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ABSTRACT

In this paper, LEMON, a lightweight enhanced monitoring algorithm based on packet sampling, is proposed. It targets a
pre-assigned accuracy on bitrate estimates, for each monitored flow at a router interface. To this end, LEMON takes into
account some basic properties of the flows, which can be easily inferred from a sampled stream, and it exploits them to
dynamically adapt the monitoring time-window on a per-flow basis. Its effectiveness has been tested using real packet
traces. Experimental results show that LEMON is able to finely tune, in real-time, the monitoring window associated to
each flow and, compared to a classic fixed-scale monitoring approach, it is able to better satisfy the accuracy requirements
of bitrate estimates. Moreover, its communication overhead can be kept low enough by choosing an appropriate aggregation
policy in the message exporting process. Finally, LEMON produces a low processing overhead, which can be easily
sustained by currently deployed routers. Copyrightc© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In network measurement systems, sampling techniques can
greatly reduce packet processing overhead [1, 2, 3]. Using
them, the properties of the traffic to analyze can be inferred
only from a subset of packets, each one captured from
the original stream with a packet sampling probabilityp
[3]. In particular, when packet sampling is turned on at
a monitored network interface, the packets in transit are
firstly sampled with probabilityp. Then, each sampled
packet is classified and processed, as belonged to a subset
of packets calledflow: the corresponding packet or byte
counters are increased, and other metrics of interest are
updated [4]. In this context, the definition of aflow is
encoded using aflow key, which encompasses one or more
packet header fields, depending on the metering process.
Finally, as done in CISCO NetFlow [5] and IP Flow
Information eXport (IPFIX) systems [6, 7], the counters
associated to the monitored flows are exported towards
a collecting point, which is in charge of executing the
required statistical analyses.

Nowadays, in flow-based monitoring systems (e.g.,
NetFlow and IPFIX), this exporting process is triggered by
timers, which are statically established and commonly set
in the order of some minutes or which can expire when
no packets are observed for a long period with respect

to a given flow. In this manner, traffic characteristics are
estimated with a coarse and fixed time resolution [8].

For sake of clarity, we remark that an exporting timer
lastingT seconds leads to a bitrate estimate binned over
an averaging window with the same sizeT . For this reason,
from now on, the termsbin size, monitoring window, and
exporting timerwill be used interchangeably.

Approaches based on a large or fixedT pose serious
limitations on the possibility to conceive management
tools that are fast enough to detect anomalies in real
time. The majority of the applications, in fact, recognize
an anomalous event (e.g., caused by attacks or network
failures) long after this event occurs: thus, they are not able
to recognize the event while it is still in progress. This is
due to the static and coarse nature of the measurements
provided by the monitoring systems [9].

To this aim, it is also worth to mention that the
estimation of a flow bitrate (averaged over a time bin with
durationT ) using a sampled stream leads to a loose of
accuracy, which is tightly coupled to the properties of the
traffic itself, the sampling probabilityp, and the monitoring
window T [10]. This problem critically emerges for
monitoring applications that require a fine grained time
resolution (i.e., smallT ) with a very low processing
overhead (i.e., smallp), so that the parametersp andT
have to be carefully tuned for each single flow to avoid to
compromise the effectiveness of the overall measurement
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system [11]. In other words, the adoption of a fixed
monitoring windowT is not feasible in all conditions and
could generate unacceptable estimation errors of the traffic
bitrate.

In addition, we highlight that high frequency compo-
nents of traffic, which are irreversibly lost using a largeT ,
can bring information very useful for a deep investigation
of flows’ properties. This aspect becomes very relevant
for traffic engineering systems in networks [12, 13] and
OpenFlow boxes [14, 15], where decisions on rerouting are
based on variations in the traffic bitrate.

The same remark applies to anomaly detection systems
[16, 17], which could infer shifts from traffic if out-profile
behaviors are caused by malicious activities, or by failures
in network equipments or protocols. The early and accurate
detection of these anomalies allows quick and precise
countermeasures.

Traffic anomalies are sudden events that usually cause
a deviation from what is considered as normal behavior in
the traffic flows. These events, due to network equipment
failures, flash crowd occurrences, security attacks (e.g.,
denial of service attacks), external routing changes, are
named “volume-based” anomalies [18]. There are also the
so-called “non volume-based” anomalies, e.g., the port
scanning attacks, in which server ports are scanned in order
to exploit the vulnerability of a particular service.

In general, the unfavorable effect of the sampling
on the effectiveness of the detection is more visible
as the value of the corresponding sampling probability
decreases, considering both “volume-based” and “non-
volume-based” detection techniques. Packet sampling
introduces two main effects that bias the distortion of
the data and affect the goodness of the detections. At
high sampling probability (with a low percentage of
lost packets), the flow thinning effect (wherein a multi-
packet flow is reduced to a single packet flow by random
packet sampling [17]) is the main factor that increases the
number of false positives. At low sampling probability,
instead, the global reduction in the number of flows (or
the global reduction in the distribution of the flows)
causes a decrease of the major events observed and
detected. Moreover (for a reasonable value of the sampling
probability), if “volume-based” metrics are considered
as anomaly index (i.e., packet counts and byte counts),
the packet sampling does not affect the number of the
measured anomalies. Otherwise for “non-volume-based”
anomalies, packet sampling heavily impacts on the flow
counts, affecting the number of detected anomalies [16];
for example, in port scanning the detection metric is strictly
related to the number of ports queried by the server probe,
and thus to the number of detected flows. “Entropy-based”
techniques, that analyze changes in the distribution of
traffic communication pattern, are generally more resilient
to packet sampling than “volume-based” metrics [16].

One possible solution to these problems would consist
in adopting dedicated measurement hardware, able to
catch as many packets as necessary [8, 19]. But this

requires additional equipments and inflates the costs of the
monitoring systems. Conversely, approaches that leverage
on the concept of entropy could nicely fit the requirements
of anomaly detection systems [20]. But, unfortunately, they
could hardly be applied to traffic engineering.

