposed to TCP error recovery
in [4], the failure to receive three duplicate ACKs will no longer be a su�cient condition to get a
timeout. Sources will be able to recover from losses when more than one ACK are received per
round-trip time. In the wait for these modi�cations to be deployed, we will show in the following
a heuristic for the addition of the timeout mechanism to our model according to the condition
in [105]. The advantage of our heuristic compared to that used in [105] is that can be used in
the general framework we shall consider.

To simplify the analysis, it has been assumed in [105] that when a packet is dropped, the
subsequent packets in the same window are also dropped. The probability to get a timeout
(Q(p)) as well as the average duration of a timeout period (Z(p)) are calculated as a function of

50 Chapter 3. End-to-end modeling of TCP congestion control

p,

Q(p) = min
(

1,
(1− (1− p)3)(1 + (1− p)3(1− (1− p)w−3))

1− (1− p)w

)
,

Z(p) = T0
1 + p + 2p2 + 4p3 + 8p4 + 16p5 + 32p6

1− p
,

with

w =
2 + b

3b
+

√
8(1− p)

3bp
+

(
2 + b

3b

)2

,

and T0 the basic timeout interval which is doubled when the source backs o� its timer after the
loss of a retransmission. As we saw in Section 2.1.3, T0 is set by TCP to SRTT +4 ∗RTTV AR.
In practice, 4RTT has been shown to be a safe value for T0 [63].

Using these two functions of p, the impact of timeout intervals can be introduced into our
model in the following way. We calculate �rst the throughput of the connection when excluding
these intervals, in other words when assuming that the window resumes its linear increase directly
after a congestion event whatever is the method of detection (Figure 3.5). Denote this throughput
by X̄d. Denote by X̄f the throughput of the connection in the presence of timeout intervals
(Figure 3.6). As we will see in the next chapter, the throughput in both cases is equal to the
ratio of the average number of packets that cross the network between two congestion events
(' 1/p) and the average time between congestion events. Let {Sn} denote the process of times
between congestion events when timeout intervals are excluded (Figure 3.5). Let {S′n} denote the
process of times between congestion events when timeout intervals are considered (Figure 3.6).
Given that the average number of packets that cross the network between two congestion events
is the same in both cases (' 1/p), it follows that

X̄f = X̄d
E [Sn]
E [S′n]

,

and
X̄d =

1/p

E [Sn]
.

Using these two equations and the fact that

E
[
S′n

]
= E [Sn] + Q(p)Z(p),

we can write
X̄f =

X̄d

1 + pX̄dQ(p)Z(p)
. (3.1)

Note that our expressions for the throughput are in terms of packets/s. Note also that our
throughput corresponds to the rate at which TCP packets leave the network, also called the
receiving rate.

3.2. Modeling TCP window evolution 51

Sn−1

T
ra

ns
m

is
si

on
 r

at
e

Sn+1nS

Time

Figure 3.5: Model without timeout intervals

S’n−1 S’n S’n+1

Sn−1 Sn n+1SZ

T
ra

ns
m

is
si

on
 r

at
e

T
im

eo
ut

D
up

lic
at

e
A

C
K

s

Time

Figure 3.6: Model with timeout intervals

3.2.3 Modeling window limitation

When the congestion window reaches the receiver window, the rate increase stops until the next
congestion event. This phenomenon can be seen in Figure 3.4 where we plot the number of bytes
in the network as a function of time. The model becomes sub-linear and the calculation of a
simple expression for the throughput seems to be impossible except for some particular network
reactions. For example, the calculation is straightforward when the time between congestion
events is constant. In [96], the authors propose a model for congestion events that appear
according to a Poisson process without �nding an explicit expression for the throughput. In our
work in this direction, we succeeded to solve the problem when congestion events appear not
only according to a Poisson process, but also according to a batch Poisson process. We used for
this purpose sophisticated techniques from M/G/1 queueing theory [80]. The complete analysis
as well as the validation of results are presented in Chapter 6.

For more general models for the network (e.g., a generally distributed time between congestion
events), one can always think about �nding some approximations of the throughput. One possible
approximation [105] is to assume that the receiver window is always reached between congestion
events. The problem is then automatically transformed into a simpler one with constant times
between congestion events equal to the average of these times. This is the kind of approximation
we will use with our Markovian model for the network (Chapter 4). With our general model,
we will proceed in a di�erent way. We will �nd bounds for the throughput that are also a good
approximation (Chapter 5). The advantage of the latter approximation is that it is valid for any
receiver window. The �rst approximation is only valid for small receiver windows, so one needs
to condition on the average window upon congestion in order to use either the approximation or
the expression of the throughput obtained when there is no window limitation. We will explain
this di�erence between the two approximations when we present our calculation of the bounds
for the throughput in Chapter 5.

Note that the problem of window limitation exists because of the small windows advertised
by current Internet receivers (less than 64 Kbytes). But, this is supposed to disappear in the

52 Chapter 3. End-to-end modeling of TCP congestion control

future with the trend to increase the window �eld in the TCP header and the trend to change
dynamically the bu�er size allocated to the TCP connection at the receiver [118]. It is even
recommended in [5] that future studies on TCP congestion control should consider an in�nite
receiver window. Models that account for the limitation of the rate will not be of big importance.

3.2.4 Fluid models versus discrete models

Some of the models for TCP assume that the window increases continuously between congestion
events [18, 92, 96, 97, 117]. The use of a continuous model for the window facilitates the analysis
since it permits the use of tools from the theory of continuous functions as integration and
di�erentiation. The continuous increase may hold for the congestion window at the source but
it does not hold for the volume of data in the network. Indeed, the former quantity increases in
small values (bytes) upon ACK arrivals, however the latter one increases in steps of one packet
(generally 1460 bytes) every b round-trip times [105]. This is due to the Nagle algorithm [99]
which prohibits the source from injecting small packets into the network. At the moment of
congestion, it is the congestion window at the source which is divided by two rather than the
number of packets in the network [121]. Thus, models assuming continuous increase of the
window, also called �uid models, are appropriate for the prediction of the window variation at
the TCP source. The throughput obtained with these models is the throughput that the TCP
connection would realize if it is not limited by the Nagle algorithm.

The correct throughput can be obtained by one of two ways: either by using a discrete
model for the window evolution as the one in [105], or by using a �uid model and introducing
some corrections into the calculated throughput so as to account for the di�erence between the
congestion window at the source and the volume of data in the network. In our work, we choose
the second way for the calculation of the throughput given the simplicity of the analysis the use of
�uid models permits. We �rst calculate the throughput when the window increases continuously
as a function of time between congestion events. We then subtract from this throughput, the
rate of packets that would have crossed the network if the Nagle algorithm did not exist. We
also subtract the rate of packets that are lost in the network upon congestion. Recall that we
look at the throughput as the average rate of packets that leave the network.

To illustrate the corrections we introduce into the throughput given by the �uid model, we
plot in Figure 3.7 the number of packets that cross the network between two congestion events
for both a �uid model and a discrete (or a packet) model. The line for the discrete model is
taken from [105]. On average, half of the window is assumed to be dropped in the network upon
congestion (the last round-trip time in the �gure). Suppose that all the rates are expressed in
terms of packets/s. Denote by E [W ∗

n] the average window size upon congestion and by E [Sn]

the average time between congestion events. Let X̄ denote the throughput obtained with the
�uid model and X̄d the real throughput of TCP. A good approximation of X̄d can be obtained
by:

3.3. Modeling the network 53

• Shifting down the �uid window by 0.5 packet which results in a decrease in the throughput
X̄ by 0.5/RTT .

• Subtracting the rate of dropped packets which is approximately equal to

Rate of dropped packets =
1
2

E [W ∗
n]

E [Sn]
.

It follows that
X̄d = X̄ − 0.5

RTT
− 0.5E [W ∗

n]
E [Sn]

.

Using one of our results in Chapter 5 (Equation (5.3)) which says that

E [W ∗
n] =

E [Sn]
bRTT (1− ν)

,

we can write
X̄d = X̄ − 0.5

RTT

(
1 +

1
b(1− ν)

)
. (3.2)

Finally, the throughput X̄d has to be plugged into Equation (3.1) in order to account for timeouts.
With this correction and as we will see later when validating our model, a �uid model is able
to give the same throughput as a detailed discrete model, of course if both of them model the
network in the same way.

From now on, we will only focus on the calculation of the throughput of a �uid model without
timeout intervals. The window (or the rate) increases continuously between congestion events,
decreases with a factor ν upon congestion, and resumes directly its increase after that. In our
analysis we will work with both rate and window. At any time, one can switch from the �rst
to the second by multiplying the rate by RTT and from the second to the �rst by dividing the
window by RTT. Once the throughput of this �uid model is calculated (that we denote by X̄),
we must plug it into Equations (3.2) and (3.1) in order to get the �nal result of our model that
accounts for timeouts and the packet nature of TCP (that we denote by X̄f). It is this �nal
result that must be used as an approximation of TCP throughput.

3.3 Modeling the network

This is the part of the modeling where the heterogeneity of the Internet has the greatest impact.
The objective of this part is to �nd a good characterization of congestion moments or loss
moments. A loss moment in our terminology is the moment at which the TCP source decides
that the network is congested and that it must reduce its window. These moments can be
directly characterized by making some assumptions on the way they appear. For example, one
can assume that they appear according to a deterministic process or a Poisson process. This
direct characterization is the approach widely used in the literature [92, 96, 105]. Another
possible but indirect characterization consists in �nding a model for the reaction of the network

54 Chapter 3. End-to-end modeling of TCP congestion control

N
um

be
r

of
 p

ac
ke

ts
 in

 th
e

ne
tw

or
k

Time

b.RTT RTT

1

Fluid model

Packet model

Figure 3.7: Fluid model vs. discrete model

to a particular TCP packet or during a small time interval. As an example of this indirect
approach we �nd the works that suppose that TCP packets are dropped within the network
with a constant or variable probability [95, 104], or those assuming that loss moments form a
Poisson process with a variable intensity function of the window size of the connection [117].
The advantage of the indirect approach is that it decouples the model for the network from the
control policy at the TCP source. It happens that on some Internet paths, the process of losses
seen by a TCP connection is a function of the way it increases and decreases its window, and
that this process changes if another control policy is used, for example if packets are transmitted
at a constant rate. The indirect approach is very useful on such paths since it permits to deduce
the loss process that a TCP connection will see from the loss process seen by another connection
with a di�erent congestion control policy. We cite di�erent applications of the indirect approach
on such paths. The �rst application is that one can probe the network with a certain �ow of
packets (e.g., a constant rate �ow) and calculate the parameters of an appropriate model for the
network (e.g., packet drop probability, variation of loss intensity as a function of transmission
rate). With these parameters, it will be possible to predict the performance of a TCP connection
on the same path. Another application of the indirect approach is that from the trace of a TCP
connection, one can build a model for the network and predict the performance of another TCP
connection with another congestion control policy. This will be useful for a study of the impact
of a change of TCP congestion control parameters. A third application of the indirect approach
is that a TCP-friendly application (e.g., TFRC [63]) can deduce the loss process that a TCP
�ow would see from the loss process it sees, and hence can get a better estimate of the rate to
use. All these applications are not possible with the direct approach since, without a model for
network reaction, we cannot deduce the performance of a TCP connection from the loss process
seen by another connection with another control policy. Recall that we are talking about paths
where the loss process changes with the congestion control policy.

The di�culty with the indirect approach is in the de�nition of a correct model for the Internet

3.3. Modeling the network 55

and the calculation of its parameters. This may be possible for a simple network of one router
(e.g., a RED bu�er is known to drop packets with a probability that increases linearly with the
average queue length [65]) but it seems to be very di�cult for a wide network as the Internet.
It is not clear if there exists a model for the Internet that works on all paths. Certainly, the
Internet reaction to TCP packets changes from one path to another and along time on the same
path. For example, on some paths the network may drop packets with a constant probability,
on other paths with a probability that increases linearly with the congestion window, on other
paths with a probability that increases logarithmically with the congestion window, etc. One
can imagine di�erent models for the network. The question is on how many paths these models
are useful.

In the �rst part of this thesis, we shall only focus on the direct approach. Recall that the
direct approach consists in using the parameters of the loss process seen by a TCP connection
for throughput calculation. Our main objective is to show how much simplistic assumptions on
the loss process as those made in the literature (e.g., deterministic [92, 105], Poisson [96]) impact
the accuracy of the modeling and to come up with an explicit expression of the throughput
that works with any distribution of times between loss moments. Once derived, this expression
could be used to study how the throughput of TCP varies with the distribution of times between
losses. For example, one of our important results is that the throughput of a TCP connection
increases with the increase in the variance of times between losses or what we call in Chapter 4
the burstiness of losses [11, 12, 13]. On paths where the loss process does not change with
the congestion control policy, the explicit expression of TCP throughput will tell us how the
performance of TCP changes with any change in the parameters of TCP congestion control as
the round-trip time, the window increase rate, the reduction factor, etc.

First, we start by presenting some measurement results to show how much the Internet is
heterogenous and how much the loss process can change from one path to another. This has
motivated us to adopt two di�erent approaches for modeling the loss process: a Markovian
approach and a general approach. The calculation of the throughput using these two approaches
is presented in the next two chapters.

3.3.1 Diversity of loss processes in the Internet

We present in this section some of the loss processes we found on our three connections (Sec-
tion 3.1). We �rst plot the distributions of inter-loss times. Figures 3.8, 3.10 and 3.12 show
what we got respectively on the LAN, the MAN and the WAN connections. The three �gures
contain for comparison some theoretical distributions (Exponential for LAN and WAN, Normal
on MAN). On LAN, the process is highly bursty which results in this pulse close to the origin.
This burstiness can be also seen in Figure 3.4 where the window is divided multiple times by two
in short time intervals. We noticed that the congestion on LAN stays for multiple consecutive
round-trip times during which the network keeps dropping packets and the source keeps reducing

56 Chapter 3. End-to-end modeling of TCP congestion control

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - ESSI (day)

Exponential distribution
Measurements

Figure 3.8: LAN: Inter-loss time distribution

Hour Covariance coe�cient
(Traces of 20 min) Cov(Sn, Sn−1)/V ar(Sn)

11:00 + 0.034
12:00 + 0.041
12:30 + 0.113
13:00 + 0.001
13:30 - 0.191
14:00 - 0.078

Figure 3.9: LAN: Covariance coe�cient

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - Paris (day)

Normal distribution
Measurements

Figure 3.10: MAN: Inter-loss time distribution

Hour Covariance coe�cient
(Traces of 40 min) Cov(Sn, Sn−1)/V ar(Sn)

15:00 + 0.106
19:00 + 0.101
20:00 + 0.015
21:00 - 0.01
22:00 - 0.048
23:00 - 0.005

Figure 3.11: MAN: Covariance coe�cient

its window. On MAN, the times between losses follow well a Normal distribution. On WAN
and as one must expect, the loss process is close to Poisson. Indeed on WAN, the source has
a small window and does not contribute to the congestion of the network. The loss process it
sees is the superposition of a large number of processes in all the routers it crosses. We also
found some correlation of losses on the three connections. This correlation varies during the day
between negative and positive values with an absolute value of the covariance coe�cient reaching
sometimes 0.2. Tables 3.9, 3.11 and 3.13 show some of the covariance coe�cients we saw on the
three connections at di�erent hours during the day. We de�ne the covariance coe�cient (of order
1) of a process {Sn} as follows,

Cov =
E [SnSn−1]− E [Sn]2

E [S2
n]− E [Sn]2

.

This coe�cient varies between -1 when inter-loss times are highly negatively correlated and +1
when they are highly positively correlated.

3.3. Modeling the network 57

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35 40

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - Australia (day)

Exponential distribution
Measurements

Figure 3.12: WAN: Inter-loss time distribution

Hour Covariance coe�cient
(Traces of 60 min) Cov(Sn, Sn−1)/V ar(Sn)

11:00 - 0.197
12:00 - 0.001
14:00 - 0.102
16:00 - 0.107
20:00 + 0.023
22:00 - 0.09

Figure 3.13: WAN: Covariance coe�cient

The results we presented are some examples of losses that a TCP connection may see over the
Internet. We expect to see other processes on other paths. Other distributions of inter-loss times
could be found. Also, some paths as those including satellite and wireless links, may exhibit
more memory than our paths which will result in a more important correlation of losses. All
this means that simplistic assumptions on the loss process as those made in the literature (e.g.,
deterministic [84, 92, 105], Poisson [96]) are not enough for an accurate modeling of TCP. There
is a need for a model for losses that can cover most if not all Internet paths. Also, there is a need
for a study of the impact of the way with which losses occur on the throughput of the protocol.
We de�ne in the following section the models for losses that we will use in this thesis and that
will permit us to achieve the above objectives. The corresponding analysis is presented in the
following chapters.

3.3.2 Modeling the loss process

We use three models for the loss process in this thesis. They can be seen as three point processes
where the occurrence of a point corresponds to the occurrence of a loss or a congestion event.
The �rst two models are general and are related to the case when there is no limitation on
the congestion window. The third model is less general and it is related to the case when
such limitation exists. We brie�y explain the three models in the rest of this section. The
mathematical formulation of each model is presented before the analysis in the corresponding
chapter.

Our �rst model for losses is based on a Markovian approach. It consists on a path changing its
state according to a Markov chain. The loss rate (i.e., number of losses per unit of time) changes
when the path switches from one state to another. We present in Chapter 4 the analysis for a
simple version of this model using a two-state Markov chain to model the path. This analysis
can be found in [11, 13]. The general version as well as the corresponding analysis can be found

58 Chapter 3. End-to-end modeling of TCP congestion control

in [14]. The transition of the Markov chain associated to the path as well as the occurrence
of losses happen at some potential loss moments that we introduced. This is similar to what
happens with a Markovian Arrival Process (MAP) [20]. With a particular case of this model we
prove our �rst result, that the throughput of a TCP connection increases when losses become
clustered. This increase can reach 100%. We also present a technique for the identi�cation of
the parameters of the loss process (e.g., transition matrix of the Markov Chain, rate of losses in
each state) from the trace of a real TCP connection.

Our second model for losses is the most general one. It covers the di�erent distributions
and the di�erent levels of correlation of inter-loss times. We work directly with the process
{Sn}. The only assumption we make on this process is that it is stationary ergodic. We derive a
simple expression of the throughput function of the intensity of losses, the variance of inter-loss
times and all the covariance coe�cients. It is a generalization of the well known square root
formula [92, 105] for TCP throughput calculated under the assumption that the loss process is
deterministic. Our expression can be easily speci�ed to any loss process. It shows clearly the
impact of the di�erent parameters of the loss process on the performance. In particular, it shows
that the throughput of TCP increases with the variance of times between losses and that the
weights of covariance functions decrease geometrically. One can �nd in [12] our analysis and
results for the case of a general model for losses.

In case of window limitation, the calculation of the throughput with the previous models
for losses seems to be impossible given the complexity of the models. In chapter 6, we �nd the
expression of the throughput when batches of losses appear according to a Poisson process. The
number of losses within a batch may follow a general distribution. Our analysis also permits
to �nd the distribution of the congestion window under this particular distribution of losses.
We will see that, even though the loss process is not very complicated, the calculation of the
throughput is quite hard. This calculation as well as the validation of our results can be found
in [15, 16].

3.4 Separate model validation

We introduce in this section the notion of separate validation of each part of a model for TCP.
This is the technique that we will use for the validation of our results in the following three
chapters. Researchers compare directly the real throughput realized by a TCP connection to
the �nal result of their modeling. But as we saw, a model for TCP is composed of two parts:
a model for the window evolution and a model for losses. Proceeding for the validation in one
step will hide the errors introduced by these two parts. This will give the sum of the two errors
instead of each of them. First, this will preclude us from distinguishing from which part of the
model the error is mostly due. Second, and this is the most important, the errors introduced by
the two parts of the model may be of opposite signs which may make the total error small and

3.4. Separate model validation 59

acceptable. The result will be a wrong estimation of the capacity of the model since, as we will
see later, this phenomenon of error cancellation does not always exist.

To avoid the problem of error superposition and possibly error cancellation, we propose to
validate separately the two parts of the model. We start �rst by the model for losses. Our �uid
linear model is used for window evolution. To only get the error introduced by the assumption on
the distribution of losses, the window of TCP should increase continuously and linearly between
losses and decrease multiplicatively by a factor ν upon losses. But, TCP window does not
have this ideal behavior in reality. What we do here is to construct this ideal behavior of the
window using the moments of losses seen by the TCP connection. The average of round-trip
time measurements is used for the calculation of the linear increase rate. The ideal window
is shown by the straight line in Figure 3.4. We call the version of TCP that has the window
behaving as the ideal window �ideal TCP� or �exact �uid model�. Then, we calculate numerically
the throughput obtained by ideal TCP and we compare it to the result of our modeling under
a certain assumption on the loss process. The comparison gives us the error introduced by the
model for losses.

The throughput of ideal TCP is calculated as follows. First, we sum over all the areas between
the ideal window and time, then we divide this sum by the total time of the measurement. This
gives the time average of the ideal window. The ideal throughput is obtained by dividing the
average of the ideal window by the measured average round-trip time. Now, to get the error
introduced by the model for the window evolution, all what we need to do is to compare the
ideal throughput to the real throughput. Before this comparison, the ideal throughput has to be
corrected for timeouts and the packet nature of TCP using for example the heuristics we gave
in (3.1) and (3.2).

We present some results to con�rm the utility of such a method for validation. We take
�rst the LAN connection. We plot in Figure 3.14 the ideal throughput we obtained during the
di�erent hours of the day. We also plot in the same �gure: the real throughput, the result of our
model when assuming deterministic inter-loss times, and the result of our model when assuming
that the loss process is Poisson. A model assuming deterministic losses underestimates the ideal
throughput given that the high variance of inter-loss times we observed on LAN (Figure 3.8).
The ideal throughput in turn overestimates the real throughput due to the sub-linear growth
of the window we discussed in Section 3.2.1. We notice that a direct comparison of the real
throughput to the result of the modeling in case of deterministic losses hides the two errors and
gives us an impression that the model works correctly. Now, when assuming that losses form
a Poisson process, we approximate better the ideal throughput but worse the real throughput.
According to a direct validation technique, the overall model is becoming worse with the Poisson
process which is a wrong conclusion. With our technique however, we are able to understand
that the Poisson process is better than the deterministic process, and that the real problem is
with the model for window variation. Hence, in this particular case, our technique reveals a

60 Chapter 3. End-to-end modeling of TCP congestion control

800

1000

1200

1400

1600

1800

2000

2200

2400

10.5 11 11.5 12 12.5 13 13.5 14

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - ESSI

Exact Fluid Model
Poisson losses
Deterministic losses
Real throughput

Figure 3.14: LAN: separate model validation

20

40

60

80

100

120

140

160

10 12 14 16 18 20 22 24

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - Australia

Exact Fluid Model
Poisson losses
Deterministic losses
Real throughput

Figure 3.15: WAN: separate model validation

problem that was hidden.
We take now the WAN connection (Figure 3.15). The ideal throughput approximates well the

real throughput given that the window increase on WAN is quite linear (Section 3.2.1). However,
our model with deterministic losses does not give good performance in this case as on the LAN
connection since the loss process is close to Poisson. Assuming that losses form a Poisson process
gives better performance. This di�erence in the performance of a model with deterministic and
Poisson losses between LAN and WAN cannot be explained without the method of validation we
introduced. Due to our method, we conclude that it is better to take the loss process as Poisson
on the WAN connection. On the LAN connection, it is better to take losses as Poisson but we
have to correct the part of the model concerning the window variation.

3.5 Conclusions

We presented in this chapter an overview of the di�erent issues to be considered when modeling
TCP. We introduced our models that we will analyze in the following three chapters. Our main
results in this chapter can be summarized as follows:

• A linear window increase model does not hold on paths where the round-trip time is
dependent on the window size. A sub-linear window increase model needs to be used in
this case. We keep the modeling of such sub-linearity for our future research. We only
focus in this thesis on linear models for TCP window variation.

• The process of congestion events needs to be well characterized given the diversity of loss
processes on Internet paths. This has been the main motivation behind the general models
we introduced and that we are going to analyze.

• The validation of a model for TCP needs to be done in two steps: the model for window
evolution and the model for the network need to be validated separately. A one-step

3.5. Conclusions 61

validation hides the errors introduced by these two models and makes the behavior of the
overall model unexplainable in some situations.

62 Chapter 3. End-to-end modeling of TCP congestion control

Chapter 4

Modeling TCP congestion control: a
Markovian approach

The �rst approach that we consider for modeling the network consists in a loss process that
changes its rate according to a Markov chain. For simplicity of the presentation, we consider
the case of a two-state Markov chain. The analysis for the case of a multi-state Markov chain
can be found in [14]. The intensity of losses is no longer uniform as with previous models for
TCP [60, 84, 92, 96, 105] but changes along time. The change in loss rate can be caused by the
�uctuation of Internet tra�c. It can be also caused by some particular transmission media that
su�er from a �uctuation of their bit error rate. For example, it is well known [113] that due
to the mobility of users and the superposition of re�ected and non-re�ected signals, the signal
to noise ratio in a wireless network oscillates between low and high values causing a change
in the loss rate. This is called the fading phenomenon and theoretical models (e.g., Rayleigh
model [113]) have been proposed to quantify it. It is also known that losses on a satellite link
appear in bursts [55]. Our �rst objective in this chapter is to evaluate the impact of such a
�uctuation of loss rate on TCP throughput. In particular, we are interested in evaluating the
impact of the burstiness (or the clustering) of loss events on the performance of TCP congestion
control. Our second objective is to provide a tool for the prediction of TCP throughput on such
non-homogeneous paths. We validate such a tool on our LAN connection (Section 3.1) where
the loss process presents an important degree of burstiness. Note here that in contrast to other
works in the literature that study the impact on TCP of bursts of losses at the packet level (i.e.,
all packets are assumed to be lost when the path is in the bad state) [49, 51, 83], our focus is on
the burstiness of loss events or congestion events.

4.1 The model

Consider a linear-increase multiplicative-decrease �uid model for the rate evolution of a TCP
connection. Denote by X(t) the transmission rate at time t. It is approximately equal to the
window size W (t) divided by the average round-trip time RTT. The rate increases linearly at

63

64 Chapter 4. Modeling TCP congestion control: a Markovian approach

a rate α = 1/(bRTT 2) between congestion events and decreases multiplicatively by a constant
factor ν ∈ (0, 1) upon congestion. b represents how many data packets are covered by an ACK.
Typically, b = 2 [105]. The throughput of TCP that we intend to calculate is given by,

X̄ = lim
t→+∞

1
t

∫ t

0
X(τ)dτ. (4.1)

We call this entity the throughput even though it needs to be corrected with Equations (3.1)
and (3.2) in order to account for timeouts and the packet nature of TCP. X̄ is equal to the time-
average of the transmission rate which in turn is equal to the expectation of the transmission
rate at any moment (E [X(t)]) if the process X(t) is stationary ergodic [40].

Let us now formulate mathematically our model for the network. The path between the
source and the destination is assumed to be in one of two states: Good and Bad. We let losses
appear in both states of the path. The di�erence between the two states is that losses appear
with di�erent rates with a smaller rate in the Good state. This model for the network is slightly
di�erent than the famous two-state Gilbert model [66] often used in the literature for the study
of wireless networks [32, 49, 51, 83] and where packets are only lost in the Bad state. We will
return to the Gilbert model in Chapter 9 when we present our study of TCP performance in
wireless networks. To model the change in the loss rate between the two states of the path, we
de�ne a series of potential losses. The decrease in rate and the change of path state are only
possible at potential loss moments. The di�erence in loss rate between the two states of the
path comes from a di�erence in the probability with which a potential loss is transformed into a
real loss. This is similar to a Markovian Arrival Process (MAP) [20, 100] in which at each state
transition an arrival (a loss event in our terminology) can occur with a probability that depends
on the state.

Let tn denote the time at which the nth potential loss occurs. Let {Dn}, n = 1, 2, . . . ,

be the sequence of times between potential losses: Dn = tn+1 − tn. The Dn are assumed to
be i.i.d. (independent and identically distributed) with expectation d, k th moment d(k) and
Laplace Stieltjis Transform D∗(s). Let Xn be the transmission rate of TCP just prior to the
nth potential loss. As we said, potential losses are transformed into real losses with a certain
probability function of the state of the path. Let Yn be the state of the path at the moment of the
nth potential loss. We consider the states B (for Bad) in which a potential loss is transformed
into a real loss with probability pB , and G (for Good) in which it is transformed with a probability
pG . We shall assume throughout that pG ≤ pB and that pB > 0. We further assume that the
sequences {Yn} and {Dn} are independent. For explanation, we show in Figure 4.1 an example
of the variation of TCP rate on such Markovian paths.

The state of the path Yn ∈ {B, G} is assumed to be a Markov chain with the following
transition matrix (Figure 4.2),

P =
[

γ γ̄
β̄ β

]
.

4.2. Performance Analysis 65

Figure 4.1: Variation of TCP rate on a Markovian path

B Gβ

1 − γ

1 − β

γ

Figure 4.2: The Markov chain associated to the path

State 1 (resp. 2) corresponds to the Good (resp. Bad) state of the path. We shall assume
throughout that γ, β ∈ (0, 1). {Yn}+∞

n=1 is then ergodic with stationary probabilities,

πG =
1− β

2− β − γ
=

β̄

β̄ + γ̄
, πB =

1− γ

2− β − γ
=

γ̄

β̄ + γ̄
.

The average rate of losses over all the states is given by,

λ =
pGπG + pBπB

d
,

with λG = pG/d and λB = pB/d the average rates of losses in the Good and Bad states re-
spectively. With this formulation of the loss process, we are able to vary the average loss rate
as well as the burstiness of losses. We will explain this later when we study the impact of the
distribution of losses on TCP performance. Let us now calculate the throughput of TCP under
the already described loss process.

4.2 Performance Analysis

De�ne the two random variables Un and Vn describing the behavior of the transmission rate
(reduction or no) when a potential loss occurs. They correspond to the two states of the path. A
value one of these variables means that the potential loss causes a reduction of the transmission

66 Chapter 4. Modeling TCP congestion control: a Markovian approach

rate. A value zero however means that Xn is not a�ected (i.e., a real loss did not occur). We
have,

P {Un = 1} = pG , P {Un = 0} = 1− pG ,

P {Vn = 1} = pB , P {Vn = 0} = 1− pB .

We proceed for the analysis by looking at the evolution of the transmission rate between two
potential loss moments,

Xn+1 = (1− Un)Xn1{Yn = G}+ UnνXn1{Yn = G}
+ (1− Vn)Xn1{Yn = B}+ VnνXn1{Yn = B}+ αDn

= (1− ν̄Un)Xn1{Yn = G}+ (1− ν̄Vn) Xn1{Yn = B}+ αDn, (4.2)

where ν̄ is equal to 1 − ν. 1{A} is the indicator function equal to 1 if expression A is true and
to 0 otherwise. Using this recurrent equation, let us �rst focus on the convergence and stability
of process Xn. De�ne the column vector,

Xn = (Xn1{Yn = G}, Xn1{Yn = B})T .

The convergence of Xn to a stationary regime implies that of Xn (and hence that of X(t) given
that the Markov chain is ergodic) since

Xn = Xn1{Yn = G}+ Xn1{Yn = B}.

De�ne the matrix

Qn =
(

(1− ν̄Un)1{Yn+1 = G} (1− ν̄Vn)1{Yn+1 = G}
(1− ν̄Un)1{Yn+1 = B} (1− ν̄Vn)1{Yn+1 = B}

)
.

Finally, de�ne the column vector

Dn = (Dn1{Yn+1 = G}, Dn1{Yn+1 = B})T .

Then it follows from (4.2)
Xn+1 = QnXn + αDn. (4.3)

This recurrent matrix equation is a particular case of the general stochastic linear di�erence
equation Xn+1 = AnXn + Bn, with An and Bn any two stationary ergodic processes [43, 67].
The next result follows from Theorem 2A in [67]. This theorem gives the required conditions
for the process Xn to converge to a stationary regime independently of the initial state of the
process. For this convergence to hold, we must have

(i) −∞ ≤ E [log |An|] < 0

(ii) E [log |Bn|+] < ∞

4.2. Performance Analysis 67

It is easy to prove that these conditions are satis�ed by Equation (4.3). To this end, one can
follow our approach in the Appendix in [11]. The following theorem follows.

Theorem 4.1 Assume that the Markov chain {Yn} is initially in steady state. Consider an
arbitrary initial state X0. Then,

X∗
n = α

∞∑

j=1

n−1∏

i=n−j

Qi

Dn−j−1 (4.4)

is the only solution of (4.3) and it converges absolutely almost surely. Furthermore, |Xn−X∗
n| → 0

a.s. for all X0 on the same probability space as {(Qn,Dn)}. In particular, the distribution of
Xn converges to that of X∗

n as n → +∞.

In summary, Theorem 4.1 says that the rate of the TCP connection Xn converges to a unique
stationary regime de�ned by (4.4), and this is for any initial state X0. This convergence is
the result of two facts (which are summarized by the two conditions in Theorem 2A in [67]).
First, the loss process by de�nition is stationary and of non-zero intensity. Second, due to the
multiplicative decrease, the rate process gradually forgets its past (in fact the impact of past
inter-loss times decreases geometrically fast). The stationarity of the process Xn and that of the
loss process result directly in a stationarity of the process X(t). In the following, we denote the
stationary regime by ∗.

Next, we study the existence of moments of Xn in the stationary regime. We will use these
moments when calculating the throughput. Note that the convergence of the process Xn in
distribution does not imply that of its moments since the rate process X(t) in our model is by
de�nition not bounded. Later in this chapter, we add an approximation of the throughput in
case of rate limitation (see Section 4.4). To prove the existence of moments of Xn, we de�ne the
following Laplace Stieltjis Transforms (LST) [80],

Zn(s,G) = E
[
e−sXn1{Yn = G}] , Zn(s,B) = E

[
e−sXn1{Yn = B}] ,

with s a complex number having a positive real part. In addition, let us de�ne

Zn(s) =
[

Zn(s,G) Zn(s,B)
]
.

The k th moment of Xn (k = 1, 2, . . .) is related to Zn(s) in the following way

E
[
Xk

n

]
= E

[
Xk

n1{Yn = G}
]

+ E
[
Xk

n1{Yn = B}
]
, (4.5)

Z(k)
n (0) = (−1)k

[
E

[
Xk

n1{Yn = G}] E
[
Xk

n1{Yn = B}]]
.

The (k) exponent added to a function or a vector of functions denotes its kth derivative.

68 Chapter 4. Modeling TCP congestion control: a Markovian approach

Theorem 4.2 The Laplace Stieltjis Transform Zn(s) satis�es the following recurrent equation,

Zn+1(s) = D∗(αs)Zn(s)P1 + D∗(αs)Zn(νs)P2, (4.6)

where
P1 =

[
γ(1− pG) γ̄(1− pG)
β̄(1− pB) β(1− pB)

]
and P2 =

[
γpG γ̄pG

β̄pB βpB

]
.

Proof: Using the recurrent Equation (4.2), we write

E
[
e−sXn+11{Yn+1 = G}]

= γE
[
e−s((1−ν̄Un)Xn+αDn)1{Yn = G}

]
+ β̄E

[
e−s((1−ν̄Vn)Xn+αDn)1{Yn = B}

]

E
[
e−sXn+11{Yn+1 = B}]

= γ̄E
[
e−s((1−ν̄Un)Xn+αDn)1{Yn = G}

]
+ βE

[
e−s((1−ν̄Vn)Xn+αDn)1{Yn = B}

]

Given that,

E
[
e−s(1−ν̄Un)Xn1{Yn = G}

]
= (1− pG)Zn(s,G) + pGZn(νs, G),

E
[
e−s(1−ν̄Vn)Xn1{Yn = B}

]
= (1− pB)Zn(s,B) + pBZn(νs, B),

we obtain the required relations.

Now with the help of recurrent Equation (4.6), we can investigate the convergence of moments
E

[
Xk

n

]
, k = 1, 2, . . . , for an arbitrary initial state X0. First, we de�ne the following limits

X(k) = lim
n→∞E

[
Xk

n

]
,

X(k) =
[

X(k)
G

X(k)
B

]
,

where
X(k)

G
= lim

n→∞E
[
Xk

n1{Yn = G}
]
, X(k)

B
= lim

n→∞E
[
Xk

n1{Yn = B}
]
. (4.7)

The existence of X(k)
G

and X(k)
B

implies directly the existence of X(k) (Equation 4.5). Further-
more,

X(k) = X(k)
G

+ X(k)
B

.

In the next theorem we formulate conditions for the existence of the limits in (4.7).

Theorem 4.3 Let the �rst k moments of Dn exist. Then, the moments X(k)
G

and X(k)
B

exist and
can be calculated from the following recurrent relation

X(k) =
k∑

i=1

Ci
kα

id(i)X(k−i)[P1 + νk−iP2][I − P1 − νkP2]−1, (4.8)

where X(0) = [πG πB]. Finally, X(k) = X(k)
G

+ X(k)
B

is the moment of the process Xn in the
stationary regime.

4.2. Performance Analysis 69

Proof: We �rst di�erentiate k times the recurrent relation (4.6) with respect to s,

Z(k)
n+1(s) =

k∑

i=0

Ci
kα

iD∗(i)(αs)Z(k−i)
n (s)P1 +

k∑

i=0

Ci
kα

iD∗(i)(αs)νk−iZ(k−i)
n (νs)P2,

where Ci
k is the binomial coe�cient equal to k!/(i!(k − i)!). Then, we take s = 0 to get

Z(k)
n+1(0) =

k∑

i=0

Ci
kα

iD∗(i)(0)Z(k−i)
n (0)[P1 + νk−iP2]. (4.9)

Let us now prove the convergence of Z
(k)
n (0) when n increases. Once proven, we can let n go to

in�nity in (4.9) in order to get the expression of X(k) given in (4.8). The last statement of the
theorem follows immediately from (4.5). Recall that,

Z(i)
n (0) = (−1)i

[
E

[
Xi

n1{Yn = G}] E
[
Xi

n1{Yn = B}]]
,

d(i) = (−1)iD∗(i)(0).

Let us introduce the following augmented vector

Ξ(k)
n =

[
Z(0)

n (0) Z(1)
n (0) · · · Z(k)

n (0)
]
.

Then, recursions (4.9) can be written in the following matrix form

Ξ(k)
n+1 = Ξ(k)

n Π,

where

Π =

P −αd(1)P (−α)2d(2)P · · · (−α)kd(k)P

0 P1 + νP2 C1
2 (−α)d(1)[P1 + νP2] · · · Ck−1

k (−α)k−1d(k−1)[P1 + νP2]
0 0 P1 + ν2P2 · · · Ck−2

k (−α)k−2d(k−2)[P1 + ν2P2]
...
0 0 · · · P1 + νkP2

.

We used for the �rst line of matrix Π the fact that P1 + P2 = P . Given that by de�nition pB

is strictly positive and ν < 1, all the matrices [P1 + νkP2], k ≥ 1, are sub-stochastic and hence
they have eigenvalues with modulus less than one. Now, P is the transition matrix of an ergodic
Markov chain. Therefore it only has one eigenvalue equal to one. Since the spectrum of Π is the
union of spectrums of diagonal sub-matrices [P1 + νkP2] and P , we conclude that Π only has
one eigenvalue equal to one and the other eigenvalues with modulus less than one. The latter
implies that the powers of Π converge to the eigenprojection corresponding to the eigenvalue
one. Consequently, Z(k)

n (0) and the moments of Xn are also convergent.

Corollary 4.1 Let d = E [Dn] < ∞. Then,

XG = X(1)
G

= αd
θB (πB − β) + πG

1− θBβ − θGγ + θBθG(γ + β − 1)
,

70 Chapter 4. Modeling TCP congestion control: a Markovian approach

XB = X(1)
B

= αd
θG(πG − γ) + πB

1− θBβ − θGγ + θBθG(γ + β − 1)
,

with θG = 1− ν̄pG , θB = 1− ν̄pB .

