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Abstract

We study a TCP-like linear-increase multiplicative-decrease flow con-
trol mechanism. We consider congestion signals that arrive in batches
according to a Poisson process. We focus on the case when the trans-
mission rate cannot exceed a certain maximum value. The distribution
of the transmission rate in steady state as well as its moments are de-
termined. Our model is particularly useful to study the behavior of
TCP, the congestion control mechanism in the Internet. Burstiness
of packet losses is captured by allowing congestion signals to arrive in
batches. By a simple transformation, the problem can be reformulated
in terms of an equivalent M/G/1 queue, where the transmission rate
in the original model corresponds to the workload in the ‘dual’ queue.
The service times in the queueing model are not i.i.d., and they depend
on the workload in the system.
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1 Introduction

In today’s high speed telecommunication networks, a large part of the traffic
is able to adapt its rate to the congestion conditions in the network. Con-
gestion control is typically designed so as to allow the transmission rate to
increase linearly in time in the absence of congestion signals, whereas when
congestion is detected, the rate decreases by a multiplicative factor. This is
both the case of the Available Bit Rate (ABR) service category in ATM[1]
(see definition and use of RDF and RIF) as well as the Transmission Control
Protocol (TCP) in the Internet environment[9, 21]. Congestion is detected
by the source through signals. In case of ABR, the congestion signals are
RM (Resource Management) cells that have been marked due to congestion
information in some switch along the path of the connection. In case of the
Internet, the congestion signals are packet losses that are detected by the
source either through the expiration of a retransmission timer, or through
some negative acknowledgement mechanism (three duplicate ACKs [21]).
There is also a proposal to add some explicit congestion signaling to the
Internet (the ECN proposal [6]).

The performance evaluation of congestion control mechanisms is an im-
portant issue for network and protocol design. This evaluation requires a
description of times between the arrivals of consecutive congestion signals.
Experimentations over the Internet [4, 14] have shown that on long distance
connections, the Poisson assumption about the times between congestion
signals is quite reasonable. This happens when the throughput of the stud-
ied connection is small compared to the exogenous traffic, and when the
number of hops on the path is large so that the superposition of the packet
drops in routers leads to exponential times between congestion signals. For
local area networks, we noticed that the congestion signals may arrive in
bursts [4]. However, the times between bursts correspond well to the Poisson
assumption. For this reason, we consider the case when congestion signals
arrive in batches according to a Poisson process. Batches contain a random
number of congestion signals and each such signal causes the division of the
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transmission rate by some constant γ. In the sequel, we also refer to a batch
of congestion signals as a loss event.

We focus on the case when a certain limitation on the transmission rate
exists. We determine the exact expression of the throughput under such
a limitation. In the literature, only simplistic approximations have been
proposed [3, 18] so far. We study two possible scenarios that lead to such a
limitation:
(i) Peak Rate limitation: the limitation is not due to congestion in the
network but rather to some external agreement. In that case, when the
transmission rate reaches a certain level M , it remains constant until a loss
event appears. For example in case of TCP, the window cannot exceed the
buffer space available at the receiver [21]. In the ABR service of ATM, the
transmission rate cannot exceed the Peak Cell Rate imposed by the contract
between the user and the network. It is expected that such limitations on
the transmission rate will become more and more important as the capacity
and the speed of the links in the network grow, since it is then more likely
that connections reach their maximum peak rate before congestion in the
network occurs. Of course, this is not the case if peak rates increase in
proportion with the speed of network links.
(ii) Congestion limitation: the limitation on the transmission rate is due
to congestion in the network that occurs whenever the input rate reaches a
level M . In that case we shall have an extra batch of congestion signals when
the level M is attained which also causes a decrease of the transmission rate
by a random factor. A typical example of such limitation is the available
bandwidth in the network. Another example is the reserved bandwidth in
a Differentiated Services network [8] in cases where packets exceeding the
reserved bandwidth are dropped rather than injected into the network as
low priority packets [20].