Another alternative is to use other kind of packet/byte-
counting methods like, for example, the Simple Network
Management Protocol (SNMP). As well known, the SNMP
protocol is based on the query/response paradigm and
exchanges management information between two software
entities: the SNMP applications (running on network
management devices) and the SNMP agents (running
on external network devices). Differently from the flow-
based monitoring systems, SNMP is a highly complicated
protocol to implement: the design of SNMP agents and
also their administration are difficult and usually entail
individual configuration and habitual maintenance [21].
Moreover, SNMP is not a particularly efficient protocol.
Bandwidth is wasted with needless information included
into each exchanged message (i.e., the SNMP version and
multiple length and data descriptors). Also, the way the
variables are identified leads to wastefulness of large data
that consume substantial parts of each SNMP message
[22].

In our humble opinion, it is still possible to
take advantage from flow-based monitoring and packet
sampling techniques and, at the same time, to grant for
an accurate traffic estimation. In line to this principle, we
present herein a novel algorithm for traffic monitoring at
the flow level based on packet sampling, which will be
referred to as Lightweight Enhanced MOnitoring for high-
speed Networks (LEMON).

The key features of LEMON are as follows.

• It works on a per network interface basis, that is, it
is not a network wide system.

• It adopts a fixed value for the sampling probability
p and it adapts the valueT (i.e., the exporting timer
for each monitored flow) in order to ensure a given
target estimation accuracy of the bitrate to each
monitored flow at a given interface.

• It represents the bitrate as a signal over the time and
it models its estimation accuracy by using a Signal-
to-Noise Ratio (SNR) concept.

• It links the desired accuracy (i.e, the target SNR)
to the parametersp andT by adopting closed form
expressions, recently devised in [10].

• It requires only minimal modifications to the
NetFlow implementation; in particular, a dynamic
adaptation of exporting timers on a per-flow basis
and a slightly larger memory needs are required.

In a previous work [23], a first implementation of
the LEMON algorithm was proposed. Two analytic
expressions have been used to model the SNR, derived
with a frequency based approach in [10]. In the present
paper, a further step ahead has been done by extending
in several directions the preliminary system in [23]: (i)
one more model for the SNR, derived in [10] by using a
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classic stochastic approach, is adopted; (ii) a wider set of
traces is considered in order to provide a better evidence
of the LEMON effectiveness; (iii) three different strategies
for message exporting are evaluated in terms of their
communication overhead; (iv) a comparison with a fixed
resolution approach is accomplished to motivate the need
for LEMON in realistic settings; (v) an analysis of the
complexity of LEMON is carried out (i.e., memory and
CPU requirements are evaluated) to highlight its relevance
in real-time monitoring systems.

Within this paper, the effectiveness of LEMON is
demonstrated using two kinds of real traffic traces, one
captured on Asia transpacific links (thanks to the MAWI
project) [24] and the other one captured on an access router
attached to a DSLAM with about a thousand of customers
behind.

Results have shown that: (i) LEMON is able to tune,
in real-time and and in a fine manner, the monitoring
window associated to each flow; (ii) compared to a classic
fixed-scale monitoring approach, LEMON is able to better
satisfy the accuracy requirements imposed on the SNR
of the bitrate estimates; (iii) the timing of the exporting
process and, hence, the rate of messages sent to the
collector (i.e., the “communication overhead”) can be kept
low enough by choosing an appropriate aggregation policy;
(iv) LEMON produces only a low processing overhead,
which can be easily sustained by currently deployed
routers, such as the CISCO 12000 device. All these results
show that LEMON can be a promising tool for traffic
monitoring in high-speed networks.

The rest of the paper is organized as follows. In the
next section, the related work is provided. In Sec.3, the
integration of LEMON within a real monitoring device,
compliant to IPFIX exporting specifications, is discussed.
Then, Sec.4 widely describes all details of LEMON,
which is then experimentally tested in Sec.5 using real
network traces. Finally, the last section draws conclusions
and forecasts future research.

2. RELATED WORK

In high-speed networks, anomaly detection, network
tomography, traffic engineering, traffic characterization,
and intrusion detection techniques require accurate traffic
measurements in order to pursue their targets [25, 4, 26, 27,
28]. At the same time, the huge volume of traffic carried
by high-speed backbones and the increasing heterogeneity
of new applications, if not properly handled, would cause
an unsustainable growth of the overhead required by such
measurements. As a matter of fact, from one side, it
is necessary: (i) to process, classify, and characterize a
large amount of data with strict temporal resolution and
accuracy; (ii) to allow an effective analysis of traffic
composition; and (iii) to monitor the network infrastructure
trend or users’ behavior. On the other side, the overall

measurement process should not waste further precious
communication and processing resources.

As testified by the huge number of studies on the
topic [29, 28], the aforementioned challenges are at the
center of an ebullient panorama of research activities,
which are currently attracting a wide community of
scientists all over the world. This is confirmed by
the number of research projects which are involved in
traffic measurement and analysis, for example see the
projects: CAIDA∗ (Cooperative Association for Internet
Data Analysis), MAWI† (Measurement and Analysis
on the WIDE Internet), IPMA‡ (Internet Performance
Measurement & Analysis), TMA§ (Traffic Monitoring and
Analysis), and mPlane¶ (Intelligent Measurement Plane
for Future Network and Application Management).

At the present, anomaly detection, security applications,
traffic accounting, performance analysis, and network
planning are, among others, top research trends [30,
4, 25, 31]. All these sophisticated applications need
to access basic information about the monitored traffic
(e.g., packet/flow counters, flow bitrates, flow/packet
timestamps, flags and/or protocol ports) which can be
extrapolated by considering active [32, 33], in-line [34, 35]
or passive [36, 8, 19] measurements.

An active measurement system feeds the observed
network with test packets, which are collected at one or
more sinks and processed in order to infer the metrics of
interest. The weakness of this class of techniques is related
to the load generated by test packets, which, if not properly
handled, could interfere with the traffic to monitor and thus
could compromise the accuracy of the considered metering
applications [32, 37]. Moreover, different probing streams
generated from several measurement devices at the same
time could interfere to each other by severely impairing
the effectiveness of the measurement system [38].