Corollary 4.2 Let d = E [Dn] < ∞ and d(2) = E
[
D2

n

]
< ∞. Then

X(2)
G

=
2αdθGθ(2)

B
XG(1− γ − β) + 2αd(θBXB γ̄ + θGXGγ) + α2d(2)(θ(2)

B
πB + πG − βθ(2)

B
)(

1− γθ
(2)
G − βθ

(2)
B − θ

(2)
G θ

(2)
B (1− γ − β)

) ,

X(2)
B

=
2αdθ(2)

G
θBXB (1− γ − β) + 2αd(θGXG γ̄ + θBXBβ) + α2d(2)(θ(2)

G
πG + πB − γθ(2)

G
)(

1− γθ
(2)
G − βθ

(2)
B − θ

(2)
G θ

(2)
B (1− γ − β)

) ,

with θ(2)
G

= 1−(1−ν2)pG and θ(2)
B

= 1−(1−ν2)pB . XG, XB , θG and θB are given in Corollary 4.1.

4.2.1 Calculation of the throughput

Theorem 4.4 Let d = E [Dn] < ∞ and d(2) = E
[
D2

n

]
< ∞. Then, the throughput of TCP on a

two-state Markovian path is equal to

X̄ = lim
t→+∞

1
t

∫ t

0
X(τ)dτ = θGXG + θBXB +

1
2
α

d(2)

d
,

where XG, XB , θG and θB are given in Corollary 4.1 and where the second equality holds in the
almost sure sense.

Proof: {Xn} forms an ergodic Markov chain since it converges in distribution and moments
to a unique stationary regime. Hence, {tn, Xn} is an ergodic marked point process. From [44,
Ch. 4] it follows that the associated continuous time process of the transmission rate evolution
X(t) is ergodic as well. The latter fact implies that the throughput, that is the time average
transmission rate, is almost sure equal to E [X(t)], the expectation of the transmission rate at
arbitrary time moment in the stationary regime. This expectation can be calculated by using
the following inversion formula of the Palm theory (see e.g., [22, Ch.1, Sec.4])

E [X(t)] =
1
d
E0

[∫ t1

0
X(τ)dτ

]
. (4.10)

where E0 [.] is an expectation associated with Palm distribution. In particular, P 0(t0 = 0) = 1.
Palm distribution is no other than the distribution of the transmission rate upon potential loss
moments in the stationary regime. The term between brackets on the right-hand side of (4.10)
is no other than the area located between the process X(t), the time axis, and the two instants
t0 and t1, given that t0 = 0 and that the process X(t) is in its stationary regime at time 0.

4.3. Impact of burstiness of losses 71

Using (4.2) and (4.10), we write

X̄ =
1
d
E0

[∫ t1

0
((1− ν̄U0)X01{Y0 = G}+ (1− ν̄V0)X01{Y0 = B}+ ατ)dτ

]

=
1
d
E0

[
(1− ν̄U0)X01{Y0 = G}D0 + (1− ν̄V0)X01{Y0 = B}D0 +

1
2
αD2

0

]

= E0 [(1− ν̄U0)X01{Y0 = G}] + E0 [(1− ν̄V0)X01{Y0 = B}] +
1
2
α

d(2)

d

= θGXG + θBXB +
1
2
α

d(2)

d
.

This concludes the proof of the theorem.

In a similar way to Theorem 4.4, we can prove the following result.

Theorem 4.5 Let d = E [Dn] < ∞, d(2) = E
[
D2

n

]
< ∞ and d(3) = E

[
D3

n

]
< ∞. Then, the

second moment of the transmission rate can be expressed as

X̄(2) = lim
t→+∞

1
t

∫ t

0
X2(τ)dτ

= E
[
X2(t)

]
=

1
d
E0

[∫ t1

0
X2(τ)dτ

]

= θ(2)
G

X(2)
G

+ θ(2)
B

X(2)
B

+ θGXGα
d(2)

d
+ θBXBα

d(2)

d
+

1
3
α2 d(3)

d
,

where X(2)
G

, X(2)
B

, θ(2)
G

and θ(2)
B

are given in Corollary 4.2 and where the second equality holds in
the almost sure sense.

The second moment is also of particular interest since it tells us how much the transmission rate
varies. A small variation is necessary for a good quality in real time applications.

4.3 Impact of burstiness of losses

We study in this section, theoretically and with simulations, the impact of a �uctuation of the loss
rate on the throughput of a TCP connection. In particular, we show how much the throughput
of TCP changes when loss events tend to appear in bursts. This is a �rst try to understand the
impact of a change in the distribution of losses on the performance of TCP congestion control.
The understanding will be completed in the next chapter when we present our general model
for losses. Our study will also tell us how well a model only considering the average loss rate
predicts the throughput of TCP on paths where loss events are clustered. See Figure 3.4 for an
example of window evolution in presence of clustered loss events. To accomplish such a study,
we consider the following particular case of our previous model,

pG = 0, pB = 1.

72 Chapter 4. Modeling TCP congestion control: a Markovian approach

In other words we suppose that if the path is in the Bad state, all potential losses are transformed
into real losses, and if it is in the Good state no real losses occur. This model is su�ciently general
to allow to vary both the average loss rate as well as the burstiness of losses. We set ν in the
analysis to 0.5. Substituting in the expressions of XG and XB (Corollary 4.1), we get

XB = 2αd, XG = αd
β̄ + πG

γ̄
. (4.11)

The throughput in this particular case is given by,

X̄ = XG +
1
2
XB +

1
2
α

d(2)

d
. (4.12)

Remark 4.1 It may seem remarkable that XB given by Equation (4.11) does not depend on
the transition probabilities of the Markov chain. This can be easily explained using the following
argument. The mean time between losses is clearly 1/λ = d/πB , so the mean increase in TCP
rate X between two consecutive losses is αd/πB . Since we assume that we are in the stationary
regime, the mean decrease in X between losses should be equal to the mean increase. But, the
mean decrease in X is half its mean value at loss. Thus,

E [X∗
n|Yn = B] = 2αd/πB .

We conclude that indeed,

XB = E [X∗
n1{Y ∗

n = B}] = E [X∗
n|Y ∗

n = B] P {Y ∗
n = B} = 2αd.

4.3.1 The reference throughput

To study the impact of burstiness of losses, we change the parameters of the Markov chain (β
and γ) while keeping the average loss rate λ unchanged. We then compare the throughput in the
bursty case to that achieved when the connection sees a non-bursty loss process with the same
rate. We denote the latter throughput by X̄r and we use it as a reference to evaluate the impact
of burstiness of losses.

A non-bursty loss process is obtained when the loss probability upon potential loss moments
is the same in both states. We call this probability p. To get the same average loss rate as in
the bursty case, p must be equal to

p = dλ = pGπG + pBπB = πB .

Lemma 4.1 On a non-bursty path, the source achieves a throughput equal to

X̄r =
2− p

p
αd +

1
2
α

d(2)

d
. (4.13)

4.3. Impact of burstiness of losses 73

Proof: This expression of X̄r can be easily obtained by substituting θG and θB in the general
expression of X̄ (Theorem 4.4) by their values as a function of p, the drop probability in the two
states. We have in the non-bursty case

θG = θB = 1− p

2
.

The parameters of the Markov chain disappear and we get the above nice expression of the
reference throughput as a function of p and the distribution of potential losses.

4.3.2 Variation of the throughput with burstiness

The non-bursty path that has the same average loss rate is obtained when taking a loss probability
p equal to πB in both states. Using (4.13), the reference throughput in the non-bursty case is
then equal to

X̄r =
2α

πB

− αd +
1
2
α

d(2)

d
.

We express X̄ as a function of X̄r and the parameters of the Markov chain. The expression of
X in the bursty case is given by (4.11) and (4.12). We get

X̄ = X̄r + αdπG

[
1
γ̄
− 1

πB

]
. (4.14)

It is clear from this expression of X̄ that the non-bursty case is obtained when γ̄ = β = πB . In
our particular case (pG = 0, pB = 1), γ̄ is the probability that the next potential loss causes a
real loss given that we are in the Good state. β is the probability that it causes a loss given that
we are in the Bad state. In the non-bursty case, these two probabilities must be equal. At the
same time, they must be equal to πB , the probability that the next potential loss causes a real
loss independently of the current state.

We �x now d and we increase β and γ in such a way that their ratio remains constant. This
guarantees that πB and πG , and hence the average loss rate λ, remain the same. in fact, the
increase in β and γ stretches the duration of the Good and Bad states which makes the path
of the connection more bursty. The reference throughput remains unchanged since it is only a
function of the average loss rate and the process of potential losses. Hence, Equation (4.14) shows
that the throughput X̄ improves with the increase in burstiness we introduced. Theoretically,
the throughput of TCP goes to in�nity when γ approaches one. This is because the Good state
becomes of in�nite duration. Practically, this is not possible since the rate cannot keep increasing
for a very long time without the occurrence of any congestion event. There is always an intrinsic
upper limit on the burstiness of a loss process.

4.3.3 Simulation-based validation of the model

We validate our model using the TCP implementation in the ns simulator [102]. We consider
long TCP transfers and we use the SACK version of TCP [56] since it is able to recover quickly

74 Chapter 4. Modeling TCP congestion control: a Markovian approach

0

20

40

60

80

100

120

140

160

180

50 100 150 200 250 300 350 400 450 500

In
st

an
ta

ne
ou

s
T

C
P

 W
in

do
w

 (
pa

ck
et

s)

Time (s)

X(t)
Real Losses
Potential Losses

Figure 4.3: Simulation: Variation of X(t) vs. time on a Markovian path

from losses and with a low probability of timeout and slow start. We suppose that the receiver
acknowledges every data packet (b = 1). For the moment, we assume that the receiver window
is very large so that it does not a�ect the growth of TCP transmission rate.

The simulation scenario consists of a TCP connection crossing a 2 Mbps link. The round-trip
time of the connection is taken equal to 560 ms. TCP packets are of total size 1000 bytes. We
add our Markovian loss model to the simulator and we associate it to the 2 Mbps link. We
only account for losses on the 2 Mbps link and we evaluate their impact on the throughput. We
choose the parameters of the simulation in a way not to get packet losses in the other parts of
the network. This clearly requires that losses on the 2 Mbps link are frequent so that the rate of
TCP remains low and the bu�ers in network routers do not over�ow. The purpose of the present
simulation is just to validate our result on the increase of the throughput with burstiness. Later
in this chapter, we will show how our model can be used to predict the throughput of real TCP
connections and we will validate our results in real scenarios.

The time between potential losses is taken to be exponentially distributed. Figure 4.3 shows
a typical example of the variation of TCP window in the presence of our Markovian model for
losses. We see well in the �gure how potential losses are transformed into real losses and how
real losses cause a reduction of the window by a factor 0.5. We then run the connection for one
hour and we calculate the values of XG , XB and X̄. The simulation results are compared to
those given by our analysis. We transform all the results of our analysis from rate to window
since the calculation of moments of window in practice is easier than the calculation of moments
of rate (except for the throughput). When simulating, XG (resp. XB) is calculated by summing
the window sizes when potential losses occur and the link in the Good state (resp. in the Bad
state), then by dividing this sum by the total number of potential losses. X̄ is calculated as the
throughput of the connection over one hour expressed in terms of packets/s times RTT. This
gives the time average of the congestion window.

4.4. Case of window limitation 75

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X
B

 (
pa

ck
et

s)

beta = P[Yn+1=B | Yn=B]

d = 5s, D(n) exponentially distributed, gamma = beta

Analysis
Simulation

Figure 4.4: XB vs. burstiness

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X
G

 (
pa

ck
et

s)

beta = P[Yn+1=B | Yn=B]

d = 5s, D(n) exponentially distributed, gamma = beta

Analysis
Simulation

Figure 4.5: XG vs. burstiness

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 w
in

do
w

 b
ar

(X
)

(p
ac

ke
ts

)

beta = P[Yn+1=B | Yn=B]

d = 5s, D(n) exponentially distributed, gamma = beta

Analysis
Simulation

Figure 4.6: X̄ vs. burstiness

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 w
in

do
w

 b
ar

(X
)

(p
ac

ke
ts

)

Average time between potential losses d (s)

D(n) exponentially distributed, gamma = beta = 0.6

Model without window limitation
Model with window limitation
Simulation

Figure 4.7: X̄ vs. d with rate limitation

Now, we �x the average time between potential losses (d) to 5 seconds and we increase
the transition probabilities β and γ while keeping β = γ. This results in πG = πB = 0.5

and a constant average loss rate λ = 0.1s. Our analysis tells us that XB must not change
(Equation (4.11)). XG and X̄ must however increase as a result of the increase in burstiness
(Equations (4.11) and (4.14)). Figures 4.4, 4.5 and 4.6 validate our results. In particular, it
is clear from Figure 4.6 that by increasing β from 0.1 to 0.9, the throughput of TCP increases
by about 100% even though the average loss rate is the same. This con�rms our main �nding
concerning the improvement of the performance of TCP when losses become clustered.

4.4 Case of window limitation

Our previous model does not account for the case when the receiver window limits the growth
of the congestion window. As we explained in Section 3.2.3, it is di�cult to calculate exactly
the throughput in presence of such a limitation given that the model becomes sub-linear. Even

76 Chapter 4. Modeling TCP congestion control: a Markovian approach

for a simple Poisson process the solution is not so evident as we will see in Chapter 6. Now,
for a complicated loss process as the one in this chapter, some approximation of the throughput
can always be found. A typical approximation is the �xed-point one [105] where the congestion
window is assumed to always reach the maximum window between two real loss events. We show
in this section how such an approximation can be applied to our model. For simplicity of the
presentation, we consider the particular case of the previous section, that is ν = 0.5, pG = 0

and pB = 1. We will pro�t from the fact that the path presents two states to get a better
approximation of the throughput than when the path is assumed to only have one state [105].

The �rst thing to do is to write conditions on the loss process that de�ne the region where
our previous model without window limitation can be used. Once this region is de�ned, all what
we still need to do is to �nd approximations of the throughput in the other regions. Denote
the upper bound for the transmission rate by M . It is equal to the receiver window divided
by RTT. Consider our previous model where the rate varies without any limitation. The point
where the transmission rate is most likely to reach the maximal value M is just before the �rst
potential loss in the Bad state. This corresponds to the �rst reduction of the transmission rate
after getting out of the Good state. For our previous model to work, the expectation of the
transmission rate at this point must be much smaller than the upper bound M . This condition
can be written as,

E
[
X∗

n|Y ∗
n = B, Y ∗

n−1 = G
]

<< M.

Taking into account that

E
[
X∗

n|Y ∗
n = B, Y ∗

n−1 = G
]

= E
[
X∗

n|Y ∗
n−1 = G

]

= E
[
X∗

n−1|Y ∗
n−1 = G

]
+ αd = XG/πG + αd,

we get the following condition
XG/πG + αd << M,

where XG is given by (4.11). Intuitively, the larger the average loss rate and the lower the
burstiness, the more likely that this condition holds. For a given loss rate, the increase in
burstiness stretches the duration of the Good state and makes more likely that the transmission
rate reaches the upper bound at its end. Now, the closer E

[
X∗

n|Y ∗
n = B, Y ∗

n−1 = G
]
to M , the

more important the impact of the receiver window. First, the receiver window starts to impact
the rate evolution during the Good state. The rate evolution during the Bad state can be
assumed to be close to that predicted by our model without window limitation. The receiver
window starts to impact the two states of the path once the expectation of the transmission rate
just prior to losses in the Bad state becomes larger than M . This latter condition can be written
as

E
[
X∗

n|Y ∗
n = B, Y ∗

n−1 = B
]

>> M, i.e., 1
2

XB

πB

+ αd >> M.

4.4. Case of window limitation 77

Now we pass to the approximation of the throughput when the receiver window impacts one of
the two states. We use for this purpose a �xed-point approach similar to that in [105]. We assume
that once the upper bound starts to impact a state, the rate always reaches its maximal value.
Using the above two conditions, we separate the space into three regions. In the �rst region, the
transmission rate is not a�ected by M . In the second region, the Good state is a�ected. In the
third region, both states are a�ected. We then use the above assumption to approximate the
throughput of the transfer during each state of the path. Let

X̄G = E [X(t)|Y (t) = G] , X̄B = E [X(t)|Y (t) = B] ,

where the expectation is with respect to the stationary probability. Thus, the overall throughput
is simply equal to

X̄ = E [X(t)] = πGX̄G + πBX̄B . (4.15)

Let us now approximate the throughput in each of the three regions we de�ned:

E
[
X∗

n|Y∗
n = B,Y∗

n−1 = G
]

< M: The receiver window in this case has no in�uence on the rate
evolution and the throughput given by Equation (4.12) can be considered.

E
[
X∗

n|Y∗
n = B,Y∗

n−1 = G
]

> M but E[X∗
n|Y∗

n = B,Y∗
n−1 = B] < M: During the Bad state

the receiver window has no impact and X̄B can be simply approximated by taking p = 1 in
Equation (4.13). This is the throughput obtained when the transmission rate is reduced at every
potential loss and when the window is not limited, which is the case for the Bad state in this
region. Thus,

X̄B = αd +
1
2
α

d(2)

d
.

During the Good state, the throughput can be approximated using the �xed-point approach. On
average, the rate at the beginning of the Good state is equal to

X0 = E
[
X∗

n|Y ∗
n = G,Y ∗

n−1 = B
]

=
1
2

XB

πB

+ αd.

The average duration of the Good state equals d/γ̄. Using our assumption that M is always
reached during the Good state in this region, we consider that the transmission rate grows �rst
from X0 to M , then stays at M until the beginning of the Bad state. This gives us the following
expression for X̄G ,

X̄G =
γ̄

d

(∫ (M−X0)/α

0
(X0 + αt)dt +

∫ d/γ̄

(M−X0)/α
Mdt

)

=
γ̄

d

(
M2 −X2

0

2α
+ M

(
d

γ̄
− M −X0

α

))
.

Given X̄G and X̄B , the throughput in this region can be approximated using Equation (4.15).

78 Chapter 4. Modeling TCP congestion control: a Markovian approach

E[X∗
n|Y∗

n = B,Y∗
n−1 = B] > M: The �xed-point approach tells us that in this region, the

transmission rate always reaches M between potential losses. The rate of TCP just before the
occurrence of a real loss can be taken equal to M . Thus, X0 = M and we can write

X̄G = M

X̄B =
1
d

(∫ M/2α

0
(M/2 + αt) dt +

∫ d

M/2α
Mdt

)
= M − M2

8αd
.

The total throughput can be approximated by

X̄ = πGX̄G + πBX̄B = M − M2πB

8αd
.

One of the advantages of our approximation compared to that in [105] is that we used the
Markov chain of the path to de�ne three regions instead of two. Indeed, if the path is assumed to
only have one state, all that we can do is to condition on E [X∗

n]. This is the kind of approximation
used in [105]; the receiver window impacts the rate evolution if E [X∗

n] is greater than M and
does not impact it if not. Increasing the number of states increases the number of regions (or
conditions) which should result in a better approximation of the throughput.

We validate now our approximation of the throughput using our previous simulation scenario.
We set β and γ to 0.6 (this gives πB = πG = 0.5) and we consider that the times between potential
losses are exponentially distributed. We set the round-trip time of the connection to 250 ms and
we take the receiver window equal to the bandwidth-delay product. We increase d from 1s to
10s and we plot in the same �gure (Figure 4.7) the throughputs from simulation, from our model
without window limitation and from our approximation. By a simple calculation, we can see
that with this values we chose for the simulation, we cross the three regions we de�ned at the
beginning of this section. The �gure shows how our approximation gives close results to the
simulated throughput. The model without window limitation leads to a clear overestimation.

4.5 Application of the model to real connections

We explain in this section how our Markovian model can be used to predict the throughput of a
real TCP connection. Of course, one should expect that our model is more useful on paths where
the loss rate �uctuates. The calculation of the throughput (Theorem 4.4) requires the knowledge
of the parameters of the Markov chain associated to the path, the process of potential losses and
the drop probabilities in the di�erent states. We present a technique to infer these parameters
from the trace of the connection [14]. We assume that we only have the moments at which the
connection divides its window. This means that we have a realization of the process of times
between congestion events {Sn}. From this realization we infer how the loss rate �uctuates. We
assume that the path of the connection presents some kind of burstiness that justi�es the use of

4.5. Application of the model to real connections 79

a Markov chain. We consider our LAN connection for this purpose. Recall that the loss process
on the LAN connection is highly bursty (Section 3.3.1). We present our technique for the case
of a two-state Markov chain. In the same way, the parameters of a multi-state Markovian model
can be inferred from the trace of the connection.

Let us �rst estimate P , the transition matrix for the Markov chain {Yn}. Recall that this is
the Markov chain obtained when looking at the state of the path at potential loss moments. We
need to determine when the path is in the �Good� state and when it is in the �Bad� state. We use
the following simple method. Choose some time interval τ . We explain later how to make this
choice. If the inter-loss time is less than τ , the path is assumed to be in the Bad state, otherwise
it is assumed to be in the Good state. If two or more consecutive inter-loss times correspond
to the same state, we merge them together and we call the new interval SG

k or SB
k depending

on the state. Note that these new intervals represent the time during which the path of the
connection is either in the Good or in the Bad state. Denote by NG (resp. NB) the number of
intervals SG

k (resp. SB
k) during the lifetime of the connection. Then, the evolution of the path

can be described by a two-state continuous-time Markov process with the following in�nitesimal
generator matrix [80]

Q =
[−σG σG

σB −σB

]
, (4.16)

where the rates σG and σB are calculated as follows

σG =
1

E
[
SG

k

] ' NG∑N
G

k=1 SG
k

, σB =
1

E
[
SB

k

] ' NB∑N
B

k=1 SB
k

.

Note that on some paths, say a wireless link, this continuous time Markov chain is a priori known
(using the Rayleigh model for example [113]) and can be directly used without the need to look
at the trace of the TCP connection. In case it is not known, we have to de�ne it by separating
the inter-loss times into two groups using the parameter τ as described above. We present now
two approaches for the determination of τ . The �rst one is more empirical. It consists in looking
at the distribution of inter-loss times (e.g., Figure 3.8) and choosing τ in order to separate the
two distributions it encloses: the distribution of inter-loss times in the Good state and that of
inter-loss times in the Bad state. For example, the distribution of times between losses on the
LAN connection shows clearly a pulse around the origin (Figure 3.8). This pulse corresponds to
losses that appear close to each other or in other words in bursts. The rest of the distribution
corresponds to times between bursts. Bursts of losses can be better seen in Figure 3.4. We can
assume that bursts of losses appear when the path is in the Bad state and choose τ in a way to
isolate the pulse (τ ' 0.4s).

The second method for the choice of τ is less empirical and was used in the context of
Markov-Modulated Poisson Processes [93]. The parameter τ is taken equal to the expectation of
inter-loss times, that is

τ = E [Sn] ' 1
N

N∑

k=1

Sk,

80 Chapter 4. Modeling TCP congestion control: a Markovian approach

where N is the total number of inter-loss intervals we get from the measurement.
Given the in�nitesimal generator matrix of the continuous time Markov chain associated to

the path (Q), we calculate the transition matrix P of the discrete time Markov chain embedded
at the moments of potential losses. To this end, we use the uniformization technique [126]. Let us
choose the potential loss process {Dn} as a Poisson process of intensity 1/d higher than both σG

and σB . A reasonable choice of d is the average round-trip time. According to the uniformization
technique [126], the state of a path described by the continuous time Markov process (4.16) and
sampled at the moments of potential losses can be equivalently given by a discrete time Markov
chain with the following transition matrix,

P =
[

1− dσG dσG

dσB 1− dσB

]
.

Having chosen d and calculated σG and σB from the trace, we can easily deduce the parameters β

and γ of the loss model (Figure 4.2). Namely, γ̄ = dσG and β̄ = dσB . We still have to determine
pG and pB . Let ωG

k (resp. ωB
k) be the number of real losses in the time interval SG

k (resp. SB
k).

Then, the probabilities pG and pB can be approximated by

pG =
∑N

G
k=1 ωG

k∑N
G

k=1 SG
k /d

=
d

∑N
G

k=1 ωG
k∑N

G
k=1 SG

k

= dλG , pB =
∑N

B
k=1 ωB

k∑N
B

k=1 SB
k /d

=
d

∑N
B

k=1 ωB
k∑N

B
k=1 SB

k

= dλB .

Note here that the choice of the intensity of potential (d) losses impacts the values of the drop
probabilities. The more the potential loss moments, the smaller the drop probabilities. Di�erent
values can be given to d. However, we must make sure that intensity of potential losses is much
higher than the intensity of real losses in both the Bad and the Good states. Decreasing the
value of d improves the precision of the uniformization technique.

We consider the LAN connection described in Section 3.1 for the validation of our Markovian
model. We take τ = 0.4s for the separation of the Bad state from the Good state. For each trace
�le, we infer the di�erent parameters of the model. In Figure 4.8, we compare the throughput
given by our Markovian model to that of ideal TCP or the so-called exact �uid model. Recall that
the ideal throughput is numerically calculated for a TCP version that increases its window linearly
as a function of time (see Section 3.4). We plot in the same �gure the throughputs obtained
when the loss process is assumed to be Poisson and when it is assumed to be deterministic. For
these two latter throughputs we use the formulas we �nd in the next chapter. It is clear that
the Markovian model gives the best result when deterministic and Poisson losses don't work.
However, it overestimates the ideal throughput when the Poisson process works. This is due to
our choice of τ . Indeed, when the Poisson process does not work, the distribution of inter-loss
times presents an important pulse close to the origin and this pulse corresponds to a second
distribution that needs to be separated. Separating this distribution improves the performance
with respect to a model that assumes that this pulse does not exist and that losses follow a
Poisson process. Now, when the Poisson process works, the distribution of inter-loss times is

4.6. Conclusions 81

800

1000

1200

1400

1600

1800

2000

2200

2400

10.5 11 11.5 12 12.5 13 13.5 14

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - ESSI

Exact fluid model
Two-state Markovian model
Poisson losses
Deterministic losses

Figure 4.8: LAN: Validation of the two-state Markovian model

close to that of an exponential distribution and there is not another distribution that needs to be
separated. However, our choice of τ results in a splitting of the exponential distribution into two
non-exponential ones which results in this deterioration of performance. Note here that when
taking the process of potential losses as Poisson and the drop probabilities as constant, we are
making indirectly the assumption that the process of real losses is Poisson in both states, of
course with di�erent rates. This assumption holds when the loss process is highly bursty and
does not hold when it is close to Poisson.

4.6 Conclusions

In this chapter we evaluated the impact of a �uctuation in the loss rate on the performance of
TCP congestion control. In particular, we studied how TCP behaves on paths presenting some
Good and Bad states. We de�ned a model for the network using potential losses and a two-state
Markov chain. We then calculated the throughput and the moments of the transmission rate
at potential loss moments. The throughput is compared to the one achieved when operating
over a non-bursty path having the same average loss rate. Our main result is that for a given
loss rate, the performance of TCP improves when losses tend to appear in bursts. We run a
set of simulations with ns to validate the analytical results. We also presented a technique for
the calculation of the parameters of the model (transition matrix of the Markov chain, drop
probabilities) and hence the throughput of TCP.

We still have to re�ne our method for the separation of the di�erent states of the path. Also,
we still have to validate our model on paths oscillating according to an intrinsic Markov chain
(e.g., wireless links). Another important issue to explore is the extension of the model to the
case when the distributions of inter-loss times in the di�erent states are not of the same type.
In our previous model, these distributions are assumed to be of the same type since the process
of potential losses is the same in the all states. A possible solution could be the use of Markov

82 Chapter 4. Modeling TCP congestion control: a Markovian approach

Renewal Processes [59, 73] where the distributions of times between losses (arrivals in queueing
terminology) change with the state of the path and where the state of the path changes according
to a Markov chain.

Chapter 5

Modeling TCP congestion control: A
general approach

Our previous Markovian model covers some but not all the loss processes that a TCP connection
may see in the Internet. For example, it does not cover the case when the distribution of
inter-loss times does not follow the same law in di�erent states of the path. Moreover, the
previous model does not show the impact of some parameters of the loss process, as the variance
and the correlation, on the performance of TCP congestion control (yet it shows the impact
of other parameters and allows easy derivation of all moments of the transmission rate). All
these questions are solved with the general model we present in this chapter. The present model
is su�ciently general that it can cover many of existing models of TCP. It can be considered
as a general framework for TCP modeling. One can imagine any loss process, calculate some
functions of this process, plug these functions in the expression of the throughput we will provide,
and get the throughput of TCP. Our explicit expression of the throughput tells us clearly how
the throughput varies with the distribution of losses and how well the throughput is estimated
when we make a certain assumption on the loss process. We write the throughput as a function
of the packet drop probability which yields a generalization of the square root formula [92, 105]
for TCP throughput. Recall that the expression of the throughput is found explicitly for the
case of no limitation on the window. Bounds for the throughput are found in the case of window
limitation. Finally, our general expression of the throughput is speci�ed to some particular loss
processes, mainly to Markovian Arrival Processes (MAP) [20, 100]. The analysis in this chapter
as well as the validation of the results can be found in [12].

5.1 The model

As in the previous chapter, we assume that the rate of the TCP connection increases contin-
uously and linearly with time at a constant rate α between congestion events, and decreases
multiplicatively with a factor ν ∈ (0, 1) upon congestion. Recall that α is approximately equal
to 1/(bRTT 2), where RTT is the average round-trip time and b the number of data packets cov-

83

84 Chapter 5. Modeling TCP congestion control: A general approach

Figure 5.1: Variation of TCP rate on a general path

ered by an ACK. We work directly with the process of inter-loss times {Sn} and we eliminate the
intermediate potential loss process of our Markovian model. Assume for the moment that there
is no limitation on the congestion window. Bounds for the throughput will be later introduced
for the case of window limitation. Assume also that there is no timeout intervals. We substitute
the throughput X̄ obtained with this model in Equations (3.1) and (3.2) in order to account for
timeouts and the packet nature of TCP.

Let Tn denote the moment at which the nth congestion event occurs, so that Sn = Tn+1−Tn.
We look at the moments of congestion and we denote by Xn the transmission rate just prior to
the nth congestion event. Thus, the transmission rate X(t) can be described by the following
recurrent equation,

Xn+1 = νXn + αSn. (5.1)

Figure 5.1 shows the variation of the rate of the �uid model for a realization of the loss process.
The pair {Tn, Xn} can be considered as a marked point process [22]. Each point of the process,
which corresponds to a congestion event or a loss event, is marked by the rate of the TCP
connection upon its occurrence.

Concerning the loss process, we only make the assumption that it is stationary, ergodic
and of non-null �nite intensity. With this minor assumption, our model is able to capture any
correlation and any distribution of inter-loss times. The loss process {Sn} is characterized by
the following functions:

• s = 1/λ = E [Sn]: Average inter-loss time.

• s(2) = E
[
S2

n

]
: Second moment of inter-loss times.

• R(k) = E [SnSn−k] , k = 0, 1, . . .: Correlation function of order k. Particularly, R(0) = s(2).

• C(k) = R(k)− s2, k = 0, 1, . . .: Covariance function of order k. Particularly, C(0) is equal
to V , the variance of inter-loss times.

5.2. Performance analysis 85

We also use the � ˆ � exponent to denote the result of the normalization of a function to some
appropriate power of the average inter-loss time s. In particular, for k = 0, 1, . . ., Ĉ(k) = C(k)/s2,
R̂(k) = R(k)/s2 and V̂ = V/s2. Using these functions, we �nd in the following the explicit
expression of TCP throughput as well as the �rst two moments of the transmission rate (or the
window).

5.2 Performance analysis

Equation (5.1) is again a particular case of the general stochastic linear di�erence equation
Xn+1 = AnXn + Bn [43]. Since the inter-loss time process is stationary ergodic, and since ν < 1

and E [Sn] < ∞, it follows from Theorem 2A in [67] (see the Appendix in [11] for more details)
that Equation (5.1) has a unique stationary solution given by,

X∗
n = α

∞∑

k=0

νkSn−1−k. (5.2)

Whatever is its initial state, the rate (or the window) process converges almost sure to the above
stationary regime [43, 67],

lim
n→∞ |Xn −X∗

n| = 0, P − a.s.

We denote the unique stationary regime of the rate of the TCP connection by � ∗ �. Again,
this convergence is the result of the linear-increase and the multiplicative-decrease which make
the rate forget asymptotically its past. In the stationary regime, the transmission rate of the
TCP connection at any moment can be expressed as only a function of the reduction factor ν,
the slope α and the sum of inter-loss times in the past. This is what Equation (5.2) expresses.
We also see in this equation how the impact of inter-loss times in the past disappears quickly
given the geometrical decrease in the coe�cient νk. The result will be a limited impact of the
correlation of losses on the performance of TCP.

The fact that the stationary regime is unique and independent of the initial state can be
considered as a proof of the conditional fairness of linear-increase multiplicative-decrease conges-
tion control policies. If all the �ows use the same parameters ν and α, and if they are subject
to the same loss process (i.e., if they reduce their rates at the same instants), the network will
converge to a stationary regime where the �ows get the same throughput according to Equa-
tion (5.2) whatever are their initial rates. This conditional fairness has been proved in a similar
way in [50].

5.2.1 Calculation of the �rst two moments of Xn

Proposition 5.1 The �rst two moments of the rate process in the stationary regime are given
by

E [X∗
n] =

α

λ(1− ν)
, (5.3)

86 Chapter 5. Modeling TCP congestion control: A general approach

E
[
(X∗

n)2
]

=
α2

1− ν2

[
R(0) + 2

∞∑

k=1

νkR(k)

]
. (5.4)

Proof: To calculate (5.3) and (5.4), we use the expression (5.2) for the stationary regime.

E [X∗
n] = α

∞∑

k=0

νkE [Sn−1−k] =
α

λ

∞∑

k=0

νk =
α

λ(1− ν)
,

since ν by de�nition is strictly less than one. Similarly, we obtain

E
[
(X∗

n)2
]

= E

α

∞∑

j=0

νjSn−1−jα
∞∑

k=0

νkSn−1−k

= α2E

∞∑

k=0

k∑

j=0

νjSn−1−jν
k−jSn−1−k+j

= α2
∞∑

k=0

k∑

j=0

νkE [Sn−1−jSn−1−k+j]

= α2
∞∑

k=0

νk

{
R(0) + 2

∑r
j=1 R(2j), k = 2r,

2
∑r

j=1 R(2j − 1), k = 2r − 1.

Then, we regroup the terms of the last series to get

E
[
(X∗

n)2
]

= α2R(0)
∞∑

j=0

ν2j + 2α2
∞∑

k=1

R(k)νk
∞∑

j=0

ν2j

=
α2

1− ν2

[
R(0) + 2

∞∑

k=1

νkR(k)

]
.

Remark 5.1 Often, the covariance function C(k) is used instead of the correlation function
R(k). Then, the expression of the second moment becomes

E
[
(X∗

n)2
]

=
α2

1− ν2

[
V + 2

∞∑

k=1

νkC(k)

]
+

α2

λ2(1− ν)2
.

By normalizing with respect to the average inter-loss time, we get

E
[
(X∗

n)2
]

=
α2

λ2(1− ν2)

[
V̂ + 2

∞∑

k=1

νkĈ(k)

]
+

α2

λ2(1− ν)2
. (5.5)

Remark 5.2 The expectations computed in (5.3) and (5.4) are taken with respect to loss instants.
These expectations are also referred as Palm expectations in the context of point processes [22].

Remark 5.3 We note the remarkable insensitivity property, that E [X∗
n] does not depend on the

correlation of inter-loss times nor on their moments of order greater than one.

5.2. Performance analysis 87

5.2.2 Calculation of the throughput

By using the expression (5.2) and the concept of Palm probability, we proceed for the calculation
of TCP throughput, that we recall is given by

X̄ = lim
t→∞

1
t

∫ t

0
X(τ)dτ.

Our main result is the following close expression for X̄ as a function of the loss intensity λ,
the correlation (or covariance) functions, the linear increase factor α (thus b and RTT) and the
multiplicative-decrease factor ν. As we will see when validating our results, if all these functions
are correctly calculated and are plugged in our explicit expression, we get exactly the throughput
of ideal TCP.

Proposition 5.2 The general expression of TCP throughput is

X̄ = λα

[
1
2
R(0) +

∞∑

k=1

νkR(k)

]
. (5.6)

Proof: From [44, Ch. 4], the process X(t) is ergodic since the associated discrete-time process
{Xn} is also ergodic. The ergodicity of the process {Xn} follows from [40, p. 14], (5.2) and
the ergodicity of the process {Sn} we assumed. Thus, the throughput X̄ is almost sure equal to
E [X(t)], the expectation of the rate at an arbitrary time point. To calculate E [X(t)], one can
use the following inversion formula from the Palm theory (see e.g., [22, Ch.1 Sec.4])

E [X(t)] = λE0

[∫ T1

0
X(τ)dτ

]
, (5.7)

where E0 [·] is an expectation associated with Palm distribution. In particular, P 0{T0 = 0} = 1.
We recall that Palm distribution is no other than the distribution of the rate upon loss moments
in the stationary regime. The term between brackets on the right-hand side of (5.7) is no other
than the area located between the process X(t), the time axis, and the two instants T0 and T1,
given that T0 = 0 and the process X(t) is in its stationary regime at time 0. Using formula (5.7)
and expression (5.2), we can write

X̄ = E [X(t)] = λE0

[∫ T1

0
(νX0 + ατ)dτ

]
= λE0

[
νX0S0 +

α

2
S2

0

]

= λE0

[
αν

∞∑

k=0

νkS−1−kS0

]
+

λα

2
E0

[
S2

0

]

= λα
∞∑

k=0

νk+1R(k + 1) +
λα

2
R(0)

= λα

[
1
2
R(0) +

∞∑

k=1

νkR(k)

]

88 Chapter 5. Modeling TCP congestion control: A general approach

Remark 5.4 Note that formula (5.6) can be also rewritten in terms of the second moment of
the transmission rate at loss instants,

X̄ =
λ(1− ν2)

2α
E

[
(X∗

n)2
]
.

The previous remark is very important since it tells us exactly where the previous works on
TCP modeling fail in their calculation of the throughput (e.g., [92, 105]). This remark says
that the calculation of the second moment of X∗

n is unavoidable for an exact calculation of the
throughput. However, this second moment cannot be simply calculated since as we see in (5.4),
it is a function of all the functions of the loss process not only its intensity. To avoid this hard
calculation, the previous works on TCP make the simplistic assumption that the second moment
of X∗

n is equal to the square of its �rst moment and derive the expression of the throughput as a
function of the intensity of losses. Note that the �rst moment of X∗

n can be directly calculated
from the stochastic di�erence equation (5.2) and it does not depend on the correlation of losses
nor on their moments of order greater than one (Equation (5.3)). We know that this simplistic
assumption only holds for deterministic loss processes where the window of TCP varies in a
periodic and deterministic manner. Hence, we conclude that all works making such simplistic
assumption follow the �xed-point approach.

Remark 5.5 The throughput can be also expressed as a function of the covariance functions
C(k),

X̄ = λα[
1
2
V +

∞∑

k=1

νkC(k)] +
α(1 + ν)
2λ(1− ν)

.

By normalizing with respect to the average inter-loss time, we get

X̄ =
α

λ
[
1
2
V̂ +

∞∑

k=1

νkĈ(k)] +
α(1 + ν)
2λ(1− ν)

. (5.8)

5.2.3 Generalization of the square root formula

The throughput of TCP has been often calculated as a function of the probability that a TCP
packet is lost, or more precisely as a function of the probability that a packet causes the source
to reduce its window [84, 92, 105]. Denote this probability by p. Using a �xed-point approach, it
has been shown that the throughput of TCP is inversely proportional to RTT and the square root
of p. For a loss probability p, an average round-trip time RTT and a reduction factor ν = 0.5,
the throughput of TCP in packets/s has been shown to be equal to

X̄ =
1

RTT

√
3

2bp
(5.9)

This is the famous square root formula for TCP throughput. In [105], the authors found that
this formula is only valid for small loss probabilities (less than 5%) since it does not account for

5.2. Performance analysis 89

the timeout mechanism. For high loss probabilities, one must correct the square root formula in
the way we presented in Section 3.2.2. Indeed when p increases, the probability that a congestion
event results in a timeout (the function Q(p) in Section 3.2.2) increases and the �nal throughput
(X̄f in Equation (3.1)) starts to di�er from the throughput X̄ given by the square root formula.