In the particular case in which the batches contain a single congestion
signal, the peak rate limitation model reduces to the one studied in [14], who
already attempted at computing the first two moments of the transmission
rate. A remarkable observation is done in that reference showing that the
flow control can be reformulated in terms of an equivalent M/G/1 queue,
where the transmission rate is translated into the workload of the queue. The
congestion signals correspond to customers arriving at the queue according
to a Poisson process. The service times in the ‘dual’ queueing model are not
i.i.d., and they depend on the workload in the system. This transformation
is also valid in our more general setting, except that in our model with con-
gestion limitation, there is an additional arrival in the equivalent queueing
model (in addition to the Poisson arrival stream) that occurs whenever the
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queue empties.
We solve the Kolmogorov equations and obtain the exact probability

distribution as well as the moments of the transmission rate (of the window
in case of TCP) for both problems. In doing so, we correct an error1 in [14].

We briefly mention some related results. Queueing analysis with service
times that depend on the workload or on the queue length have been also
considered in [2, 11, 16, 19]. Our model is a special case of the one studied
in [19], where an implicit characterization of the steady state distribution is
obtained (closed-form expressions were obtained for special cases that do not
cover our model). In [11] an asymptotic approximation is used for solving
state-dependent GI/G/1 queues in which both inter-arrival times, service
requirements and the service rate may depend on the workload. The peak
rate limitation model is a special case of the model with a general stationary
and ergodic arrival process studied in [4]. For that model only bounds on
the throughput were obtained. Exact expressions for the throughput were
obtained there for the case in which no limitation on the transmission rate
exists (see also [3, 13, 15, 18]).

The paper is structured as follows. In Section 2 we describe a gen-
eral model of flow control with limitation on the transmission rate and we
provide a preliminary analysis. The two cases of peak rate limitation and
congestion limitation are described separately in Sections 2.1 and 2.2. It is
shown that a special case of the model with congestion limitation reduces
to that of the model with peak rate limitation. Therefore, in the following
we first focus on the case of peak rate limitation. In Section 3 we show that
the model is dual to an M/G/1 queueing model with services that depend
on the total workload in the system. We then derive the moments and the
distribution of the transmission rate in Sections 4 and 5 in terms of the prob-
ability that the transmission rate is at its maximum value. This quantity
can be determined using that the distribution function is non negative, but
in order to derive a computationally tractable expression for it, we pursue
an alternative approach in Section 6. The results are specified in Section 7
for an important particular case, that of one congestion signal per batch
and a reduction factor of 2. This case corresponds to long distance TCP
connections in today’s Internet where the congestion signals do not cluster
significantly. In Section 8 we present the analysis for a more general model
of congestion limitation than the one in Section 2.2. In the general case the
model does not reduce to the peak rate limitation model. The model with
peak rate limitation is validated in Section 9. By means of numerical exam-

1In a private communication, the authors of [14] announced to replace the draft.
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ples, Section 9.1 illustrates that our results lend themselves for computation
of the window (or, transmission rate) distribution and density functions. In
Section 9.2 we compare the results of Section 7 to measurements from long
distance TCP connections. Section 10 draws conclusions from the obtained
results and indicates directions of further research. Finally, the Appendix
displays technical results needed in the mathematical analysis.

2 Flow control with rate limitation: models and
preliminary analysis

In this section we present our model for the rate evolution of the flow control
mechanism. In the sequel we adopt the usual terminology for TCP, the well
known window-based congestion control protocol of the Internet: we shall
work with the window size rather than the transmission rate. The transmis-
sion rate of a window-based flow control mechanism is at any moment equal
to the window size divided by the round-trip time (RTT) of the connection.

Let M denote the maximum window size. The limitation on the window
size is either due to a peak rate limitation or to a congestion limitation.
In the following we explain the similarities and the differences between the
models in the two cases. While no congestion signal is received and the
window is smaller than M , the window of the protocol increases linearly at
rate α > 0. In case of TCP, α = 1/(b ·RTT ) where b is the number of data
packets covered by an ACK (usually 2, see e.g.[18, 21]).