The in-line approach, conceived for IPV6 environments
only, considers measurement devices as native parts of the
network and charges them with the task of monitoring the
traffic and encoding the results directly into ad hoc packet
headers [34, 35]. As example, in [35] it is proposed to
transport measured metrics by using the native and unused
fields of the IPv6 protocol at the network layer. In this
way, it is possible to perform end-to-end unidirectional
measurements, like packet delay and packet loss. Anyway,
it is worth to note that in-line techniques require additional
and/or unused packet headers that could not be available in
all network device settings.

Techniques based on passive measurements appear
very appealing since they do not require the injection of
probing traffic into the monitored network nor the usage of
dedicated packet header fields. They observe the traffic as

∗See http://www.caida.org/.
†See http://mawi.wide.ad.jp/mawi/.
‡See http://www.merit.edu/networkresearch/projecthistory/ipma/.
§See http://http://www.tma-portal.eu/.
¶See http://www.ict-mplane.eu/.
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it flows through monitored interfaces that are periodically
queried (or interfaces autonomously export the outcome
of the measurement process) to let administrators access
information [36, 39].

Originally, for what concerns this class of approaches,
only simple packet/byte-counting methods have been used,
such as in the Simple Network Management Protocol
(SNMP).

Moreover, these very basic solutions, if alone, are
no longer useful to fit the requirements of nowadays
monitoring systems due to a poor accuracy [40].
Furthermore, in high speed links with rates of several
gigabit per second, it is necessary to grant fast packet-
processing at router interfaces and low communication
overhead. Thus, internet service providers started to
prefer the usage of lightweight flow-level tools (e.g.,
NetFlow and sFlow [41]) that can be easily embedded into
routers, or other dedicated devices, and that can provide
further information on the traffic (e.g., start/end or delta
timestamps, packet/octet counters, and TCP flags counters)
than simple counting methods [39].

Packet sampling techniques, used in conjunction with
Cisco NetFlow, have also gained a lot of attention
in recent years due to their high scalability and ease
of implementation. In this direction, some interesting
proposals have been conceived to tune the packet sampling
probabilityp, based on the composition of the traffic mix
[8, 42] or on the flow size [43].

A more challenging network-wide environment is
considered in [44], where a novel cognitive monitoring
approach is proposed by considering the cooperation of
different network probes. Given a measurement task and
a constraint on the volume of collected information, the
system in [44] is able to set operating conditions of
routers (i.e., the packet sampling rate at the different
interfaces) in a centralized and adaptive way, by
balancing measurement accuracy and system overhead.
Unfortunately, this approach does not consider the real-
time adaptation of the monitoring time resolutionT given
that it mainly focuses on flow volumes.

In [9], the attention is moved to end-host bandwidth
measurements. A measurement tool is developed that suc-
cinctly summarizes bandwidth information and answers
general queries at arbitrary resolutions without maintain-
ing state for all time scales. With such a scheme, collected
data can be handled using a relational database, thus allow-
ing administrators to query off-line bandwidth statistics
across links and time.

To conclude, all mentioned techniques have been
designed assuming a fixed time resolution and/or using
offline information processing schemes, but this could not
fit the requirements of advanced monitoring applications
(see also the discussion on the subject in the previous
section). For this reason, the contribution of the present
paper aims to complement such valuable research efforts
by proposing a novel algorithm, able to adapt (in real-
time) IPFIX (Netflow) exporting timers in order to grant a

desired accuracy on the estimated bitrate of each monitored
flow at the network interface of interest.

3. INTEGRATING LEMON IN A
MONITORING SYSTEM

In this section, the functions of the LEMON algorithm
are explaining by illustrating how it can be easily
embedded in nowadays monitoring devices. To this aim,
the main features of consolidated flow-level approaches,
e.g., NetFlow and IPFIX, will be firstly summarized. Then,
the role of LEMON in improving their performance will be
highlighted.

Here, the termflow defines a set of packets, observed
at a particular interface during a certain time interval,
that share common properties (defined asflow key).
These properties can be referred to packet headers (e.g.,
source/destination IP address, source/destination transport
port, transport protocol type, packet length), or to packet
payloads. Usually, a traffic monitoring device at the
flow level is in charge of storing and handling all the
information collected from each flow by using aflow
record table. Such a table is updated by creating new
entries, refreshing existing ones, and deleting or exporting
information about expired flows.

Starting from the system guidelines of Cisco NetFlow
v.9, IETF defined a standard way of exporting information
related to IP flows, i.e., the IPFIX (IP Flow Information
eXport) protocol [6, 7, 45].

The IPFIX reference architecture [46] is composed
of interacting monitoring devicesand collectors, both
communicating using the IPFIX protocol (see Fig.1).
Usually, each monitoring device hosts the three following
functional components [46].

• An Observation Pointof incoming packets through
one monitoring interface.

• A Metering Processfor the creation and the
management of flow records. This process is
in charge of different functions, for example:
to capture packets and parse their headers; to
manage timestamps; to handle packet sampling and
filtering; to classify flows; and to arrange IP traffic
information in theflow record table.

• An Exporting Processfor the transmission of
IPFIX messages towards aCollecting Processat
the collectors. Each message contains information
about flows, such as the properties that characterize
the definition of the flow key and the value of
monitored counters. In this way, collectors can
make the information on monitored flows accessible
to network operators for further analyses and
applications.

The exporting process usually applies to those flows
considered as expired in theflow record table[46]. Their
selection can depend on many events that include: the
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expiration of idle or active timeouts, configured by the
metering process. In particular, a flow record is timed out
either if no packets belonging to it have been observed for
a time interval specified by theflowIdleTimeoutvariable,
or if the flowActiveTimeoutexpires when the flow is still
active [45].