Using our explicit expression of TCP throughput, we generalize in this section the square
root formula so that to account for any distribution of inter-loss times and for any correlation
of losses. Recall that the square root formula has been established for deterministic losses. Our
�rst and important result is that, even in the most general case, the throughput of TCP is
always inversely proportional to RTT and to the square root of p. Our second result is that the
throughput of TCP is also a function of all the correlation functions of the loss process. When
we introduce p, the intensity of losses disappears and the correlation functions are substituted by
the normalized covariance functions. This results in an elegant expression of TCP throughput
that explains clearly the impact of the distribution and correlation of inter-loss times on the
performance of TCP congestion control and that can be easily speci�ed to any particular loss
process.

Denote by A(t) the number of packets transmitted on the TCP connection until time t, and
denote by L(t) the number of loss events until time t. The packet drop probability p is simply
equal to

p = lim
t→∞

L(t)
A(t)

= lim
t→∞

λt∫ t
0 X(τ)dτ

=
λ

X̄
=

1
sX̄

. (5.10)

Note that if a congestion event results in the loss of multiple packets, p will denote the probability
that a packet is lost and that it causes the reduction of the congestion window. In [105], packets
are assumed to be lost in bursts with a burst of losses causing one reduction of the congestion
window and with p being the probability that a packet is the �rst loss in a burst of losses. Now,
it is up to the person to decide on how to calculate p in reality. Some people calculate it as being
the ratio of the total number of packets dropped and the total number of packets transmitted.
This is the case of works using the square root formula to study the performance of TCP in
presence of active queues [48, 58, 98]. Such method for the calculation of p clearly results in an
overestimation of p (hence in an underestimation of TCP throughput) when congestion events
result in the loss of multiple packets. Other people calculate it in the same way we de�ned
it [63, 105]. We will follow this latter approach for the calculation of p when validating the
model. We believe that this is how p must be calculated in presence of new versions of TCP
that are able to recover from multiple packet losses in the same round-trip time without reducing
multiple times their windows.

The expression of p as a function of λ and X̄ (Equation (5.10)) allows us to write our main
result in another form so as to grasp the in�uence of p and RTT on the throughput for a general
distribution of inter-loss times. By substituting λ in (5.8) by its value as a function of p and X̄,

90 Chapter 5. Modeling TCP congestion control: A general approach

we get the following general version of the square root formula,

X̄ =
1

RTT
√

pb

√√√√ 1 + ν

2(1− ν)
+

1
2
V̂ +

∞∑

k=1

νkĈ(k). (5.11)

Recall that V̂ and Ĉ(k) are respectively the variance and covariance functions of inter-loss times
normalized to the square of the average inter-loss time. The intensity of losses disappears and all
what we need to do is to calculate the functions V̂ and Ĉ(k) in order to get the throughput for a
certain loss process. Note also how we can get the original square root formula (Equation (5.9))
by taking a deterministic loss process, this means by taking the variance and covariance functions
equal to zero.

5.2.4 Loss process functions and TCP performance

Three terms �gure under the root in the general square root formula (Equation (5.11)). The �rst
term from the left corresponds to the intensity of losses. It is the only term considered by the
previous models for TCP [92, 105]. If considered alone, this means that we are assuming that
the loss process is deterministic and what we get is the original square root formula (5.9).

The second term represents the variation of inter-loss times. It says clearly that the through-
put of TCP increases with the variance of times between losses. This is in parallel to our result
in Chapter 4) which says that the throughput of TCP increases when losses tend to appear
in bursts. This second term tells us that the variance of inter-loss times should be correctly
estimated for a correct calculation of TCP throughput: underestimating the variance leads to
an underestimation of TCP throughput and overestimating it leads to an overestimation. For
example, assuming that losses are deterministic when they are Poisson results in an underesti-
mation of the throughput. In fact, what we need to calculate is not the variance but the ratio of
the variance and the square of the average inter-loss time (V̂). This ratio indicates the type of
the distribution of inter-loss times. For example, it is equal to 0 for deterministic losses and to
1 for Poisson losses whatever is the intensity of losses. Note here that all this reasoning holds if
our linear model for TCP window evolution is correct. As we will see in the section on validation
of the results, this is not always the case. The error introduced by a wrong choice of the loss
process can be canceled by the error introduced by a wrong model for TCP. It is here that �gures
the advantage of our technique for model validation we introduced in Chapter 3.

Now, the third and last term under the root represents the correlation of losses. It is equal
to zero if the loss process exhibits no correlation, this means if inter-loss times are independent
and identically distributed. A covariance function Ĉ(k) takes its value between −V̂ and V̂ .
This value depends on whether the loss process is positively or negatively correlated and on the
importance of the correlation. It is clear that due to the geometrical decrease in the weights of
Ĉ(k), a small number of covariance functions are su�cient to predict the throughput of TCP

5.2. Performance analysis 91

even if the loss process is highly correlated. Indeed, due to the multiplicative-decrease factor ν,
the window evolution becomes independent of the past after a small number of loss events.

5.2.5 Examples of loss processes

Let us specify our results to some particular loss processes. We already saw that the original
square root formula is a particular case of our general result.

IID losses (General Renewal Process)

First, we model the loss process as a general renewal process. Namely, we assume that {Sn} are
independent and identically distributed random variables. Thus, except for k = 0, the covariance
coe�cients are equal to zero. The formulas (5.3), (5.5), (5.8) and (5.11) take the following form.

Proposition 5.3 Let {Sn} be i.i.d.. Then,

E [X∗
n] =

α

λ(1− ν)
,

E
[
(X∗

n)2
]

=
α2

λ2(1− ν)

[
1

1− ν
+

V̂

1 + ν

]
,

X̄ =
α

2λ

[
1 + ν

1− ν
+ V̂

]
=

1
RTT

√
pb

√
1 + ν

2(1− ν)
+

1
2
V̂ . (5.12)

In particular, if the inter-loss times are exponentially distributed, we have

X̄ =
α

λ(1− ν)
=

1
RTT

√
pb

√
1

1− ν
. (5.13)

For ν = 0.5, we get the same expression for TCP throughput as that obtained in [96]. If the
inter-loss times are deterministic, we get

X̄ =
α

2λ

1 + ν

1− ν
=

1
RTT

√
pb

√
1 + ν

2(1− ν)

For ν = 0.5, this gives the original square root formula (Equation (5.9)). If one applies our
corrections (3.1) and (3.2) to the original square root formula, he will �nd a similar result to
that obtained by the detailed packet-level model in [105]. In fact, [105] considers (indirectly) a
deterministic model for inter-loss times and this is simply due to its assumption that processes
{X∗

n} and {Sn} are mutually independent. These two processes are mutually independent in the
only case of deterministic times between loss events. Later, we will show with measurements the
similarity between the model in [105] and our model with deterministic losses.

92 Chapter 5. Modeling TCP congestion control: A general approach

Correlated losses modeled as a Markovian Arrival Process

In this section we consider correlated losses which are modeled by a Markovian Arrival Process
(MAP) [20, 79, 100]. An arrival (or the occurrence of a point) in MAP corresponds to the
occurrence of a congestion event in our context. It was shown in [20] that for a given general
point process, there is a sequence of MAPs which converges to the point process in distribution.
In particular, this implies that in principle any point process can be approximated by appro-
priate MAPs. Furthermore, PH-renewal process [100] and Markov Modulated Poisson Process
(MMPP) [59] are particular cases of the Markovian Arrival Process.

Let us brie�y review the de�nition and some properties of MAP. Similarly to our Markovian
model for losses in Chapter 4, a MAP process consists in a Poisson process that changes its
rate according to a multi-state Markov chain. The transitions of the underlying Markov chain
may happen at the moments of arrivals or between arrivals. Let N(t) be a counting process
associated with MAP, that is N(t) is the number of arrivals in the interval (0, t]. Also, let J(t)

be an auxiliary variable that indicates the state of the underlying Markov chain. Consider that
this Markov chain has m states denoted 1, . . . ,m. Then, MAP can be described in terms of a
two-dimensional Markov process {N(t), J(t)} on the state space {(i, j)|i ≥ 0, 1 ≤ j ≤ m} with
the following in�nitesimal generator [80]

Q =

C D 0 0 · · ·
0 C D 0 · · ·
0 0 C D · · ·
...

 ,

where the matrix C ∈ Rm×m governs the transitions of the process J without arrivals and it
has negative diagonal elements and nonnegative o�-diagonal elements. The matrix D ∈ Rm×m

governs the transitions of J with the simultaneous arrivals and it has nonnegative elements.
Thus, the underlying Markov process J(t) has the following in�nitesimal generator,

Q̄ = C + D.

Furthermore, we assume that Q̄ 6= C and C is a stable matrix. This ensures that J(t) does not get
absorbed in a class of states in which arrivals stop. When J(t) = i, the rate of transitions to state
j 6= i is Q̄ij . If such a transition occurs then an arrival occurs simultaneously with the transition
with probability Dij/(−Cii−Dii). Note that MAP becomes MMPP with in�nitesimal generator
R and arrival rate matrix Λ, if we take C = R − Λ and D = Λ. The di�erence between MMPP
and MAP is simply that with MMPP arrivals and transitions cannot appear simultaneously,
however this is possible with MAP.

Let {Sn} be the sequence of inter-arrival times for MAP and let {Jn} be the sequence of
the states of the underlying Markov process at the arrival epochs. Then, {Jn, Sn} is a Markov

5.2. Performance analysis 93

renewal process [73] with the following transition probability matrix [100],

F (x) =
(∫ x

0
exp{Cu}du

)
D = (I − exp{Cx})(−C)−1D.

Fij(x) represents the probability that the time until the next arrival is less than x given that the
underlying Markov chain is currently in state i and will be in state j upon the next arrival. T =

F (∞) = −C−1D is a transition probability matrix of a discrete time Markov chain embedded
at the instants of arrivals (process Jn). Let µ be the stationary distribution this discrete time
Markov chain. If we take the initial distribution of the underlying Markov chain J(t) as µ, the
arrival process becomes interval-stationary or event-stationary. The event-stationary version of
MAP has the following joint distribution function for the inter-arrival times [79],

FS0···Sn(x0, ..., xn) = µ

n∏

i=0

{(I − exp{Cxi})T}e. (5.14)

e denotes the column vector of ones,

e = (1, . . . , 1)T .

Consequently, the joint Laplace Stieltjes Transform is given by,

f(z0, ..., zn) = E

[
exp{−

n∑

k=0

zkSk}
]

= µ
n∏

k=0

{(zkI − C)−1D}e. (5.15)

Next, using the Laplace Stieltjes transform (5.15), we can easily calculate the �rst two moments
and the correlation functions of the inter-arrival time process. Namely,

E [Sn] = − d

dz
(µ(zI − C)−1De)|z=0 = −µC−1e, (5.16)

R(0) = E
[
S2

n

]
=

d2

dz2
(µ(zI − C)−1De)|z=0 = 2µC−2e, (5.17)

R(k) = E [SnSn−k] =
∂2

∂z0∂zk
f(z0, ..., zk)|zi=0

= µC−2DT k−1C−2De. (5.18)

To derive the above expressions, we have used the following formula for the di�erentiation of an
inverse matrix-valued function: (A−1(z))′ = −A−1(z)A′(z)A−1(z) [36]. We have also used the
relation: −C−1De = Te = e. Now, employing (5.3), (5.4), (5.16), (5.17) and (5.18), we can
calculate the �rst two moments of the process X∗

n.

Proposition 5.4 Let the loss process {Sn} be represented by MAP. Then,

E [X∗
n] = − α

1− ν
µC−1e,

E
[
(X∗

n)2
]

=
2α2

1− ν2
µ

(
C−2 + νC−2D[I − νT]−1C−2D

)
e.

94 Chapter 5. Modeling TCP congestion control: A general approach

Proof: The above formulas are immediately obtained from (5.3) and (5.4) with the help of the
following derivation,

∞∑

k=1

νkR(k) = µC−2D
∞∑

k=1

νkT k−1C−2De

= µC−2Dν
∞∑

k=0

νkT kC−2De = νµC−2D[I − νT]−1C−2De.

Next, using (5.6), we calculate the throughput of TCP when the loss process is modeled by
MAP.

Proposition 5.5 Let {Sn} be a Markovian Arrival Process. Then, the throughput of TCP is
given by,

X̄ = − α

µC−1e
µ(C−2 + νC−2D[I − νT]−1C−2D)e. (5.19)

5.2.6 Bounds for the model with window limitation

Our previous expressions of the throughput don't work when the window advertised by the
receiver is reached (Figure 5.2). If it is the case, the model becomes sub-linear and an exact
calculation of the throughput seems to be impossible except for some particular loss processes
as deterministic and Poisson. The case of a Poisson loss process will be addressed in the next
chapter. We will see that even for a simple Poisson process, the calculation of the throughput
is quite di�cult. Now for a more general loss process, some approximation of the throughput
can be always found. One of the possible approximations is to use a �xed-point approach and to
assume that the rate varies in the stationary regime in a deterministic manner between νE [X∗

n]

and E [X∗
n], of course when the maximum limit M is frequently reached. See Equation (5.3) for

the expression of E [X∗
n]. One can use our previous expression of the throughput (5.8) whenever

E [X∗
n] is less than M . Once E [X∗

n] becomes larger than M , the throughput can be approximated
using the �xed-point approach (Figure 5.3). For a loss process of intensity λ, this approximation
gives,

X̄ ' M − λM2(1− ν2)
2α

. (5.20)

This is the kind of approximation used in [105]. In our Markovian model we used such an
approach (Section 4.4) but we pro�ted from the existence of the Markov chain for the path to
derive more precise approximation of the throughput [11]. One of the drawbacks of the �xed-
point approximation is that we have more than one expression for the throughput and we have
to switch between them based on some conditions on the moments of the process X∗

n. This may
result in a jump in the throughput when we switch from one expression to another since the
two expressions may not be equal at the boundary. Consider for example the case of a Poisson
loss process. Suppose that we condition on E [X∗

n] (Equation (5.3)) to decide on whether to

5.2. Performance analysis 95

M

Tn Tn+1 Tn+2

Mν

Time

X(t)

Figure 5.2: Rate evolution with limitation

M

M

Time

ν

X(t)

E[Sn] E[Sn]

Figure 5.3: Fixed-point approach

approximate the throughput with (5.12) or with (5.20). It is clear that when E [X∗
n] = M , these

two expressions of the throughput are not equal. They are however equal when the loss process
is deterministic. One possible solution to this jump is to always take the minimum throughput
given by the di�erent expressions instead of switching between them based on some conditions
on the moments of the process X∗

n. For example, in the case of Poisson losses, we can write the
throughput as

X̄ = min
(

α

λ(1− ν)
,M − λM2(1− ν)2)

2α

)
,

instead of
X̄ =

{
α

λ(1−ν) if E [X∗
n] = α

λ(1−ν) < M

M − λM2(1−ν)2)
2α otherwise

In this chapter we follow a di�erent approach for the approximation of the throughput when
the receiver window is reached. We shall calculate bounds for the throughput which are at the
same time good approximations. The advantage of our bounds is that they are valid for any
receiver window. They converge to (5.6) when the receiver window is large and they approximate
the throughput when the receiver window is small. Thus, we no longer need to condition on the
moments of the process X∗

n in order to switch from one expression of the throughput to another.
Let us proceed for the calculation of the bounds. When the problem of window limitation

exists, the stochastic di�erence Equation (5.1) is modi�ed to the following form

Xn+1 = M ∧ (νXn + αSn), (5.21)

where ∧ stands for the minimum operation. It is clear how the model becomes nonlinear and
how the solution for the moments of the rate is di�cult. This nonlinear stochastic di�erence
equation can be rewritten as,

Xn+1 = νXn + αSn ∧ (M − νXn).

Since 0 ≤ Xn ≤ M , we have

νXn + αSn ∧ (1− ν)M ≤ Xn+1 ≤ νXn + αSn ∧M.

96 Chapter 5. Modeling TCP congestion control: A general approach

The above inequalities prompt us to derive lower and upper bounds for the throughput using
the next auxiliary stochastic processes de�ned on the same probability space as Xn,

X̌n+1 = νX̌n + (ν̄M) ∧ (αSn) = νX̌n + α(
ν̄M

α
∧ Sn) = νX̌n + αŠn, (5.22)

and
X̂n+1 = νX̂n + M ∧ (αSn) = νX̂n + α(

M

α
∧ Sn) = νX̂n + αŜn. (5.23)

with ν̄ = 1− ν, Šn = ν̄M
α ∧ Sn and Ŝn = M

α ∧ Sn.
The processes X̌n and X̂n are governed by linear stochastic di�erence equations similar to

the one we studied in the case of no limitation on the congestion window (Equation (5.1)).
Our previous results can be then used for the calculation of their moments, of course after the
substitution of the functions of process Sn by those of processes Šn and Ŝn. We also deduce
that the processes X̌n and X̂n converge to a unique stationary regime whatever are their initial
states. But before deriving the bounds, let us prove that the rate process Xn still converges to
a unique stationary regime for an arbitrary initial state. We use a Loynes-type construction for
this purpose. From now until the end of this section, we consider that the rate process Xn is
governed by the nonlinear stochastic di�erence Equation (5.21). The processes X̌n and X̂n are
respectively governed by the linear stochastic di�erence equations (5.22) and (5.23).

Theorem 5.1 Assume that {Sn} is a stationary process. Then, there exists a stationary process
{X∗

n} de�ned on the same probability space and satisfying the recursion (5.21). Furthermore, for
any initial state X0, we have P-a.s.

lim
n→∞ sup

k≥n
|Xk −X∗

k | = 0. (5.24)

That is, for any initial state X0, the process {Xk}k≥n converges in distribution to the stationary
process {X∗

n} as n →∞.

Proof: De�ne on the same probability space the family of processes {X(n)
k , k ∈ Z}, n = 0, 1, ...

as follows. X
(n)
k = 0 for k ≤ −n, and for k > −n it is given by the recursion (5.21). For each

k, X
(n)
k is increasing with respect to n and thus it has a limit (obviously �nite) which we denote

by X∗
k . This limit satis�es (5.21) since for every n, X

(n)
k satis�es it. Finally, the stationarity of

the sequence {Sn} implies that {X∗
n} is stationary as well. The convergence of Xn to X∗

n follows
from,

|Xn+1 −X∗
n+1| = |M ∧ (νXn + αSn)−M ∧ (νX∗

n + αSn)| ≤ ν|Xn −X∗
n|.

To show that the above inequality holds, one needs to consider four cases. If the both values
of (νXn + αSn) and (νX∗

n + αSn) are less or alternatively greater than M , then the inequality
is obvious. Let us consider not so obvious cases. For example, let (νXn + αSn) > M and
(νX∗

n + αSn) < M , then

|Xn+1 −X∗
n+1| = M − (νX∗

n + αSn)

≤ (νXn + αSn)− (νX∗
n + αSn) ≤ ν|Xn −X∗

n|.

5.2. Performance analysis 97

Thus,
|Xn −X∗

n| ≤ νn|X0 −X∗
0 | → 0 as n →∞.

Since both X0 and X∗
0 are �nite (they are bounded between 0 and M), this implies (6.2) which

concludes the proof.

Now, we use the two processes {X̌n} and {X̂n} to �nd bounds for the throughput.

Proposition 5.6 Let {Sn} be a stationary stochastic point process. Then for all n ≥ 0, we have

X̌∗
n ≤ X∗

n ≤ X̂∗
n.

Proof: Consider the proof for the lower bound. Without loss of generality, we assume that
X0 = X̌0. We show by induction that for all n ≥ 0, X̌n ≤ Xn. This holds for n = 0. Assume
that it holds for n = k. Then, consider two cases Sk ≤ ν̄M

α and Sk > ν̄M
α . For Sk ≤ ν̄M

α , one has

Xk+1 = νXk + αSk ≥ νX̌k + αSk = X̌k+1.

And if Sk ≥ ν̄M
α , then

Xk+1 = νXk + (M − νXk) ∧ (αSk)

≥ νXk + (M − νXk) ∧ (ν̄M) = νXk + ν̄M ≥ νX̌k + ν̄M = X̌k+1.

The �rst inequality is true, since Xk ≤ M . Hence, X̌k+1 ≤ Xk+1 and according to the induction
principle, the inequality X̌n ≤ Xn holds for all n ≥ 0. Since by the results of [67] and our
Theorem 5.1 both processes {X̌n} and {Xn} converge to the stationary regime for any initial
state, we can let n go to in�nity. This results in the lower bound. The upper bound is obtained
in the similar manner by using the auxiliary process {X̂n} de�ned in (5.23).

Proposition 5.7 Let š = E
[
Šn

]
, š(2) = E

[
(Šn)2

]
, Ř(k) = E

[
SnŠn−k

]
and ŝ = E

[
Ŝn

]
, ŝ(2) =

E
[
(Ŝn)2

]
, R̂(k) = E

[
SnŜn−k

]
. Then, the lower and upper bounds for the throughput are given

by

X̄ ≥ αλ

(
Ř(0)− 1

2
š(2) +

∞∑

k=1

νkŘ(k)

)
, (5.25)

X̄ ≤ αλ

(
R̂(0)− 1

2
ŝ(2) +

∞∑

k=1

νkR̂(k)

)
. (5.26)

Proof: To obtain the lower bound for the throughput, we again use the auxiliary process {X̌n}
de�ned in (5.22). Suppose that {X̌n} is in its stationary regime and de�ne

X̌(t) =
{

νX̌∗
n + αt, t ∈ [Tn, Ťn],

νX̌∗
n + αŠn, t ∈ [Ťn, Tn+1],

(5.27)

98 Chapter 5. Modeling TCP congestion control: A general approach

where Ťn = Tn + Šn. See Figure 5.4 for how X̌(t) is de�ned. Similarly to (5.2), one can write
the expression of the stationary version of X̌n,

X̌∗
n = α

∞∑

k=0

νkŠn−1−k. (5.28)

Now, using (5.27), (5.28), and the inversion formula (5.7), we obtain the expression of the lower
bound

X̄ = λE0

[∫ T1

0
X(τ)dτ

]
≥ λE0

[∫ T1

0
X̌(τ)dτ

]

= λE0

[∫ Š0

0
(νX̌∗

0 + ατ)dτ +
∫ S0

Š0

(νX̌∗
0 + αŠ0)dτ

]

= λE0
[
νX̌∗

0 Š0 +
α

2
Š2

0 + (νX̌∗
0 + αŠ0)(S0 − Š0)

]

= λE0
[
νX̌∗

0S0 + αŠ0S0 − α

2
Š2

0

]

= λE0

[
να

∞∑

k=0

νkŠ−1−kS0 + αŠ0S0 − α

2
Š2

0

]

= αλ

(∞∑

k=1

νkŘ(k) + Ř(0)− 1
2
š(2)

)
.

Now, by using the auxiliary process {X̂n} de�ned in (5.23), one can calculate the upper bound
for the throughput in a similar way.

Note that the two bounds given in Proposition 5.7 coincide with the throughput given by (5.6)
when M/(αs) →∞. This is because the two processes {Šn} and {Ŝn} coincide with the process
{Sn} in this case. Thus, our two bounds can be used as an approximation of the throughput in
the case of a large receiver window. Now, when M/(αs) → 0 (case of a small receiver window),
the upper bound provided in (5.26) goes to M/(1− ν) which is not possible since we know that
the throughput cannot exceed M . We propose to take as an upper bound the minimum of M

and the expression in (5.26). The lower bound however converges to the approximation of the
throughput in (5.20). One can use our lower bound as an approximation of the throughput for
all receiver windows.

Bounds for Poisson and IID loss processes

Assume �rst that the loss process is Poisson. Then, formulas (5.25) and (5.26) give the following
bounds for the throughput,

α

λ(1− ν)

(
1− e−ν̄Mλ/α

)
≤ X̄ ≤ α

λ(1− ν)

(
1− e−Mλ/α

)
.

Note that α/λ(1− ν) is the throughput of TCP when the loss process is Poisson and when there
is no maximum limit on the congestion window (Equation (5.13)).

5.2. Performance analysis 99

M

M

Time

Tn Tn+1

X(t)

Tn

ν
M(1−ν)

X(t) X(t)

nS

Figure 5.4: A lower bound for the transmission rate

Consider next the more general case of an i.i.d. loss process. The correlation functions Ř(k)

and R̂(k), for k ≥ 1, are respectively equal to sš and sŝ. Hence, the bounds for the throughput
can be written as,

αλ

(
Ř(0)− 1

2
š(2) +

ν

ν̄
sš

)
≤ X̄ ≤ αλ

(
R̂(0)− 1

2
ŝ(2) +

ν

ν̄
sŝ

)
.

Bounds for MAP loss process

The functions š(2), ŝ(2), Ř(k) and R̂(k) that �gure in the expressions of bounds, can be easily
calculated for a loss process modeled by a Markovian Arrival Process. Look at Section 5.2.5 for
an overview on MAPs. We write,

š(2) = E
[
Š2

n

]
=

∫ ∞

0
(ν̄M/α ∧ x)2µdF (x)e

= µ

∫ ∞

0
(ν̄M/α ∧ x)2 exp{xC}dxDe

= µ

(
−2ν̄M

α
exp

{
ν̄M

α
C

}
C−2D + 2

[
exp

{
ν̄M

α
C

}
− I

]
C−3D

)
e.

Similarly, we �nd

ŝ(2) = E
[
Ŝ2

n

]
= µ

(
−2

M

α
exp

{
M

α
C

}
C−2D + 2

[
exp

{
M

α
C

}
− I

]
C−3D

)
e.

To compute Ř(k) and Ř(k), k ≥ 1, we use the joint distribution (5.14).

Ř(k) =
∫ ∞

0
· · ·

∫ ∞

0
(ν̄M/α ∧ x0)xk µ exp{Cx0}D · · · exp{Cxk}De dx0 · · ·dxk

= µ

[
I − exp

{
ν̄M

α
C

}]
C−2DT k−1C−2De,

and similarly,
R̂(k) = µ

[
I − exp

{
M

α
C

}]
C−2DT k−1C−2De.

100 Chapter 5. Modeling TCP congestion control: A general approach

For k = 0, we get

Ř(0) = µ

∫ ∞

0
(ν̄M/α ∧ x)xµ exp{Cx}dxDe

= µ

(
− ν̄M

α
exp

{
ν̄M

α
C

}
C−2D + 2

[
exp

{
ν̄M

α
C

}
− I

]
C−3D

)
e,

R̂(0) = µ

(
−M

α
exp

{
M

α
C

}
C−2D + 2

[
exp

{
M

α
C

}
− I

]
C−3D

)
e.

5.3 Model validation

Using the technique we introduced in Section 3.4, we validate our general model for TCP. The
three connections (LAN, MAN, WAN) described in Section 3.1 are considered for this purpose.
First, we consider the working hours. We noticed that during these hours the receiver window is
not reached and hence the expressions of the throughput we found in this chapter in case of no
limitation of TCP rate can be used. The reason for that the receiver window is not reached is an
important exogenous tra�c at these hours of the day. We compare the result of our general model
under di�erent assumptions on the loss process to the throughput of ideal TCP or the so-called
exact �uid model. Recall that the throughput of the exact �uid model is calculated numerically
after the reconstruction of the rate evolution of ideal TCP from the trace of the connection.
The rate evolution of ideal TCP is represented by the straight line in Figure 3.4. Ideal TCP is
assumed to increase its rate linearly with time at a rate α = 1/(bRTT 2) and to decrease it by a
multiplicative factor ν = 0.5 upon congestion. This comparison tells us how well our model for
losses approximates the real loss process. It also tells us how well our calculation is. Normally,
if we calculate correctly all the functions of the loss process and we plug them in our expression
for the throughput (5.6), we must get the throughput of ideal TCP calculated numerically. In
fact, the ideal throughput is exactly the throughput we are trying to estimate in our analysis
and which we (and other authors using linear models to study TCP) are claiming represents
real TCP throughput. Once we decide on the correctness of our choice of the loss process and
the correctness of our approximation of the ideal throughput, we pass to the validation of our
model for TCP rate evolution. This is simply done by comparing the ideal throughput to the
real one. The ideal throughput is corrected with (3.1) and (3.2) in order to account for timeouts
and the packet nature of TCP. The real throughput of a connection is calculated as the ratio
of the total number of packets transmitted and the total time of the measurement. We expect
the ideal throughput to be close to the real throughput if our model for TCP rate evolution is
correct. We will see that it is not always the case and this is mainly due to the sub-linearity
of rate increase in some situations. Again, we will highlight the problem of error cancellation
we discussed in Section 3.4. The error introduced by a wrong choice of the loss process may be
canceled by the error introduced by a wrong modeling of TCP rate evolution. The result will
be a low total error and an overestimation of the capacity of the model. The problem of error

5.3. Model validation 101

cancellation, that we recall is not possible to detect without our technique for separating the
validation, leads to wrong conclusions on the type of the loss process seen by the connection and
on the evolution of the congestion window. We provide then a comparison of our model to the
detailed packet-level model in [105]. We will show in particular that the throughput of this latter
model coincides with the throughput of our model under the assumption that inter-loss times are
deterministic. In fact, our model with deterministic inter-loss times coincides with that in [105].
Without the corrections we introduced for timeouts and the packet nature of TCP and in the
presence of deterministic losses, our model coincides with the original square root formula [92].
Finally, we validate our upper and lower bounds for TCP throughput. The non-working hours
on the WAN connection are considered for this purpose.

5.3.1 Validation of the model for losses

We start by studying how well our model predicts the ideal throughput under di�erent assump-
tions on the loss process. To this end, di�erent loss processes are considered: deterministic,
Poisson, general i.i.d., general correlated. The di�erent functions of the loss process seen by
the connection (intensity, variance, correlation functions) are calculated from the moments of
congestion events detected by our monitoring tool (Section 3.1). Normally, with the general
correlated loss process, one must expect that our result will coincide with the ideal throughout.
For each loss process type, we calculate the throughput of TCP expected by our model. We use
the expression of the throughput we found in the case of no window limitation (5.6), of course
speci�ed to the particular distribution of losses. Note that for the general correlated loss process,
our expression of the throughput involves an in�nite sum of correlation functions. We choose
the number of correlation functions so that the result converges. Recall that we are considering
working hours which permits to our explicit expression of the throughput to be used.

We plot in Figures 5.5, 5.6, and 5.7 the results for our three connections (LAN, MAN, WAN)
as a function of day time. We also plot in the same �gures the throughput of the exact �uid
model calculated numerically. We clearly notice that our general model gives the same result as
the exact �uid model although only �ve terms (�ve correlation functions) are considered in the
in�nite sum in (5.6). The need for only a small number of terms is due to the geometrical decrease
in the weights of the correlation functions in the general expression of the throughput (5.6). We
also notice that the i.i.d. model gives approximately the same result as the correlated model.
Hence, the correlation we saw on our connections is not so important to impact considerably the
throughput.

Consider now the Poisson and deterministic cases. We look in Figures 5.5, 5.6 and 5.7 at
points where losses are i.i.d.. As we explained in Section 5.2.4, at a constant loss rate, the
throughput of TCP increases with the variance of inter-loss times. For this reason, the points
for the Poisson case are above those for the deterministic case. On the LAN connection, the
loss process is highly bursty (Figures 3.4 and 3.8) and the variance of inter-loss times is larger

102 Chapter 5. Modeling TCP congestion control: A general approach

800

1000

1200

1400

1600

1800

2000

2200

2400

10.5 11 11.5 12 12.5 13 13.5 14

T
C

P
 th

ro
ug

hp
ut

 (
K

bp
s)

Day time (hours)

INRIA - ESSI

Exact Fluid Model
Correlated losses
IID losses
Poisson losses
Deterministic losses

Figure 5.5: LAN: choice of loss process

200

400

600

800

1000

1200

1400

1600

1800

14 15 16 17 18 19 20 21 22 23

T
C

P
 th

ro
ug

hp
ut

 (
K

bp
s)

Day time (hours)

INRIA - Paris

Exact Fluid Model
Correlated losses
IID losses
Poisson losses
Deterministic losses

Figure 5.6: MAN: choice of loss process

20

40

60

80

100

120

140

160

180

10 12 14 16 18 20 22 24

T
C

P
 th

ro
ug

hp
ut

 (
K

bp
s)

Day time (hours)

INRIA - Australia

Exact Fluid Model
Correlated losses
IID losses
Poisson losses
Deterministic losses

Figure 5.7: WAN: choice of loss process

800

1000

1200

1400

1600

1800

2000

2200

2400

10.5 11 11.5 12 12.5 13 13.5 14

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - ESSI

Exact fluid model
Poisson losses
Deterministic losses
Real throughput

Figure 5.8: LAN: model for TCP

than that of an exponential distribution. Thus, deterministic and Poisson losses lead to an
underestimation of the ideal throughput with Poisson losses giving better results. On MAN,
the times between losses follow approximately the Normal distribution (Figure 3.10) with a
variance smaller than that of an exponential distribution. For this reason, the ideal throughput
is located between the throughput in case of deterministic losses and that in case of Poisson losses.
Finally on WAN, the loss process is close to Poisson (Figure 3.12) and the ideal throughput is
approximately equal to that given by our model for Poisson losses. Assuming that losses are
deterministic on WAN underestimates the ideal throughout. These three �gures validate our
conclusions on the sensitivity of the throughput of TCP to the variance of times between losses.
They also validate the correctness of our calculation since with a general loss process we are able
to predict correctly the ideal throughput of TCP.

5.3. Model validation 103

200

400

600

800

1000

1200

1400

1600

1800

14 15 16 17 18 19 20 21 22 23

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - Paris

Exact fluid model
Poisson losses
Deterministic losses
Real throughput

Figure 5.9: MAN: model for TCP

20

40

60

80

100

120

140

160

10 12 14 16 18 20 22 24

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - Australia

Exact fluid model
Poisson losses
Deterministic losses
Real throughput

Figure 5.10: WAN: model for TCP

5.3.2 Validation of the model for TCP

In this section we compare the exact �uid model to real TCP on the three connections we
are considering. The results are provided in Figures 5.8, 5.9 and 5.10 for the LAN, MAN
and WAN connections respectively. In these �gures, we plot the real throughput, the ideal the
throughput, the result of our model for Poisson losses and the result of our model for deterministic
losses. On the LAN and MAN connections, the exact �uid model overestimates real TCP.
The overestimation increases with the real throughput. As we explained in Section 3.2.1, this
overestimation is mainly due to the sub-linearity of TCP congestion window evolution which
in turn is due to the correlation of window and round-trip time. Using the correct functions
of the loss process does not yield the best approximation of the real throughout since we still
have the error introduced by our linear model for rate evolution. However, making the simplistic
assumption that losses are deterministic gives better approximation of the real throughput since
it introduces an error that cancels the error introduced by the assumption on the linearity of the
rate increase. This cancellation does not appear on all connections. For example, it does not
appear on our WAN connection where the problem of sub-linearity does not exist. On the WAN
connection, it is better to model losses as they really are, this means as Poisson.

We conclude that the sub-linearity of the window increase in presence of linear models for TCP
results in wrong conclusions on the way with which losses appear, and hence on the correctness
of a given model for TCP congestion control. A model making wrong assumptions on losses may
give better performance than a model making the correct assumptions. In the future, some works
must be devoted to modeling the sub-linearity of TCP window evolution in local area networks
otherwise the problem will always exist.

104 Chapter 5. Modeling TCP congestion control: A general approach

800

1000

1200

1400

1600

1800

2000

10.5 11 11.5 12 12.5 13 13.5 14

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - ESSI

Poisson losses
Deterministic losses
Packet level model
Real throughput

Figure 5.11: LAN: packet-level model

200

400

600

800

1000

1200

1400

1600

14 15 16 17 18 19 20 21 22 23

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - Paris

Poisson losses
Deterministic losses
Packet level model
Real throughput

Figure 5.12: MAN: packet-level model

5.3.3 Comparison with packet-level approach

In addition to the consideration of all the functions of the loss process, our model contains two
additional corrections: one for the timeout mechanism (3.1) and one for the packet nature of
TCP (3.2). To validate these corrections, we compare the result of our model to that of the
detailed packet-level model in [105] which is supposed to model correctly these two phenomena.
We plot in Figures 5.11, 5.12 and 5.13 for respectively the LAN, MAN and WAN connections: the
results of our model under deterministic and Poisson losses, the throughput from [105] and the
real throughput. The throughput given by our linear �uid model is corrected by (3.1) and (3.2).
The model in [105] considers deterministic losses (due to the mutual independence it assumes
between the two processes {X∗

n} and {Sn}) and usually it should give close performance to our
model under deterministic losses. The three �gures show that this is indeed the case. This
proves that our model is a generalization of [105]. The generalization �gures in the variance
and correlation functions of the loss process we added to the expression of the throughput. The
heuristics for the addition of timeouts and the packet nature of TCP are approximately the same
in both models.

We notice in the �gures that the model in [105] underestimates the throughput on the WAN
connection where the loss process is Poisson rather than deterministic. Our model with Poisson
losses gives better performance on this connection. Recall that the model in [105] as well as our
model with deterministic losses estimate well the real throughput on the LAN connection due to
the problem of error cancellation we already described.

5.3.4 Validation of bounds for the throughput

To validate the bounds for the throughput we found in the case of window limitation (Equa-
tions (5.25) and (5.26)), we consider the WAN connection where our linear model for TCP is
appropriate. We plot in Figure 5.14 our results for the whole day. In the previous sections we

5.4. Conclusions 105

20

40

60

80

100

120

140

160

10 12 14 16 18 20 22 24

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - Australia

Poisson losses
Deterministic losses
Packet level model
Real throughput

Figure 5.13: WAN: packet-level model

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Day time (hours)

INRIA - Australia

Exact fluid model
Unbounded window model
Upper bound
Lower bound

Figure 5.14: WAN: bounds for the throughput

only considered the working hours where the receiver window (equal to 32 Kbytes on the WAN
connection) is not reached. The �gure contains the throughput given by our model without
window limitation (5.6), our two bounds and the throughput of the exact �uid model calculated
numerically with a maximum limit of the transmission rate. First, we see that from 0 to 10
o'clock, the throughput calculated in the case of no limit on the congestion window signi�cantly
deviates from the exact �uid model. This deviation means that the receiver window is frequently
reached during these hours of the day and our bounds can be then applied to estimate the
throughput. Indeed, the �gure shows that our bounds are quite close to the ideal throughput
in this region. The �gure also shows that from 10 to 0 o'clock all the lines coincide. During
these latter hours, the receiver window is rarely reached and the result of our model in case of no
limitation of the window (5.6) can be used to approximate the throughput of TCP. This result
coincides in this region with our bounds for the throughput. Hence, our bounds form a good
approximation of the throughout during the whole day.

5.4 Conclusions

In this chapter we presented an analysis of TCP throughput under a general loss process. The
only assumption on the loss process under consideration is stationarity and ergodicity. We
provided explicit expressions for the throughput in case of no limit on the transmission rate.
The throughput is shown to be inversely proportional to the average round-trip time and to
the square root of the packet loss probability, as was already observed for much simpler loss
models [84, 92, 105]. The throughput is also a function of the variance and the correlation of
inter-loss times. We further provided bounds for TCP throughput when a maximum limit exists
on the congestion window.