We assume that batches containing a random number of congestion sig-
nals arrive according to an independent Poisson process. We denote the
sizes (i.e., the numbers of congestion signals) of consecutive batches by
N1, N2, N3, . . ., and we assume that these constitute an i.i.d. sequence. The

size of an arbitrary batch is generically denoted by N
d
= Nk. The Poisson

process and the sequence Nk, k = 1, 2, . . ., are independent of each other
and independent of the past evolution of the window. For each congestion
signal received, the window is divided by a factor γ > 1 which is a fixed
parameter. That is, if an arriving batch contains N = n congestion signals,
the window is multiplicatively decreased by a factor γ−n. Immediately af-
ter the multiplicative decrease, the window restarts its linear increase. In
case of peak rate limitation, the window stays constant at M when this
maximum level is reached until the next congestion signal is received. In
case of congestion limitation, immediately upon reaching M , a congestion
signal is received and the window is decreased. We present the two cases
separately in Sections 2.1 and 2.2, showing how the analysis of a particular
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case of the congestion limitation model reduces to that of the peak rate lim-
itation model. In Section 8 we consider a more general model of congestion
limitation.

First we introduce some further common notation. We denote the p.g.f.
(probability generating function) of the distribution of N by

Q(z) := E
[
zN
]
=:

∞∑
n=1

znqn, |z| ≤ 1. (1)

Note that the peak rate limitation model with γ = 2 and q1 = 1 reduces
to the model studied in [14], where congestion signals appear according
to a Poisson process and where the window is divided by two upon every
congestion signal occurrence. By considering a general model, we aim to
account for a wide range of flow control mechanisms other than TCP and
for future enhancements to TCP congestion control.

Let us denote the window size at time t ≥ 0 by W (t) ∈ (0,M ]. We have
the following stability result which follows from Theorem 1 in [4]:

Theorem 2.1 There exists a stationary process W ∗(t) such that W (t) con-
verges to W ∗(t) in distribution for any initial state. Moreover, we have
P-a.s.

lim
t→∞

sup
s≥t

|W (s)−W ∗(s)| = 0. (2)

Note that (2) implies that the stationary distribution of W (t) is unique.
For x ∈ (0,M ], denote the (time-average) distribution function by

F (x) := lim
T→∞

1

T

∫ T

t=0
P {W (t) ≤ x} dt. (3)

It follows from Theorem 2.1 that this limit is independent of W (0) and
coincides with the stationary distribution of W (t).

We first assume that F (x) is continuous in x ∈ (0,M) (in the case
of peak rate limitation it is clear from physical considerations that F (x)
has an atom at x = M). Under this assumption we find a function F (x)
which is an equilibrium distribution for the window size and, hence, from
its uniqueness it follows that it is the desired distribution. Instead of F (x)
it will be convenient to work with the complementary distribution function

F (x) = 1− F (x) = P {W > x} , x ∈ (0,M ].
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To differentiate between the cases of peak rate limitation and congestion
limitation, in the latter case we attach a superscript cl to the symbols in-
troduced above, e.g., the distribution function is denoted by F cl(x). Next
we treat the two cases separately. We show how the analysis of a special
case of the model with congestion limitation reduces to that of the model
with peak rate limitation. The analysis of the general congestion limitation
model is presented in Section 8.

2.1 Flow control with peak rate limitation

With peak rate limitation, when the window reaches the maximum level M ,
it stays there until the next congestion signal is received. In Section 3 below
we show that the window size process W (t) can be related to the workload
of an M/G/1 queue (see also [14]). The workload of this state-dependent
M/G/1 queue can be seen to be a Markov process (e.g., see [10]), and hence
the window size evolution W (t) is a Markov process as well. With this in
mind, we derive a steady-state Kolmogorov equation for F (x) = P{W > x}
which is the basis to our analysis. We use the following up and down crossing
argument: Assume that the process is in equilibrium and consider a level
x ∈ (0,M). Whenever the window size increases from less than or equal to
x to more than x we say that an up crossing of the level x has occurred.
Similarly, if the window size decreases from more than x to less than or equal
to x we say that a down crossing of the level x has occurred. Let [t, t+∆]
be a small time interval, where t is a deterministic time moment. When the
process is in equilibrium, the probability of up-crossing