In general, an exporting process is triggered also by:
(i) traffic overloads, which may generate too many new
flow record entries, more than what the memory capacity
of a device can support; (ii) detection of packets carrying
particular information (e.g., TCP headers with set FIN or
RST flags, which indicate that a TCP session is ending).
A monitoring system, equipped with IPFIX/NetFlow
functionalities, is then able to provide traffic measures only
at the end of the life of the monitored flows, or at coarse
time scales (the default value offlowIdleTimeoutis 300 s,
the defaultflowActiveTimeoutis 1800 s). This is a serious
limitation for an effective traffic monitoring, because in
this way one cannot counteract traffic problems in real
time, while they are still in progress, but has rather to wait
for the expiration of a timeout or for the end of the flows
experiencing problems. In addition, such a coarse time
resolution impedes to recover high frequency components
of the traffic, which can be very relevant to advanced
monitoring approaches, as explained in Sec.1.

Concerning this, LEMON improves the value and the
utility of flow-based measurements, because it is able to
forward information about a flow also during its active
period, with a finer time scales with respect to classic
monitoring systems. In this way, it also makes possible to
partially recover high frequency components of the traffic.
To this end, a new per-flow timeout is defined in LEMON,
i.e., theflowBinTimeout, which is compliant to the IPFIX
information model guideline [45]. Such a timeout trips
each time the actual time bin windowT expires for a given
flow; this allows the system to export the data collected for
the considered flow during the last time bin. In the next
Sec.4, along with all details of the LEMON algorithm,
it will be deeply described how this new timeout can be
adaptively set in real time in order to grant for a target
accuracy of bitrate estimates.

4. LEMON ALGORITHM

Herein, details about LEMON system are provided starting
from its theoretical foundation.

4.1. Theoretical Considerations

In [10], three closed-form analytical equations were
derived, each one modeling the estimation accuracy of the
measurement system in terms of SNR (Signal-to-Noise-
Ratio), that is, the ratio between the signal associated to
the original bitrate (of a consideredi-th flow) and the noise
due to sampling operations. In other words, they represent
the accuracy of bitrate measurements of a packet sampled
flow, as a function of: the sampling ratep, the bin sizeTi,
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Figure 1. IPFIX reference architecture.

and some other metrics that can be estimated directly from
sampled packets.

In LEMON, such models are used solving their
representative equations with respect to the variableTi

(as described in the next subsection); this is made in
order to dynamically adapt the observation window of each
monitored flow and to ensure adesired valueof SNR
which, from now on, will be referred to asSNRth .

The first SNR model assumes that all packets have the
same constant packet size (CPS). With reference to thei-th
flow, the expression for the SNR in the CPS model can be
expressed as:

SNRi =
p

1− p
×

[

Ti × Ci

0.89
+ 1

]

. (1)

The second model, instead, explicitly takes into account
a variable packet size (VPS). The expression for the SNR
in this case is:

SNRi =
p

1− p
×

[

Ti × Ci ×D
2

i

0.89×Mi

+ 1

]

. (2)

In the previous equations, with reference to thei-th
flow and considering that the packet size can be seen as
stochastic variable,Di andMi are the first and the second
order moments of the packet size, respectively. Instead,
Ci is the average packet transmission rate. All of these
parameters are assumed to be stationary and have to be
inferred from the sampled traffic of thei-th flow. As shown
in [10], the 0.89 factor is obtained because a monitoring
window with sizeTi is modeled as a low-pass filter with a
frequency band that is0.89/Ti wide.

The third model also accounts for packets having
different sizes, but it has been derived using a classic
stochastic approach, so that it will referred to as “stochastic
model” in the sequel; in this case, the SNR has the
following expression:

SNRi =
p

1− p
× Ti × Ci ×

D
2

i

Mi

. (3)
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Network administrators can take advantage of these
models to tune, in real-time, the main parameters of the
monitoring system, asTi or p, in order to achieve the
desired estimation accuracy and to trade off sampling
overhead with frequency resolution [11]. In what follows,
we will show how these models can be used to implement
a real-time monitoring scheme, evaluating also their
effectiveness.

4.2. Real-time adaptation of time resolution

As mentioned above, LEMON objective is to monitor
the bitrate of packet sampled flows, which are identified
by a flow key. Detected flows are handled using a table
of flow records, so that every time a packet is captured
and identified as belonging to a given flow, the relative
counters are updated. Given a minimum performance level
to ensure in terms of a SNR threshold, the time resolution
modeled by the averaging time bin is not fixed, but it varies
following the behavior of the monitored signal, as stated by
the three analytical models presented above.

In order to handle a time-varying bin size, LEMON
introduces a new per-flow timeout, namelyflowBinTime-
out, which is time-varying and adapts, in real-time, the
frequency of the exporting process (and consequently the
time-resolution of traffic measurements at the collectors).
This per-flow timeout is properly defined according to the
IPFIX information model guideline [45].

With reference to a given network interface of a
router, LEMON samples incoming packets with a uniform
probability‖ p and it classifies them in several flows,
according to the definition of a flow key. Thei-th flow is
monitored during observation windows namedbin timeTi.
The monitoring operations consist basically on counting
the number of sampled packets and bytes of the i-th flow
to infer an estimate of its bitrate.

A flow table is used to maintain flow records. Every
time a packet is captured and identified as belonging to a
flow, the relative flow counters are updated. Once thek-th
time bin of thei-th flow,Ti(k), expires, LEMON performs
the estimation of the model parameters (i.e.,Di, Mi, and
Ci), updating the values calculated during the previous
time bin with the contribution of counters at the last one.
These operations are performed in order to adapt the time
resolution to the variations of the bitrate associated to the
considered flow.

Now, it is worth to explain how the CPS, VPS, and
stochastic models can be used to dynamically setTi given
the packet sampling probabilityp and the target accuracy
SNRth . Such a performance bound can be typically set
larger than 10, allowing a higher resolution in real-time
monitoring of bitrate than the one obtained with the current
traffic monitoring systems.

‖Obviously,0 ≤ p ≤ 1.

In particular, thek-th exporting period counterTi(k) for
thei-th flow can be obtained as follows:

Ti(k) =

[

1− p

p
× SNRth − 1

]

×
0.89

Ci

, (4)

Ti(k) =

[

1− p

p
× SNRth − 1

]

×
0.89 ×Mi

Ci ×Di
2
, (5)

Ti(k) =
1− p

p
× SNRth ×

Mi

Ci ×Di
2
. (6)

where Eq. (4) is obtained from the CPS model, Eq. (5)
from the VPS model, and Eq. (6) from the stochastic one.