The importance of our model is due to the di�erent types of loss processes we observed when
measuring Internet tra�c. The model we proposed is able to capture any correlation or any

106 Chapter 5. Modeling TCP congestion control: A general approach

distribution of inter-loss times. Several existing models can be seen as particular cases of our
general model. On paths where TCP transmission rate increases linearly between congestion
moments, our model gives excellent results. However, on paths where TCP window growth is
sub-linear, we noticed some overestimation of the real throughput. In a future work, we will try to
account for this sub-linearity of TCP. The �rst problem with this sub-linearity is its modeling. It
is not clear which additional variables have to be considered to quantify it. One possible direction
could be the use of the correlation of window and round-trip time. The second problem will be
of course the analysis of the sub-linear model for TCP. Another direction for future research is
to provide algorithms for the estimation of the di�erent functions of our model for losses (e.g.,
variance and correlation functions of inter-loss times) on runtime. One can use for this purpose
averaging algorithms similar to those used by TCP for the estimation of the average round-trip
time and its variance (see Section 2.1.3). One can also think about the application of our model
to cases where we know a priori the reaction of the network to injected packets. For example, in
a network where packets are dropped with a constant probability (e.g., random bu�ers, wireless
networks), we can calculate the di�erent functions of the loss process the connection will see,
plug these functions in our general expression, and get the throughput of the TCP connection.

Chapter 6

Modeling TCP congestion control with
window limitation

After the calculation of the throughput for a general loss process and an unlimited congestion
window, we still have to investigate the case of window limitation. This will conclude the �rst
part of this thesis which deals with end-to-end modeling of TCP congestion control. Recall
that window limitation is the result of a small receiver window compared to the capacity of the
network. Till now, we found approximations of the throughput in presence of such a limitation.
The calculation of an explicit expression of TCP throughput for a general loss process seems to be
impossible in this case given the sub-linearity of the resulting model. See Figures 3.4 and 6.1 for
examples of window limitation. Clearly, the problem has a solution in the case of deterministic
losses. The solution is given by Equation (5.20). It corresponds to the approximation of the
throughput using the �xed-point approach. In [96], the authors model the case of Poisson losses
but they have an error in the establishment of one of their equations which simpli�es their
analysis and gives a wrong expression for the throughput. It has been argued in [96] that the
Poisson process is a good approximation of losses in the Internet. Indeed, we saw that it is the
case in wide area networks (Section 3.3.1). To our knowledge, there is no other attempts to
calculate the throughput of TCP in case of window limitation.

Now, the authors in [96] make a remarkable observation that the problem of TCP congestion
control can be reformulated in terms of an equivalent M/G/1 queue [80], where the transmission
rate of TCP is transformed into the workload of the queue and where the occurrence of losses
corresponds to the arrival of clients. The service times of clients in the 'dual' queueing model are
not i.i.d. (independent and identically distributed) but depend on the workload of the system.
The calculation of the throughput of TCP is then transformed into the calculation of the time
average of the workload of an M/G/1 queue. This reformulation of the problem has motivated
us to use some techniques from queueing theory to calculate TCP throughput [16].

Although there is not much e�ort in the literature devoted to the calculation of the throughput
of TCP in presence of window limitation, many works [81, 110] have studied queueing systems
with service times that depend on the workload. Such systems are often called state-dependent

107

108 Chapter 6. Modeling TCP congestion control with window limitation

queues. The workload of a queueing system corresponds to the time required to serve all the
clients present in the system [80]. In [81], an asymptotic approximation is used for solving
state-dependent queues in which both inter-arrival times, service requirements and the service
rate may depend on the workload. In [110], an implicit characterization of the steady state
distribution is obtained. Closed-form expressions are obtained in this latter reference for special
cases that do not cover our dual model for TCP congestion control. Later, we will explain the
relation between the TCP congestion control problem and the queue workload problem. We just
wish to recall here that an M/G/1 system means a queue with an in�nite waiting room and a
single server. Clients arrive to the queue according to a Poisson process and their service times
can follow any distribution. In particular, service times can be dependent on each other which
is the case of the dual model of TCP congestion control.

We address in this chapter the calculation of TCP throughput in presence of window limita-
tion. For the analysis, we consider the same �uid model for TCP rate evolution: the transmission
rate of the TCP connection X(t) increases with a rate α between losses and decreases multiplica-
tively by a factor ν ∈ (0, 1) when a loss occurs. At any moment, the transmission rate of TCP
cannot exceed a maximum value M . Once it reaches M , it stays at this value until the next loss
event. We substitute the throughput obtained with this model into Equations (3.1) and (3.2) in
order to account for the timeout mechanism and the packet nature of TCP.

Concerning the loss process, we consider a generalization of the Poisson process. We assume
that loss events appear in batches with times between batches exponentially distributed. The
number of losses within a batch follows a general distribution and is independent of the numbers
of losses in other batches and on times between batches. This corresponds to the well known
batch Poisson process [80]. Recall that by a loss we mean an event that causes the reduction of
TCP window by a constant factor ν. It can be the result of one or more packets lost within the
same round-trip time. More generally, a loss represents the moment at which the TCP source
decides that the network is congested and that it has to reduce its window.

Our model for losses is �rst a generalization of the Poisson model in [96] for which the correct
throughput of TCP is still not available. As claimed in [96] and as our measurements showed
(Section 3.3.1), the Poisson process is a good approximation of losses in wide area networks.
Second, this model permits to approximate the throughput on paths where the loss process is
highly bursty as on our LAN connection (Figure 3.4). Indeed, if on our LAN connection we group
together losses separated by less than 0.4s, we get approximately the batch Poisson process we
already described (see [14] for details). Third, the batch Poisson model is useful for any future
version of TCP that reduces its window as a function of the level of congestion of the network.
For example, one can modify TCP in a way to reduce the window multiple times by a constant
factor ν (less than one half) and this is as a function of the number of packets lost at the moment
of congestion.

In the following, we calculate the throughput of TCP for this particular loss process. We

6.1. Model and preliminary analysis 109

write the Kolmogorov equation of the rate in the stationary regime and we solve it using Laplace-
Stieltjes Transforms. This gives us the expressions of all the moments of the transmission rates
including the throughput. The analysis also gives us the distribution of the transmission rate in
the stationary regime. We will see that even though the loss process is simple, the analysis and
the expression of the throughput are quite complex which makes useful the approximations of
the throughput we calculated in the previous chapters. The research work in this chapter has
appeared in [16] and one can �nd more details on our analysis in [15].

6.1 Model and preliminary analysis

We already described our linear �uid model for the window evolution (Figure 5.2). We consider
the transmission rate in our analysis and this is only for the purpose to make our results applicable
to other �ow control mechanisms that use a rate-based approach instead of a window-based
approach (e.g., Available Bit Rate service in ATM networks [21]). At any moment, one can
switch to the window space by simply multiplying the transmission rate of TCP by the average
round-trip time RTT. For example, the time average of the transmission rate (the throughput) is
equal to the time average of the window size divided by RTT. The distribution of the transmission
rate at x is equal to the distribution of the window size at xRTT . Recall that the slope of the
rate increase is equal to α = 1/(bRTT 2) and the multiplicative decrease factor upon a loss event
is constant and equal to ν (typically, ν = 0.5).

Let us now formulate our model for losses. We assume that a batch of loss events is the result
of a single congestion event. Again, a loss for us is the moment at which the source reduces its
window by a factor ν and one must not confuse it with the loss of packets. A congestion event
results in a random number of losses (or a random number of window reductions by ν)13 instead
of a single loss event as in our previous models. For a batch of n losses, the window is reduced by
a factor νn. Congestion events (or batches) are assumed to occur according to an independent
Poisson process of intensity λ. We denote the sizes (i.e., the numbers of losses) of consecutive
batches by N1, N2, N3, . . . , and we assume that these numbers constitute an i.i.d. sequence.
The size of an arbitrary batch is generically denoted by N

d= Nk. The Poisson process and the
sequence Nk, k = 1, 2, . . . , are independent of each other and independent of the rate evolution.

Before passing to the analysis, let us introduce some further common notation. We denote
the pgf (probability generating function) [80] of the distribution of N by

Q(z) = E
[
zN

]
=

∞∑

n=1

qnzn, |z| ≤ 1. (6.1)

qn, n ≥ 1, denotes the probability that a congestion event results in n losses (i.e., in n reductions
13The multiple reductions of the congestion window at the moment of congestion can be the result of packets

lost in multiple consecutive round-trip times as we observed on our LAN connection (Figures 3.4). One can also
think about a new TCP congestion control that reduces the window multiple times by a constant factor ν (less
than one half) as a function of the level of congestion.

110 Chapter 6. Modeling TCP congestion control with window limitation

of the congestion window by ν). Note that our model with ν = 0.5 and q1 = 1 reduces to the
model studied in [96], where congestion events appear according to a Poisson process and where
the window is divided by two upon every congestion event.

Now, we recall the following stability result we established in Theorem 5.1. For any initial
rate, there exists a stationary process X∗(t) such that X(t) converges to X∗(t) in distribution.
Moreover, we have almost sure,

lim
t→∞ sup

s≥t
|X(s)−X∗(s)| = 0. (6.2)

From now on, we put ourselves in the stationary regime which is unique and attained asymp-
totically for any initial rate according to (6.2). For x ∈ (0,M], denote by F (x) the distribution
function of the process X(t) in the stationary regime. It follows from Theorem 6.1 that this
distribution is unique and is independent of X(0). We �rst assume that F (x) is continuous in
x ∈ (0, M). It is clear from physical considerations that F (x) has an atom at x = M . This is
because at any moment, there is a non-null probability that the transmission rate is equal to the
maximum limit M . Under this assumption we �nd in the following a continuous function F (x)

which is an equilibrium distribution for the transmission rate and, hence, from its uniqueness it
follows that it is the desired distribution. Instead of F (x) it will be convenient to work with the
complementary distribution function,

F (x) = 1− F (x) = P {X > x} , x ∈ (0,M].

6.2 Kolmogorov equation

The rate evolution X(t) forms a Markov process since at any moment, we can predict the future
of the rate from its current value without looking at the past [80]. With this in mind, we derive
a steady-state Kolmogorov equation [80] for F (x) = P {X > x} which will be the basis to our
analysis. Recall that the Kolmogorov equation for a continuous time process corresponds to the
relation between the distributions of the process at arbitrary two moments t and t + ∆. We use
the following up and down crossing argument. Assume that the process X(t) is in equilibrium
and consider a level x ∈ (0,M). Whenever the rate increases from less than or equal to x to more
than x we say that an up-crossing of the level x has occurred. Similarly, if the rate decreases from
more than x to less than or equal to x we say that a down-crossing of the level x has occurred.
Let [t, t+∆] be a small time interval where t is a deterministic time moment. When the process
is in equilibrium, the probability of up-crossing,

(1− λ∆)P {x− α∆ < X ≤ x}+ o(∆),

is equal to the probability of down-crossing,

λ∆
∞∑

n=1

qnP
{
x < X ≤ min(ν−nx, M)

}
+ o(∆).

6.3. The dual M/G/1 queueing model 111

After transformation

M

Tn Tn+1 Tn+2

X

X(t)

Nn

Tn Tn+1 Tn+2

U(t)
/αM

Time Time

n

Xn

/α(M − X)n

νN /α

ν

(M − X)n
n

Figure 6.1: The dual queueing model

After equating these two probabilities, we pass ∆ ↓ 0. Since we assumed that F (x) = P {X ≤ x}
is continuous for x < M (see Remark 6.3 for a justi�cation of this assumption), we conclude that
the derivative of F (x) exists and is continuous for all x except at x = νnM when qn > 0. For
x ∈ (0,M)\{νnM}n=1,2,..., we obtain the following steady-state Kolmogorov equation,

α
d
dx

P {X ≤ x} = λ

∞∑

n=1

qnP
{
x < X ≤ min(ν−nx,M)

}
,

or equivalently,

−α
d
dx

F (x) = λ

(
F (x)−

∞∑

n=1

qnF (min(ν−nx,M))

)
. (6.3)

From this di�erential equation we shall determine F (x), x ∈ (0, M), in terms of the probability

PM = P {X = M} = 1− F (M−) = F (M−).

In Section 6.4, we use (6.3) to determine the moments of the transmission rate in terms of PM .
Recall that the throughput of TCP coincides with the �rst moment of X(t) (Equation (4.1)).
Then, we �nd the distribution function itself in Section 6.5. The distribution of the window size
at a value x will be equal to F (xRTT). The unknown probability PM is then determined using
the fact that F (x) is a complementary probability distribution function (F (0) = 1). However,
the expression obtained for PM in this way does not lend itself for computational purposes.
Therefore, we show in Section 6.6 an elegant alternative to determine PM which leads to an
e�cient and numerically stable algorithm for computations.

6.3 The dual M/G/1 queueing model

Before proceeding with determining the moments and the distribution of TCP rate, we brie�y
show how our problem can be related to an M/G/1 queueing problem with service times depend-

112 Chapter 6. Modeling TCP congestion control with window limitation

ing on the system workload, see also [96]. De�ne the following process,

U(t) =
M −X(t)

α
. (6.4)

I.e., U(t) is obtained by `�ipping' X(t) around a horizontal line (Figure 6.1). In particular, the
area between X(t) and the maximum rate M corresponds to the area below U(t). Note that
U(t) resembles the evolution in time of the workload (or the virtual waiting time) in a queueing
system [80]. A TCP rate equal to M corresponds to an empty queueing system. The linear
increase in TCP rate between congestion events corresponds to the decrease in workload due to
service in the M/G/1 model. The arrival of a batch of losses in the TCP model corresponds
to the arrival of a batch of clients in the M/G/1 model. The reduction of the rate upon the
arrival of a client corresponds to the increase in workload upon the arrival of a client. Given
that the amount by which the rate is reduced upon the occurrence of a batch of losses depends
on the current value of rate (and of course on the number of losses in the batch), the service
time in the dual queueing model is dependent on the current workload. We conclude that the
dual queueing model behaves indeed as an M/G/1 queue (in�nite bu�er capacity, one server
and Poisson arrivals with intensity λ) with state-dependent service requirements. If Un is the
workload seen by the nth batch of clients in the M/G/1 queue, the service time xn of the clients
in the batch is equal to

xn =
(

M

α
− Un

)
.
(
1− νNn

)
,

where Nn is the number of losses in the batch. Instead of working with the rate as we will
do, one can solve the queueing problem (for moments and distributions) and switch back to the
TCP problem by using Equation (6.4). In particular, E

[
Xk

]
= E

[
(M − αU)k

]
, P {X ≤ x} =

1 − P {U ≤ (M − x)/α} for x < M , and PM is equal to the fraction of time the server in the
dual queueing model is empty.

6.4 Moments of TCP rate

Using the Kolmogorov Equation (6.3), we calculate in this section the moments of the trans-
mission rate of the TCP connection. The moments of the window size can be directly deduced
by a multiplication by RTT. For example, the order k moment of W (t) is equal to the order k

moment of X(t) multiplied by RTT k. Of particular interest is the �rst moment of X(t) which is
equal to the throughput of the connection (Equation (4.1)). The second moment of X(t) is also
important since it tells us how much the rate of the connection varies. The di�erent moments of
the rate will be calculated as a function of PM , the probability that the rate is equal to M at an
arbitrary time moment, or in other words the fraction of time the rate stays at M .

De�ne for Re(s) ≥ 0 the LST (Laplace-Stieltjes Transform) of the rate distribution by

f̂(s) =
∫ +∞

x=0
e−sxdF (x) =

∫ M+

x=0
e−sxdF (x).

6.4. Moments of TCP rate 113

Taking LTs (Laplace Transforms) in (6.3) leads to

α
(
f̂(s)− PMe−sM

)
= λ

1− f̂(s)
s

− λ
∞∑

n=1

νnqn
1− f̂(νns)

νns
. (6.5)

Note that (6.5) holds in particular for M = ∞, i.e., no limitation of TCP rate, in which case
PM = 0. Using E

[
Xk

] ≤ Mk, k = 1, 2, . . . , we may write

f̂(s) = 1 +
∞∑

k=1

(−s)k

k!
E

[
Xk

]
, (6.6)

1− f̂(γ−ns)
γ−ns

=
∞∑

k=0

(−γ−ns)k

(k + 1)!
E

[
Xk+1

]
. (6.7)

We use for these latter equations the Taylor series of f̂(s) and the fact that

E
[
Xk

]
= (−1)k dkf̂(s)

dsk

∣∣∣∣∣
s=0

,

E
[
X0

]
= 1.

Substituting (6.6) and (6.7) in (6.5), using the absolute convergence of the doubly-in�nite series
to interchange the order of summation, and equating the coe�cients of equal powers of s we get,
for k = 1, 2, . . . ,

E
[
Xk

]
=

kα
(
E

[
Xk−1

]− PMMk−1
)

λ (1−Q(νk))
, (6.8)

from which the moments of the rate can be recursively obtained. In particular, we �nd for
k = 1, 2,

E [X] = X̄ =
α (1− PM)
λ (1−Q(ν))

, (6.9)

E
[
X2

]
=

2α [α (1− PM)− λPMM (1−Q(ν))]
λ2 (1−Q(ν)) (1−Q(ν2))

. (6.10)

Later, we specify these results for the case N ≡ 1, this means for the case of a Poisson loss
process.

The �rst two moments can also be obtained using direct arguments, see Remarks 6.1 and
6.2 below. Such arguments were also used by Misra et al. [96] for the case ν = 0.5 and N ≡ 1.
However in their analysis, an error appears which results in an additional equation besides (6.9)
and (6.10) from which they determine an erroneous expression for the probability PM , see Remark
6.2.

Remark 6.1 The throughput (as a function of PM) can be obtained by considering the mean
drift. The upward drift of the rate is given by αP {X < M} and the downward drift equals
λE [X]

(
1− E

[
νN

])
. Equating these gives (6.9).

114 Chapter 6. Modeling TCP congestion control with window limitation

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�����
�����
�����
�����

�����
�����
�����
�����

M
X(t)

nX

Xν Nn
n

Time

Figure 6.2: Area associated with a single congestion event

We can further derive E
[
X2

]
by applying an argument similar to Little's law [80] as was

done by Misra et al. [96] for the case ν = 0.5 and N ≡ 1. For details we refer to [15]. The
main idea is sketched in the following. For the dual queueing model described in Section 6.3, we
can equate the mean workload E [U] with λ times the mean area below U(t) induced by a single
batch arrival. We also use the PASTA (Poisson Arrivals See Time Averages) theory [80] to
equate the moments of the workload upon arrivals with the moments of the workload at arbitrary
time moments (E [Un] = E [U(t)]). Back to the original model, the mean surface of the area
above X(t) in Figure 6.2 equals M −E [X]. The expected surface of the area induced by a single
congestion event (the surface of the larger triangle minus that of the smaller one) is equal to

1
2α

[(
Q(ν2)− 1

)
E

[
X2

]− 2M (Q(ν)− 1)E [X]
]
.

Multiplying this surface by λ, equating the result with M−E [X], and using (6.9) indeed gives (6.10).

Remark 6.2 For a special case of our model (ν = 0.5, N ≡ 1), yet another way is pursuit
in [96] to derive (6.9) and (6.10). However, there, the �nal result is incorrect due to a small
error in an intermediate step. First, let us put ourselves in the transitory regime. De�ning
PM (t) = P {X(t) = M}, E [X(t)] and E

[
X(t)2

]
satisfy

d
dt

E [X(t)] = −λ (1−Q(ν)) E [X(t)] + α (1− PM (t)) ,

d
dt

E
[
X(t)2

]
= −λ

(
1−Q(ν2)

)
E

[
X(t)2

]
+ 2α (E [X(t)]−MPM (t)) .

We refer to [96] for more details on the establishment of these di�erential equations. In steady
state we have E [X(t)] ≡ E [X], E

[
X(t)2

] ≡ E
[
X2

]
and PM (t) ≡ PM . The terms on the

left-hand side of the above two equations converge to zero. Writing the right-hand terms in the
stationary regime gives (6.9) together with

0 = −λ
(
1−Q(ν2)

)
E

[
X2

]
+ 2α (E [X]− PMM) . (6.11)

6.5. Distribution function of TCP rate 115

When substituting E [X] by its expression in (6.9), this leads to (6.10). For the case ν = 0.5

and N ≡ 1, the formula given in [96] for E
[
X2

]
(below Equation (4) in that reference) di�ers

from (6.11) by a factor −α = −1/RTT . This resulted in a third (incorrect) equation which
is linearly independent of (6.9) and (6.10) from which PM was determined simultaneously (but
erroneously) with E [X] and E

[
X2

]
. In Section 6.6, we will show how PM can be determined

correctly and computed e�ciently. The moments of the rate can be then calculated using recurrent
Equation (6.8).

6.5 Distribution function of TCP rate

We pro�t from the Kolmogorov equation we established in (6.3) to calculate the distribution
function of TCP rate, and hence of TCP window. Even though there is no direct application of
the distribution for the moment, we do the calculation for the completeness of the study. One
possible application of the distribution could be the calculation of PM . However, we will see
that this is not an e�cient method, see Remark 6.4. In the next section, we provide a more
e�cient method for the calculation of PM . We start �rst by the case of �nite M . We provide
the expression of the distribution in every interval [νkM,νk−1M] with k = 1, 2, Then, for
the case M = ∞, we give an expression of the distribution for any x > 0 as an in�nite sum of
exponentials.

6.5.1 Rate distribution for �nite M

For νM ≤ x < M , Equation (6.3) reduces to

−α
d
dx

F (x) = λF (x).

Hence,
F (x) = PMe

λ
α

(M−x), νM ≤ x < M. (6.12)

To �nd the entire distribution, we introduce for k = 1, 2, 3, . . . , the set of functions

F k(x) = F (x), νkM ≤ x ≤ νk−1M. (6.13)

A function F k(x) is equal to F (x) within the interval [νkM, νk−1M]. Outside this interval, it
can take any value. In particular, it can be equal to F (x). Equation (6.3) can now be written as

d
dx

F k(x) = −λ

α
F k(x) +

λ

α

k−1∑

n=1

qnF k−n(x/νn). (6.14)

Since F (x) is continuous (assumed to be continuous until Remark 6.3) for 0 < x < M , we have

F k(νk−1M) = F k−1(νk−1M), k = 2, 3, (6.15)

116 Chapter 6. Modeling TCP congestion control with window limitation

F k is recursively given by

F k(x) = F k−1(νk−1M)e
λ
α(νk−1M−x) − λ

α
e−

λ
α

x

∫ νk−1M

u=x
e

λ
α

u
k−1∑

n=1

qnF k−n(u/νn)du. (6.16)

We use for (6.16) the fact that the solution of the di�erential equation f ′(x) + af(x) = b(x) can
be written in the following form

f(x) = f(x0)e−a(x−x0) − e−ax

∫ x0

x
eaub(u)du.

We conclude from recursion (6.16) that a solution to (6.14) and (6.15) has the following form

F k(x) = PM

k∑

i=1

c
(k)
i e−

λx

ανi−1 , k = 1, 2, ... (6.17)

This can be simply proved by induction on k. To determine the coe�cients c
(k)
i , 1 ≤ i ≤ k,

we �rst substitute (6.17) in (6.14). Then, equating terms with the same exponent, we get the
following recursive formula

c
(k)
i+1 =

νi

νi − 1

i∑

n=1

qnc
(k−n)
i−n+1, i = 1, ..., k − 1. (6.18)

We conclude that the coe�cients of F k(x) are a function of the coe�cients of the functions with
lower indices. We start from the function with k = 1 in the calculation of coe�cients. For
a certain k, the recurrent Equation (6.18) gives us all the coe�cients of F k(x) starting from
i = 2. Given the coe�cients c

(k)
i , i = 2, ..., k, the remaining coe�cient c

(k)
1 can be determined

from (6.15) and (6.17),

c
(k)
1 = e

λ
α

νk−1M

[
k−1∑

i=1

c
(k−1)
i e−

λ
α

νk−iM −
k∑

i=2

c
(k)
i e−

λ
α

νk−iM

]
. (6.19)

Once all the coe�cients of F k(x) are calculated, we can pass to the calculation of the coe�cients
of F k+1(x) and so on. Note that to compute the di�erent coe�cients of the distribution function,
we do not need PM . Hence, one can use these coe�cients for the calculation of PM using that
F (x) is a complementary distribution function. PM can be determined by

lim
k→∞

F k(νk−1M) = PM

(
lim

k→∞

k∑

i=1

c
(k)
i e−

λ
α

νk−iM

)
= 1. (6.20)

However, this relation is not suitable to compute PM , see Remark 6.4 below.

Remark 6.3 With (6.13) and (6.17) we have found an equilibrium distribution function F (x)

satisfying (6.3) and continuous on the interval (0,M). From Theorem 6.1, there is only one
distribution function in the stationary regime and, hence, the assumption that F (x) is continuous
for x < M is justi�ed.

6.5. Distribution function of TCP rate 117

Remark 6.4 Recursion (6.18) is suitable to determine the distribution function on an interval
νkM ≤ x ≤ M when k is not too large. For large k the recursion may become instable, since it
involves subtraction of numbers of the same order. Therefore (6.20) is not suitable to compute
PM . In Section 6.6 below we will derive an alternative expression for PM , which leads to a
numerically stable and e�cient algorithm to compute PM .

6.5.2 Rate distribution for in�nite M

In this case, the results derived in the previous section cannot be applied immediately by letting
M go to in�nity. However, one can use the expression of the Laplace Transform for the calculation
of the cumulative distribution. Using (6.5), an explicit expression of the Laplace Transform F (x)

can be found in this case which by inversion gives us the distribution of the rate as an in�nite
sum of exponentials. Indeed, when M = ∞, (6.5) becomes

f̂(s) = −λ

α

[
f̂(s)

s
−

∞∑

n=1

qn
f̂(νns)

s

]
,

or equivalently,

f̂(s) =
λ
α

s + λ
α

∞∑

n=1

qnf̂(νns). (6.21)

Substituting the above equation repeatedly into itself l times, applying partial fraction expansion
at each step [80], and then taking l →∞, we conclude that f̂(s) can be expressed as follows

f̂(s) =
∞∑

i=0

ci

− λ
ανi

s + λ
ανi

, (6.22)

for certain coe�cients ci (this is formally justi�ed later). To determine the constants ci, i =

0, 1, ..., we substitute (6.22) into (6.21) and we equate the coe�cients multiplying the terms
1/(s + λ

ανi). This leads to the following recursive formula

ci

c0
=

νi

νi − 1

i∑

k=1

qk
ci−k

c0
, (6.23)

which determines the ratios ci/c0 for all i = 0, 1, It is for this reason that both sides of the
formula contain a factor 1/c0. The coe�cient c0 follows from f̂(0) = F (0) = −∑∞

i=0 ci = 1,

c0 = −(1 +
∞∑

i=1

ci

c0
)−1. (6.24)

It can be easily shown that the in�nite sum in the expression of c0 converges. One can look at
the Appendix at the end of this chapter for a proof of the convergence. Inverting back (6.22)
into the time domain gives

F (x) = C +
∞∑

i=0

cie
− λ

ανi x, (6.25)

118 Chapter 6. Modeling TCP congestion control with window limitation

1

y1

y

x

y2

T() T()y2

x

X(t)
T(x)

Time

ν

Figure 6.3: Random variable T (x)

with C = 1 so that F (0) = 0. Note that the in�nite series in (6.25) is absolutely convergent
for any value of x ∈ [0,∞). Thus, it is the unique solution to (6.3) when M = ∞. Recall that
according to Theorem 6.1, the di�erential Equation (6.3) has a unique solution for any value of
M . For the case of no limitation on the rate and N ≡ 1, the expression of F (x) in the way we
presented in (6.25) was already obtained in [104].

6.6 The probability of being at maximum rate

In Sections 6.4 and 6.5 we determined the moments and the distribution of TCP rate as a function
of PM , the probability that the rate is equal to M at an arbitrary time moment in the stationary
regime. In this section we derive an expression for PM from which it can be computed e�ciently.
To this end, we introduce the random variable T (x) which is the time until the rate returns to
the value x, starting just after a congestion event occurs with the rate being equal to x ∈ (0,M]

(Figure 6.3). We denote the expectation of T (x) by E(x) = E [T (x)], x ∈ (0,M]. Then, from
elementary renewal theory [80],

PM = P {X = M} =
1/λ

1/λ + E(M)
. (6.26)

We proceed now to the calculation of E(x). Consider Figure 6.3 for the illustration of the
analysis. In this �gure, we show a typical evolution of TCP rate starting from a congestion
event that appears with the rate being equal to x until the moment the rate returns to x. Other
congestion events may appear between these two moments. For simplicity, the �gure only depicts
congestion events having N = 1. The times to recover from intermediate congestion events are
partly cut out of the picture (denoted by the shaded areas). Let us focus on the analysis of the
general case when a congestion event results in multiple losses. Suppose for the moment that
the initial congestion event (at rate x) was such that N = n. Let Tn(x) be the time to get back

6.6. The probability of being at maximum rate 119

to rate x conditional on N = n and we further write En(x) = E [Tn(x)] = E [T (x)|N = n]. Note
that,

E(x) =
∞∑

n=1

qnEn(x). (6.27)

If no congestion events occur during the time Tn(x) then Tn(x) = (1 − νn)x/α, i.e., the rate
x is reached in a straight line from the starting point at νnx (νx in the �gure). Each time a
loss occurs at a level y ∈ (νnx, x), it takes T (y) time units to get back to rate y. Because of
the memoryless property of the Poisson process, if we take out the shaded areas in Figure 6.3
and concatenate the non-shaded areas then the cut points (where the shaded areas used to be)
form a Poisson process on the straight line from νnx to x. Thus if the cut points are given by
y1, y2, . . . , ym (in the �gure we show for simplicity the case of two cut points) then

En(x) =
(1− νn)x

α
+ E(y1) + E(y2) + · · ·+ E(ym).

Since the process of congestion events is a Poisson process, the mean number 14 of cut points is
equal to λ(1−νn)x/α, and the position of each of the points yj is uniformly distributed over the
interval (νnx, x), see for instance [124, Theorem 1.2.5] 15. Hence,

En(x) =
(1− νn)x

α
+ E [m]

∫ x

y=νnx

E(y)
(1− νn)x

dy

=
(1− νn)x

α
+ λ

(1− νn)x
α

∫ x

y=νnx

E(y)
(1− νn)x

dy

=
(1− νn)x

α
+

λ

α

∫ x

y=νnx
E(y)dy.

Using (6.1) and (6.27), we now arrive at

E(x) =
(1−Q(ν))x

α
+

λ

α

∞∑

n=1

qn

∫ x

y=νnx
E(y)dy. (6.28)

This implicit equation for E(x) is valid for all 0 < x ≤ M . It is also valid for all x > 0 in the
case of no limitation of TCP rate. We can prove that the solution to (6.28) is unique, see [15]
for details. Let us �nd the expression of E(x). To this end, we de�ne the Laplace Transform

ê(s) =
∫ ∞

x=0
e−sxE(x)dx.

In [15], we showed that ê(s) < ∞ for Re(s) > λ/α. First, we apply Laplace Transform to (6.28).
Using that the qn and E(x) are non-negative, we may interchange the order of integration and
summation (twice), �nally arriving at

ê(s) =
1

αs− λ

(
1−Q(ν)

s
− λ

∞∑

n=1

qnê(s/νn)

)
. (6.29)

14For a Poisson point process of intensity λ, the mean number of points that appear in a time interval T is
equal to λT .

15Given that a point of a Poisson point process appears in an interval [0,T], the probability that this point
appears between 0 and x with x ∈ [0, T] is simply equal to x/T .

120 Chapter 6. Modeling TCP congestion control with window limitation

Repeated substitution of this equation into itself and applying partial fraction expansion [80]
leads us to the following candidate solution,

ê(s) =
1−Q(ν)

s

∞∑

i=0

ei

ν−iαs− λ
, (6.30)

where the ei are constants to be determined. This representation will be justi�ed by showing
that it leads us to the unique solutions to (6.28) and (6.29). Substituting (6.30) into (6.29) and
equating the coe�cients multiplying the terms 1/(ν−iαs− λ) leads to

ei

e0
=

1
1− νi

i∑

n=1

νnqn
ei−n

e0
, i ≥ 1, (6.31)

e0 =

1 +

∞∑

n=1

νnqn

∞∑

j=0

ej/e0

ν−j−n − 1

−1

. (6.32)

We note that the ratios ei/e0 are non negative and can be computed recursively from (6.31).
The normalizing constant e0 > 0 can be computed from (6.32). From (6.31), it can be shown
(by induction on i) that

ei ≤ νie0, i = 1, 2, (6.33)

I.e., the ei decay exponentially fast in i as i →∞. Hence, the in�nite series in (6.32) converges
fast and all the ei exist. Moreover, the right-hand side of (6.30) certainly converges for s > λ/α

and, from its construction, (6.30) is the unique solution to (6.29). By partial fraction expansion,
(6.30) can be rewritten as

ê(s) =
1−Q(ν)

λ

∞∑

i=0

ei

(
1

s− νi λ
α

− 1
s

)
.

Inverting this Laplace Transform back into the rate domain gives

E(x) =
1−Q(ν)

λ

∞∑

i=0

ei

(
eνi λ

α
x − 1

)
. (6.34)

Using this expression of E(x) in (6.26), we get

PM =

(
1 + (1−Q(ν))

∞∑

i=0

ei

(
eνi λ

α
M − 1

))−1

. (6.35)

With the expression of PM , we conclude the calculation of the moments and the distribution of
TCP rate. Note that because of (6.33) and

(
eνi λ

α
M − 1

)
∼ νi λ

α
M, i →∞,

PM can be computed e�ciently from (6.35).

6.7. Particular case of a Poisson loss process 121

6.7 Particular case of a Poisson loss process

We specify in this section our results to the particular case of a Poisson loss process: congestion
events occur according to a Poisson process and a congestion event results in only one loss, or
in other words in only one reduction of the rate by ν. For ν = 0.5, this becomes similar to the
model in [96]. The results for this particular case can be obtained by taking N ≡ 1 (q1 = 1,
and qn = 0 for n = 2, 3, . . .) in our batch model. The pgf of the distribution of the batch size
is equal here to Q(z) = z. Using this particular case, we compare in Section 6.8.2 our model to
measurements from the Internet. In particular, we validate the throughput of TCP given by our
model as well as the distribution of the transmission rate. We will consider for this purpose long
distance TCP connections where the loss process is known to be close to Poisson.

From (6.9) and (6.10), we obtain the expressions of the �rst two moments of the rate of the
TCP connection. Recall that the �rst moment of the rate coincides with the throughput.

E [X] = X̄ =
α

(1− ν)λ
(1− PM).

E
[
X2

]
=

2α[α(1− PM)− λPMM(1− ν)]
λ2(1− ν)(1− ν2)

.

Note that for PM = 0 (in�nite receiver window), we get the same throughput as that given by
our general model in the previous chapter (Equation (5.13)).

For �nite M , the distribution function F (x) can be successively computed on the intervals
[νkM, νk−1M], k = 1, 2, . . ., using (6.17). Recursion (6.18), which gives the coe�cients c

(k)
i ,

reduces to
c
(k)
i+1 =

νi

νi − 1
c
(k−1)
i , i = 1, ..., k − 1,

and c
(k)
1 is given by (6.19). When M = ∞ and for all x > 0, the distribution function is given

by the sum of exponentials in (6.25), where

ci =
νi

νi − 1
ci−1, i = 1, 2, . . . ,

and c0 is given by (6.24). Finally,

PM =

(
(1− ν)

∞∑

i=0

eieνi λ
α

M

)−1

, (6.36)

where the coe�cients ei are given by

ei

e0
=

ν

1− νi

ei−1

e0
, i = 1, 2, . . . ,

e0 =

(
1 +

∞∑

i=1

νi ei

e0

)−1

.

122 Chapter 6. Modeling TCP congestion control with window limitation

For this particular form of PM , we used the following equation that we established in an Appendix
in [15] for the case of a Poisson loss process,

∞∑

i=0

ei =
1

1− ν
.

6.8 Model validation

Now, we pass to the validation of the results of our model. We consider the particular case
of Poisson losses (N ≡ 1). A Poisson process approximates well the moments of losses on
long distance TCP connections. This can be explained by the multiplexing of tra�c and the
superposition of the loss processes seen by the connection in the routers it crosses. The factor ν

is set to 0.5. First, we consider our WAN connection (INRIA - University of South Australia) for
the validation of our calculation of the throughput. We already saw that the loss process on this
connection is close to Poisson (Section 3.3.1). During the night, we noticed that the congestion
window reaches frequently the receiver window which justi�es the use of our present model. The
receiver window on the WAN connection is equal to 32 Kbytes (22 packets).

Second, we validate our calculation of the distribution of the window size. We run a particular
connection for this validation. It is another WAN connection between INRIA in the south of
France and a machine at the University of Michigan in the US. Our objective from running a
particular connection for the validation of the distribution is that we want to show how the
distribution looks for di�erent receiver window sizes. Changing the receiver window on the
connection to the University of South Australia was not possible for practical reasons. We run
three times the second WAN connection for three receiver windows of 32, 48 and 64 Kbytes
(resp. 22, 33 and 44 packets). Every run is of approximately one hour. We changed the receiver
window by changing the bu�er size of the socket interface at the receiver. This gave us three
trace �les. Every trace �le corresponds to a particular receiver window. A trace �le is generated
by a tool we developed and we run at INRIA and contains a set of statistics on the connection as
the number and moments of loss events, the evolution of the window size, the number of packets
transmitted, etc. For every trace �le, we plot the theoretical distribution in the case of a Poisson
loss process (Section 6.7) and the one obtained from measurements. In our plots, we will show
the distribution of the window size which we recall can be deduced from the distribution of the
rate by a simple transformation using the average round-trip time.

Before presenting the results from measurements, we shall plot some numerical results to
show how the distribution of the window looks (theoretically) in the stationary regime.

6.8.1 Numerical results

Consider the case of a long-life TCP connection with packets of size 1460 bytes and a constant
round-trip time of one second. Using the results of Section 6.7, we compute the cumulative distri-

6.8. Model validation 123

Cumulative Distribution Function

0
5

10
15

20
25

30
35

Window size (kbytes)

0
5

10
15

20
25

30
35

40
45

50

Average inter-loss time (s)

0

0.2

0.4

0.6

0.8

1

Figure 6.4: Distribution: M = 32 Kbytes

Probability Density Function

0 5 10 15 20 25 30 35

Window size (kbytes)0
5

10
15

20
25

30
35

40
45

50

Average inter-loss time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 6.5: Density: M = 32 Kbytes

bution function F (x) of the window size and its probability density function f(x) for increasing
values of the intensity of losses λ. We consider the two cases: M = 32 Kbytes and M = ∞. In
Figures 6.5 and 6.7 we plot our results for the density function f(x). The plots for the distribu-
tion function are shown in Figures 6.4 and 6.6. For M = 32 Kbytes, we calculate �rst PM , the
probability that the receiver window is reached (6.36). This calculation involves two in�nite series
((6.31) and (6.32)), but as we said before, these series converge quite fast. Once PM is computed,
we calculate the distribution function successively on the intervals [M/2,M], [M/4, M/2] and so
on. For an in�nite receiver window, we calculate �rst the coe�cients ci (6.23), then we �nd the
distribution function for all x > 0 using the in�nite sum of exponentials in (6.25). Again, this
in�nite sum converges quite fast.

First, we notice that the distribution function is continuous for all x ∈ (0, M). It presents a
jump at x = M equal to PM . For an in�nite M , the distribution function is continuous for all
x > 0. Now, when M is �nite, the density function is discontinuous at x = M/2 especially for
large inter-loss times. It presents a pulse at x = M and this pulse is depicted in the �gure by an
area equal to PM . When M = ∞, the density function exhibits neither pulses nor discontinuities.

6.8.2 Experimental results

First, we solve our present model for the throughput of TCP and we compare the result to what
we get on our connection to Australia. The loss process is assumed to be Poisson. The result
of the model is compared to the throughput of ideal TCP or the so-called exact �uid model.
Figure 6.8 shows the results for the whole day. The �gure also shows the two bounds for the
throughput we calculated in Chapter 5. Every point in the �gure corresponds to a trace �le
of approximately one hour. We see clearly how the result of our present model matches the
throughput of ideal TCP and how it fells between our previous two bounds for the throughput.