(1− λ∆)P {x− α∆ < W ≤ x}+ o(∆)

is equal to the probability of down-crossing

λ∆
∞∑
n=1

qnP {x < W ≤ min(γnx,M)}+ o(∆).

After equating these, we pass ∆ ↓ 0. Since we assumed that F (x) =
P {W ≤ x} is continuous for x < M (see Remark 5.1 for a justification of this
assumption), we conclude that the derivative of F (x) exists and is continuous
for all x except at x = Mγ−n, when qn > 0. For x ∈ (0,M)\{Mγ−n}n=1,2,...

we obtain the following steady-state Kolmogorov equation

α
d

dx
P {W ≤ x} = λ

∞∑
n=1

qnP {x < W ≤ min(γnx,M)} ,
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or, equivalently,

−α
d

dx
F (x) = λ

(
F (x)−

∞∑
n=1

qnF (min(γnx,M))

)
. (4)

¿From this differential equation we shall determine F (x), x ∈ (0,M), in
terms of the probability

PM := P {W = M} = 1− F (M−) = F (M−).

In Section 4 we first use (4) to determine the moments of the window size
distribution in terms of PM . Then we find the distribution function itself in
Section 5. The unknown PM is then determined using the fact that F (x) is a
complementary probability distribution function (F (0) = 1). However, the
expression obtained for PM in this way, does not lend itself for computational
purposes. Therefore we show an elegant alternative to determine PM in
Section 6, which leads to an efficient and numerically stable algorithm for
computations.

2.2 Congestion limitation: a special case

When the maximum window size M is due to congestion limitation, imme-
diately upon reaching the level M a batch of congestion signals is generated.
In this section we study the case when the size of such a batch has the same
distribution as the random variable N . In Section 8 we present the analysis
of the more general case when the number of congestion signals that result
from reaching M has a different distribution than N . Similarly as in Section

2.1, we can derive the following differential equation for F
cl
(x), 0 < x < M :

−α
d

dx
F

cl
(x) = λ

(
F

cl
(x)−

∞∑
n=1

qnF
cl
(min(γnx,M))

)

+λgP

{
N ≥ ln(M)− ln(x)

ln(γ)

}
, (5)

with,

g := −α

λ

d

dy
F

cl
(y)

∣∣∣∣
y=M−

.

The additional term, compared to (4), comes from the fact that a down
crossing of the level x may be due to the fact that the level M is reached

8



and that the rate is decreased by a factor γ−n with γ−nM ≤ x. Note that if
F (x) is the unique complementary distribution function satisfying (4) then

F
cl
(x) :=

F (x)− PM

1− PM
, 0 < x < M, (6)

is the unique complementary distribution function satisfying (5). This fol-
lows immediately by substituting (6) into (5). This relation has a simple
geometric interpretation. Using the fact that the Poisson process is memo-
ryless, if we consider the model with peak rate limitation only at moments
when the window is less than M (i.e., we cut out all periods where the
window equals M), what we get is identical to the model with congestion
limitation. Thus, we can concentrate on finding the distribution function
F (x) for the peak rate limitation model and then use (6) or the equivalent:

F cl(x) =
F (x)

1− PM
.