ParametersDi, Mi, andCi are calculated considering
the past history related to thei-th flow, using an
exponential weighted moving average filter.

4.3. LEMON Algorithm

It is possible to summarize LEMON algorithm with the
three main processing operations (see Fig.2).

a) Initializing working parameters: in this phase the
sampling probability ratep, the SNR threshold
SNRth , and an initial default value of the
observation time windowTd, are set. Flow keys
are also defined. Moreover, the reference model to
adopt (whether CPS, VPS, or stochastic) is chosen.
The flow table is cleared.

b) Management of identified monitored flows:the flow
record table is used to maintain flow records. Thus,
every time a packet is captured and identified as
belonging to a flow, the relative flow counters are
updated.

c) Data exporting and resolution update:finally, at the
expiration of thei-th per-flow timeout, which is set
equal to the duration of the flow time binTi(k),
LEMON inserts the recorded information about the
expired flow into an IPFIX message. Then, the size
of the next time binTi(k + 1) (hence, the time
resolution and the expiration time of the timeout)
is set accordingly to the reference model.

In particular, LEMON performs these operations, as
follows:

1. exportation of a data record containing
the flow key (or a correspondent flow ID
associated to the flow), theTi(k) value as
well as the number of bytes and packets
captured during the last bin at the monitored
interface;

2. updating of estimates for parametersDi, Mi,
andCi, taking into account sampled packets
of thei-th flow;

3. setting of the next value of theflowBinTime-
out Ti(k + 1), according to Eqs. (4), (5) or
(6);

4. resetting of per-flow counters;

6 Trans. Emerging Tel. Tech. 2012; 00:1–17 c© 2012 John Wiley & Sons, Ltd.
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Figure 2. LEMON main processing operations.

5. restarting of the exporting timer relative to the
i-th flow counter.

It is worth noticing that, as required by the standard,
an IPFIX message could include information (data sets)
about one or more flows. In Sec.5.4, this issue will
be explored by evaluating the monitoring overhead when
several encapsulation strategies are used to build IPFIX
messages.

5. EXPERIMENTAL RESULTS

The aim of this Section is to characterize the performance
of LEMON from many points of view. In particular,
we argue the effectiveness of LEMON by providing
experimental evidences obtained during the operating
phase. Mainly, the attention will be focused on the
following aspects: (i) a comparison with respect to the
state of the art approach, based on a constant value of
time binT ; (ii) the analysis of the accuracy of the bitrate
estimation that LEMON can grant for; (iii) a discussion
about the implications deriving from a time-varyingT
on bitrate tracking operations; (iv) the evaluation of the
communication overhead due to message exporting; (v) the
estimation of the computational requirements of LEMON
(both memory and CPU loads will be considered) and
(vi) a comparison of obtained results with respect to the
capabilities of current networking equipments.

All those investigations have been carried out using
two kinds of real traffic traces; the first traces have been
captured on Asia transpacific links (thanks to the MAWI
project) [24], whereas the other one have been obtained
on an access router attached to a DSLAM of an Internet
provider with about a thousand of customers behind.

Table I. Main traffic parameters of aggregate traces

Link
Capacity
[Mbps]

Link
Usage
[%]

D

[Byte]
M

[Byte2]
#
flows

Trace1
(MAWI)
Jan.2009

150 87 748 1014959 153

Trace2
(MAWI)
Jan.2009

150 13 341 400628 212

Trace3
(MAWI)
Dec.2005

150 34 621 829281 151
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Figure 3. Empirical Cumulative Distribution Function of the
packet size, for traces 1, 2, and 3.
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Figure 4. Empirical Cumulative Distribution Function of the
flows size, for traces 1, 2, and 3.

Three distinct MAWI traces (each one is 15 minutes
long) have been taken at two trans-pacific links during
December 2005 and January 2009∗∗. They include IP
packets with TCP, UDP, and ICMP segments. The main
characteristics of these traffic traces are summarized in
Tab.I.

To provide a further insight into the characteristics of
the three MAWI traces, Figs.3 and4 show the empirical
Cumulative Distribution Function (ECDF) of packet and
flow sizes, demonstrating that the three traces present
very different behaviors, thus they consist of a useful
benchmark for the LEMON algorithm.

∗∗The traces are available at http://mawi.wide.ad.jp/mawi/samplepoint-F/2009/
and http://tracer.cls.sony.co.jp/mawi/samplepoint-B/2006/.
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Analogous information about the trace collected at the
DSLAM (that accounts for a period of three hours) cannot
be provided due to a non-disclosure agreement with the
Internet provider. Anyway, the experiments conducted on
this trace are fully in agreement with those obtained with
the MAWI traces, so that, the corresponding results will
be analyzed only with reference to the computational
complexity of LEMON in Sec.5.5.

With reference to the experimental methodology, each
trace is sampled with probabilities ranging in the interval
[10−4, 8× 10−1]. For each sampling probability, ten
distinct experiments are carried out applying different
seeds for the random number generator that drives packet
sampling. Furthermore, four distinctSNRthvalues are
considered as performance requirement: 10, 15, 20, and
50††.

In LEMON, the number of flows that can be processed
simultaneously depends on the link capacity and on the
memory available at the line card. This aspect will be
thoroughly analyzed in Sec.5.5. Furthermore, LEMON
works on a per-flow basis, so that the treatment applied
to a flow is not dependent (to a large extent) on the number
of monitored flows, as long as the average bitrate of the
flow is large enough. Therefore, in what follows, unless
otherwise specified and without less of generality, the term
flow is referred to a collection of IP datagrams having the
same most significant byte of the sending IP address.

Given the sampling probability p and the
SNRthconstraints, we only track flows for which
LEMON estimates an optimal time bin smaller than 15
minutes. Remaining flows, composed by a small amount
of packets, can be handled using other measurement
techniques based on a fixed coarse time resolution.