Next, we validate our calculation of the distribution of TCP window using the traces of our

124 Chapter 6. Modeling TCP congestion control with window limitation

Cumulative Distribution Function

0 20 40 60 80 100 120 140

Window size (kbytes)

0
5
10

15
20

25
30

35
40

45
50

Average inter-loss time (s)

0

0.2

0.4

0.6

0.8

1

Figure 6.6: Distribution: M = ∞

Probability Density Function

0 20 40 60 80 100 120

Window size (kbytes)

0
5
10

15
20

25
30

35
40

45
50

Average inter-loss time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 6.7: Density: M = ∞

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25

T
C

P
th

ro
ug

hp
ut

 (
kb

ps
)

Time (hours)

INRIA - Australia

Exact fluid model
Upper bound
Lower bound
Model with limitation

Figure 6.8: Validation of the throughput

second connection to Michigan State University. For the three values of M we cited above, we plot
the real and theoretical distributions of TCP window. The results are presented in Figures 6.9,
6.10 and 6.11. When M is small, we observe a good match between the measured distribution
and the one resulting from our model. For larger values of M , the di�erence between the two
increases. In particular, as M increases, the measured probability density concentrates around
the average window size. This deviation can be explained from the measured inter-loss time
distribution. In Figure 6.13, we plot this distribution for M =32 Kbytes. This distribution is in
agreement with an exponential law, resulting in the good match we observed between the model
and the measurements. Figures 6.13 and 6.14 show the measured inter-loss time distribution for
the other two values of M . We notice that the loss process is no longer Poisson, but closer to a
deterministic process. This results in the degradation of the correspondence between our model
and the measurements.

One explanation of the deviation of the loss process from a Poisson process for larger values

6.8. Model validation 125

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000 30000 35000

TCP window (bytes)

Cumulative Distribution Function

Model
Measurements

Figure 6.9: Distribution: M = 32 Kbytes

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

TCP window (bytes)

Cumulative Distribution Function

Model
Measurements

Figure 6.10: Distribution: M = 48 Kbytes

0

0.2

0.4

0.6

0.8

1

1.2

0 10000 20000 30000 40000 50000 60000 70000

TCP window (bytes)

Cumulative Distribution Function

Model
Measurements

Figure 6.11: Distribution: M = 64 Kbytes

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30 35 40 45 50 55

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - Michigan

Exponential distribution
Measurements

Figure 6.12: Inter-loss times: M = 32 Kbytes

of M is the following. A true Poisson loss process implies that the time until the next loss event
is independent of the past. This is the case when the congestion of the network is dominated by
the exogenous tra�c and not dependent on our connection. This corresponds to the case when
our connection's share of the available bandwidth on the path is small compared to that of the
exogenous tra�c, and when the packets of our connection are dropped in multiple congested
routers along the path. A small M limits the bandwidth share of our connection and limits its
impact on the network, resulting in a loss process close to Poisson. However for large M , our
connection realizes a larger share of the bandwidth and thus contributes more to the congestion
of network routers. When it reduces its window, the state of the network changes and becomes
under-loaded. Some time is needed for the network to be loaded again, and during this time, the
probability to get a loss event is very small. This is the reason for which small inter-loss times
start to get small probabilities as M increases. In such a case when the loss process is close to a
deterministic process, a simple approximation using the �xed-point approach [11, 105] could be

126 Chapter 6. Modeling TCP congestion control with window limitation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40 50 60 70

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - Michigan

Exponential distribution
Measurements

Figure 6.13: Inter-loss times: M = 48 Kbytes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Inter-loss time (s)

INRIA - Michigan

Exponential distribution
Measurements

Figure 6.14: Inter-loss times: M = 64 Kbytes

more useful for throughput calculation.

6.9 Conclusions

We studied in this chapter TCP congestion control under the assumption that congestion events
arrive according to a Poisson process, and that every congestion event results in a random number
of losses or window reductions. As highlighted in [96], we reformulate the problem as an M/G/1
queuing problem with service times dependent on system workload. Using some techniques from
queuing theory [80], we calculated explicit expressions for the moments of TCP rate. We pro�ted
from the analysis to also �nd the distribution of TCP rate and TCP window. We compared then
our results to measurements from TCP connections over the Internet. Good match is reported
when the loss process is close to Poisson.

Our analysis showed well the complexity of the calculation of the throughput when a limita-
tion of TCP window exists. Even for a Poisson loss process, which the simplest process one can
imagine after a deterministic loss process, the calculation is quite di�cult and involves multiple
constants and multiple in�nite series. This justi�es the use of approximations of TCP through-
put we introduced in the previous chapters. However, one can always think about calculating
exactly the throughput of TCP for more complicated loss processes that are based on exponen-
tial distributions as a Markov Modulated Poisson Process (MMPP) [59], or even a Markovian
Arrival Process (MAP) [20]. In addition to TCP, this calculation will be certainly useful for
some state-dependent queueing systems. This is one of our future directions for improving the
modeling of TCP congestion control, but it seems not so urgent given the actual trend to adapt
dynamically the receiver window with the congestion window [118], and given the introduction
of the window scale option [77] that will permit a TCP receiver to advertise large windows up
to 2 Gbytes.

6.9. Conclusions 127

Appendix

We shall prove here that the in�nite series in Equation (6.24) converges. Denote ai = ci/c0.
Using (6.23), ai satis�es the following recurrent relation

ai =
νi

νi − 1

i∑

k=1

qkai−k.

To prove that series
∑

i ai is absolutely convergent, it is enough to prove that the majorant series∑
i bi, with bi de�ned below, is convergent.

bi =
νi

1− νi

i−1∑

k=0

bk.

Consider bi+1,

bi+1 =
νi+1

1− νi+1

i∑

k=0

bk =
νi+1

1− νi+1

(
1− νi

νi
bi + bi

)
=

ν

1− νi+1
bi.

Thus, bi+1/bi → ν as i → ∞, and therefore, the series
∑

i bi � and hence the in�nite series
in (6.24) � is absolutely convergent for ν < 1.

128 Chapter 6. Modeling TCP congestion control with window limitation

Chapter 7

TCP congestion control and large
bandwidth-delay product networks

Until now, we studied the performance of TCP congestion control independently of the network
type. The loss process seen by the connection was only used to characterize the path between the
source and the destination. By a loss we mean a congestion event that results in the reduction
of TCP window by a constant factor ν ∈ (0, 1), typically ν = 0.5. Our focus was mainly on
the additive-increase multiplicative-decrease policy of the protocol. Given a certain loss process,
our previous results can be used to improve the congestion control policy of TCP. For example,
one can change the window increase rate during congestion avoidance so as to improve the
fairness of the protocol (e.g., see [60]). But, as we conclude from the overview we presented
in Chapter 2, the performance of TCP cannot always be improved on end-to-end basis. Some
particular mechanisms are required to help the protocol in some challenging environments. These
mechanisms are located within the network and sometimes they require modi�cations at the
source (e.g., ELN [53], ECN [61]). In principle, these mechanisms should result in a lower loss
rate or a smaller round-trip time, and thus in a better performance of TCP transfers. The
performance of TCP in presence of such mechanisms require a particular study. This is what
we called in the introduction the network speci�c approach. We have to evaluate the impact of
such mechanisms on the reaction of the network (e.g., the way with which packets are dropped)
in order to evaluate their impact of the performance of the protocol. One can see the di�erence
between the end-to-end approach and the network speci�c approach as follows. The �rst approach
studies the throughput of TCP for a given loss process. The second approach deals with the
characterization of the loss process that the connection will see in a particular environment.

From now, we only focus on the network speci�c approach. We consider the three network
types that we consider as the most challenging for TCP: the large bandwidth-delay product
network, the asymmetric network and the wireless network. For each network type, we will
explain the major problem of TCP and we develop an analytical model for the study of its
performance. Based on the analysis, we will propose schemes and guidelines for the improvement
of the performance of the protocol in these three environments.

129

130 Chapter 7. TCP congestion control and large bandwidth-delay product networks

We start our study by large bandwidth-delay product networks. The two other network
types will be considered in the next two chapters. As we will notice later, our work on large
bandwidth-delay product networks is especially useful on paths where the product is large due
to a long propagation delay (e.g., a GEO satellite link where the one hop propagation delay
is of about 250 ms). The major problem of TCP on such paths is the slow start phase [3, 7].
Slow start is a transitory phase designed to �ll as quick as possible the network capacity at the
beginning of the connection or after a timeout [75, 121]. As we shall see later, the time required
to �nish the slow start phase is proportional to the round-trip time of the connection and to the
logarithm of the bandwidth-delay product. For the dependency of slow start duration on the
bandwidth-delay product to hold, we need to assume that the slow start threshold is in the same
order of magnitude as the bandwidth-delay product. Thus, in large bandwidth-delay product
networks and especially those of long propagation delay, the slow start phase takes a long time
which results in a poor performance of TCP transfers given the small size of the window and
the low bandwidth utilization during slow start. Of course, this holds for �nite transfers (some
hundreds of Kbytes) for which most of the packets are transmitted during slow start. An intuitive
question that one may ask here is why not to accelerate the window increase during slow start?
In fact, due to the absence of any kind of packet spacing in current versions of TCP, a fast
window increase results in large burstiness. This is because a TCP source transmits as many
packets as its window allows upon the receipt of an ACK. A large burstiness results in packet
losses and deterioration of the performance. For example, with the standard window increase
policy during slow start (an increment of the congestion window by one packet upon the receipt
of a non-duplicate ACK [75, 121]) and with a receiver that acknowledges every data packet, it
is known [18, 84] that a TCP source injects packets into the network at twice the bottleneck
bandwidth. The transmission rate of TCP will be higher with faster window increase policies. In
fact, the standard window increase policy was considered when designed as a good compromise
between duration of the slow start phase and burstiness of the protocol. This worked well until
the appearance of large bandwidth-delay product networks which require as we said a faster slow
start phase in order to use e�ciently the bandwidth they propose. A faster slow start might
be possible if there are enough bu�ers in network routers to absorb the resulting bursts. On
paths where the bu�ers in network routers are not well dimensioned, one should expect that
the acceleration of the slow start phase will result in a worse performance since packets will be
dropped before �lling the pipe between the source and the destination. This is the phenomenon
we called early bu�er over�ow in [29]. It is an over�ow that appears before what we expect when
TCP is assumed to be non-bursty. An early bu�er over�ow results in a underestimation of the
network capacity and a switch to the congestion avoidance phase at a small window. Given the
slow window increase during congestion avoidance, this results in a low transmission rate and a
performance deterioration.

The problem of early bu�er over�ow during slow start has been �rst studied in [18, 35, 84]

131

and this is for the standard version of slow start and for very small bu�ers in network routers.
For example, it has been shown that when the bu�er size in the bottleneck router is less than
one third the bandwidth-delay product, the slow start phase of a TCP-Tahoe connection [56]
presents losses during slow start which deteriorates the throughput. The authors showed that on
such paths, TCP is unable to reach without losses the slow start threshold which was assumed to
be equal to half the network capacity. In [28], we generalized their study to the case of multiple
routers in tandem. We showed in that work that the problem of early bu�er over�ow still exists
but it is less important since the burstiness of TCP is absorbed by multiple routers not only by
the bottleneck one. The situation could be however worse if the bu�ers in the routers located
between the source and the bottleneck are not well provisioned. We presented guidelines for
how to dimension the bu�ers in network routers so that to absorb the burstiness of the standard
version of slow start. Our work in [28] could be simply extended to the other window increase
policies.

The slow start phase of TCP presents another problem. When the slow start threshold is
set to less than the network capacity, which is very probable at the beginning of the connection
where a default value is given to this threshold [10], the network gets into congestion before
the end of slow start and some packets from the connection are dropped. Normally, this should
result in a correction of the slow start threshold and a quick resumption of the transmission in
the congestion avoidance mode at the newly estimated rate. However, it has been shown in [72]
that due to the fast window increase during slow start, many packets are dropped from the
same window of the connection which results in a failure of Fast Recovery, a timeout and a new
slow start. Given the coarse granularity of TCP retransmission timer (multiple of 500 ms) and
the time taken by slow start, the result is a performance deterioration. The author in [72] has
proposed to help TCP in the estimation of a more accurate value for the slow start threshold so
that the source switches to the congestion avoidance mode before the congestion of the network.
The proposition was to use the �ow of ACKs circulating at the beginning of the connection to
estimate the bottleneck rate and the round-trip time and to set the slow start to their product.
Clearly, this improves the performance but the bu�ers in network routers must be at least able
to absorb the bursts of TCP until the congestion window reaches this product (assuming that
the bottleneck rate and the round-trip time are correctly estimated). In case of small bu�ers,
the congestion of the network will not be avoided with this value of slow start threshold and the
performance will not improve. A smaller slow start threshold is required in this case if we really
want to avoid the congestion.

Given these di�erent problems of the slow start phase, we dedicate this chapter to the evalua-
tion of its performance. We refer to [28, 29, 33, 35] for more details on our work in this direction.
In this chapter, we ask ourselves di�erent questions that we try to answer via a simple analyt-
ical model. The �rst question is, given a certain slow start threshold and a certain bu�ering
capacity in the bottleneck router, what is the window increase rate that the slow start phase

132 Chapter 7. TCP congestion control and large bandwidth-delay product networks

must implement in order to achieve its objectives. Recall that the objective of slow start is to
reach quickly and without losses the congestion avoidance mode and this in the case the slow
start threshold is set to less than the network capacity. When the slow start threshold is set to
larger than the network capacity, the objective of slow start is to �ll quickly the pipe between the
source and the destination. Losses are unavoidable in this latter case but they have to appear
when the network pipe is �lled. We then ask the questions of how to set the slow start threshold
and how to dimension the bu�ers in network routers so that to absorb the bursts of slow start.
Finally, we discuss the current window increase policy used by TCP during slow start, that is
the use of the same window increment during all the phase. Our results show clearly that this
policy is not the optimal one since at the beginning of slow start the burstiness of TCP is less
important than at the end. These results will motivate us to propose a new algorithm for the
window increase where the increment is decreased with the congestion window. This new policy
reduces the duration of slow start without adding to the burstiness of the protocol. Our di�erent
results will be validated with simulations. Note here that even though our study focuses on the
slow start phase at the beginning of the connection, it can be applied to the other slow start
phases as well. In particular, our study can be applied to the Tahoe case considered in [18, 84].

Before starting the analysis, we address brie�y another possible and promising direction for
improving the slow start phase. We mentioned that the major problem of slow start is the
burstiness of packets which prohibits the use of a faster window increase policy. But, if one
succeeds to pace packets during this phase at an appropriate rate, the problem of burstiness will
be solved and the source can go faster in increasing its window. Some works in this direction [19,
54, 125] propose to estimate the slow start threshold (Wth) and the round-trip time (RTT), and
then to skip the slow start phase by sending Wth packets at a rate equal to Wth/RTT . The
slow start threshold can be estimated by using either the �ow of ACKs or the history of the
connection. This has been shown to improve considerably the performance. The challenge with
these proposals is how to estimate correctly the bottleneck rate and the round-trip time so as
not to overwhelm the network and the other users. The other works in this direction [1, 35]
propose to pace packets while keeping the current window increase policy. Packets are paced at
a rate calculated from the current window size and the round-trip time. This solves the problem
of burstiness of TCP and should result in a better performance. However, the simulation study
we conducted in this direction shows that this is not the case if the slow start threshold is set to
larger than the network capacity. Indeed, we noticed that a TCP connection pacing its packets
during slow start is more harmful to other connections at the moment of congestion than a
connection sending packets in bursts. The �rst connection keeps the network congested during
a complete round-trip time which results in drops from most of the connections and a large
decrease in utilization. The second connection keeps the network congested during the time its
bursts reach the bottleneck which protects the other connections from reducing their windows.
In other words, a bursty connection takes alone the result of the congestion it creates in the

7.1. The model 133

DestinationSource B

T

µ

Figure 7.1: Single-node network model

network during its slow start phase, whereas a non-bursty connection makes the others also pay
for its congestion. An estimation of the slow start threshold presents a solution to the problems
of this second approach. The question that one may ask here is why to do slow start if we
have a correct estimate of the network capacity and why not to skip this phase as with the �rst
approach. Another question that one has to ask when deciding to pace packets is how complex
is the implementation of �ne-grained timers required for spacing packets. This implementation
may introduce much overhead given that every expiration of a timer means an interruption of
the operating system.

7.1 The model

To analyze the slow start phase of TCP, we consider a single-node model for the network between
the source and the destination (Figure 7.1). This simple model for the network has been often
used in the literature for the study of TCP performance [2, 18, 35, 82, 84]. The node of the
model represents the bottleneck router on the path of the connection. This node has a bu�er B

(packets) and a rate µ (packets/s). Let T (seconds) denote the two way propagation between
the source and the destination. Such network presents a bandwidth-delay product equal to µT

(packets) and a pipe size equal to B + µT (packets). Consider for the moment that the TCP
connection is running alone in the network. Later, we will study the case of multiple concurrent
connections. The bottleneck router is assumed to implement the classical drop-tail policy. We
further consider that a �le of size S is to be transfered on the TCP connection and we focus on
the slow start phase at the beginning of the transfer.

The key point in the study of the slow start phase is the calculation of the window at which
packets are dropped during slow start assuming that the slow start threshold Wth is set to an
in�nite value. We call this window the over�ow window and we denote it by WB. The calculation
of WB provides the answers to our questions. First, it tells us how the slow start threshold has
to be set at the beginning of the connection in order to avoid losses. Wth should be set to less
than WB if we want to get in congestion avoidance before the occurrence of losses. Second, in
the case Wth is set to more than WB, this means in the case a congestion occurs during slow
start, WB gives us the window at which TCP gets in the congestion avoidance mode. This latter
window, which is equal to the updated slow start threshold and which we denote by W ′

th, is a
direct function of WB. Third, WB tells us how the bu�er in the network router and the window

134 Chapter 7. TCP congestion control and large bandwidth-delay product networks

increase rate have to be chosen. We always have to ensure that the over�ow window is larger
than the minimum of the slow start threshold and the pipe size. All these issues will be addressed
in the following sections.

Usually, WB is equal to the pipe size which is implicitly assumed in di�erent works on the
slow start phase (e.g., [2, 72]). But, due to the burstiness of TCP, the bu�er in the bottleneck
router may fail to absorb the bursts of slow start resulting in an early bu�er over�ow and a WB

less than the pipe size. In [18, 35, 84], the authors found the expression of WB in case of a
small bu�er B. However, in their model, neither the bandwidth-delay product nor the window
increase rate were considered. In this chapter, we will �nd the general expression of WB. This
expression will help us to understand the di�erent interactions between the bu�ering capacity
in the bottleneck router, the bandwidth-delay product and the window increase policy at the
TCP source. We will see that WB is upper bounded by the pipe size and that it is a decreasing
function of the window increase rate during slow start and of the bu�er size in the bottleneck
router.

7.1.1 A model for TCP during slow start

Let W (t) denote the window size in packets at time t. The transfer is assumed to start at time
0. We focus on the slow start phase at the beginning of the transfer. Suppose that after one
round-trip time, the window increases by W (t)/d packets where d is a positive non-null real
number. With this factor d, we are able to model the window increase rate during slow start.
Clearly, this rate is a decreasing function of d. The factor d can be the result of the receiver
delaying ACKs and sending an ACK every d packets, and of the sender increasing its window
by one packet for every non-duplicate ACK (standard slow start algorithm [121]). For example,
d = 1 means that the receiver is acknowledging all packets. d = 2 represents the delay ACK
mechanism widely implemented in TCP receivers [121]. Note that when we delay ACKs at the
receiver, we impact both the slow start phase and the congestion avoidance phase. Without an
explicit noti�cation from the source, it is not possible to distinguish between the two phases at
the receiver in order to adopt di�erent acknowledging strategies. Another way to implement d

is to change the window increase policy at the TCP source (by changing the window increment)
while keeping the receiver unchanged. This will permit us to accelerate (reduce d) or to slow
(increase d) the window growth during slow start without impacting the congestion avoidance
phase. For example, in presence of the delay ACK mechanism, the standard version of slow start
corresponds to d = 2 since the window is multiplied approximately by 1.5 every round-trip time.
Another example is the Byte Counting solution [2] which proposes to accelerate the window
increase at the source so that d passes from 2 to 1. The objective is to recover from the slowness
caused by the delay ACK mechanism. As its name indicates, Byte Counting is implemented
by accounting for the number of bytes acknowledged rather than the number of ACKs received.
One can envisage the study of other values of d. This is what we will do in this chapter.

7.1. The model 135

t t + RTT t + 2RTT t + 3RTT

W(n) packets

mini-cycle n

W(n+1) packets W(n+2) packets

mini-cycle n+1 mini-cycle n+2

Time t : Start of service of the W(n) packets

Figure 7.2: Bursts at the output of the bottleneck

7.1.2 The over�ow window WB

As in [18, 84], we divide slow start into mini-cycles. The duration of a mini-cycle is equal to one
round-trip time. The �rst mini-cycle starts with the �rst packet transmitted over the connection.
The word mini-cycle is used to distinguish these small cycles from the large TCP cycle between
two congestion events. Let W (n) be the window size at the end of mini-cycle n. It is also equal
to the number of packets transmitted during mini-cycle n. The next mini-cycle starts when the
ACK for the �rst packet of these W (n) packets reaches the source. The window size at the end
of the next mini-cycle is equal to

W (n + 1) = W (n) + W (n)/d = αW (n), (7.1)

with
α = (d + 1)/d.

Suppose that the recurrent relation (7.1) is valid for all n ≥ 0. Suppose also that the transfer
starts with a window equal to one packet. Thus,

W (n) = αnW (0) = αn.

This equation shows clearly how the window increases exponentially during slow start. It
also shows that for a constant round-trip time, the time required to reach Wth is equal to
RTT logα(Wth). This validates our claim at the beginning of this chapter that the duration of
the slow start phase is proportional to the round-trip time and to the logarithm of the slow start
threshold.

Due to the absence of any kind of packet spacing at the source or at the receiver, TCP packets
are transmitted in long bursts with a frequency of one burst every round-trip time and with the
number of packets in a burst equal to the window size at the end of the round-trip time [84, 128].
We assume that the source always has data to send. Figure 7.2 explains how TCP packets
propagate in the network in long bursts. The �gure shows the long bursts at the output of
the bottleneck router. The rate of packets within a burst (we call it the rate of a burst in the
following) is equal to µ (packets/s) at the output of the bottleneck. However, at the input of the
bottleneck, this rate is higher than µ. It changes between slow start and congestion avoidance.
During congestion avoidance, it is approximately equal to µ (it is equal to µ(W +1)/W , see [28]

136 Chapter 7. TCP congestion control and large bandwidth-delay product networks

for explanation). During slow start, this rate is higher than µ and it is clearly a function of the
parameter d which models the window increase rate. Note here that long bursts of packets are
di�erent than small bursts of packets transmitted by TCP upon the receipt of ACKs. We are
working with a burstiness at a higher level. Long bursts of packets reaching the bottleneck router
wait in B until they are served. A long burst of length W (n) is served during mini-cycle n and
it is followed by an idle period until the arrival of the burst of the following mini-cycle. This idle
time between bursts disappears when the window exceeds the bandwidth-delay product (µT).
In presence of exogenous tra�c especially in the backward direction, and in presence of multiple
routers on the path of the connection, this burstiness of TCP might be smaller since packets
of a TCP connection might be separated by packets from other connections which spreads the
packets of long bursts over all the path. It is not clear whether the burstiness of TCP completely
disappears when packets are multiplexed inside the network. Simulations in [128] showed that
this phenomenon of long bursts still exists in the case of multiple concurrent connections. The
model and the simulations in [18] show that it also exists in case of a single bottleneck router and
a TCP connection that shares the bottleneck bandwidth with a constant rate exogenous �ow.

Given that the number of packets transmitted during a mini-cycle increases by a factor α

(Equation (7.1)), we can suppose that the rate of packets within long bursts is equal to αµ

(packets/s), of course if the part of the path between the source and the bottleneck router has
a higher rate than αµ. It is this high rate of packets within long bursts that may cause an
over�ow of the bu�er B before the connection �lls the pipe. Indeed, when a long burst reaches
the bottleneck router, a queue starts to build up in B at a rate αµ − µ = µ/d (packets/s).
Two cases here must be considered. The �rst case is when B does not contain any packet from
the previous mini-cycle. This happens when the window size in the previous mini-cycle is less
than the bandwidth-delay product. The second case is when some packets from the previous
mini-cycle are waiting in B. In the literature [18, 35, 84], only the �rst case is considered.

Consider the �rst case. A burst of size B(d + 1) packets is required to �ll the bu�er. Let n1
B

be the number of the mini-cycle during which B over�ows. The number of packets transmitted
during this mini-cycle must be larger than B(d + 1) otherwise the over�ow would not have
occurred. But, the number of packets transmitted during the previous mini-cycle n1

B − 1 must
be less than B(d + 1) otherwise the over�ow would have occurred during this mini-cycle. Thus,
n1

B satis�es,
αn1

B−1 < B(d + 1) ≤ αn1
B .

For the �rst case, we also have
αn1

B−1 < µT.

According to our de�nition of d (Equation 7.1), the transmission of a long burst of B(d + 1)

packets requires an increase in W by B packets from the beginning of mini-cycle n1
B. It follows

that,
WB = W (n1

B − 1) + B = αn1
B−1 + B. (7.2)

7.1. The model 137

Now, we consider the second case. The window size is larger than µT packets and some
packets are waiting in the bu�er at the beginning of the mini-cycle. The increase in the window
until the congestion is simply equal to the number of empty places in the bu�er. Suppose that
the over�ow happens during mini-cycle n2

B and let us put ourselves at the beginning of the
mini-cycle. Then, WB changes and becomes equal to

WB = W (n2
B − 1) + B − (W (n2

B − 1)− µT) = B + µT. (7.3)

Two expressions for WB are then available. If the window size during mini-cycle n1
B − 1 is

less than µT packets, then WB will be given by Equation (7.2), otherwise it will be given by
Equation (7.3). We can combine these two expressions in a single one as stated in the following
theorem.

Theorem 7.1 If slow start is not terminated before the occurrence of losses, the bu�er at the
entry of the bottleneck link will over�ow at a window

WB = B + min
(
µT, αnB−1

)
,

with nB given by
αnB−1 < B(d + 1) ≤ αnB .

The following corollary can be directly derived.

Corollary 7.1 The bottleneck bu�er will not over�ow during slow start if Wth is set to less than
the WB given by Theorem 7.1.

To simplify the analysis, we approximate αnB by B(d + 1). The same approximation has
been made in [18, 84]. It is equivalent to saying that the over�ow of the bu�er only happens at
the end of a mini-cycle. The expression of WB becomes,

WB = B + min (µT,Bd) . (7.4)

It is clear that this window is equal to the pipe size B + µT whereas B is larger than µT/d.
Once B becomes less than µT/d (due to a small bu�er or a fast window increase during slow
start), slow start becomes unable to �ll the pipe. This is where the problem of early bu�er
over�ow appears. This expression of WB also tells us that the appropriate value for the slow
start threshold is a function of the bu�er size. A value of Wth equal to the bandwidth-delay
product as proposed in [72] does not always avoid the congestion. In the following, we will
validate these results with simulations. We will also investigate the interaction between the
bu�er size and the slow start phase in the case of multiple concurrent connections.

138 Chapter 7. TCP congestion control and large bandwidth-delay product networks

D
1.5 Mbps100 Mbps

1 ms 100 ms
S B

Figure 7.3: The simulation scenario

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14

T
C

P
 C

on
ge

st
io

n
W

in
do

w
 (

pa
ck

et
s)

Time (s)

B=70 and d=1
B=20 and d=1
B=20 and d=2

Figure 7.4: Simulation: TCP congestion window vs. time

7.2 Impact of Wth on the performance

As we said, the correct value for Wth (i.e., just less than WB) is a function of all the model
parameters not only µ and T . It decreases with the decrease in the bu�er size or the increase
in TCP burstiness. If the bu�er size is less than µT/d, it becomes independent of the available
bandwidth! For example, if we set Wth to the value proposed in [72] (i.e., the bandwidth-delay
product), we �nd that a B larger than µT/(d + 1) packets is required for this value to work
otherwise losses will not be avoided and the performance will not improve.

For validation, consider the simulation scenario in Figure 7.3. The Reno version of TCP
is used [56]. The source transmits a �le of size 100 Kbytes. TCP packets are of 512 bytes
and the receiver window is set to a large value. We give two values to B: 70 packets which
is approximately equal to the bandwidth-delay product and 20 packets. For a Wth equal to
50 packets, we plot in Figure 7.4 the congestion window as function of time. Three cases are
considered: B = 70 packets and d = 1, B = 20 packets and d = 1, B = 20 packets and d = 2. We
implement d by simply delaying ACKs at the receiver. Normally, for such a threshold smaller
than the bandwidth-delay product, one must predict that losses will not appear during slow
start. We see that it is true for B = 70, but it is not the case for a bu�er of 20 packets and a
d = 1. A decrease in TCP burstiness is required (from d = 1 to d = 2) to help the bu�er of
20 packets to absorb the bursts of slow start and to avoid the congestion. We also notice how
changing d by delaying ACKs at the receiver impacts the window growth during the congestion
avoidance phase. This growth slows when d passes from 1 to 2. It would be better in the case

7.3. Case of a high slow start threshold 139

B = 20, d = 2 to keep the congestion avoidance phase unchanged.

7.3 Case of a high slow start threshold

In this section, we study the case when the slow start threshold is set at the beginning of the
connection to more than WB and when slow start ends with network congestion and losses. We
consider that the factor d is implemented at the TCP source by changing the number of bytes
by which the window is incremented during slow start, so that the window increase rate during
congestion avoidance is not impacted by this change. Hence, the performance is a function of
the window at which we get in congestion avoidance after the recovery from losses. This window,
we denoted by W ′

th, is the updated value of Wth or the updated source estimate of the network
capacity. The smaller the W ′

th, the longer the time required to transmit the �le, of course if the
�le size is enough large to reach the congestion avoidance phase.

7.3.1 Calculation of W ′
th

The bu�er over�ow during slow start is detected one round-trip time after its occurrence. During
this round-trip time, W increases from WB to αWB unless the source gets in congestion avoid-
ance. This latter case corresponds to WB < Wth < αWB. Congestion detection then happens at
a window WD equal to

WD = min (Wth, αWB) .

Once the congestion is detected, TCP sets W and Wth to half WD and starts to recover from
losses. Ideally, and as we described in Chapter 2, the source should recover quickly from losses
and start congestion avoidance at half WD. Unfortunately, it is far from being the case due to
the large number of packets lost [72]. Even the most sophisticated versions of TCP as SACK [56]
fail to recover from these losses. A timeout then occurs and the the source divides its estimate
another time by two to start congestion avoidance at about WD/4. The Reno version of TCP [56]
presents a slightly di�erent behavior. Reno divides its estimate of the network capacity by two
upon every detection of a packet loss 16. However, this version cannot recover from more than
two packet losses in the same window without the occurrence of a timeout. Thus, with Reno,
there is sometimes another division of WD by two which results in a congestion avoidance phase
that starts at WD/8 (see the line corresponding to B = 20, d = 1 in Figure 7.4). Concerning
the Tahoe version [56], it is the only one able to start congestion avoidance at WD/2, but this
is at the cost of a long slow start phase. Our objective here is not to compare the di�erent
versions of TCP but rather to show that the performance is a function of the over�ow window
WB, which is a function of the bu�er size in the bottleneck router and the aggressiveness of the
slow start phase in addition to the bandwidth-delay product. In the following, we will see how

16This problem has been corrected by New-Reno [64] which stays in the same Fast Recovery phase for all losses
in the same window.

140 Chapter 7. TCP congestion control and large bandwidth-delay product networks

the performance of TCP varies with d and B. We suppose for simplicity that the slow start
threshold is set to a high value so that the congestion is always detected at WD = αWB.

7.3.2 Interaction between bu�er size and slow start aggressiveness

We use the updated network capacity estimate W ′
th to decide on how the performance varies with

d and B. When the bu�er size is large enough to absorb slow start bursts, any change in d does
not change the over�ow window which remains equal to the pipe size (Equation (7.4)). Thus,
an acceleration of the window increase improves the performance since it reduces the time taken
by slow start without changing the estimate of the network capacity. This happens whenever B

is larger than µT/d packets. The problem of capacity underestimation exists when the bu�er
is smaller than µT/d packets so that it over�ows before the network pipe is �lled. The source
then gets in congestion avoidance at a small window and requires a long time to compensate the
resulting capacity underestimation. This should result in a deterioration of the performance. For
such small bu�ers, an acceleration of the window increase deteriorates further the performance
since it decreases the over�ow window, and hence the network capacity estimate. It is better to
stop increasing the aggressiveness of slow start when B becomes less than µT/d.

To validate our result, we consider the simulation scenario in Figure 7.3 together with the
two versions of TCP: the standard version (STCP) and another version that implements Byte
Counting (BC) [2]. The receiver is supposed to acknowledge every other data packet. Thus,
the �rst version corresponds to d = 2 and the second one to d = 1. We compare in Figures 7.5
and 7.6 the throughput of these two versions under two bu�er sizes: 20 and 70 packets. The
throughput is plotted as a function of the size of the transfered �le. For a large bu�er, Byte
Counting works perfectly and gives better performance than standard TCP 17. However, for a
small bu�er, Byte Counting is so aggressive that it �lls the bu�er before �lling the pipe. This
gives a lower network capacity estimate and thus a lower performance for most of the �le sizes
although standard TCP adopts a slower window increase 18.

The problem with the current window increase strategies (e.g., standard slow start, Byte
Counting) is that they use the same value of d (window increment) during the entire slow start
phase. But, as we saw from the analysis (Figure 7.2), the length of long bursts generated by
TCP during slow start increases with the window size. At the beginning of slow start, we have
smaller bursts than at the end when the window approaches the network capacity. If d is chosen
in a way that the bu�er in the bottleneck router absorbs all the bursts of slow start, we will get
a very conservative behavior at the beginning of slow start when the window is small. We can
pro�t from the small length of bursts when the window is small to use a lower value of d and
thus to reduce the duration of slow start without changing the window at which the congestion

17The low performance of Byte Counting we notice in the middle of Figure 7.6 results from those �les that are
transfered without losses in case of standard TCP and with losses in case of Byte Counting.

18The low performance of standard TCP we notice for small �le sizes in Figure 7.5 results from those �les that
are transfered without losses in case of Byte Counting.

7.3. Case of a high slow start threshold 141

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

File Size (KB)

Byte Counting
Standard TCP

Figure 7.5: BC vs. STCP for B = 20

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

File Size (KB)

Byte Counting
Standard TCP

Figure 7.6: BC vs. STCP for B = 70

occurs. The best performance is obtained when the TCP source starts with the smallest possible
value of d, then switches to a larger one just before the over�ow of B and continues like this
until the network pipe is �lled or Wth is reached. This corresponds to adapting the factor d in
a way that the over�ow window WB remains slightly larger than the current window instead of
maintaining it constant and slightly larger than the pipe size. Note that, for a given window size
and a given value of d, one can de�ne the over�ow window we calculated in Theorem 7.1 as the
window at which packets will be dropped in the bottleneck router if we use the same value of d

in the rest of the slow start phase.

Using (7.4), we plot in Figure 7.7 the variation of d as a function of W so that WB is dynamic
and equal to W . This is how d must be changed to get the best performance. We suppose that
d cannot be taken less than a certain value d0 (i.e., this corresponds to a maximum limit on the
window increase rate). The �gure has not a meaning for W larger than µT since there is no
constraint on the value of d in this region. For any window W less than µT , if we use a d located
above the curve, we are sure that the over�ow window for this point (W,d) is larger than W

and thus the bu�er in the bottleneck router is able to absorb the bursts generated by TCP at
this window size. If we take a W below the curve, this means that WB is less than W and the
bu�er over�ows at this window. We have to change the value of d in a way to be always above
the curve, and the best performance is obtained when we follow the curve.

Suppose that we know a value of d that permits slow start to �ll the network pipe. Call
this value dmax. It is clear from the �gure how using this value of d during all the slow start
phase is very conservative, and how the performance can be improved by using any line in the
conservative region located below dmax. It is not clear for the moment how to de�ne such a line
since this requires a knowledge of the bu�er size in the bottleneck router. Using the slow start
threshold, one can envisage the use of a straight line that goes from d0 to dmax. This is the idea
behind the Decreasing Byte Counting solution we will study in the next section.

142 Chapter 7. TCP congestion control and large bandwidth-delay product networks

Window

d

d0

dmax
µT
B − 1

µT

Aggressive region

Conservative region

(d +1)0B

Figure 7.7: Adaptation of d

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

File Size (KB)

Decreasing Byte Counting
Standard TCP
Byte Counting

Figure 7.8: Performance of DBC

7.4 Decreasing Byte Counting

We said that maintaining the same value of d during slow start is not the optimal solution since
at the beginning of slow start the problem of burstiness is not as pronounced as at the end. It
would be better to use a small d at the beginning of slow start before using a large d at the
end. This should reduce the duration of slow start without changing the over�ow window which
improves the performance. We also said that one of the possible variations of d is to increase
it linearly from the small value to the large value. We validate all these conclusions using the
two versions of slow start: the standard one (d = 2) and the Byte Counting one (d = 1). The
receiver is supposed to acknowledge every other data packet. It is clear that Byte Counting gives
better performance than standard TCP when the bu�er is large. We focus on the region where
Byte Counting is aggressive and where standard TCP is not. By combining these two versions,
we try to propose a new slow start version that gives better performance than both of them in
this region.

Based on our analysis, we propose to increase d linearly from 1 to 2 during slow start. This
is equivalent to applying Byte Counting at the beginning of slow start then in starting to get out
of Byte Counting towards standard TCP as long as W grows. We call such behavior Decreasing
Byte Counting [29]. To realize this linear increase in d as a function of W , we use the slow start
threshold as the target window for which d is equal to 2. The slow start threshold is assumed to
be less than the network capacity. Starting from d = 1 for W = 1, we increase d as follows

d(W) = 1 +
W − 1
Wth − 1

.

The solution can be simply implemented by incrementing the congestion window upon the receipt
of a non-duplicate ACK by

W = W +
2

d(W)

7.5. Case of multiple TCP connections 143

instead of W = W + 1 in case of standard TCP and W = W + 2 in case of Byte Counting. Note
that if we take the slow start threshold very large, Decreasing Byte Counting converges to Byte
Counting since d remains close to one. If Wth is set to less than the network capacity, and if the
bu�er in the bottleneck router is able to absorb the bursts of standard TCP, Decreasing Byte
Counting will reduce the duration of slow start compared to standard TCP without adding to
the burstiness of the protocol. This should result in a better performance than the two other
versions of TCP. Now, if the bu�er in the bottleneck router is not able to absorb the bursts of
standard slow start, clearly it will not be able to absorb the bursts of our version. Decreasing
Byte Counting and standard TCP become aggressive approximately for the same bu�er B at the
bottleneck. Thus, we come with a new version of slow start that is able to reduce the duration of
the phase without adding to the burstiness. Of course, this requires that the version of slow start
that uses a constant d is not aggressive and that the slow start threshold is set to less than the
network capacity. If it is not the case especially for the condition on the slow start threshold, our
solution might be a little more aggressive. We don't pretend that our solution always improves
the performance. We just want to show that keeping the value of d constant during the slow
start phase is suboptimal.

We validate our version of slow start using a ns simulation. We show in Figure 7.8 a compar-
ison between Byte Counting, standard slow start and our version. Wth is set to the bandwidth-
delay product. The simulation scenario is the same as that in Figure 7.3. A bu�er size of 30
packets is used in the bottleneck router. With such a bu�er, Byte Counting is unable to reach
the bandwidth-delay product whereas standard slow start is. We see clearly how Byte Counting
causes losses and reduces the performance with respect to standard slow start. Our version is
able to increase faster the window while avoiding losses. It provides the best performance with
respect to the two others.