In particular, the moments of the window size in the two models are related
by:

E

[(
W cl

)k]
=

E
[
W k

]
− PMMk

1− PM
. (7)

In Section 4 below we derive a recursive relation for E
[
W k

]
. Combined

with (7), this gives a recursion on E

[(
W cl

)k]
which we report at this point

for completeness:

E

[(
W cl

)k]
=

kαE

[(
W cl

)k−1
]

λ (1−Q(γ−k))
− PM

1− PM
Mk. (8)

Remark 2.1 We emphasize that in the congestion limitation model, the
quantity PM has no clear interpretation. In Section 6 we use the interpre-
tation of this quantity in the peak rate limitation model to compute it. If
we were to analyze the congestion limitation model without using (6), then

from (5) we could express F
cl
(x) — using the same techniques as in Section

5 — in terms of g instead of PM . Note that these two constants are related:

g =
PM

1− PM
, (9)
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The constant g can be determined using that F
cl
(x) is a complementary

probability distribution, see (25) below. Since from the analysis of Section 6
we obtain a more tractable expression for PM (see Remark 5.2 for a related
discussion), we will not further dwell on this approach.

3 The dual queueing model

Before proceeding with determining the moments and the distribution of the
window size, we briefly show how the problem can be related to an M/G/1
queueing problem with service depending on the system workload, see also
[14]. First we concentrate on peak rate limitation, below we comment on
congestion limitation. Define

U(t) =
M −W (t)

α
. (10)

I.e., U(t) is obtained by ‘flipping’ W (t) around a horizontal line and then
scaling by a factor 1/α. In particular, the area between W (t) and the
maximum window size M (Figure 1) corresponds to the area below U(t).
Note that U(t) resembles the evolution in time of the workload (or the virtual
waiting time) in a queueing system. A window equal to M corresponds
to an empty queueing system. The linear increase in workload between
arrivals of congestion signals corresponds to the decrease in workload due to
service in the queueing model. The arrival of a batch of congestion signals
in our model corresponds to an arrival to the queue. The reduction of the
window upon a loss event corresponds to the increase in workload upon
arrival in the equivalent queueing model. Given that the amount by which
the window is reduced depends on the current value of the window (and of
course on the number of congestion signals in the batch), the service time
in the dual queueing model is dependent on the current workload there. We
conclude that the dual model behaves indeed as an M/G/1 queue (infinite
buffer capacity, one server and Poisson arrivals with intensity λ) with state-
dependent service requirements. If Un is the workload seen by arrival n in
the M/G/1 queue, then its service time xn is equal to

xn =

(
M

α
− Un

)
.

(
1− 1

γNn

)
,

where Nn is the number of congestion signals in the nth batch of congestion
signals in the original model. Instead of directly working with the congestion
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control model as we do in this paper, one could analyze the queueing model
and switch back to the flow control problem by using Equation (10). In par-

ticular, E
[
W k

]
= E

[
(M − αU)k

]
, P {W ≤ x} = 1 − P {U ≤ (M − x)/α}

for x < M and PM is equal to the fraction of time that the dual queue is
empty.

In the case of congestion limitation, the only difference in the dual queue-
ing model is that we have an additional arrival once the system becomes
empty. Thus, the arrival process is the sum of a Poisson process of intensity
λ and another process that depends on the workload of the system (it gener-
ates an immediate arrival when the queue becomes empty). The definition
of the service times in the dual queue and the transformation back to the
flow control problem remain the same.

4 Moments of the window size distribution

Now focus on the model with peak rate limitation (the results obtained can
also directly be used for the special case of congestion limitation described in
Section 2.2). In this section we study the moments of the window size. The
k-th moment of the transmission rate can be simply obtained by dividing
the k-th moment of the window size by (RTT )k. Of particular interest is the
expectation of the transmission rate which coincides with the throughput of
the transfer or the time average of the transmission rate. Let X denote the
throughput. We have

X = lim
T→∞

1

T

∫ T

0
X(t)dt =

E [W ]

RTT
. (11)

Define for Re(ω) ≥ 0 the LST (Laplace-Stieltjes Transform) of the window
size distribution by

f̂(ω) =

∫ M+

x=0
e−ωxdF (x).

Taking LTs (Laplace Transforms) in (4) leads to:

α
(
f̂(ω)− PMe−ωM

)
= λ

1− f̂(ω)

ω
(12)

−λ
∞∑
n=1

γ−nqn
1− f̂(γ−nω)

γ−nω
.