5.1. Limits of fixed resolution monitoring

To provide a ground for comparison between a fixed
time scale monitoring (i.e., a flow-based NetFlow-like
monitoring system) and LEMON, we firstly present results
obtained with a fixed time bin equal to240 s (see Fig.5).
Fig. 5(a) pictures the empirical CDF of the measured SNR
for each analyzed flow, monitored with different sampling
probabilities. It is worth to note that using fixed time bins,
it is not possible to provide any guarantee on the SNR,
especially in the presence of “small” flows, where small
has to be intended in terms of number of packets. For
further confirmation, Fig.5(b) reports the mean measured
SNR value referred to trace 2, which has the higher quota
of small flows (as shown in Fig.4). This problem, as
we will see in what follows, can be greatly mitigated
by LEMON, because it improves the resolution when
possible, leaving very small flows to estimation methods
based on fixed and large observation windows (even wider
than240 s).

††Due to the lack of space, only results obtained forSNRth=10 andSNRth=50
will be reported.
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Figure 5. Monitoring approach with a fixed time bin (240 s).

5.2. LEMON estimation accuracy

We look now at the estimation accuracy that LEMON can
grant. This investigation is very relevant, given that models
in [10] have been developed with the implicit assumption
that the time binTi is constant. As a consequence, it
is necessary to test if LEMON is able to respect the
constraint on theSNRthparameter whenTi varies with
the time. In Fig.6, the empirical CDFs of the mean
measured SNR values are reported for all processed flows;
they are compared with respect to the thresholdSNRth ,
considering several sampling probabilities. In particular, it
is possible to note that, for all the three traces, the VPS and
stochastic models provide higher performance than the one
obtained with the CPS model.

This effect can be explained by noting that the CPS
model does not account for the packet size variability, so
that the accuracy it provides is smaller than with other
two models we considered. Moreover, we can see that
the trace 2 presents the highest percentages of flows for
which LEMON provides a SNR below the target threshold.
In fact, the trace 2 (see also Fig.4) is characterized by
the highest number of small flows (measured in terms of
number of packets). For such flows, the number of sampled
packets is not enough to reach a satisfying estimation
of Ci, Di and Mi parameters; this compromises the
effectiveness of LEMON.

In general, observing plots in Fig.6, it is possible to
conclude that the latter two models are able to provide
the expected measurement accuracy to about 90% of
the processed flows, thus confirming the validity of the
LEMON rationale. As further consideration, it is very
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(b) SNRth=10, VPS model.
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(c) SNRth=10, stochastic model.
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(d) SNRth=50, CPS model.

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.01

0.1

1

SNR
i

E
m

pi
ric

al
 C

D
F

 

 

p = 0.01
p = 0.04
p = 0.1

tr.1

tr.2

tr.3

(e) SNRth=50, VPS model.
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Figure 6. Empirical CDFs of the mean measured SNR. Vertical lines represent the SNR threshold constraints.

worth to notice how the SNR curves provided by LEMON
are much less spread that those obtained using a fixed
time bin, as in Fig.5(b). This relevant outcome is highly
beneficial because it demonstrates that LEMON is able to
meet the expected constraints on the SNR, pursuing this
objective in a very fair way with respect to the different
flows it handles.

5.3. Time resolution and bitrate tracking

Herein, the level of time resolution reached by LEMON
and its ability to track the bitrate of monitored flows
are evaluated. First of all, it is interesting to dwell on
the analysis of the mean time bin assigned to each flow
as a function of the flow size, for all the experimental
traces (see Fig.7). For sake of clarity, all monitored
flows are grouped considering their size and the average
resolution (i.e., the mean time bin) of each group made by
four flows is shown. Obviously, LEMON assigns smaller
values of the time bin to larger flows. In fact, only in the
presence of a reasonable number of packets composing

a flow, it is possible to reach a finer time resolution, as
predicted by Eqs. (4)-(6). Looking at the reported values,
we can see that, opposite to current traffic monitoring tools,
LEMON can estimate the bitrate at small time bins leading
to a higher measurement resolution, i.e., one can obtain
traffic updates for some flows every few seconds. This
higher resolution allows operators to closely follow the
traffic behavior and to take the appropriate management
decisions on time. It is also worth to note that operators
can always increaseSNRth (i.e., the target bitrate accuracy)
and automatically perform measurements at a coarser time
resolution. In fact, according to previous results, focusing
in particular on flows larger than105 packets, the level of
time resolution, reached considering the lowest value of
SNR threshold (i.e.,SNRth=10), is improved of about one
order of magnitude with respect to the highest one (i.e.,
SNRth=50). This means that LEMON is a highly flexible
tool that allows an operator to trade estimation accuracy for
time resolution, depending on the monitoring application.
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(c) SNRth=10, stochastic model.
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(d) SNRth=50, CPS model.
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(e) SNRth=50, VPS model.
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Figure 7. Mean temporal resolution (mean bin size).

Graphs in Figs.8-10 show the time evolution of the
time bin of three selected flows from Traces 1, 2, and 3
respectively. In all these cases, we notice that the time
bin settles very soon to a constant value, which is a nice
property if one wants to grant that each flow is monitored
on a regular basis. Obviously, it is worth to remark that
the convergence of the time bin to a constant value can be
achieved only for flows with stationary properties in terms
of the parametersCi, Di, andMi, used in Eqs.4-6.

To provide a further insight, Figs.11-13 show the
capacity of the proposed scheme to track the time
bin over the time for each flow. In particular, we can
observe how, fixing the SNR threshold parameter, the
time bin is dynamically adapted over time, providing a
finer time resolution with higher sampling probabilities.
It is interesting to note that these plots fully confirm the
foregoing analysis since the bitrate estimation accuracy is
strictly related to the flow size and to the sampled packets
captured at router interface.

5.4. Overhead of the exporting process

Unlike fixed-resolution monitoring systems, LEMON
might export collected statistics with a higher frequency
due to a time-varying bin. Hence, it is very important
to analyze the behavior of its communication protocol in
terms of the overhead that it creates.

We consider three different message exporting strate-
gies, which will be referred to aspolicy = 0, policy = 1,
andpolicy = 2. In particular, they are defined as follows:

• in policy = 0, a single IPFIX message is sent every
time theflowBinTimeoutexpires for a single flow.