7.5 Case of multiple TCP connections

We discuss brie�y the interaction between slow start and bu�er size when multiple TCP con-
nections share the bandwidth of the bottleneck router. We will see how the problem of slow
start burstiness becomes less important and how the same bu�er is able to support burstier slow
start versions. Also, we validate in this context the bene�ts of our Decreasing Byte Counting
algorithm.

7.5.1 A model for the case of multiple connections

Suppose that a new connection arrives at a random time to a network with already running
connections. Suppose for simplicity that all the connections including the new one have approx-
imately the same round-trip time. Consider the single-node model for the network where all the
connections share the bandwidth µ (packets/s). Given that the load in a TCP/IP network is at

144 Chapter 7. TCP congestion control and large bandwidth-delay product networks

most divided by two, the new connection will see in the network a number of packets between
half the pipe size and the pipe size. Call N the number of packets it �nds. Using N , we will try
to �nd the parameters of the equivalent single-node network seen by the new connection. Once
these parameters are calculated, we can apply our previous analysis to characterize the slow start
phase of the new connection.

If N is smaller than µT , we consider that the new connection sees an empty bu�er together
with N packets propagating along network links (i.e., not waiting for transmission in the bu�er).
The other connections are assumed to operate in congestion avoidance where no queue builds
up in B until N exceeds the bandwidth-delay product [84]. The packets of the new connection
are also assumed not to arrive simultaneously at the bottleneck router with packets from other
connections. In our simulations, we noticed that this is indeed the case when the round-trip times
of the di�erent connections are approximately equal and this is simply due to the phenomenon
of long bursts we already described. One can think about using the model in [18] for the case
when packets of the new connection arrive simultaneously at the bottleneck router with packets
from other connections. Based on our assumptions, the equivalent single-node network seen by
the new connection is formed in the case N < µT of a bu�er B and a bandwidth-delay product
equal to µT −N (packets).

Now, if N is larger than µT (packets), we consider that the new connection sees full links
together with N − µT packets waiting for transmission in B. In this case, the equivalent single-
node network is only formed of a bu�er of size B + µT −N packets. Thus, the over�ow window
given in Equation (7.4) for the single connection case can be rewritten in the case of multiple
connections as,

WB = B + min (µT −N, Bd) . (7.5)

This new over�ow window takes its value between zero and a maximum value we call Wmax
B

which corresponds to a number of packets in the network equal to N = (B + µT)/2. It follows,

Wmax
B = B + min((µT −B)/2, Bd). (7.6)

In addition to the bandwidth-delay product, the over�ow window is again a function of the
bu�er size in the bottleneck router and of the window increase rate during slow start. The
window at which the new connection gets in congestion avoidance is a decreasing function of B

and tends to zero when B does. We also notice that the impact of d is less important in the case
of multiple connections than in the case of a single connection. Indeed, in the case of multiple
connections, the equivalent network seen by the new connection has the same bu�er size (B)
as the real network but a smaller bandwidth-delay product (µT −N). This reduces the length
of bursts that reach the bu�er. The real bandwidth-delay product is shared by the di�erent
connections whereas the bu�er can be considered as only dedicated to the new connection.

Using (7.5), an early bu�er over�ow occurs (i.e., slow start becomes aggressive) when Bd <

µT −N . It never occurs when the bu�er size satis�es Bd > µT −N with N equal to (B +µT)/2.

7.5. Case of multiple TCP connections 145

D
7.5 Mbps

100 ms
B

S2

S1

S3

S4

S5

100 Mbps

1 ms

Figure 7.9: The simulation scenario

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140

A
ve

ra
ge

 T
hr

ou
gh

pu
t o

f a
 T

ra
ns

fe
r

(K
bp

s)

Slow Start Threshold (KB)

B=70 and d=1
B=20 and d=1

Figure 7.10: Throughput vs. Wth

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

Buffer Size (packets)

Decreasing Byte Counting
Byte Counting
Standard TCP

Figure 7.11: Throughput vs. bu�er

This latter condition corresponds to a bu�er size larger than µT/(2d + 1) (packets) which is less
important than the bu�er size µT/d (packets) required in the case of a single connection. Now,
even when the bu�er size is smaller than µT/(2d + 1), the problem does not always occur. For
example, it does not occur when N is larger to µT whatever is the size of B.

To show this behavior in presence of multiple connections, we simulate with ns the scenario
in Figure 7.9. Five TCP-Reno sources share a 7.5 Mbps bottleneck link. Every source has
many �les to transmit. The �le size is chosen randomly between 100 Kbytes and 1 Mbytes.
Files of a source are transmitted on multiple non-parallel connections. These connections are
separated by a random time between 0 and 5 seconds. The packet size is set to 512 bytes. We
run 50 simulations of 50 seconds each then we calculate the average TCP throughput during a
�le transfer.

We plot in Figure 7.10 the average throughput of a transfer as a function of Wth. Two cases
are considered: B = 70 packets and d = 1, B = 20 packets and d = 1. The results in this �gure
match well Equations (7.5) and (7.6). Theoretically, for these two cases, Wmax

B is respectively

146 Chapter 7. TCP congestion control and large bandwidth-delay product networks

equal to 101 Kbytes 19 and 21 Kbytes. We see well that the throughput starts to deteriorate
approximately in the middle between 0 and these values of Wmax

B . The biggest decrease in the
performance appears exactly at Wmax

B . Thus, in case of multiple connections, Wth must be set
according to Equation (7.5). However, overestimating the over�ow window does not lead to an
important degradation in performance as long as Wth is set to less than the maximum over�ow
window given in Equation (7.6).

7.5.2 Validation of Decreasing Byte Counting

We validate now the performance of our version for slow start in the context of multiple connec-
tions. We increase linearly the factor d from 1 for a window equal to 1 packet to 2 for a window
equal to the slow start threshold. We use the simulation scenario in Figure 7.9. We change the
bu�er size in the bottleneck router and we plot in Figure 7.11 the average throughput during
a transfer for the three slow start versions: standard slow start, Byte Counting and Decreasing
Byte Counting. Our version gives better performance than standard TCP when standard TCP
is not aggressive. For small bu�ers, they are both of them aggressive with our version a little
more aggressive than standard TCP. Intuitively, for large bu�ers, Byte Counting gives the best
performance. Recall, our objective is to show that, for a slow start version that uses a constant
d and that is not aggressive, we can accelerate a little the window increase at the beginning of
slow start without adding to the aggressiveness of the protocol.

7.6 Conclusions

We studied in this chapter the behavior of TCP during slow start and its impact on the per-
formance. First, we calculated the value to which the slow start threshold must be set. This
value can be independent of the network capacity and only a function of the bu�er size. We then
studied the impact of the window increase rate during slow start. We showed that accelerating
the window increase improves the performance until network bu�ers become unable to absorb
the bursts of slow start. Beyond this point, any increase in slow start aggressiveness deteriorates
the performance. We de�ned the optimum window increase strategy during slow start and based
on this, we presented a new algorithm for increasing the window that reduces the duration of
slow start without adding to the burstiness of the protocol.

Note that the analysis in this chapter holds when TCP uses no kind of packet spacing to
reduce the burstiness of slow start. As we explained, the trend today is to estimate the network
capacity and to pace packets at an appropriate rate so as to skip the slow start phase without
overloading the network routers. This will bring a �nal solution to the problem of slow start.
Until that time, one can think about adapting the window increment or over-provisioning the

19To get this value of W max
B , one has to consider the original expression of WB in Theorem 7.1 where �gures

the number of the mini-cycle at which the congestion occurs.

7.6. Conclusions 147

bu�ers in routers. The problem with over-provisioning the bu�ers is that it increases the end-to-
end delay especially on long delay paths as satellite paths. The use of active queue management
techniques as RED (Random Early Detection) [42, 65] solves this latter problem. With these
techniques, we can consider large bu�ers to absorb slow start bursts while keeping the queueing
time on average at small values. We have to add to this the other bene�ts of the use of active
queue management techniques as the increase in the utilization and the smoothness of the load
and queue length.

148 Chapter 7. TCP congestion control and large bandwidth-delay product networks

Chapter 8

TCP congestion control and
asymmetric networks

We consider now the second environment challenging for TCP, we mean by that networks pre-
senting an important asymmetry between the bandwidth available in the forward direction and
that available in the reverse direction. As an example of such networks we �nd the hybrid satel-
lite network shown in Figure 2.7 where users download data from the Internet via a high speed
satellite link (e.g., 2 Mbps) and send requests and ACKs via a slow reverse channel (e.g., a dial-
up modem line at 64 Kbps). As we explained in Chapter 2, TCP su�ers in such environment
because the slow channel on the reverse path is not able to carry the �ow of ACKs generated by
TCP receivers. A queue of ACKs builds up in the bu�er at the input of the reverse channel, we
call it the reverse bu�er in the sequel, causing an increase in the round-trip time and an over�ow
of the bu�er (i.e., loss of ACKs). We recall brie�y the di�erent reasons for the deterioration of
TCP performance. First, the increase in round-trip time caused by the queue of ACKs reduces
the throughput of TCP since the transmission rate of a TCP connection is equal at any moment
to the window size divided by the round-trip time 20. Second, the increase in round-trip time as
well as the loss of ACKs slow the window increase. Third, the loss of ACKs leads to burstiness
at the source which may overload network bu�ers and cause the loss of packets. Fourth, the
loss of ACKs reduces the capacity of TCP (especially Reno) to recover from losses without a
timeout [56]. There is also the problem of deadlock of a new connection sharing the reverse
channel with already running connections [85]. Due to the over�ow of the reverse bu�er, the
new connection su�ers from the loss of its �rst ACKs which prohibits it from increasing its win-
dow. This deadlock continues until the dominant connections reduce their rates. The problem of
deadlock is the result of an unfairness in the distribution of the slow channel bandwidth between
the di�erent �ows of ACKs. The main reason for such unfairness is that a �ow of ACKs is not
responsive to drops as a TCP data �ow, so the running connections do not back o� their rates
when the reverse bu�er drops some of their ACKs, and hence they do not leave some of the

20A TCP connection is not allowed to transmit more than a window size of packets every round-trip time. So
the longer the round-trip time, the lower the transmission rate.

149

150 Chapter 8. TCP congestion control and asymmetric networks

bandwidth they are consuming to the newly arriving connection. The running connections only
reduce their rates when a data packet is lost in the forward direction or when they reach the end
of the data they have to transmit.

In Chapter 2, we explain the di�erent solutions proposed to alleviate the congestion at the
entry of the slow reverse channel. The most promising solution is the one that �lters the �ow
of ACKs in the reverse bu�er [3, 25]. The advantage of this solution is that it only requires
modi�cations in the reverse bu�er without any change to the TCP code. It pro�ts from the
cumulative nature of ACKs; an ACK can be safely substituted by a subsequent ACK carrying a
larger sequence number. From ACK content point of view, there is no need for queueing ACKs
in the reverse bu�er. Thus, when an ACK arrives at the reverse channel, the reverse bu�er is
scanned for ACKs from the same connection and some (or all) of these ACKs are erased. The
bu�er occupancy is then maintained at low levels without any loss of information.

The intuitive question that one may ask here is how many ACKs we must authorize a TCP
connection to queue in the reverse bu�er. In the literature, only the case of a one ACK per-
connection at a time is studied [3, 25]. When an ACK arrives at the entry of the slow channel
and before being queued, the reverse bu�er erases any ACK from the same connection. Clearly,
this behavior optimizes the end-to-end delay and the queue length, but it ignores the fact that
TCP also uses ACKs to increase its congestion window. This may not have an impact on the
congestion avoidance phase where the window is in general large. However, it has certainly an
impact on slow start where the window is small and needs to be increased as quick as possible
to achieve good performance. The impact on slow start is due to the burstiness of TCP during
this phase [18, 29, 84], see Chapters 2 and 7 for an explanation of TCP burstiness during slow
start. As we will see later, the fast window increase during slow start together with the absence
of any packet spacing in TCP, lead to the generation of long bursts of ACKs. ACKs may
also arrive in bursts due to some compression of data packets or ACKs in the network [128].
Filtering bursts of ACKs will result in few ACKs reaching the source and then in a slow window
increase. This negative impact of ACK �ltering will be important on �nite transfers (hundreds
of Kbytes) for which most of the packets are transmitted during slow start. In particular, it
will be pronounced over long delay links (e.g., satellite links) where slow start is already slow
enough [34]. Authorizing some number of ACKs from a connection to be queued in the bu�er
before the start of �ltering will have the advantage of absorbing these bursts of ACKs which will
result in a faster window increase. However, this threshold of ACKs must be kept at a small
value in order to limit the end-to-end delay. A certain tradeo� then appears: one must expect
an improvement in the performance as the threshold increases, followed by a deterioration in the
performance when it becomes large (see Figure 8.5 for an example).

We focus in this chapter on the ACK �ltering solution and we try to re�ne it in order to
absorb the bursts of ACKs while not increasing the end-to-end delay. First, we study the case
when the ACK �ltering threshold is set to a �xed value. From now, we mean by ACK �ltering

8.1. Impact of ACK �ltering threshold 151

threshold the number of ACKs that a connection can queue in the reverse bu�er. With an
analytical model similar to the one we developed in Chapter 7, we show how this threshold
must be chosen. We then present an algorithm, we call Delayed ACK Filtering, that adapts the
�ltering of ACKs as a function of the slow channel utilization rather than the ACK queue length.
This is equivalent to a dynamic setting of the ACK �ltering threshold. Our objective is to pass
as many ACKs as possible to the source while maintaining the end-to-end delay at small values.
In case of multiple concurrent connections, our algorithm adapts the �ltering in a way to share
fairly the slow channel bandwidth between the di�erent connections. This provides a solution
to the problem of deadlock caused by the non-responsiveness of the ACK �ows. The di�erent
results of our study are validated with simulations using the network simulator ns. The research
work we present in this chapter has been published in [31].

8.1 Impact of ACK �ltering threshold

Let us focus on the slow start phase since it is the most impacted by ACK �ltering. We consider
short transfers and we look at the slow start phase at the beginning. Our analysis can be applied
to the other slow start phases as well. We start by the case of a single transfer sharing the slow
reverse channel. The burstiness of ACKs caused by slow start is only considered. Our objective
is to show that delaying the �ltering until a certain number of ACKs get queued in the reverse
bu�er shortens the slow start phase and improves the performance if this number is correctly set.
We assume that the routers in the forward direction are able to absorb the burstiness of tra�c
resulting from the �ltering of ACKs. We don't address later the problem of burstiness of tra�c
in the forward direction since our algorithms, by passing more ACKs, reduce this burstiness
compared to the classical one ACK at a time �ltering strategy.

8.1.1 TCP and network models

Let µr be the bandwidth available on the reverse path and let T be the constant component of
the round-trip time in absence of queueing delay. µr is measured in terms of ACKs per second.
Assume that the round-trip time only increases when ACKs are queued in the reverse bu�er.
When no ACKs are queued, the round-trip time is taken equal to T . A queue of ACKs starts to
be always present in the reverse bu�er when the reverse channel is fully utilized, this means when
the number of ACKs arriving at the reverse bu�er per T is more than µrT . Our assumption on
the round-trip time holds given the considerable slowness of the reverse channel compared to the
other links on the path.

Assume for the moment that the reverse bu�er is large and that ACKs are not �ltered. The
window at the TCP source then grows exponentially with a rate function of the frequency with
which the receiver acknowledges data packets. We look on the slow start phase and we consider
that the source applies the standard window increase of one packet per ACK [75]. Suppose that

152 Chapter 8. TCP congestion control and asymmetric networks

the receiver acknowledges every d packets (usually d = 2), thus the window increases by a factor
α = 1 + 1/d every round-trip time. If we denote by W (n) the congestion window size at the end
of the nth round-trip time, we get

W (n + 1) = (d + 1)W (n)/d = αW (n).

For W (0) = 1, this gives the following exponential expression of the window we have already
seen

W (n) = αn.

Once the reverse channel is fully utilized, ACKs start to arrive at the source at a constant
rate µr. Here, the window together with the round-trip time start to increase linearly with time.
The transmission rate of TCP, which is equal to the window size divided by the round-trip time,
stops increasing and becomes limited by the reverse channel. This continues until ACKs start
to be �ltered or dropped. The round-trip time then stops increasing and the transmission rate
resumes its increase with the window size (see Figure 8.4).

The �rst remark that we can make here is that the ACK queue length needs to be maintained
at small values in order to get a small round-trip time and hence a better performance. An
aggressive �ltering (say one ACK per-connection) is then needed. But, due to the fast window
increase during slow start and the absence of any kind of packet spacing in TCP, ACKs may
arrive at the reverse bu�er in separate long bursts with the rate of ACKs within a burst higher
than µr and with the total rate of ACKs lower than µr. These long bursts arrive with a frequency
of one long burst per round-trip time and they are the results of the long bursts of packets that
propagate in the forward direction. We refer to Chapter 7 for a description of the burstiness
phenomenon during slow start. For instance, let us look at Figure 8.1 to understand how ACKs
arrive at the reverse channel in long bursts. An aggressive �ltering reduces the number of ACKs
reaching the source whereas the long bursts of ACKs can be absorbed without causing any
increase in the round-trip time. Such absorption will result in more ACKs reaching the source
and hence in a faster window increase. Given that the round-trip time remains constant whenever
the reverse channel is not fully utilized, a faster window increase results in a faster transmission
rate increase and hence in a better performance. Thus, the general guideline for ACK �ltering
is to accept all ACKs until the slow channel becomes fully utilized, then to �lter them in order
to limit the round-trip time. We consider �rst the case when a connection is allowed to queue
a certain number of ACKs in the reverse bu�er. This number, which we denote by δ and which
we call the ACK �ltering threshold, is maintained constant during the connection lifetime. We
study the impact of δ on the performance and we show how it must be chosen. Later, we present
algorithms that adapt ACK �ltering as a function of the slow channel utilization rather than the
ACK queue length. This permits a simpler implementation together with a better performance
than �xing a certain number of ACKs.

8.1. Impact of ACK �ltering threshold 153

t t + RTT t + 2RTT t + 3RTT

W(n+1)/d ACKs W(n+2)/d ACKsW(n)/d ACKs

Time t : Start of service of the W(n)/d ACKs at the entry of the slow reverse channel

Figure 8.1: Long bursts of ACKs as they cross the reverse channel

δR
ev

er
se

 b
uf

fe
r

co
nt

en
t T

δ δN(n)

N(n+1) N(n+2)

N(n+1)

Time ()1/µr

Figure 8.2: Reverse bu�er occupancy as a function of time

8.1.2 ACK �ltering threshold

From Chapter 7, we know that TCP transmits every round-trip time a window size of packets
in a long burst. A burst of W (n) packets causes the generation of W (n)/d ACKs which reach
the source at the end of the round-trip time. Figure 8.1 shows this bursty behavior of TCP at
the input of the slow reverse channel. Given that the reverse channel is the bottleneck, ACKs
within long bursts have a rate µr at the output of the reverse channel and a rate αµr at its
input. During the receipt of a long burst of ACKs, a queue builds up in the reverse bu�er at a
rate (α− 1)µr ACKs/s. A long burst of X ACKs at a rate αµr causes the building of a queue of
length X/(d + 1) ACKs. The full utilization of the reverse channel requires the receipt of a long
burst of length µrT ACKs and hence the absorption of a queue of length µrT/(d + 1). This is
the value of δo, the optimal �ltering threshold, the reverse bu�er must use

δo = µrT/(d + 1). (8.1)

We notice that δo is an increasing function of the slow channel bandwidth and the frequency
with which TCP packets are acknowledged.

8.1.3 Early ACK �ltering

We consider now the case δ < δo. When an ACK �nds δ ACKs in the reverse bu�er, the lastly
received ACK is erased and the new ACK is queued at its place. We call this a static �ltering

154 Chapter 8. TCP congestion control and asymmetric networks

strategy since δ is not changed during the lifetime of the connection. Let us study the impact of
δ on the window increase rate, and thus on the performance of TCP.

Starting from W (0) = 1 (packet), the window increases exponentially until round-trip time
n0 where ACKs start to be �ltered. This happens when the ACK queue length reaches δ which
in turn happens when the reverse bu�er receives a long burst of length δ(d + 1) ACKs at a
rate αµr. Recall that a long burst of X ACKs at a rate αµr causes the building of a queue of
X/(d + 1) ACKs. Given that the length of the long burst of ACKs received during round-trip
time n0 is equal to W (n0)/d, we write

W (n0) = αn0 = δd(d + 1).

After round-trip time n0, ACKs start to be �ltered and the window increase slows. Consider
a round-trip time n > n0 and look at the region where the slow channel is not fully utilized. We
know that the maximum window increase rate (µr packets per unit of time) is achieved when
the reverse channel is fully utilized, and the best performance is obtained when we reach the full
utilization as soon as possible. Let N(n) denote the number of ACKs that leave the slow channel
during round-trip time n. Given that we are in slow start, we have W (n + 1) = W (n) + N(n).

The long burst of data packets of length W (n + 1) generates W (n + 1)/d ACKs at the
destination which reach the reverse bu�er at a rate faster than µr. The duration of this long
burst of ACKs is equal to the duration of the long burst N(n) at the output of the slow channel in
the previous round-trip time. Recall that we are working in a case where the bandwidth available
in the forward direction is very large compared to the rate of the slow reverse channel so that
many data packets can be transmitted at the source between the receipt of two ACKs. During
the receipt of the W (n + 1)/d ACKs, a queue of δ ACKs is formed in the reverse bu�er and the
slow channel transmits N(n) ACKs. The ACKs stored in the reverse bu�er whose number is
equal to δ are then transmitted. Thus,

N(n + 1) = N(n) + δ.

For explanation, Figure 8.2 shows the occupancy of the reverse bu�er as a function of time after
the start of ACK �ltering and before the full utilization of the slow reverse channel. We can
write for n > n0,

N(n) = N(n− 1) + δ = N(n0) + (n− n0)δ

= W (n0)/d + (n− n0)δ = δ(d + 1 + n− n0),

W (n) = W (n− 1) + N(n− 1) = W (n0) +
n−1∑

k=n0

N(k)

= δ[d(d + 1) + (n− n0)(d + 1) + (n− n0)(n− n0 − 1)/2].

8.1. Impact of ACK �ltering threshold 155

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6

T
C

P
 W

in
do

w
 S

iz
e

(p
ac

ke
ts

)

Time (s)

delta = 1
delta = 3
delta = 30
delta = 500
delta = 1000

Figure 8.3: TCP window vs. time

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6

In
st

an
ta

ne
ou

s
T

C
P

 T
hr

ou
gh

pu
t (

K
bp

s)

Time (s)

delta = 1
delta = 3
delta = 30
delta = 500
delta = 1000

Figure 8.4: TCP rate vs. time

We remark that when taking δ < δo, the window increase changes from exponential to polynomial
and it slows with δ. The source spends more time before reaching the maximum window increase
rate of µr packets per unit of time, which we recall takes place when the slow channel is fully
utilized. As we will see with the simulations, this results in a performance deterioration.

8.1.4 Simulation

Consider a simple simulation scenario where a TCP Reno source [56] transmits packets of size
1000 bytes over a forward link of 10 Mbps to a destination that acknowledges every data packet
(d = 1). The forward bu�er, the receiver window, as well as the slow start threshold at the
beginning of the connection are set to high values. ACKs cross a slow channel of 100 Kbps back
to the source. T is set to 200 ms. We use the ns simulator and we monitor the packets sent
during the slow start phase at the beginning of the connection. We add to the simulator a static
ACK �ltering strategy that limits the number of ACKs in the reverse bu�er to δ, and we compare
the performance for di�erent values of δ. The reverse bu�er itself is set to a large value. We
provide three �gures where we plot as a function of time, the congestion window (Figure 8.3), the
transmission rate (Figure 8.4), and the last acknowledged sequence number (Figure 8.5). The
transmission rate is averaged over intervals of 200 ms.

For such simulation scenario, the calculation gives a δo equal to 30 ACKs (Equation (8.1)).
According to our analysis, a δ less than δo should slow the window growth. We see this clearly
for δ = 1 and δ = 3 in Figure 8.3. The other values of δ in the �gure give the same window
increase as δo since the �ltering of ACKs starts for all of them after the full utilization of the
reverse channel, hence the maximum window increase rate (µr packets/s) is reached at the same
time. But, the observation of the window is not su�cient to study the performance of TCP
since the same window means di�erent performance if the round-trip time is not the same. In
addition to the window, one has to look at the plots of the transmission rate (Figure 8.4). For

156 Chapter 8. TCP congestion control and asymmetric networks

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

0 1 2 3 4 5 6

D
at

a
B

yt
e

S
eq

ue
nc

e
N

um
be

r

Time (s)

delta = 1
delta = 3
delta = 30
delta = 500
delta = 1000

Figure 8.5: Sequence number vs. time

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0 1 2 3 4 5 6

D
at

a
B

yt
e

S
eq

ue
nc

e
N

um
be

r

Time (s)

delta = 1
delta = 30
delta = 1000
Delayed Filtering

Figure 8.6: Sequence number vs. time

small δ, the round-trip time can be considered as always constant (' T) and the curves for
the transmission rate and for the window have approximately the same form. The di�erence
is that the transmission rate saturates when it reaches the available bandwidth in the forward
direction (at 1000 Kbps). We also notice in Figure 8.4 that TCP rate saturates somewhere
in the middle (e.g., at 3s for δ = 1). This latter saturation corresponds to the time between
the full utilization of the reverse channel and the convergence of the round-trip time to its limit
(T +δ/µr) when δ ACKs start to be always present in the reverse bu�er. During the convergence
time, the transmission rate remains constant due to a linear increase of both the window and the
round-trip time. Once the round-trip time reaches its limit, the transmission rate resumes its
increase with the window but this time linearly not exponentially. Note that the convergence of
the round-trip time takes a long time for large δ (e.g., around 5s for δ = 500). Now, the sequence
number in Figure 8.5 is an indication of the overall performance. At any moment, the plot of
the sequence number tells us how many packets have been acknowledged since the beginning of
the connection. We see how taking δ = δo leads to the best performance since it presents a good
compromise between delaying the �ltering of ACKs to improve the window increase and bringing
it forward to reduce the round-trip time. While increasing δ, the overall performance improves
until δ = δo then worsens. Note that this behavior may not be seen with long TCP transfers
where slow start has a little impact on the overall performance.

8.2 Delayed ACK �ltering: Case of a single connection

Tracking the queue length for �ltering ACKs is not a guarantee for good performance. First, in
reality and due to the �uctuations of Internet tra�c, the arrival of ACKs at the reverse bu�er
may be completely di�erent than the theoretical arrival we described. Second, the calculation
of the optimal threshold (Equation (8.1)) is di�cult in practice since it requires the knowledge
of the round-trip time and the acknowledgement strategy at TCP receivers (d). Third, setting

8.2. Delayed ACK �ltering: Case of a single connection 157

the �ltering threshold to a �xed value leads to an unnecessary increase in round-trip time after
the slow channel becomes fully utilized. Some mechanisms are required in the reverse bu�er
to absorb the bursts of ACKs when the slow channel is not well utilized, and to �lter ACKs
with a small δ otherwise. For the �rst and second problems, one can imagine to set the �ltering
threshold to the bandwidth-delay product of the return path (µrT) in order to account for the
most bursty case. The cost to pay here will be a further increase in the round-trip time.

The simplest solution to the above problems is to measure the rate of ACKs at the output of
the reverse bu�er � before being transmitted on the slow channel � and compare it to the slow
channel bandwidth, then to use the result of the comparison to activate or halt the �ltering of
ACKs. Measuring the rate at the output rather than at the input is better since ACKs are more
spread over time which increases the precision of the measurement tool. In case we don't know
the slow channel bandwidth (e.g., case of a shared medium), one can measure how frequently
ACKs are present in the reverse bu�er. ACKs start to be always present in the reverse bu�er
when the slow channel starts to be fully utilized. When the measurement indicates that the slow
channel is fully utilized (e.g., the utilization exceeds a certain threshold that we �x to 90% in
our simulations), we start to apply the classical �ltering studied in the literature [25]: erase all
old ACKs from a connection when a new ACK arrives. Once the utilization of the slow channel
drops below a certain threshold, �ltering is halted until the utilization increases again. This
adaptation of ACK �ltering guarantees a maximum window increase during slow start and a
minimum round-trip time in the steady state. We can see it as a dynamic �ltering where δ is
set to in�nity when the slow channel is under-utilized and to 1 when it is well utilized. Also, it
can be seen as a transformation of the rate of the input �ow of ACKs from a given rate λ to
min(λ, µr) without the loss of any information, of course if the reverse bu�er is large enough so
as to absorb the bursts of ACKs until the start of �ltering. Recall that we are always working
in the case of a single connection. The case of multiple concurrent connections is studied later.

8.2.1 Utilization Measurement

Assume that the slow channel bandwidth is known. We use the time sliding window (TSW)
algorithm de�ned in [52] for ACK rate measurement. When an ACK leaves the bu�er, the time
between this ACK and the last one is measured and the rate estimate is updated by taking a
part of this new measurement and the rest from the past. The di�erence from classical low pass
�lters (i.e., exponentially weighted moving average algorithms with constant coe�cients, see [75]
for example) is that the contribution of the new measurement is more important at low rates
than at high rates. This makes the convergence time of the algorithm independent of whether
the rate of ACKs decreases or increases. Note that if the contribution of the new measurement
is constant, the convergence time will only be a function of the number of measurements, and
hence it will be much longer when the times between ACKs start to increase than when they
start to decrease. The convergence time of the TSW algorithm is controlled via a time window

158 Chapter 8. TCP congestion control and asymmetric networks

that decides how much the past is important. We can see this window as the time interval during
which the rate of ACKs is averaged.

The TSW algorithm is de�ned as follows. Let Rate be the rate estimate, Window be the time
window, Last be the time when the last ACK has been seen, Now be the current time, Size be
the size of the ACK (40 bytes). Then, upon ACK departure,

1) Volume = Rate*Window + Size;
2) Time = Now - Last + Window;
3) Rate= Volume /Time;
4) Last=Now;

The same algorithm with small changes can be used to measure how frequently ACKs are present
in the reverse bu�er.

8.2.2 Simulation

We consider the same simulation scenario as that in Section 8.1.4. We add our delayed �ltering
algorithm to the ns simulator and we validate its performance. The time window is taken in
the same order as the round-trip time. We plot in Figure 8.6 the sequence number of the last
acknowledged packet as a function of time. We also plot in the same �gure the sequence number
for static �ltering and three values of δ. The �gure shows how our algorithm gives as good
performance as the case when the threshold of static �ltering is correctly chosen (δ = δo = 30).
Moreover, our dynamic �ltering slightly outperforms the optimal static �ltering due to the erasing
of all ACKs when the slow channel is fully utilized. The operation of delayed �ltering is illustrated
in Figures 8.7 and 8.8 where we plot the reverse bu�er occupancy as a function of time. These
�gures correspond respectively to static �ltering with δ = δo = 30 and delayed �ltering. Note
how bursts of ACKs are absorbed at the beginning of the connection before being �ltered some
time later. The �ltering of ACKs starts approximately at the same time in both cases. This is
the time when the slow channel becomes fully utilized. We notice how after the full utilization of
the slow channel, delayed �ltering reduces the ACK queue length to one whereas static �ltering
keeps δ ACKs in the reverse bu�er.

8.3 Delayed Filtering: Case of multiple connections

Consider now the case of multiple connections running in the forward direction and sharing
the slow reverse channel for their ACKs. Let N be the number of connections. In addition
to the problems of end-to-end delay and reverse channel utilization, the existence of multiple
connections raises the problem of fairness in sharing the reverse channel bandwidth. A new
connection generating ACKs at less than its fair share from the bandwidth must be protected
from other connections exceeding their fair share. This protection must be enforced by some
�ow isolation in the reverse bu�er since as we said ACKs are not responsive to drops as data

8.3. Delayed Filtering: Case of multiple connections 159

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

R
ev

er
se

 B
uf

fe
r

O
cc

up
an

cy
 (

pa
ck

et
s)

Time (s)

Figure 8.7: Static �ltering

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

D
at

a
B

yt
es

 S
eq

ue
nc

e
N

um
be

r

Time (s)

Figure 8.8: Delayed �ltering

�ows. We consider a max-min fairness [?] which consists in sharing the bandwidth of the slow
channel equally between the di�erent ACK �ows. Note that other fairness schemes [?] could be
considered. For example, one can imagine to give ACKs from a new connection more bandwidth
than ACKs from an already running connection.

In this section, we present di�erent �ltering strategies and we study their performance. We
consider �rst the case of a large reverse bu�er where ACKs are not lost but queued to be
transmitted later. There is no need here for an ACK dropping strategy but rather for a �ltering
strategy that limits the queue length, improves the utilization, and provides a good fairness.
Second, we study the case when the reverse bu�er is small and when ACK �ltering is not enough
to maintain the queue length at less than the bu�er size. ACK �ltering needs to be extended in
this second case by an ACK dropping strategy.

8.3.1 Case of a large bu�er

To guarantee a certain fairness, we apply delayed �ltering to every connection. A list of active
connections is maintained in the reverse bu�er. For every connection, we measure and store the
average rate of its ACKs at the output of the reverse bu�er. When an ACK arrives at the reverse
bu�er, the list of active connections is checked. If no entry is found, a new entry is created for this
new connection. Now, if the average rate associated to the connection of the new ACK exceeds
the slow channel bandwidth divided by the number of active connections, all ACKs belonging
to the same connection are �ltered and the new ACK is queued at the place of the oldest ACK
from the same connection. When an ACK leaves the bu�er, the average rates of the di�erent
connections are updated. A TSW algorithm is again used for ACK rate measurement. The entry
corresponding to a connection is freed when its average rate falls below a certain threshold.

Keeping an entry per connection seems to be the only problem with our algorithm. We believe
that with the increase in processing speed, this problem does not exist. Also, and as we will see

160 Chapter 8. TCP congestion control and asymmetric networks

D
10 Mbps

S

S

S

100 Mbps

100 ms

1 - 10 ms

N

SN-1

2

1

Reverse buffer
100 ms

100 Kbps

Figure 8.9: Simulation scenario

later, we can stop our algorithm beyond a certain number of connections since it converges to
static �ltering with δ = 1. This happens when the fair bandwidth share of a connection becomes
very small. Classical �ltering (δ = 1) could then be applied without the need to account for
bandwidth sharing.

Now, delaying the �ltering of ACKs from a connection separately from the other connections
while keeping the classical FIFO (First-In First-Out) service does not result in a complete isola-
tion of �ows. The accepted burst of ACKs from an un�ltered connection unnecessarily increases
the round-trip time of the other connections. A Round-Robin scheduling is required for the
isolation to be achieved. ACKs from �ltered connections will no longer have to wait after ACKs
from an un�ltered one.

We add the di�erent �ltering algorithms we cited above to the ns simulator and we use
the simulation scenario in Figure 8.9. N TCP-Reno sources transmit short �les of sizes chosen
randomly with a uniform distribution between 10 Kbytes and 10 Mbytes to the same destination
D. The propagation delays of access links are chosen randomly with a uniform distribution
between 1 and 10 ms. ACKs from all the transfers return to the sources via a 100 Kbps slow
channel. A source Si transmits a �le to D, waits for a small random time, and then transmits
another �le. We take a large reverse bu�er and we change the number of sources from 1 to 20.
For every N , we run the simulations for 1000s and we calculate the average throughput during a
�le transfer. We plot in Figure 8.10 the performance as a function of N for �ve algorithms: no-
�ltering (δ = +∞), classical �ltering (δ = 1), delayed �ltering with all the connections grouped
into one �ow, per-connection delayed �ltering with FIFO and with round-robin scheduling.

In the third algorithm, we only check the utilization of the slow channel. When the utilization
exceeds a certain threshold, we apply classical �ltering with one ACK per-connection at a time.
The �ltering is halted when the slow channel is not fully utilized.

We notice in the �gure that no-�ltering gives the worst performance due to the long queue
of ACKs in the reverse bu�er. Classical �ltering solves this problem but it is too aggressive so it
does not give the best performance especially for small number of connections. For large number

8.3. Delayed Filtering: Case of multiple connections 161

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 T
hr

ou
gh

pu
t d

ur
in

g
a

si
ng

le
 tr

an
sf

er
 (

K
bp

s)

Number of Sources

No Filtering
Classical Filtering
Delayed Filtering
Per-connection Delayed Filtering (FIFO)
Per-connection Delayed Filtering (Round Robin)

Figure 8.10: Case of a large bu�er

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 T
hr

ou
gh

pu
t d

ur
in

g
a

si
ng

le
 tr

an
sf

er
 (

K
bp

s)

Number of Sources

No Filtering
Classical Filtering
Delayed Filtering
Per-connection Delayed Filtering (FIFO)
Per-connection Delayed Filtering (Round Robin)

Figure 8.11: Case of a small bu�er

Figure 8.12: The relation between ACK �ltering and ACK dropping

of connections, the bandwidth share of a connection becomes small and classical �ltering gives
close performance to that of the best policy, per-connection �ltering with round-robin scheduling.
Single-�ow delayed �ltering is no other than static �ltering beyond a small number of connections,
and per-connection �ltering with FIFO scheduling gives worse performance than round robin
scheduling due to the impact of un�ltered connections on the round-trip time of �ltered ones.
Compared to no-�ltering and classical �ltering, our algorithms improve the performance of TCP
especially when the number of concurrent connections is not very large.

8.3.2 Case of a small bu�er

The question we ask here is what happens if we decide to queue an ACK and we �nd that
the bu�er is full. In fact, this is the open problem of bu�er management with a di�erence in
our case that the �ows we are managing are not responsive to drops as TCP data �ows. The
other di�erence is that in our case, ACK dropping is preceded by ACK �ltering which reduces
the overload of ACKs on the reverse bu�er. The bu�er management policy is only used in the
particular case when �ltering is not enough to avoid the reverse bu�er over�ow. We can see the
relation between �ltering and dropping as two consecutive boxes (Figure 8.12). The �rst box,
which is the �ltering box, tries to eliminate the unnecessary information from the �ow of ACKs.
The �ltered �ow of ACKs is then passed to the second box which contains the reverse bu�er

162 Chapter 8. TCP congestion control and asymmetric networks

with the appropriate dropping strategy.
For classical �ltering, we use the normal drop-tail policy. The bu�er space is fairly shared

between the di�erent connections (one ACK per connection) and we don't have enough informa-
tion to use another more intelligent dropping policy. The same drop-tail policy is used in case
of single-�ow delayed �ltering when ACKs are �ltered. When ACKs are not �ltered, we use the
Longest Queue Drop policy described in [120]: the oldest ACK of the connection with the longest
queue is dropped and the new ACK is queued at the end of the bu�er. Now, for per-connection
delayed �ltering, we pro�t in the dropping procedure from the information on rates available for
�ltering: the oldest ACK of the connection with the highest rate is dropped.

We add all these dropping policies to the �ltering module we developed for the ns simulator.
We repeat the same simulation of the previous section but now with a small reverse bu�er of
10 packets. The average throughput is shown in Figure 8.11 as a function of the number of
sources. In this case and especially for large N , the di�erence in performance is mainly due to
the di�erence in the dropping policy. This can be seen from the di�erence in performance at large
N between per-connection delayed �ltering and classical �ltering. If the dropping policy is not
important, these two �ltering strategies should give close performance. Per-connection delayed
�ltering with round robin scheduling gives again the best performance. The relative position of
classical �ltering to no-�ltering is a little surprising. When the number of connections is smaller
than the bu�er size, classical �ltering is able to keep an empty place for a new connection and
hence protects it from already running connections. This leads to a better performance than the
case of no-�ltering. However, as the number of connections exceeds the bu�er size, the reverse
bu�er starts to over�ow and new connections will no longer be protected. Thus, the performance
of classical �ltering deteriorates when N increases and it drops below that of no-�ltering for large
N . We can conclude that when the number of connections is larger than the bu�er size, a simple
drop-tail policy is enough for good performance. This again limits the number of connections
that our delayed �ltering algorithm needs to track.