• In policy = 1, an aggregate IPFIX message is sent
at the expiration of 10 differentflowBinTimeout.

• In policy = 2, an aggregate IPFIX message is sent
at the end of a timeout lasting 5 s, for each expired
flowBinTimeout(the value of this timeout can be set
by the user, based on its needs).

In our analysis, we do not consider the headers of the
transport and the network protocols, which are not due
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(c) SNRth=50,p=0.01.
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(d) SNRth=50,p=0.1.

Figure 8. Time evolution of the bin size flow #9, for trace 1.
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Figure 9. Time evolution of the bin size of flow #4, for trace 2.

to LEMON, but we consider the communication overhead
due to both the flow records attributes (information
elementdata records), and the control messages (control
information records). Such control messages contain
information related to the metering process, e.g., the

sampling probability valuep, the active or idle per-flow
timeouts, and so on.

The communication overhead is evaluated in terms of
bitrate related to the flow of IPFIX messages sent to the
collector, at different operating conditions; it is expressed
as a percentage of the capacity of the monitored link.
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10
0

10
1

10
2

10
310

−1

10
0

10
1

10
2

Time [s]

T
i −

 b
in

 ti
m

e 
−

 [s
]

 

 

VPS model
CPS model
stochastic model

(b) SNRth=10,p=0.1.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Time [s]

T
i −

 b
in

 ti
m

e 
−

 [s
]

 

 

VPS model
CPS model
stochastic model

(c) SNRth=50,p=0.01.
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Figure 10. Time evolution of the bin size flow #9, for trace 3.
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(b) SNRth=10,p=0.08.
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Figure 11. Bitrate of flow #9, for trace 1 (VPS Model).

In Tab. II , we report results related only to the VPS
model, but similar outcomes have been obtained also
for the CPS and stochastic models. As expected, Tab.
II shows that increasing the sampling probabilityp, the
policy = 0 has a greater overhead with respect to the
other ones, because with such a policy one message

is transmitted every time the exporting timer expires.
Instead, the other two approaches (i.e.,policy = 1 and
policy = 2) can greatly save communication resources,
thus reaching a better tradeoff between channel overhead
and frequency of exporting operations. In any case, the
overall communication overhead is quite limited if we

12 Trans. Emerging Tel. Tech. 2012; 00:1–17 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/ett

Prepared using ettauth.cls



R. Vilardi et al. Lightweight Enhanced Monitoring for High-speed Networks

0 200 400 600 800
0

1

2

3

4

5x 10
6

Time [s]

B
itr

at
e 

[b
it/

s]

 

 

estimated
real

(a) SNRth=10,p=0.04.

0 200 400 600 800
0

1

2

3

4

5x 10
6

Time [s]

B
itr

at
e 

[b
it/

s]

 

 

estimated
real

(b) SNRth=10,p=0.08.

0 200 400 600 800
0

1

2

3

4

5x 10
6

Time [s]

B
itr

at
e 

[b
it/

s]

 

 

estimated
real

(c) SNRth=50,p=0.04.

0 200 400 600 800
0

1

2

3

4

5x 10
6

Time [s]
B

itr
at

e 
[b

it/
s]

 

 

estimated
real

(d) SNRth=50,p=0.08.

Figure 12. Bitrate of flow #4, for trace 2 (VPS Model).
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Figure 13. Bitrate of flow #9, for trace 3 (VPS Model).

compare our results with existing technologies. In Cisco
NetFlow, in fact, the total amount of exported data is
estimated like about the 1.5% of the switched traffic into
the routers [47], considering the version without sampling.
This overhead is always larger than the communication

overead LEMON reaches usingpolicy = 1 andpolicy =
2.
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trace1 trace2 trace3

p = 0.01 p = 0.1 p = 0.8 p = 0.01 p = 0.1 p = 0.8 p = 0.01 p = 0.1 p = 0.8

SNRth=10
policy = 0 0.3% 1.3% 3.87% 0.08% 0.58% 2.35% 0.17% 0.8% 3.68%
policy = 1 0.1% 0.5% 1.47% 0.03% 0.22% 0.89% 0.06% 0.3% 1.4%
policy = 2 0.1% 0.46% 1.3% 0.03% 0.20% 0.8% 0.06% 0.28% 1.26%
SNRth=50
policy = 0 0.08% 0.48% 2.9% 0.02% 0.16% 1.5% 0.04% 0.28% 2.4%
policy = 1 0.03% 0.19% 1.1% ≃ 0% 0.06% 0.6% 0.02% 0.11% 0.9%
policy = 2 0.03% 0.17% 1% ≃ 0% 0.06% 0.51% 0.02% 0.1% 0.81%

Table II. Amount of exported messages with LEMON (percentage over the link capacity of test, i.e., 150Mbps).

5.5. Computational requirements

Now, we evaluate the processing requirements of LEMON
system. To this end, we use a packet trace, lasting 3 hours,
collected at an access router attached to a DSLAM with
about a thousand of customers behind it. In particular,
we analyze the computational and memory consumption
costs of LEMON under different operating conditions and
when it runs on a laptop with an Intel Core 2 Duo P7450
(2.13 GHz, 3 MBytes L2 cache, 800 MHz DDR2), with 6
GBytes of RAM.

As explained before, LEMON is in charge of
performing all the operations required by a monitoring
device: the capture of the packets at the network interfaces,
the classification of such captured packets into flows,
the management of tracked flows in memory, and,
finally, the exportation of measurements. These tasks are
carried out in a dynamic way, varying in real-time the
monitoring observation window of each flow. To provide
a comprehensive view on the complexity of LEMON,
we test it under different conditions, by varying both the
packet sampling probabilityp and the flow key, which is
encoded using thekeymodevariable. The former has a direct
influence on the number of packets to process, whereas
the latter impacts the number of flows to handle and the
granularity of measurements.

In the sequel, whenkeymode= 0, the flow is defined
as the collection of all the packets having the same most
significant byte of their sending IP address. Instead, when
keymode= 1, the flow is defined as the collection of all
the packets having the same sending IP address and the
same transport protocol number. The purpose of this choice
is to provide a comparison of the system requirements
under two different working scenarios, the latter more
challenging than the former.