8.4 Conclusions

We studied in this chapter the ACK �ltering scheme proposed in the literature to reduce the
length of the queue of ACKs on the reverse path in an asymmetric TCP/IP network. We showed
that, due to the burstiness of ACKs, the existing scheme is aggressive and that the performance
can be further improved by absorbing the bursts of ACKs whenever the scarce bandwidth on
the reverse path is not fully utilized. We proposed two schemes for such absorption: a static
scheme where the �ltering starts when a certain number of ACKs is queued, and a dynamic
scheme where the �ltering starts when the rate of ACKs exceeds a certain threshold. Our two
schemes improve the performance with respect to the classical scheme. Moreover, the schemes
we proposed ensure that the scarce bandwidth is fairly shared between the di�erent connections.

8.4. Conclusions 163

This is very important to help new connections to quickly increase their windows and hence to
realize better throughputs.

The main problem with our schemes is that they require a per-connection state in the reverse
bu�er in order to achieve the fairness objective. But, we showed that for multiple reasons,
there is no need for this per-connection state when the number of connections exceeds a certain
threshold. First, when the fair share of a connection from the scarce bandwidth is small, our
schemes converge to the simple �ltering scheme studied in the literature. Second, when the
number of connections exceeds the bu�er size, the ACK dropping strategy becomes the most
important factor. In this second case, one can stop �ltering ACKs and only use an ACK dropping
strategy (e.g., Longest Queue Drop [120]) that ensures fairness. Our results showed that even a
simple drop-tail strategy gives better performance in this case than the classical ACK �ltering.
The dropping strategy we proposed to our per-connection scheme gives the best performance.

164 Chapter 8. TCP congestion control and asymmetric networks

Chapter 9

TCP congestion control and wireless
networks

The third and the last environment we consider for the study of TCP congestion control is
the wireless environment. We mean by wireless environment any network containing an air
interface. This ranges from terrestrial mobile networks (e.g., GSM) to GEO satellite networks.
As we explained in Chapter 2, the problem of TCP in such networks is in the transmission
errors on the wireless interface which are interpreted by TCP as congestion signals [7, 26, 34].
Indeed, due to many phenomena as fading, signal-power attenuation, shadowing, interference,
etc., wireless links are known to have a much higher Bit Error Rate (BER) than wire lines. The
Signal-to-Noise ratio at the output of a wireless link often drops to low values resulting in a
corruption of the transmitted information. A TCP packet corrupted while crossing a wireless
link is discarded before reaching the TCP receiver which results in a loss detection at the TCP
source and an unnecessary reduction of the congestion window. In the following, we will use the
term non-congestion losses to denote corrupted TCP packets on a wireless interface. We will also
use the terms noisy link and lossy link to denote the wireless link. Note that even though this
chapter is dedicated to the wireless environment, it is useful for any other environment where
TCP packets are lost for other reasons than congestion. A typical example could be the loss of
ATM cells � and hence of the TCP packets they belong to � on a UBR (Unspeci�ed Bit Rate)
virtual circuit [21, 68] connecting two adjacent IP routers.

In Chapter 2, we presented an overview of the di�erent solutions proposed to improve the
performance of TCP on paths with non-congestion losses. We saw that the most promising
solution is the one that improves the quality of the lossy part of the network at the link level
with Forward Error Correction (FEC) codes [26]. The idea behind FEC is to send, in addition
to the original data, some redundant information so that a packet, corrupted while crossing a
wireless link, can be reconstructed at the output of the link without requiring any retransmission.
One can see FEC as sending, together with original packets, copies of them so that the copy
can be used when the original packet is lost, of course if the copy itself is not lost. The use of
FEC should improve the quality of the noisy link while consuming some extra bandwidth. The

165

166 Chapter 9. TCP congestion control and wireless networks

other drawback of FEC is that it requires some processing time for coding and decoding the
redundant information. However, the advantages of FEC are numerous and make it the most
interesting solution despite its cost [26, 34]. The �rst advantage of link-level FEC is that it
does not require any change of the TCP code. Other solutions as Explicit Loss Noti�cation [26]
require such a change. The second advantage of FEC is that it does not require any monitoring
of TCP packets inside the network. The monitoring of TCP packets at the entry of the lossy
part of the network is used by the other solutions either to split the TCP connection [24] or to
retransmit corrupted packets on behalf of the source [26]. Hence, FEC respects the principle of
layering and the end-to-end semantics of TCP since it can be entirely implemented below the
IP layer without the need to look at TCP and IP headers. The third advantage of FEC is that
the correction of packets is done on runtime which eliminates any interference with TCP error
recovery mechanisms. Note that a solution that retransmits packets on behalf of the source at the
entry of the lossy part of the network (e.g., Snoop protocol [26]) causes �uctuations of end-to-end
delay and possible expirations of TCP retransmission timer. These �uctuations are much more
important on paths where the propagation delay of the wireless link is large (e.g., satellite links).
Note also that the retransmission of packets within the network might cause the generation
of duplicate ACKs when the link layer continues to deliver packets to the receiver while the
corrupted packet is being retransmitted over the lossy link. These problems of retransmission-
based solutions are solved with FEC since packets are delivered to upper layers with the same
order with which they are transmitted over the wireless link. Of course, we may obtain gaps at the
receiver which correspond to packets that could not be reconstructed. These advantages of FEC
make from it a recommended solution for the improvement of the quality of bad transmission
media especially those of long propagation delay [7]. For example, Convolutional coding, Viterbi
decoding, together with interleaving techniques and Reed-Solomon encoding, are widely used to
render satellite links and wireless links as clean as terrestrial ones.

In this chapter, we address the problem of bandwidth tradeo� between link-level FEC and
TCP congestion control. While consuming some extra bandwidth, FEC improves the throughput
of TCP by shielding it from non-congestion losses. However, much FEC may steal some of the
bandwidth that was used by TCP. The question that we ask is, given a certain noisy link with
certain characteristics (bandwidth, error rate, burstiness of errors), how to choose the amount
of FEC so that to get the maximum gain in TCP performance. Our aim is to understand the
relation between the bandwidth consumed by FEC and that gained by TCP. We propose for
this purpose two models: one for non-congestion losses and one for FEC. We then use some
previous results from end-to-end modeling of TCP and some mathematical tools to approximate
the throughput of a TCP connection as a function of the amount of redundancy we add on
the wireless link and as a function of the way with which non-congestion losses occur (i.e., rate
and burstiness of losses). This gives insights on how to tune the FEC mechanism so that TCP
transfers achieve the best performance. The di�erent results of our study are validated with ns

9.1. The model 167

simulations.

9.1 The model

Consider a TCP connection that crosses a network including a noisy wireless link of rate µ (pack-
ets/s). We suppose that the quality of the noisy link is improved by a certain amount of FEC.
In the next two sections, we de�ne our model for the loss process over the wireless link as well
as our model for the FEC added to improve its quality.

9.1.1 The model for non-congestion losses

It is well known that transmission errors over wireless links tend to appear in bursts [49, 51, 55,
83]. The model often used in the literature to represent correlated losses on wireless links is the
one introduced by Gilbert [49, 51, 66, 83]. We already referred to such model when we presented
our Markovian model for the calculation of TCP throughput (Chapter 4). The Gilbert model
is a simple ON/OFF model. The lossy link is supposed to be in one of two states: Good and
Bad. A packet is lost if it leaves the link while it is in the Bad state otherwise it is supposed to
be correctly received. A discrete time Markov chain with two states (Good and Bad) is used to
model the dynamics of the wireless link (Figure 9.1). This gives a Markovian model similar to
the one we used in Chapter 4 to study the �uctuations of the loss rate on the path of a TCP
connection. The di�erence is that in the Gilbert case all packets are lost and only lost in the
Bad state of the link, whereas in our end-to-end model packets can be lost in both states with a
higher probability in the Bad state than in the Good state.

We focus on the loss process of link-level packets also called transmission units. We sup-
pose that a TCP packet is transmitted over the wireless link using multiple small transmission
units [49, 51]. A transmission unit can be a bit, a byte, an ATM cell, or any other kind of
link-level blocks used for the transmission of TCP/IP packets. The state of the wireless link
(Good or Bad) is observed upon the arrival of transmission units at its output. We suppose that
units cross continuously the link. If no real units exist, �ctive units are inserted. In other words,
transitions of the Markov chain associated to the wireless link happen at deterministic moments.
The time between two transitions is equal to the transmission time of a unit on the wireless link.

For clarity, we use the same notation for the transition probabilities of the Markov chain as
those used in Chapter 4. Let γ̄ = 1 − γ denote the probability that the noisy link passes from
Good state to Bad state when a transmission unit arrives at its output. Let β = 1 − β̄ denote
the probability that it stays in the Bad state. According to what transmission units mean, β

and γ can be one of the quantities used to measure error rates in real networks (Bit Error Rate,
Cell Loss Ratio, etc.). β represents how much the loss process of transmission units is bursty.
A β close to zero means that losses are isolated and a β close to 1 means that long bursts are
dominant. Now, a β equal to γ̄ brings us to the case of a memoryless loss process where units

168 Chapter 9. TCP congestion control and wireless networks

B Gβ

1 − γ

1 − β

γ

Figure 9.1: The Gilbert loss model

are lost independently of each other (Bernoulli loss process).
We give the expressions of the stationary probabilities that the link is in the Bad and Good

states. We suppose that β, γ ∈ (0, 1) so that the Markov chain associated to the lossy link is
ergodic and that the stationary probabilities exist and are unique. These probabilities, denoted
πB and πG respectively, are used in the following to study what happens to a unit regardless of
what has happened to the preceding one. We have,

πB =
γ̄

β̄ + γ̄
, πG =

β̄

β̄ + γ̄
.

It is interesting to calculate the average lengths of Good and Bad periods in terms of transmission
units. We denote these lengths by LB and LG respectively. A simple calculation shows that,

LB =
1
β̄

, LG =
1
γ̄

. (9.1)

The expressions of LB and LG permit us to calculate the average loss rate as a function of β and
γ. Denote this rate by l. Intuitively, it is equal to the probability that the link is in the Bad
state regardless of what has happened to the previous unit. We have,

l =
LB

LB + LG

=
γ̄

β̄ + γ̄
= πB . (9.2)

We use the expression of l to change the burstiness of losses while maintaining the same loss
rate. It is clear that the increase in β stretches the duration of the Bad state which increases
the burstiness of losses. For a certain loss rate l, we vary β from 0 to 1 in order to increase the
burstiness. Then for each value of β, we use the expression of l to calculate the value of γ that
gives the same loss rate.

9.1.2 The FEC model

The most common code used for error correction is the block code [114, 119]. Suppose that data
are transmitted in units as in our model for the lossy link. Block code FEC consists in grouping
the data units in blocks of K units. Then, a codec adds to every block a group of R redundant
units calculated from the K original units. The result is the transmission of blocks of total size
N = K +R units (Figure 9.2). At the receiver, the original K units of a block are reconstructed

9.2. The approximation of TCP throughput 169

1 3 4 5 6 72

1 3 5 62 4

Redundancy

Original units

After grouping and addition of FEC (K=3,N=5)

Figure 9.2: Operation of a FEC codec

if at least K of the total N units it carries are correctly received. This should improve the quality
of the link since a block can now resist to R losses without being discarded.

Block FEC can be implemented in the physical layer to recover from the loss of bits (e.g.,
Reed-Solomon codes). This implementation, together with interleaving, is used in satellite links
to correct the bursts of bit errors that result from the utilization of Convolutional coding/Viterbi
decoding. Block FEC can be also implemented at a higher level to recover from the loss of frames
or packets. This latter implementation of FEC is known as the recovery from packet errors or
simply from erasures [114, 119]. An example of erasure block FEC is the one proposed in [103]
for the recovery from lost ATM cells. The di�erence between the two implementations of FEC
is that in the �rst case a frame contains the redundancy and the original data. However, in the
second case, the redundancy is included in other frames. Adding redundancy to other frames
helps the higher layers to recover from losses not only caused by corruption but also by other
phenomena such as congestion of switches or the MAC (Medium Access Control) layer.

Consider a block FEC code implemented in the same layer as transmission units. We ignore
any FEC code that may exist below this layer. The input to our study is the loss process seen by
transmission units which we assumed to follow the Gilbert model (Figure 9.1). The FEC layer
at the entry of the lossy link (codec) groups the transmission units in blocks of size K, then it
adds R redundant units to each block. The total number of units in a block becomes equal to
N = K + R. At the output of the lossy link, another FEC layer (decodec) takes the N units
in each block, eliminates the redundancy, and delivers the original block to the upper layer. A
block is delivered if at least K of its N units are correctly received, otherwise it is supposed to
be discarded. In what follows, we study how much such FEC scheme impacts the performance
of TCP.

9.2 The approximation of TCP throughput

Consider the throughput of the connection as the performance measure that indicates how well
TCP behaves over the wireless link. In the �rst part of this thesis, we saw di�erent models
for the calculation of TCP throughput [12, 84, 92, 105]. These models assume idealized TCP

170 Chapter 9. TCP congestion control and wireless networks

sources and �nd the expression of the throughput as a function of the probability that a TCP
packet is lost inside the network. Denote this probability by p. In case of bursty losses, p

represents the inverse of the average number of TCP packets correctly received between two
bursts of losses [105]. In other words, p represents the probability that a packet is the �rst loss in
a burst of losses. This is because the new versions of TCP (e.g., New-Reno [64], SACK [56, 91])
are designed in a way to divide the window once by two for a burst of packet losses. The
di�erent models show that the throughput of TCP is inversely proportional to the square root
of p as well as to the average round-trip time. The di�erence between the di�erent derived
expressions for TCP throughput is in the number of factors the models consider. We refer
to Chapter 3 for a description of the di�erent factors a model for TCP has to consider. The
simplest expression for TCP throughput [92], called the square root formula, only considers the
linear-increase multiplicative-decrease part of TCP congestion control and makes the assumption
that the moments at which the window of TCP is reduced are equally separated. This simple
expression gives good performance when p is small [105] and when the times between the moments
at which the window of TCP is reduced (i.e., congestion moments) do not vary very much [12].
The other expressions of the throughput as the ones we found in the �rst part of this thesis,
consider more factors as the timeout phenomenon, the receiver window, the possibility of other
distributions of losses, etc.

Without loss of generality, we consider the simple square root formula for TCP throughput.
One can simply use other more sophisticated expressions of the throughput. For example, one
can use the formula in [105] or a particular case of our general expression in Chapter 5. Suppose
that the receiver acknowledges every data packet. Let T denote the average number of packets
correctly received between losses (T = 1/p). In case of bursty losses, T denotes the average
number of packets between bursts of losses. Let RTT denote the average round-trip time seen
by the connection. Thus, we can write the throughput of TCP in terms of packets/s as [92]

X̄ =
1

RTT

√
3
2
T =

1
RTT

√
3

2P
.

Suppose that the wireless link is the bottleneck on the path of the connection. We make this
assumption since our objective is to optimize the amount of FEC so that a TCP connection
becomes able to fully utilize the available bandwidth on the wireless link. In general, this
assumption holds given the scarcity of resources on air interfaces. Thus, in the absence of FEC,
the throughput of TCP is upper bounded by µ and we write it as follows

X̄ = min

(
1

RTT

√
3
2
T , µ

)
.

Our idea is to �nd the expression of TCP throughput as a function of the parameters of the
loss process of transmission units (β, γ) and the parameters of the FEC scheme (N, K). With
such expression, we can optimize the amount of FEC so that to get the best throughput and

9.2. The approximation of TCP throughput 171

this is for a given process of errors on the wireless link. We already have the expression of the
throughput as a function of what happens at the packet level (i.e., as a function of p). What
we still need to do is to relate the loss process of transmission units to the loss process of TCP
packets. But, TCP packets can be lost due to congestion in other parts of the network not only
on the wireless interface. The loss process of TCP packets is the sum of multiple processes, one
for each part of the network. To simplify the analysis, we consider the best case when packets are
only lost on the wireless interface and this is whenever the wireless interface is not fully utilize.
When the wireless interface becomes fully utilized, congestion losses may appear in other parts
of the network but this will not impact the throughput of TCP since it will remain equal to the
available bandwidth on this interface. Note here that adding a certain amount of FEC when
packets are lost in other parts of the network gives less gain in TCP performance than when
packets are only lost on the wireless link. This is simply because the relative increase in the total
packet loss probability p caused by the addition of FEC is less important in the �rst case. For
example, if packets are most probability lost due to congestion, adding FEC to the wireless link
will not improve the throughput since it is only determined by congestion losses.

Using our above assumptions, we calculate T as a function of the di�erent parameters of
the Gilbert and FEC models. This gives the expression of the throughput of TCP. In the case
transmission units are lost independently of each other (β = 1 − γ), the calculation of T is
straightforward; p = 1/T is no other than the probability that a TCP packet is lost while
crossing the wireless link. This case is studied in the next section. The di�culty exists when
transmission units are lost in bursts (β > 1−γ). The correlation of losses at the unit level causes
the correlation of losses at the TCP packet level. T must be then calculated as the average
number of TCP packets correctly transmitted between bursts of packet losses. But, because of
redundancy and because of the notion of blocks and units, the calculation of T in the bursty
case is quite di�cult. Some further assumptions must be made at the unit level and at the
packet level in order to ease the analysis. This is done in Section 9.4. Note here that our aim
from the study of the correlation case is to evaluate the impact of burstiness of transmission
errors on the e�ciency of a given FEC scheme, and hence on the throughput of TCP. We are
not interested in the study of the e�ect of the correlation of packet losses at the TCP level on
end-to-end performance. One can look at the simulations in [56] for the understanding of such
e�ect. Normally, a correlation of losses at the packet level should not deteriorate the performance
since new versions of TCP are designed in a way to reduce the window once by two for a burst
of packet losses in the same round-trip time.

Now, even though it increases T , the addition of FEC consumes some bandwidth and de-
creases the maximum throughput TCP can achieve. Instead of µ, we get Kµ/N as a maximum
TCP throughput. If we denote by S the size of a TCP packet in terms of transmission units, the

172 Chapter 9. TCP congestion control and wireless networks

throughput of TCP in presence of FEC and in terms of units/s can be written as,

X̄(N, K) = min

(
S

RTT

√
3
2
T (N,K),

K

N
µ

)
. (9.3)

Along the chapter, TCP throughput and rates will be expressed in terms of transmission units
per second. For given Gilbert model parameters, we will focus on the calculation of T (N, K),
and hence the throughput X̄(N,K), as a function of the amount of FEC. We start �rst by the
non-correlation case. Second, we consider the case when transmission errors are correlated.

9.3 The case of non-correlated losses

In this section, we suppose that transmission units are lost independently of each other with
probability β = γ̄. Thus, TCP packets are also lost independently of each other but with a
probability p(N, K) which is a function of the FEC scheme (N,K) we are using on the wireless link.
The throughput of the TCP connection can be approximated by substituting T in formula (9.3)
by 1/p(N, K). First, we state our analysis of TCP performance as well as some numerical results.
Next, simulation results are presented.

9.3.1 The analysis

Suppose that TCP packets are of the size of one link-level block (S = K units). Given a certain
block size (K) and a certain FEC rate (K/N), the choice of the size of the TCP packet in
terms of blocks is another problem that we will not address in this chapter. It is a problem of
TCP algorithms rather than the amount of FEC we are using on the link. However, we noticed
that with the values of K we use in this chapter, larger packets give approximately the same
performance as single-block packets.

A packet is lost when more than R of its units are lost due to transmission errors. This
happens with a probability,

p(N, K) =
K−1∑

i=0

(
N

i

)
(1− β)iβN−i.

(
N
i

)
is the binomial coe�cient equal to N !/(i!(N − i)!). The throughput of TCP is obtained by

plugging this value of p(N, K) in Equation (9.3).
It is clear from the expression of p(N,K) that the addition of FEC (i.e., N>K) at the link level

reduces the loss probability of TCP packets and hence increases the throughput. This happens
whenever the �rst term of the minimum function in (9.3) is smaller than the second term. The
improvement of the throughput continues until the two terms of the minimum function become
equal. At this point, the quantity of FEC added to the wireless link is su�cient to eliminate
the negative e�ect of non-congestion losses on TCP. We say here that the FEC has cleaned the
noisy link from TCP point of view. Any increase in N beyond this point results in a throughput

9.3. The case of non-correlated losses 173

0

500

1000

1500

2000

2500

3000

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
U

ni
ts

/s
)

Amount of FEC N/K

K = 30
K = 20
K = 10

Figure 9.3: Model: X̄ vs. N/K and K

0

500

1000

1500

2000

2500

3000

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
U

ni
ts

/s
)

The Amount of FEC N/K

K = 30
K = 20
K = 10

Figure 9.4: Simulation: X̄ vs. N/K and K

deterioration since the throughput is equal to the second term of the minimum function in (9.3)
which in turn decreases with N . There will be more FEC than what is needed to clean the link.
Thus, the appropriate amount of FEC is the one given by the equality of the two terms of the
minimum function. Given a wireless link of bandwidth µ, transmission blocks of size K, and
a unit loss probability β, the optimal amount of FEC from TCP point of view is given by the
solution of the following equation,

N

RTT

√
3

2p(N, K)
= µ. (9.4)

Note that such amount of FEC is only optimal for TCP connections. Non-TCP transfers as real
time audio and video �ows may require another amount of FEC function of the loss rate they
tolerate.

9.3.2 Analytical results

We show in Figure 9.3 how the throughput of TCP varies as a function of the ratio N/K (the
quantity of FEC) for di�erent values of K (10, 20, and 30 units). RTT is taken equal to 560 ms
and the wireless link bandwidth to 3000 units/s. We can consider this scenario as the case of a
mobile user downloading data from the Internet using a satellite link. This particular value of µ

is approximately equal to the maximum ATM cell rate on a T1 link (1.5 Mbps). The unit loss
probability β is set to 0.01.

It is clear that the performance of TCP improves considerably when FEC is added and that
this improvement continues until the optimum point given by Equation (9.4) is reached. Beyond
this point, any increase in FEC deteriorates the throughput as we explained. Also, we notice
that for a certain quantity of FEC, an increase in K improves the performance of TCP. An
increase in the block size results in a larger R, thus in a better capacity to correct multiple
errors per packet. At large blocks, FEC can correct the same errors corrected when blocks are

174 Chapter 9. TCP congestion control and wireless networks

0

10000

20000

30000

40000

50000

60000

70000

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

A
va

ila
bl

e
B

an
dw

id
th

 (
U

ni
ts

/s
)

The Amount of FEC N/K

K = 30
K = 20
K = 10

Figure 9.5: Model: Optimal FEC vs. µ

0

2

4

6

8

10

12

14

16

18

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

B
an

dw
id

th
 G

ai
n

G

The amount of FEC N/K

beta = 0.001
beta = 0.01
beta = 0.05
beta = 0.1

Figure 9.6: Model: G vs. N/K and β

divided into small ones but it also has the capacity to correct these errors when they are grouped
together. Another reason for the improvement of the performance is that an increase in K at
a constant FEC rate results in larger TCP packets, hence in a faster growth of the congestion
window. Recall that TCP window is increased in terms of packets rather than bytes. Thus, the
source returns faster to its rate prior to the detection of a packet loss. But, increasing the block
size has some problems. It yields longer end-to-end delays (more time is needed to �ll a block,
see Figure 9.2), more processing time to code and decode the redundancy (redundant units are
computed as a function of all the original units in the block), and larger memory requirements
(the units of a block must be stored at the input before being coded and transmitted on the
wireless link and at the output before being decoded and handed to the upper layers).

In Figure 9.5, we plot the left-hand side of Equation (9.4) as a function of N/K for the same
three values of K. These curves provide us with the optimal amount of FEC for a given µ, β, and
K. The optimal amount of FEC is obtained by the abscissa of the intersection point of the curve
corresponding to K and the horizontal line corresponding to µ. We see well that any increase in
K reduces considerably the amount of FEC needed to clean the wireless link from TCP point of
view. Again, this is because the increase in K results in a faster growth of the congestion window
and in a better resilience against grouped errors. Given a certain µ, a compromise between K

and FEC rate must be done. First, we have to choose the largest possible K, then we choose the
appropriate amount of FEC.

For µ = 3000 units/s and K = 20, we show in Figure 9.7 how the throughput of TCP varies
as a function of the transmission unit loss probability β and this is for di�erent values of N . It
is clear that adding just one redundant unit to every FEC block results in a considerable gain
in performance especially at small β. Adding more redundancy at small β deteriorates slightly
the performance since the link is already clean and the additional redundancy steals some of the
bandwidth used by TCP. This is not the case at high β where much redundancy needs to be

9.3. The case of non-correlated losses 175

0

500

1000

1500

2000

2500

3000

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
U

ni
ts

/s
)

Log10 of the Unit Loss Probability

K=20 , N=21
K=20 , N=22
K=20 , N=23
K=20 , N=20

Figure 9.7: Model: X̄ vs. β and N/K

0

500

1000

1500

2000

2500

3000

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
U

ni
ts

/s
)

Log10 of the Unit Loss Probability

K=20 , N=21
K=20 , N=22
K=20 , N=23
K=20 , N=20

Figure 9.8: Simulation: X̄ vs. β and N/K

used in order to get good performance. We see well how the situation changes in the middle
of the β axis and how a large N starts to give better performance. Note that even though an
excess of FEC reduces the performance of TCP when losses are rare, the reduction is negligible
compared to the gain in performance we obtain when losses become frequent. When the link is
heavily lossy (log(β) > −1.7), the three amounts of FEC plotted in the �gure become insu�cient
to clean the wireless link and all the curves converge asymptotically to the same point. This
asymptotic behavior is due to the fact that the packet loss probability p(N, K) tends to 1 when
β tends to one whatever are the values of N and K.

9.3.3 Simulation results

Using ns [102], we simulate a simple scenario where a TCP source is connected to an IP router
via a high speed wire line and where the router is connected to the TCP receiver via a lossy
wireless link. The Reno version of TCP [56] is used. This version tries to avoid slow start when
recovering from losses and hence must give close results to the expression of the throughput we
used. Recall that this expression is derived under the assumption that the source always stays
in the congestion avoidance phase [92]. The TCP source is fed by an FTP application with an
in�nite amount of data to send. We parameterize the TCP receiver so that it acknowledges all
data packets and advertises an in�nite window. We then add our FEC model to the simulator.
A TCP packet is fragmented at the entry of the wireless link into K units. The FEC layer adds
then R redundant units to each packet (block). At the output of the wireless link, the FEC layer
reconstructs the original packet if at least K of its N units are correctly received otherwise it
rejects it. The transmission units on the lossy link are supposed to be ATM cells of size 53 bytes
(a payload of 48 bytes and a header of 5 bytes). We choose the bandwidth of the lossy link in a
way to get a transmission rate µ equal to 3000 cells/s. This corresponds to a 1.5 Mbps T1 link.
RTT is taken equal to 560 ms and the bu�er size in the middle router is set to 100 packets. This

176 Chapter 9. TCP congestion control and wireless networks

bu�er size is larger than the bandwidth-delay product (µRTT) which guarantees that no losses
occur in the middle router before the full utilization of the available bandwidth on the wireless
interface. This also guarantees that after the division of the window by two due to a congestion
event, the wireless link remains fully utilized. This satis�es what we wrote in (9.3).

Figures 9.4 and 9.8 show the variation of the simulated throughput as a function of the
amount of FEC (N/K) and the unit loss probability β. In the �rst �gure, β is set to 0.01.
We notice clearly the good match between these results and the analytical ones. The small
di�erence is due to the fact that the expression of the throughput we used in our analysis does
not consider the possibility of a timeout when multiple packet losses appear in the same round-
trip time. One can account for timeouts by using the correction we introduced in Chapter 3
(Equation (3.1)). Moreover, in our analysis we considered that RTT is always constant which
does not hold when the throughput of TCP approaches the available bandwidth. To get a
throughput (i.e., an average transmission rate) close to the available bandwidth, the TCP source
needs to transmit during some time at a rate higher than the available bandwidth. This is due
to the saw-tooth nature of TCP congestion control. Transmitting at higher than the available
bandwidth means some queueing time which disappears when the rate of TCP is reduced to
less than the available bandwidth. One can use a �xed-point approach to get a more precise
expression of the throughput when we are close to the full utilization of the available bandwidth.
Due to the increase in the round-trip time, we must expect a slightly lower throughput in this
region than that given by (9.3). This can be seen in both �gures when we approach the points
of optimal FEC. The �xed-point approach tells us that RTT is equal to the propagation delay
when the throughput is less than 3/4 the available bandwidth on the wireless interface.

9.3.4 The tradeo� between TCP throughput and FEC cost

We compare in this section the bandwidth gained by TCP to that consumed by FEC. Let G be
the ratio of these two bandwidths,

G =
X̄(N,K)− X̄(K, K)

X̄(N,K)× N−K
K

=
(

1− X̄(K, K)
X̄(N, K)

)
×

(
K

N −K

)
. (9.5)

This quantity indicates how much bene�cial is the addition of FEC. It can be considered as a
measure of the overall performance of the system TCP-FEC. We want to improve TCP perfor-
mance without paying for FEC more than we gain in TCP performance. A value close to one
of this gain means that we pay for FEC as much as we gain in TCP throughput. A negative
value can mean that the link was clean for TCP so that the addition of FEC has reduced the
performance instead of improving it. It can also mean that FEC is added in large quantities so
that it steals some of the bandwidth used by TCP.

In Figure 9.6, we plot G as a function of the amount of FEC for di�erent unit loss probabilities.
Again, we take µ = 3000 units/s and K = 20. This �gure shows that the gain in overall
performance is important when the loss probability and the amount of FEC are small. Moreover,

9.3. The case of non-correlated losses 177

with small amount of FEC, the gain decreases considerably when the loss rate (l = β) increases.
Now, when the amount of FEC increases, the curves converge approximately to the same point
with a slightly better gain this time for high loss probabilities.

For small β, little FEC is su�cient to clean a link which improves considerably the perfor-
mance of TCP. On the other hand, this little FEC is not able to clean a link with a high β. The
result is a small gain in TCP performance, hence a small G. This explains what we see in the
left-hand part of Figure 9.6.

Consider now the right-hand part of the �gure. A large amount of FEC is able to clean
links with a wide range of β. TCP then obtains the same throughput X̄(N, K) � equal to
Kµ/N units/s � for all the values of β we consider in the �gure. But, the gain we de�ned in
Equation (9.5) is not only a function of the throughput after the addition of FEC but also a
function of the throughput before this addition. Given that the initial throughput � denoted
by X̄(K,K) in the equation de�ning G � decreases when β increases, the gain in overall perfor-
mance is more important at high β than at small β. The point at which two curves in Figure 9.6
meet gives us the required amount of FEC to clean their corresponding links.

9.3.5 Number of connections and the gain in performance

We notice in Figure 9.6 that using a small amount of FEC gives the best gain in overall perfor-
mance. A small amount of FEC helps TCP to improve considerably its throughput but it does
not help it to use all the available bandwidth. Any additional FEC improves further the quality
of the link which improves further the throughput of TCP but the revenues are not as important
as for the �rst units of redundancy. Thus, in order to maintain a high gain, one can use a small
amount of FEC and share the available bandwidth between multiple TCP connections. The
result will be a better utilization of the link bandwidth while using a small amount of FEC. But
in practice, one cannot guarantee that there are always enough connections to use the available
bandwidth. A TCP connection must be able to use all the bandwidth when it operates alone in
the network. For this reason, FEC has to be added in large amounts so that to make the lossy
link clean from the point of view of a single TCP connection even if the achieved gain is not so
important.

To clarify this point, we study the gain in the overall performance when many TCP connec-
tions share the lossy link. Suppose that C connections run simultaneously between the source
and the destination. Because they see the same RTT and they are subject to the same loss
process, we can suppose that the C connections achieve the same throughput [84]. Let pi(N, K)

be the probability that a packet from an individual connection is lost. Using (9.3), the total
TCP throughput can be written as

X̄(N, K) = min

(
CS

RTT

√
3

2pi(N,K)
,
K

N
µ

)
. (9.6)

178 Chapter 9. TCP congestion control and wireless networks

0

500

1000

1500

2000

2500

3000

1 1.2 1.4 1.6 1.8 2

T
ot

al
 T

C
P

 T
hr

ou
gh

pu
t (

U
ni

ts
/s

)

Amount of FEC N/K

C = 20
C = 10
C = 5
C = 1

Figure 9.9: Model: X̄ vs. N/K and C

0

500

1000

1500

2000

2500

3000

1 1.2 1.4 1.6 1.8 2

T
ot

al
 T

C
P

 T
hr

ou
gh

pu
t (

U
ni

ts
/s

)

Amount of FEC N/K

C = 20
C = 10
C = 5
C = 1

Figure 9.10: Simulation: X̄ vs. N/K and C

Because the loss process is not correlated, pi(N, K) is simply equal to p(N,K). Thus, the
di�erence in the case of many connections than in the case of a single one is a multiplicative
factor C in the �rst term of the minimum function in Equation (9.3). The second term of this
function remains unchanged. A factor C means a faster improvement of the throughput when
the amount of FEC increases as illustrated in Figure 9.9. This �gure corresponds to β = 0.01

and K = 10. At large C, the link can be cleaned by a smaller amount of FEC than at small C.
When the amount of FEC added to a link is not enough to clean it, one can open multiple TCP
connections to use more bandwidth and get more gain in overall performance instead of adding
more FEC to improve the link quality. Note here that adding more FEC to clean a link reduces
the maximum limit of TCP throughput (µK/N). However, using multiple TCP connections
does not change this maximum limit. As we see in Figure 9.9, a total throughput of 2700 units/s
cannot be obtained when few connections are sharing the wireless link even if enough FEC is
added to clean it. However, this total throughput can be obtained when increasing the number
of connections and reducing the amount of FEC.

In Figure 9.10, we show the simulation results that correspond to Figure 9.9. The match is
clear for large amounts of FEC. However for small amounts, the analysis gives larger values. As
we already explained, this discrepancy is due to the fact that the expression of the throughput
we used in our analysis does not consider the timeout phenomenon. At small amount of FEC,
losses are frequent which results in small windows, multiple losses per window, and an important
probability of timeout [105]. This leads to poorer throughput than the one given by the analysis.
The di�erence in the results is exacerbated by the factor C which explains the large mismatch
in the case of 20 connections.

9.4. The case of correlated losses 179

9.4 The case of correlated losses

In this section, we study the e�ect of burstiness of transmission errors on the e�ciency of a FEC
scheme. It is clear that when unit losses tend to appear in bursts, more redundant information
is needed to clean the wireless link. Packets are hurt by burst of losses and hence they require a
large number of redundant units per packet (R) to be corrected. But, for the same average loss
rate (l), the correlation of losses reduces the probability that the link passes from the Good state
to the Bad state (γ̄ decreases when β increases, see (9.2)). This reduces the probability that a
packet is hurt by a burst of losses. TCP throughput may then improve and the amount of FEC
may be reduced. Thus, an analysis is needed to understand these opposite e�ects of burstiness.

9.4.1 Performance analysis

Burstiness at the unit level results in burstiness at the TCP level. In the presence of TCP versions
that divide their windows once by two in response to a burst of packet losses (e.g., SACK [56]),
T in Equation (9.3) represents the average number of TCP packets correctly received between
two bursts of packet losses. Let us calculate T , and hence the throughput, as a function of the
amount of FEC, the packet size K, the average loss rate l, the burstiness of losses β, and the
total bandwidth µ.

Calculation of the average number of packets between bursts

Let t be the number of TCP packets correctly received between two separate bursts of losses at
the TCP level. The minimum value of t is therefore one packet and its expectation is equal to T .
Let Yn be the state of packet n. Let 0 be the number of the �rst good packet between the two
bursts. Yn takes one of two values: G (Good) and B (Bad). We have Y0 = G. The expectation
T = E [t] can be written as,

T =
∞∑

n=0

P {t > n|Y0 = G} = 1 +
∞∑

n=1

P {t > n|Y0 = G} .

The computation of T is quite complicated since the spacing between the TCP packets varies
with the window size. Another complication is that {Yn} does not form a Markov chain. Indeed,
if we know for example that a packet n is of type B, then the probability that packet n + 1 is of
type G also depends on the type of packet n − 1. If packet n − 1 were G rather than B, then
the last units of packet n are more likely to be those that caused its loss. Hence, the probability
that packet n + 1 is B is larger in this case.

This motivates us to introduce another random variable which will make the system more
�Markovian� and will permit us to write recurrent equations in order to solve the problem for
T . We use for this purpose the state of the last transmission unit received, or �ctively received,
before a TCP packet. The knowledge of the state of this unit, denoted by Y −1

n and which takes

180 Chapter 9. TCP congestion control and wireless networks

the values B and G, fully determines the distribution of the state Yn of the following TCP packet.
Using the state of this particular unit, we write T as

T = 1 + uP
{
Y −1

1 = G|Y0 = G
}

+ vP
{
Y −1

1 = B|Y0 = G
}

,

where
u =

∞∑

n=1

P
{
t > n|Y0 = G,Y −1

1 = G
}

,

v =
∞∑

n=1

P
{
t > n|Y0 = G,Y −1

1 = B
}

.

We shall make throughout the following assumption,

Assumption 9.1
P

{
Y −1

1 = G|Y0 = G
} ≈ πG ,

P
{
Y −1

1 = B|Y0 = G
} ≈ πB .

Assumption 9.1 holds when the time to reach steady state for the Markov chain in the Gilbert
model is shorter than the time between the beginning of two consecutive TCP packets (either be-
cause the TCP packets are su�ciently long, or because the TCP packets are su�ciently spaced).
Assumption 9.1 also holds when πB and the loss probability of a whole TCP packet are small.
Indeed, we can write,

πG = P
{
Y −1

1 = G|Y0 = G
}

P {Y0 = G}+ P
{
Y −1

1 = G|Y0 = B
}

P {Y0 = B}
≈ P

{
Y −1

1 = G|Y0 = G
} · 1 + P

{
Y −1

1 = G|Y0 = B
} · 0

In view of Assumption 9.1, the probability that the unit preceding a packet is lost can be
considered as independent of the state of the previous packet. It follows that,

T = 1 + uπG + vπB ,

u = (1− P
{
Y1 = B|Y −1

1 = G
}
)(1 + uπG + vπB),

v = (1− P
{
Y1 = B|Y −1

1 = B
}
)(1 + uπG + vπB),

which gives us,

1
T

= πGP
{
Y1 = B|Y −1

1 = G
}

+ πBP
{
Y1 = B|Y −1

1 = B
}

.

The calculation of T , and therefore of the throughput, is thus simpli�ed to the calculation of the
probability that a packet is lost given the state of the unit just preceding it. These are the two
probabilities P

{
Y1 = B|Y −1

1 = G
}
and P

{
Y1 = B|Y −1

1 = B
}
that �gure in the above expression

of 1/T . But again, it is di�cult to �nd explicit expressions for these two probabilities. A TCP

9.4. The case of correlated losses 181

packet can be lost by a single long burst of unit losses as well as by multiple separate small
bursts.

To further facilitate the analysis, we assume that bursts of losses at the unit level are quite
separated so that two bursts rarely appear within the same packet. This is formalized in the
following assumption,

Assumption 9.2 The following holds,

β̄ · l ·N << 1.

Let us prove the condition we wrote for our second assumption to hold. A TCP packet is
supposed to be only lost if it is hurt by a burst larger than R. Therefore, we don't consider
the probability that multiple small and separate bursts at the unit level contribute to the loss
of a TCP packet. This is possible when the sum of the average lengths of the Good state (LG)
and the Bad state (LB) is much larger than the packet length N . Using (9.1) and (9.2), we get
the condition in Assumption 9.2. If Assumption 9.2 is not satis�ed, many bursts may appear
within the same packet leading to a higher loss probability of a TCP packet than the one given
by our analysis. In this case, we expect our analysis to result in an overestimation of the real
throughput.