The memory consumption of LEMON along the time
due to the monitoring operation is shown in Fig.14,
considering different operating conditions. As we can see
in the graphs in Fig.14.(a), LEMON exhibits a constant
level of memory consumption for coarser flows (i.e., when
keymode= 0), almost independent on the packet sampling
probability. This is a positive achievement; in fact, we
can infer that, with aggregate flows captured for a large

range of sampling rates, the memory consumption of
LEMON is quite independent of the sampling rate. Thus,
it is possible to run the tool under strenuous working
conditions. Differently, the case of Fig.14(b) shows a
strong correlation between the memory consumption and
the sampling probability. This is due to the definition of
the flow key, which now allows a more granular analysis
of flows, hence decreasing their sizes and making their
detection by LEMON strongly dependent on the sampling
rate. This fine-grained definition of a flow increases the
size of the flow record table and, as a consequence,
the memory usage. This effect is confirmed by Fig.15,
which reports that the number of detected flow records
(each one having a size of 256 bytes) has exactly the
same trend of the memory consumption. This means that
the flow record table represents the main cause of the
memory consumption in LEMON. At the same time, we
remark that, in this test scenario, such a consumption never
exceeds few tens of megabytes even when a high value of
p (i.e.,p = 0.8) is adopted. In order to compare this result
with nowadays available technologies, we have to consider
that, in Cisco NetFlow, each flow entry requires about 64
bytes of memory and that flow table can store up to 512
thousands of entries. Moreover, it should be noticed that
the amount of memory on a line card sets an upper bound
on the number of flows that can be handled. Starting from
these premises, to evaluate the impact that LEMON may
have in a real network, we consider (as an example) the
engine 3 line card (256 Mbytes of memory and 16 network
interfaces) embedded in Cisco 12000 routers [47]. Under
these conditions, the Cisco 12000 router (when LEMON is
on) is still able to handle 62500 flow entries in each table
at each network interface, which is a value much higher
than the number of flows observed in all considered traces
of this paper. On the other hand, basic Netflow can process
4 times more flows due to smaller flow entries in the flow
table (see also Tab.III ).

Finally, we provide a preliminary analysis of LEMON
requirements in terms of CPU usage by using an absolute
index of the CPU performance, i.e. the CPU cycle number.
In order to keep track of this parameter, we used the
ReaD Time Stamp Counter(RDTSC) CPU instruction.
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CiscoNetF low LEMON

Flow entry size 64 bytes 256 bytes
Memory consumption on the Cisco 12000

engine 3 line card (256Mbytes) 256M/16/64 = 256k entries 256M/16/256 = 62.5k entries

Table III. LEMON vs Cisco NetFlow: memory consumption comparison.
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Figure 14. Memory consumption of the whole LEMON process.

This function, in fact, keeps an accurate count of cycles
spent at the processor for each routine or section of
code and it provides results that are general and absolute.
During each experiment, we recorded the number of
processing cycles required to execute the routines of
LEMON. First, we analyze the execution effort of the
whole LEMON routine for a single captured packet (i.e.,
packet classification, flow identification, management and
updating of the corresponding flow record, timer expiration
and exporting process when the last two happen). Then we
evaluate the time bin expiration subroutine, that occurs for
a particular flow when the expiration of its relative timer
is detected; it includes the calculation of the optimal next
time bin for a particular flow (as stated by the closed-form
models) and the exporting of information collected at the
previous time bin.

Fig. 16 shows the mean number of CPU clock cycles
required to perform the two cited processes, with different
operating conditions; figures report also the standard
deviation interval (above and below the mean value)
for each measure in order to give an estimation of the
confidence of the obtained values. As we can see, the
time bin expiration routine, which is a subroutine of the
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Figure 15. Number of flow records into the flow table during
traffic monitoring operations.

whole LEMON process, constitutes the highest quota of
the total LEMON cost. All results exhibit mostly the same
behavior, regardless of the sampling probability and the
key definition, because metrics are measured on a per-
packet basis. We should then use these per-packet metrics
to estimate the whole processing costs in the time domain.
For example, considering a realistic scenario with a Cisco
12000 router endowed with a main processor of 667 MHz
[48], the per-packet processing time is 150µs, estimated as
the ratio between the number of required clock cycles for
each packet and the CPU clock. This leads to the number
of packets that are processed per second: 1

150×10−6
=

6670 packet/s, which, assuming a sampling probability of
p = 0.01 with a mean packet dimension of 800 bytes,
allows LEMON to monitor in real-time a network link
of about6670× 800× 8/0.01 = 4.27 Gbps. Granted that
the actual release of the project is still in a embryonic
stage and it is not still optimized to be embedded in a
real machine, in our humble opinion we think that these
are preliminary and cheering results, justifying the high
versatility of LEMON and its ability to be implemented
in real network devices.
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Figure 16. Processing overhead of LEMON routines.

6. CONCLUSIONS

Starting from recent theoretical findings that catch the
main properties of packet sampling and its implications
on bitrate estimation, this work proposes a novel approach
to flow-level link monitoring operations. The conceived
LEMON algorithm has been designed to improve the
accuracy of current NetFlow-like monitoring systems
that propose flow-level measurements at fixed resolution.
Its effectiveness has been evaluated using real packet
traces, captured at backbone router interfaces. Results
demonstrate that LEMON: (i) allows adaptive monitoring
windows, hence the possibility to monitor the traffic
with different granularity levels; (ii) is able to assure the
estimation accuracy requirements, thanks to the obtained
bitrate estimates; (iii) incurs a negligible communication
overhead in IPFIX message exporting operations; (iv) has
low impact on computational requirements, so that can
it be easily integrated and supported by current deployed
routers.

It is worth to note that the scope of the LEMON
algorithm is not only limited to the real-time adaptation of
the time resolution. Future achievements of our research,
in fact, will cover different aspects as for example the joint
tuning of the sampling probability with the time resolution,
the integration within anomaly detection frameworks,
the evaluation of different traffic granularities, the
implementations in open source NetFlow-like monitoring
tools, and the study of further scenarios and applications.
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