Consider �rst the case Y −1
1 = B. In view of Assumption 9.2, packet 1 is lost if its �rst R + 1

units are also lost. Thus,
P

{
Y1 = B|Y −1

1 = B
}

= βR+1.

For the case Y −1
1 = G, packet 1 is lost if a burst of losses of length at least equal to R + 1

units appears in its middle. We get,

P
{
Y1 = B|Y −1

1 = G
}

= βRγ̄
(
1 + γ + · · ·+ γN−R−1

) ' KβRγ̄.

We used for this result the approximation (1− γN−R) ' K(1− γ).
Given a certain average loss rate l and a certain correlation of losses expressed by β, we can

�nd γ using Equation (9.2). Note that the ratio of β̄ and γ̄ needs to be maintained constant for
the loss rate to remain the same. T can then be approximated for any FEC scheme (N,K) by,

1
T

= βN−K l
(
β̄K + β

)
. (9.7)

The throughput can be approximated by plugging this value of T in Equation (9.3).

9.4.2 Analytical results

Using (9.3) and (9.7), we plot in Figure 9.11 the throughput of TCP as a function of burstiness
and this is for di�erent FEC rates. The burstiness is varied by varying β which is called the
Conditional Loss Probability in the �gure. K is set to 20 and the loss rate l to 0.01. γ is

182 Chapter 9. TCP congestion control and wireless networks

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
U

ni
ts

/s
)

Conditional Loss Probability

K=20 , N=23
K=20 , N=22
K=20 , N=21
K=20 , N=20

Figure 9.11: Model: X̄ vs. β and N/K

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
U

ni
ts

/s
)

Conditional Loss Probability

K=20 , N=23
K=20 , N=22
K=20 , N=21
K=20 , N=20

Figure 9.12: Simulation: X̄ vs. β and N/K

calculated from (9.2), the expression of l. The other parameters of the model are taken as in the
previous section. We see well that when the loss process is bursty (large β and small γ̄), a large
amount of FEC always gives the best performance. The di�erence in the performance between
the di�erent amounts of FEC is important for small bursts (small β). When burstiness increases,
the throughput decreases drastically for the three FEC schemes we consider in the �gure. A large
amount of FEC helps the throughput to resist to small bursts but once these bursts become larger
than the FEC capacity, the throughput deteriorates quickly. We also see that in the absence of
FEC, the throughput improves a little when burstiness increases. We notice this improvement in
the throughput for the three other FEC schemes at large β. As expected, all the curves converge
to the same point when bursts become very large. At this point, the three amounts of FEC we
consider in the �gure have no bene�t. Much FEC must be added to clean the link in this case.
But, much FEC steals much bandwidth from TCP when burstiness decreases. A compromise
must be done between much FEC to resist to bursts and a small amount of FEC to give better
performance when burstiness decreases. This compromise exists if we want to use a static FEC
scheme. But, one can think about using a dynamic FEC scheme where the FEC layer monitors
the loss process on the wireless link and adapts the amount of FEC as a function of the rate of
errors and their burstiness.

Now, we show in Figure 9.13 how the block size K can help TCP to resist to bursts of losses.
We maintain the same amount of FEC (N/K = 11/10) and we vary K. Increasing K increases
the number of redundant units in a TCP packet and thus helps it to resist to larger bursts. We
also notice that a large block size still gives better performance when the length of bursts of
losses is larger than the number of redundant units per packet. As we said before, this is due to
the fast growth of the window in terms of units when large blocks are used. The problem with
large blocks is that they require a long time to code/decode the redundant information. Again
one can think about using a dynamic FEC scheme where the size of blocks changes with the

9.4. The case of correlated losses 183

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
U

ni
ts

/s
)

Conditional Loss Probability

K=40 , N=44
K=30 , N=33
K=20 , N=22
K=10 , N=11

Figure 9.13: Model: X̄ vs. β at constant N/K

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 T
C

P
 T

hr
ou

gh
pu

t (
U

ni
ts

/s
)

Conditional Loss Probability

K=40 , N=43
K=30 , N=33
K=20 , N=23
K=10 , N=13

Figure 9.14: Model: X̄ vs. β at constant R

burstiness of transmission errors.
The bene�t of large packets is also illustrated in Figure 9.14. In this �gure, we plot for

the same number of redundant units per packet (R = 3), the variation of the throughput for
di�erent packet sizes. It is clear how a large packet gives better performance than a small one
even though the amount of FEC is smaller. From Equation (9.7), increasing K for the same
R decreases T , but this decrease is small compared to the gain we get from the increase in the
window growth rate. In other words, the throughput in terms of packets/s deteriorates when
we increase K at a constant R, but in terms of units/s it improves. Which mostly counts is the
number of redundant units per packet rather than the total amount of redundancy. Of course, if
we increase the number of redundant units per packet together with the packet size, we improve
further the performance and this is exactly what we see in Figure 9.13.

9.4.3 Simulation results

We consider the SACK version of TCP [56] which is able to recover from a burst of packet losses
without reducing its window multiple times and without resorting to timeout and slow start.
This should give close results to the expression of the throughput we are using. The parameters
of the network are not changed. l is set to 0.01 and K to 20. Our intention is to validate by
simulation the analytical results we plotted in Figure 9.11. With these settings, Assumption 9.2
is satis�ed for all the values of β we consider in the �gure.

The simulation results are plotted in Figure 9.12. The curves in the �gure show the same
behavior as those in Figure 9.11. But, we see some mismatch at low burstiness. This is due
to our assumption that a packet can only be lost by a single long burst not by multiple small
and separate bursts of losses at the unit level. As one must expect, the simulation gives a lower
throughput in this region given that we are overestimating T . This mismatch disappears at high
correlation. For large β, γ̄ is small and the probability to lose a packet due to separate bursts

184 Chapter 9. TCP congestion control and wireless networks

becomes negligible. This makes our expression for T more precise.

9.5 Conclusions

In this chapter, we studied via mathematical analysis and simulations the interactions between
the parameters of a FEC scheme and the performance of TCP congestion control. FEC is a
promising approach for the improvement of the quality of noisy transmission media as wireless
and satellite links. We showed that TCP throughput improves with the addition of FEC until
a certain point where the noisy link becomes clean from TCP point of view. Any increase in
FEC beyond this point is not bene�cial. It reduces the available bandwidth and deteriorates the
performance of TCP.

At a constant amount of FEC, we showed that the increase in the block size always results
in an improvement of TCP performance. Large blocks contain more redundancy and are able to
better resist to grouped errors. Moreover, large blocks permit TCP to increase faster its window
after the occurrence of losses. Another result of our study is that it is possible to improve
further the performance by opening multiple TCP connections to the same destination. With
multiple connections, less FEC is required to clean a noisy link and the throughput of TCP
can reach higher values. Concerning burstiness we showed that, even if the average error rate
remains unchanged, the increase in burstiness reduces the e�ciency of FEC and deteriorates
the throughput of TCP. An addition of FEC can solve the problem but this FEC becomes
unnecessary when burstiness disappears. We also found that an increase in block size improves
the resilience to bursts of errors without any further addition of FEC. We can even improve the
performance by increasing the block size without changing the number of redundant units per
packet.

The main conclusion that we can derive from our study is that before the addition of any
amount of FEC, the designers of wireless links have to choose the largest possible block size.
Once the block size is chosen, they have to choose the amount of FEC as a function of the
rate and burstiness of losses and this is in a way to clean the wireless link from the point of
view of a single TCP connection. If the burstiness of errors frequently changes, a dynamic FEC
mechanism could be envisaged to adapt the number of redundant units per packet as a function
of the length of bursts.

Chapter 10

Conclusions and perspectives

Over the di�erent chapters of this thesis, we investigated the performance of TCP congestion
control. Such investigation is important given the central role played by the TCP protocol in
the operation and the evolution of the Internet. Our study was based on modeling tools and the
di�erent results were validated via simulations and real measurements.

We adopted two distinct approaches in our study. These are the same two approaches used in
the literature for the analysis and improvement of TCP congestion control. The �rst approach
consists in studying the performance of the protocol on end-to-end basis without looking at
the content of the network between the two TCP terminals. Our main objective was to �nd
simple expressions for the throughput of a TCP connection that can cover the di�erent ways
with which the network reacts to the packets the connection transmits. With such expressions,
one can decide on the di�erent factors that impact the performance of TCP and that prohibit the
protocol from achieving its objectives. These expressions also give insights on how to optimize
the network and TCP mechanisms so as to get better performance. Another application of such
expressions is to predict correctly the throughput of existing versions of TCP so as to establish
some kind of fairness between TCP �ows and non-TCP �ows. Our work in this direction resulted
in a general framework for TCP throughput calculation where we explained how the di�erent
mechanisms of TCP congestion control can be modeled and where we presented a general formula
for TCP throughput that accounts for the di�erent ways with which an IP network drops TCP
packets (e.g., average time between drops, variation of time between drops). Our study showed
the simplicity of existing models for TCP and the necessity of a general approach as the one
we introduced. The bene�ts of our general formula compared to existing formulas for TCP
throughput were proved with real measurements over the Internet. For example, one of our main
results is that existing models for TCP make the simplistic assumption that the network drops
packets in a deterministic way, so that they lead to an underestimation of the real throughput
when the time intervals between drops vary.

Based on the end-to-end approach, we also presented a Markovian model useful for the
calculation of TCP throughput on Internet paths where the loss rate of TCP packets �uctuates

185

186 Chapter 10. Conclusions and perspectives

according to a Markov chain. The advantage of a Markovian model on such paths is that it
requires the identi�cation of a smaller number of parameters than a general model that makes no
Markovian assumptions. Finally, we addressed in a separate chapter the problem of calculation
of TCP throughput when the receiver window limits the increase in the congestion window.
We succeeded to calculate an explicit expression of the throughput when the loss rate of TCP
packets within the network is homogeneous and memoryless. We also found for these particular
networks the distribution of TCP window as well as a recurrent equation that gives all its
moments. Approximations of TCP throughput were found in case of such limitation for more
general loss models.

The second approach we adopted in this thesis is a network-speci�c approach where the
performance of TCP is studied in some challenging environments. We considered the three
environments that are supposed to be the most challenging for TCP: the large bandwidth-delay
product network, the asymmetric network and the wireless network. For each network, we
developed an analytical model for the evaluation of TCP performance. Our study showed some
tuning problems with TCP mechanisms as well as with the solutions proposed in the literature
to help the TCP connection. We used the results of our modeling to propose new mechanisms
that improve the performance of TCP transfers. Our mechanisms were added to the ns simulator
and they showed a gain in performance compared to existing ones.

This thesis presented some analysis of TCP performance as well as some mechanisms and
guidelines to help the protocol. However, the problem of TCP congestion control is still open.
Further analysis is still needed and some problems of the protocol still have to be solved. One
should expect more problems to appear when new transmission media will be added to the In-
ternet. Brie�y, we mention some open problems (analysis and design) that need to be addressed.
We start by the end-to-end approach. The most urgent problem seems to be the long time taken
by the slow start phase especially on long delay links. The appropriate solution to this problem
is most likely the estimation of network capacity and the spacing of packets. However, further
study is required to �nd an appropriate mechanism for the estimation of the rate at which packets
can be safely paced during slow start without overwhelming network bu�ers. Another interesting
problem that one can address is the optimization of TCP congestion control parameters (window
increase rate, window reduction factor) using our explicit expressions of the throughput. Such
optimization problem can be combined with the ECN (Explicit Congestion Noti�cation) pro-
posal [61] which tolerates a less conservative window reduction at the TCP source. Recall that
ECN provides the source with an explicit congestion signal when a congestion starts to form in
the network and this is before the start of packet dropping. In the absence of ECN, there is no
way to distinguish between a sever congestion, a transient congestion, an early congestion in a
RED (Random Early Detection) bu�er [65], etc. There is a consensus in the research community
that a TCP source must divide its window by two whenever a packet is lost in the network.

Concerning our models for TCP throughput, our current work focuses on the re�nement of

187

these models and on their applications. The introduction of the sub-linearity of window increase
is one of the issues that we are actually investigating [27]. Another issue is the calculation of
TCP throughput in case of window limitation for a more general loss process than the one we
considered in Chapter 6, for example for a loss process modeled as a Markov Modulated Point
Process [59]. Concerning the application of our results, we are looking at how the throughput of
a TCP connection can be approximated on runtime without the need to consider the entire trace
�le of the connection. This requires the de�nition of some averaging algorithms to calculate
on runtime the di�erent functions of the process of congestion events (e.g., variance of time
intervals between congestion events). Without loss of generality, one can use similar algorithms
to those used by TCP for the calculation of the average and variance of round-trip time. Our
idea is to use our general expression of TCP throughput in a TCP-friendly multimedia tool as
TFRC (TCP-Friendly Rate Control) [63] and see what gain in performance we obtain. The
other issue that we are actually working on in the application direction is to evaluate how much
changing the congestion control policy of TCP changes the process of congestion events seen by
the connection. This will tell us how much correct is the use of the process of congestion events
seen by a non-TCP �ow (e.g., an audio �ow) to infer the process of congestion events that a
TCP connection running on the same path will see. We believe that on paths where the rate
of the non-TCP �ow is small compared to the rate of the exogenous tra�c and where multiple
congested routers are crossed (e.g., on a long distance connection), the two processes will be
close to each other since the moments of congestion will be independent of the transmission rate.
We are also working on other applications of our analytical results. One idea is to calculate
the functions of the process of congestion events for some particular networks, for example for
networks that drop packets with a constant probability or for those that drop packets with a
probability function of the window size of the TCP connection. Once calculated, these functions
can be plugged in our general expression in order to �nd the exact throughput of TCP. Note
that models for the network are important to evaluate the impact of a mechanism we add to the
network to help TCP congestion control. Typical examples of network models are the ones used
in [95, 97] to study how well TCP behaves with RED bu�ers. Another example is the model
proposed in [48] for a set of RED routers and a set of TCP connections. The throughput of an
individual TCP connection is calculated as a function of the probability that one of its packets
is dropped within the network and the model is solved for the throughput of TCP, the packet
drop probability in each router, the average queue length in each router, etc.

Consider now the network-speci�c approach. The mechanisms we proposed for the window
increase during slow start and for the �ltering of ACKs on the reverse path of a TCP connection
still have to be tested in a real environment. Concerning the FEC scheme we studied in Chapter 9,
one possible extension is to come up with an adaptive scheme that changes the amount of FEC
and the bock size as a function of the way with which transmission errors occur on the wireless
interface. In addition to that, one can always think about studying the performance of TCP

188 Chapter 10. Conclusions and perspectives

in other new environments, for example in a Di�erentiated Services network [52, 101] or in a
multiple access medium (e.g., Dynamic Allocation Multiple Access protocol). We have started
to develop analytical models for TCP congestion control in Di�erentiated Services networks.
Preliminary results have already appeared in [17, 30]. Our objective is to show how well TCP
connections are able to realize the throughput they subscribe in a network with di�erent classes
of tra�c. For multiple access media allocating bandwidth to TCP connections in slots, one
can imagine the study of the impact of the periodic availability of the path on the variation
of round-trip time and on the burstiness of TCP tra�c. We believe that the network-speci�c
approach for the study of TCP congestion control will exist as long as new mechanisms and new
transmission media are introduced into the Internet. Now, analytical models can change from
one environment to another and as a function of the performance measure we want to calculate
(e.g., throughput, duration of slow start, etc.). With the three environments we considered in
this thesis, we gave an idea on how a network-speci�c analysis of TCP congestion control can be
conducted.

Bibliography

[1] A. Aggarwal, S. Savage, and T. Anderson, "Understanding the Perforamnce of TCP Pac-
ing", IEEE INFOCOM, Mar. 2000.

[2] M. Allman, �On the Generation and Use of TCP Acknowledgments�, ACM Computer
Communication Review, vol. 28, no. 5, pp. 4-21, Oct. 1998.

[3] M. Allman et al., � Ongoing TCP Research Related to Satellites�, RFC 2760, Feb. 2000.

[4] M. Allman, H. Balakrishnan, and S. Floyd, "Enhancing TCP's Loss Recovery Using Lim-
ited Transmit", Internet Draft, work in progress, Aug. 2000.

[5] M. Allman and A. Falk, "On the E�ective Evaluation of TCP", ACM Computer Commu-
nication Review, vol. 29, no. 5, Oct. 1999.

[6] M. Allman, S. Floyd, and C. Partridge, �Increasing TCP's Initial Window�, RFC 2414,
Sep. 1998.

[7] M. Allman, D. Glover, and L. Sanchez, �Enhancing TCP Over Satellite Channels using
Standard Mechanisms�, RFC 2488, Jan. 1999.

[8] M. Allman, H. Kruse, and S. Ostermann, �An Application-Level Solution to TCP's Satel-
lite Ine�ciencies�, First International Workshop on Satellite-based Information Services
(WOSBIS), Nov. 1996.

[9] M. Allman and V. Paxson, "On Estimating End-to-End Network Path Properties", ACM
SIGCOMM, Sep. 1999.

[10] M. Allman, V. Paxson, and W. Stevens, "TCP Congestion Control", RFC 2581, Apr. 1999.

[11] E. Altman, K. Avratchenkov, and C. Barakat, "TCP in Presence of Bursty Losses", ACM
SIGMETRICS, Jun. 2000.

[12] E. Altman, K. Avranchenkov, and C. Barakat, �A stochastic model for TCP/IP with sta-
tionary random losses�, ACM SIGCOMM, Aug. 2000.

[13] E. Altman, K. Avratchenkov, and C. Barakat, "TCP in Presence of Bursty Losses", Per-
formance Evaluation, vol. 42, no. 2-3, pp. 129-147, Oct. 2000.

[14] E. Altman, K. Avrachenkov, C. Barakat, and P. Dube, "TCP over a Multi-State Markovian
Path", Conference on the Performance and QoS of Next Generation Networking (P&QNet),
Nov. 2000.

[15] E. Altman, K. Avrachenkov, C. Barakat, and R. N. Queija, "State-dependent M/G/1
Type Queueing Analysis for Congestion Control in Data Networks", CWI Report, no.
PNA-R0005, Jul. 2000.

[16] E. Altman, K. Avrachenkov, C. Barakat, and R. N. Queija, "State-dependent M/G/1
Type Queueing Analysis for Congestion Control in Data Networks", to appear in IEEE
INFOCOM, Apr. 2001.

189

190 Bibliography

[17] E. Altman, C. Barakat, E. Laborde, P. Brown, and D. Collange, �Fairness Analysis of
TCP/IP", IEEE Conference on Decision and Control, Dec. 2000.

[18] E. Altman, J. Bolot, P. Nain, D. Elouadghiri- M. Erramdani, P. Brown, and D. Collange,
�Performance Modeling of TCP/IP in aWide-Area Network�, IEEE Conference on Decision
and Control, Dec. 1995.

[19] M. Aron and P. Druschel, �TCP: Improving Startup Dynamics by Adaptive Timers and
Congestion Control�, Rice Technical Report, no. TR98-318.

[20] S. Asmussen and G. Koole, �Marked point processes as limits of Markovian arrival streams�,
Journal of Applied Probability, vol. 30, pp. 365-372, 1993.

[21] �The ATM Forum Tra�c Management Speci�cation Version 4.0�, ATM Forum Tra�c
Management AF-TM-0056.000, Apr. 1996.

[22] F. Baccelli and P. Bremaud, �Elements of queueing theory: Palm-Martingale calculus and
stochastic recurrences�, Springer-Verlag, 1994.

[23] F. Baccelli and D. Hong, "TCP is Max-Plus Linear", ACM SIGCOMM, Aug. 2000.
[24] A. Bakre and B. R. Badrinath, �I-TCP: Indirect TCP for Mobile Hosts�, International

Conference on Distributed Computing Systems (ICDCS), May 1995.
[25] H. Balakrishnan, V. Padmanabhan, and R. Katz, �The E�ects of Asymmetry on TCP

Performance�, ACM MOBICOM, Sep. 1997.
[26] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. Katz, �A comparison of Mech-

anisims for Improving TCP Performance over Wireless Links�, ACM SIGCOMM, Aug.
1996.

[27] C. Barakat, "TCP modeling and validation", to appear in IEEE Network.
[28] C. Barakat and E. Altman, �Analysis of TCP with Several Bottleneck Nodes�, IEEE

GLOBECOM, Dec. 1999.
[29] C. Barakat and E. Altman, �Performance of Short TCP Transfers�, Networking 2000 (Per-

formance of Communications Networks), May 2000.
[30] C. Barakat and E. Altman, "A Markovian Model for TCP Analysis in a Di�erentiated

Services Network", International Workshop on Quality of future Internet Services (QofIS),
Sep. 2000.

[31] C. Barakat and E. Altman, "On ACK Filtering on a Slow Reverse Channel", International
Workshop on Quality of future Internet Services (QofIS), Sep. 2000.

[32] C. Barakat and E. Altman, "Bandwidth tradeo� between TCP and link-level FEC", to
appear in IEEE ICN, Jul. 2001.

[33] C. Barakat and E. Altman, "Analysis of the Phenomenon of Several Slow Start Phases in
TCP", ACM SIGMETRICS, extended abstract, Jun. 2000.

[34] C. Barakat, E. Altman, and W. Dabbous, �On TCP Performance in a Heterogeneous
Network : A Survey�, IEEE Communications Magazine, vol. 38, no. 1, pp. 40-46, Jan.
2000.

[35] C. Barakat, N. Chaher, W. Dabbous, and E. Altman, �Improving TCP/IP over Geosta-
tionary Satellite Links�, IEEE GLOBECOM, Dec. 1999.

[36] R. Bellman, �Introduction to matrix analysis�, McGraw-Hill, New York, 1960.
[37] J. Bennett, C. Partridge, and N. Shectman, " Packet reordering is not pathological network

behavior", IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 789-798, Dec. 1999.

191

[38] S. Biaz and N. H. Vaidya, �Distinguishing Congestion Losses from Wireless Transmission
Losses: A Negative Result�, International Conference on Computer Communications and
Networks (IC3N), Oct. 1998.

[39] T. Bonald, "Stabilité des systèmes dynamiques à événements discrets, application au con-
trôle de �ux dans les réseaux de télécommunications�, PhD thesis, Université de Nice-Sophia
Antipolis, Oct. 1999.

[40] A. Borovkov, "Ergodicity and Stability of Stochastic Processes", Wiley, 1998.

[41] R. Braden, "Requirements for Internet Hosts � Communication Layers", RFC 1122, Oct.
1989.

[42] B. Braden, et al.,�Recommendations on Queue Management and Congestion Avoidance in
the Internet�, RFC 2309, Apr. 1998.

[43] A. Brandt, �The stochastic equation Yn+1 = AnYn + Bn with stationary coe�cients�,
Advances in Applied Probability, vol. 18, pp. 211-220, 1986.

[44] A. Brandt. P. Franken, and B. Lisek, �Stationary stochasitic models�, Wiley, 1990.

[45] L. Brakmo and L. Peterson, �TCP Vegas: End to End Congestion Avoidance on a Global
Internet�, IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465-
1480, Oct. 1995.

[46] P. Brown, "Resource sharing of TCP connections with di�erent round trip times", IEEE
INFOCOM, Mar. 2000.

[47] K. Brown and S. Singh, �M-TCP: TCP for Mobile Cellular Networks�, ACM Computer
Communication Review, vol. 27, no. 5, pp. 19-43, Oct. 1997.

[48] T. Bu and D. Towsley, "Fixed Point Approximation for TCP behavior in an AQM Net-
work", UMass CMPSCI Technical Report, no. 00-43, Jul. 2000.

[49] H. Chaskar, T. V. Lakshman, and U. Madhow, �On the design of interfaces for TCP/IP
over wireless�, IEEE MILCOM, Oct. 1996.

[50] D. Chiu and R. Jain, �Analysis of the Increase/Decrease Algorithms for Congestion Avoid-
ance in Computer Networks�, Journal of Computer Networks and ISDN systems, vol. 17,
no. 1, pp. 1-14, Jun. 1989.

[51] A. Chockalingam, M. Zorzi, and R.R. Rao, �Performance of TCP on Wireless Fading Links
with Memory�, IEEE ICC, Jun. 1998.

[52] D. Clark and W. Fang, �Explicit Allocation of Best E�ort Packet Delivery Service�,
IEEE/ACM Transactions on Networking, vol. 6, no. 4, pp. 362-373, Aug. 1998.

[53] R. Durst, G. Miller, and E. Travis, �TCP Extensions for Space Communications�, ACM
MOBICOM, Nov. 1996.

[54] L. Eggert, J. Heidemann, and J. Touch, "E�ects of Ensemble-TCP", ACM Computer
Communication Review, vol. 30, no. 1, pp. 15-29, Jan. 2000.

[55] B. R. Elbert, �The Satellite Communication Applications Handbook�, Artech House,
Boston, London, 1997.

[56] K. Fall and S. Floyd, �Simulation-based Comparisons of Tahoe, Reno, and SACK TCP�,
ACM Computer Communication Review, vol. 26, no. 3, pp. 5-21, Jul. 1996.

[57] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, �Hypertext Transfer
Protocol � HTTP/1.1�, RFC 2068, Jan. 1997.

192 Bibliography

[58] V. Firoiu and M. Borden, "Queue Management for Congestion Control", IEEE INFOCOM,
Mar. 2000.

[59] W. Fischer and K. Meier-Hellstern, �The Markov-modulated Poisson process (MMPP)
cookbook�, Performance Evaluation, vol. 18, no.2, pp. 149-171, 1993.

[60] S. Floyd, �Connections with Multiple Congested Gateways in Packet-Switched Networks
Part 1: One-way Tra�c�, ACM Computer Communication Review, vol. 21, no. 5, pp. 30-47,
Oct. 1991.

[61] S. Floyd, �TCP and Explicit Congestion Noti�cation�, ACM Computer Communication
Review, vol. 24, no. 5, pp. 10-23, Oct. 1994.

[62] S. Floyd and K. Fall, "Promoting the Use of End-To-End Congestion Control in the Inter-
net", IEEE/ACM Transactions in Networking, vol. 7, no. 4, pp. 458-472, Aug. 1999.

[63] S. Floyd, M. Handley and J. Padhye, �Equation-based congestion control for unicast ap-
plications: the extended version�, ACM SIGCOMM, Aug. 2000.

[64] S. Floyd and T. Henderson, �The NewReno Modi�cation to TCP's Fast Recovery Algo-
rithm�, RFC 2582, Apr. 1999.

[65] S. Floyd and V. Jacobson, �Random Early Detection gateways for Congestion Avoidance�,
IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413, Aug. 1993.

[66] E.N. Gilbert, �Capacity of a burst-noise channel�, Bell Systems Technical Journal, Sep.
1960.

[67] P. Glasserman and D. D. Yao, �Stochastic vector di�erence equations with stationary co-
e�cients�, Journal of Applied Probability, Vol. 32, pp. 851-866, 1995.

[68] R. Goyal, R. Jain, S. Kota, M. Goyal, S. Fahmy, and B. Vandalore, �Tra�c Management
for TCP/IP over Satellite-ATM Networks�, IEEE Communications Magazine, vol. 37, no.
3, Mar. 1999.

[69] E. Hashem, �Analysis of random drop for gateway congestion control�, MIT, no. TR-465,
1989.

[70] T. Henderson and R.H. Katz, �Transport Protocols for Internet-Compatible Satellite Net-
works�, IEEE Journal on Selected Areas in Communications, vol. 17, no. 2, pp. 326-344,
Feb. 1999.

[71] T. Henderson, E. Sahoria, S. McCanne, and R. H. Katz, �Improving Fairness of TCP
Congestion Avoidance�, IEEE GLOBECOM, Nov. 1998.

[72] J. Hoe, �Improving the Start-up Behavior of a Congestion Control Scheme for TCP�, ACM
SIGCOMM, Aug. 1996.

[73] J.J. Hunter, �On the moments of Markov renewal processes�, Advances in Applied Proba-
bility, vol. 1, pp. 188-210, 1969.

[74] P. Hurley, J. Y. Le Boudec, and P. Thiran, "A Note on the Fairness of Additive Increase
and Multiplicative Decrease", ITC-16, Jun. 1999.

[75] V. Jacobson, �Congestion avoidance and control�, ACM SIGCOMM, Aug. 1988.

[76] V. Jacobson, �Compressing TCP/IP Headers for Low-speed Serial Links�, RFC 1144, Feb.
1990.

[77] V. Jacobson, R. Braden, and D. Borman, �TCP Extensions for High Performance�, RFC
1323, May 1992.

193

[78] R. Jain, "A delay-based approach for congestion avoidance in interconnected heterogeneous
computer networks", ACM Computer Communication Review, . vol. 19, no. 5, pp. 56-71,
Oct. 1989.

[79] S.H. Kang and D.K. Sung, �A Markovian arrival process (MAP) modeling for superposed
ATM tra�c�, manuscript.

[80] L. Kleinrock, "Queueing Systems", Wiley, 1975.

[81] C. Knessl, B. Matkowsky, Z. Schuss, and C. Tier, �Asymptotic Analysis of a state-
dependent M/G/1 queueing system�, SIAM Journal on applied Mathematics, vol. 46, no.
3, pp. 483-505, 1986.

[82] A. Kumar, �Comparative Performance Analysis of Versions of TCP in a Local Network
with a Lossy Link�, IEEE/ACM Transactions on Networking, vol. 6, no. 4, pp. 485-498,
Aug. 1998.

[83] A. Kumar and J. Holtzman, �Performance Analysis of Versions of TCP in a Local Network
with a Mobile Radio Link�, Sadhana: Indian Academy of Sciences Proceedings in Engg.
Sciences, Feb. 1998.

[84] T.V. Lakshman and U. Madhow, �The performance of TCP/IP for networks with high
bandwidth-delay products and random loss�, IEEE/ACM Transactions on Networking,
vol. 5, no. 3, pp. 336-350, Jun. 1997.

[85] T. V. Lakshman, U. Madhow, and B. Suter, �Window-based error recovery and �ow control
with a slow acknowledgment channel: a study of TCP/IP performance�, IEEE INFOCOM,
Apr. 1997.

[86] T.V. Lakshman, A. Neidhardt, and T.J. Ott, "The Drop from Front Strategy in TCP over
ATM and its Interworking with other Control Features", IEEE INFOCOM, Mar. 1996.

[87] D. Lin and R. Morris, �Dynamics of Random Early Detection�, ACM SIGCOMM, Sep.
1997.

[88] J. Martin, A. Nilsson, and I. Rhee, "The Incremental Deployability of RTT-Based Con-
gestion Avoidance for High Speed TCP Internet Connections," ACM SIGMETRICS, Jun.
2000.

[89] L. Massoulie and J. Roberts, "Bandwidth sharing: objectives and algorithms", IEEE IN-
FOCOM, Mar. 1999.

[90] M. Mathis and J. Mahdavi, �Forward Acknowledgment: Re�ning TCP Congestion Control�,
ACM SIGCOMM, Aug. 1996.

[91] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, �TCP Selective Acknowledgment
Options�, RFC 2018, Oct. 1996.

[92] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, �The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm�, ACM Computer Communication Review, vol. 27, no. 3,
pp. 67-82, Jul. 1997.

[93] K.S. Meier-Hellstern, �A �tting algorithm for Markov-modulated Poisson processes having
two arrival rates�, European Journal of Operational Research, vol. 29, pp. 370-377, 1987.

[94] I. Minei and R. Cohen, �High-Speed Internet Access Through Unidirectional Geostationary
Satellite Channels�, IEEE Journal on Selected Areas in Communications, vol. 17, no. 2,
pp. 345-359, Feb. 1999.

[95] A. Misra and T. Ott, "The window distribution of idealized TCP congestion avoidance
with variable packet loss", IEEE INFOCOM, Mar. 1999.

194 Bibliography

[96] V. Misra, W.-B. Gong, and D. Towsley, �Stochastic di�erential equation modeling and
analysis of TCP-windowsize behaviour�, Performance, Oct. 1999.

[97] V. Misra, W.-B. Gong, and D. Towsley, "Fluid-based Analysis of a Network of AQM
Routers Supporting TCP Flows with Application to RED", ACM SIGCOMM, Aug. 2000.

[98] R. Morris, "Scalable TCP Congestion Control", IEEE INFOCOM, Mar. 2000.

[99] J. Nagle, "Congestion control in IP/TCP internetworks", RFC 896, Jan. 1984.

[100] M.F. Neuts, �Structured stochastic matrices of M/G/1 type and their applications�, Marcel
Dekker, New York, 1989.

[101] K. Nichols, V. Jacobson, and L. Zhang, �A Two-bit Di�erentiated Services Architecture
for the Internet�, Internet Draft, work in progress, May 1999.

[102] The LBNL Network Simulator, ns, http://www.isi.edu/nsnam/ns/

[103] N.C. Oguz and E. Ayanoglu, �Performance Analysis of Two-Level Forward Error Correction
for Lost Cell Recovery in ATM Networks�, IEEE INFOCOM, Apr. 1995.

[104] T. Ott, J. Kemperman, and M. Mathis, "The stationary behavior of ideal TCP congestion
avoidance", manuscript, Aug. 1996.

[105] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, �Modeling TCP Throughput: a Simple
Model and its Empirical Validation�, ACM SIGCOMM, Aug. 1998.

[106] J. D. Parsons, �The Mobile Radio Propagation Channel�, Pentech Press, London, 1992.

[107] V. Paxson, �End-to-End Internet Packet Dynamics�, ACM SIGCOMM, Sep. 1997.

[108] V. Paxson and M. Allman, "Computing TCP's Retransmission Timer", Internet Draft,
work in progress, Apr. 2000.

[109] L. Peterson and B. Davie, �Computer Networks: a system approach�, Academic Press,
2000.

[110] M. Posner," Single-server queues with service time dependent on waiting time", Operations
Research, vol. 21, pp. 610-616, 1973.

[111] J. Postel, �Transmission Control Protocol�, RFC 793, Sep. 1981.

[112] K. Ramakrishnan and S. Floyd, "A Proposal to add Explicit Congestion Noti�cation (ECN)
to IP", RFC 2481, Jan. 1999.

[113] T.S. Rappaport, "Wireless Communications", IEEE Press, New York, 1996.

[114] L. Rizzo, �E�ective erasure codes for reliable computer communication protocols�, ACM
Computer Communication Review, vol. 27, no. 2, pp. 24-36, Apr. 1997.

[115] S. Sahu, P. Nain, D. Towsley, C. Diot, and V. Firiou, �On Achievable Service Di�erentiation
with Token Bucket Marking for TCP", ACM SIGMETRICS, Jun. 2000.

[116] N. Samaraweera and G. Fairhurst, �Reinforcement of TCP/IP Error Recovery for Wireless
Communications�, ACM Computer Communication Review, vol. 28, no. 2, pp. 30-38, Apr.
1998.

[117] S. Savari and E. Telatar, "The Behavior of Certain Stochastic Processes Arising in Window
Protocols", IEEE GLOBECOM, Dec. 1999.

[118] J. Semke, J. Mahdavi, and M. Mathis, "Automatic TCP Bu�er Tuning", ACM SIGCOMM,
Sep. 1998.

195

[119] N. Shacham and P. McKenney, �Packet Recovery in High-Speed Networks Using Coding
and Bu�er Management�, IEEE INFOCOM, Jun. 1990.

[120] B. Suter, T.V. Lakshman, D. Stiliadis, and A.K. Choudhary, �Design Considerations for
Supporting TCP with Per-�ow Queueing�, IEEE INFOCOM, Mar. 1998.

[121] W. Stevens, �TCP Slow-Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms�, RFC 2001, Jan. 1997.

[122] J. Stone and C. Partridge, "When the CRC and TCP Checksum Disagree", ACM SIG-
COMM, Sep. 2000.

[123] K. Thompson, G.J. Miller, and R. Wilder, "Wide-Area Internet Tra�c Patterns and Char-
acteristics", IEEE Network, vol. 11, no. 6, pp. 10-23, Nov. 1997.

[124] H.C. Tijms," Stochastic Models � An Algorithmic Approach", Wiley, Chichester, 1994.
[125] V. Visweswaraiah and J. Heidemann, �Improving Restart of Idle TCP Connections�, Uni-

versity of Southern California Technical Report, no. 97-661, Nov. 1997.
[126] J. Walrand, �An introduction to queueing networks�, Prentice Hall, 1988.
[127] Z. Wang and J. Crowcroft, "A new congestion control scheme: Slow start and search

(tri-s)", ACM Computer Communication Review, vol. 21, no. 1, pp. 32-43, Jan. 1991.
[128] L. Zhang, S. Shenker, and D.D. Clark, �Observations on the Dynamics of a Congestion

Control Algorithm: The E�ects of Two-Way Tra�c�, ACM SIGCOMM, Sep. 1991.
[129] Y. Zhang, D. DeLucia, B. Ryu, and S. Dao, �Satellite Communications in the Global

Internet: Issues, Pitfalls, and Potential�, INET, Jun. 1997.

196 Bibliography

Résumé
On étudie dans cette thèse les performances des mécanismes de contrôle de congestion du pro-
tocole TCP. Ces mécanismes sont très importants pour la stabilité de l'Internet étant donné le
grand volume du tra�c transporté par TCP. On développe pour ce but plusieurs modèles analy-
tiques. Nos modèles sont divisés en deux groupes : les modèles de bout-en-bout et les modèles
qui considèrent les caractéristiques et les mécanismes du réseau. L'objectif des modèles de bout-
en-bout est de trouver des expressions simples pour le débit moyen d'une connexion TCP de
longue durée. On essaie de garder nos modèles les plus généraux possibles pour qu'ils puissent
couvrir les di�érentes manières avec lesquelles le réseau rejette les paquets de la connexion TCP.
En utilisant des techniques de la théorie de processus stochastiques, on trouve des expressions
explicites pour le débit moyen de TCP qu'on valide avec des mesures sur l'Internet. Concernant
le deuxième groupe de modèles, l'objectif est d'étudier les performances des transferts TCP dans
des environnements di�ciles au protocole. On considère les trois environnements montrés dans la
littérature comme étant les plus di�ciles au protocole : l'environnement ayant un grand produit
délai-bande passante, l'environnement ayant une importante asymétrie de bande passante entre
le chemin d'aller et le chemin de retour, et l'environnement sans �l où les paquets TCP sont le
plus souvent perdus pour une autre raison que la congestion. Pour chaque environnement, on
propose un modèle analytique ainsi qu'un ensemble de mécanismes et de solutions pour aider
le protocole TCP dans son fonctionnement. Les résultats de notre deuxième groupe de modèles
sont validés par des simulations sur ns. La thèse contient aussi une présentation des di�érents
travaux qui ont été e�ectués sur les mécanismes de contrôle de congestion de TCP depuis leur
introduction dans l'Internet.

Mots-clés: Internet, contrôle de congestion, TCP, modélisation, processus stochastiques, propo-
sition de mécanismes et de directions, expérimentation, simulation

Abstract

We study in this thesis the performance of the congestion control mechanisms of the TCP
protocol. These mechanisms are very important for the stability of the Internet given the huge
amount of the TCP tra�c. For the purpose of our study we develop some analytical models. Our
models are divided into two main groups: the end-to-end models and the network-speci�c models.
The objective of the end-to-end models is to come up with simple expressions of the throughput
of a long-life TCP connection. We try to keep our models as general as possible so that they
cover the di�erent ways with which the network drops the packets of the TCP connection.
Using techniques from the theory of stochastic processes, we �nd explicit expressions for TCP
throughput that we validate via measurements over the Internet. Concerning the network-speci�c
models, our objective is to study the performance of TCP in challenging environments. We focus
on the three environments considered in the literature as the most challenging for TCP: the large
bandwidth-delay product environment, the asymmetric-bandwidth environment, and the wireless
environment. For each environment, we propose an analytical model as well as some mechanisms
and guidelines to improve the performance of TCP transfers. The di�erent results of our second
group of models are validated via ns simulations. The thesis also contains a presentation of the
di�erent works on TCP congestion control mechanisms since their introduction into the Internet.

Keywords: Internet, congestion control, TCP, modeling, stochastic processes, proposition of
mechanisms and guidelines, experimentation, simulation