Note that (12) holds in particular for M = ∞, i.e., no limitation on the

window size, in which case PM = 0. Using E
[
W k

]
≤ Mk, k = 1, 2, . . ., we
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may write

f̂(ω) = 1 +
∞∑
k=1

(−ω)k

k!
E
[
W k

]
,

1− f̂(γ−nω)

γ−nω
=

∞∑
k=0

(−γ−nω)k

(k + 1)!
E
[
W k+1

]
.

Substituting this in (12), using the absolute convergence of the doubly-
infinite series to interchange the order of summation and equating the coef-
ficients of equal powers of ω we get, for k = 1, 2, . . .,

E
[
W k

]
=

kα
(
E
[
W k−1

]
− PMMk−1

)
λ (1−Q(γ−k))

, (13)

from which the moments of the window size distribution can be obtained
recursively. In particular we find for k = 1, 2:

E [W ] =
α (1− PM )

λ (1−Q(γ−1))
, (14)

E
[
W 2

]
=

2α
[
α (1− PM )− λPMM

(
1−Q(γ−1)

)]
λ2 (1−Q(γ−1)) (1−Q(γ−2))

. (15)

These first two moments can also be obtained using direct arguments, see
Remarks 4.1 and 4.2 below. Such arguments were also used by Misra et
al. [14] for the case γ = 2 and N ≡ 1. However, in their analysis an error
appears which results in an additional equation besides (14) and (15) from
which they determine an incorrect expression for the probability PM (see
Remark 4.2).

Remark 4.1 The mean window size can be obtained by considering the
mean drift. The upward drift of the window size is given by αP {W < M}
and the downward drift equals λE [W ]

(
1−E

[
γ−N

])
. Equating these gives

(14).
We can further derive E

[
W 2

]
applying an argument similar to Little’s

law as was done by Misra et al. [14] for the case γ = 2 and N ≡ 1. The main
idea is sketched in the following. For the dual queueing model described in
Section 3, we can equate the mean workload E [U ] with λ times the mean
area below U(t) ‘induced by a single arrival’ (use that Poisson arrivals see
time averages: PASTA). Back in the original model, the ‘mean surface’ of
the area above W (t) in Figure 1 equals M − E [W ]. We find an alternative
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Figure 1: Area associated with a single loss

expression for this area by determining the surface of the area ‘induced’
by a loss event. This is also depicted in Figure 1. Suppose a loss occurs
at window size W and the window is reduced by a factor γ−N . We can
associate with this loss an area above the curve (the surface of the larger
triangle minus that of the smaller one) equal to

1

2α

(
M − γ−NW

)2
− 1

2α
(M −W )2 .

Because of PASTA and the fact that N is independent of W , the expectation
of the surface of this area is

1

2α

((
Q(γ−2)− 1

)
E
[
W 2

]
− 2M

(
Q(γ−1)− 1

)
E [W ]

)
.

The rate at which losses occur is λ, and so:

M−E [W ] =
λ

2α

((
Q(γ−2)− 1

)
E
[
W 2

]
− 2M

(
Q(γ−1)− 1

)
E [W ]

)
. (16)

Together with (14) this indeed gives (15).

Remark 4.2 For a special case of our model, yet another way is pursued in
[14] to derive (14) and (15). However, there, the final result is incorrect due
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to a small error in an intermediate step. Defining PM (t) := P {W (t) = M},
the first two moments of W (t) satisfy:

d

dt
E [W (t)] = −λ

(
1−Q(γ−1)

)
E [W (t)]

+α (1− PM (t)) ,

d

dt
E
[
W (t)2

]
= −λ

(
1−Q(γ−2)

)
E
[
W (t)2

]
+2α (E [W (t)]−MPM (t)) .

In steady state we have E [W (t)] ≡ E [W ], E
[
W (t)2

]
≡ E

[
W 2

]
and PM (t) ≡

PM . Substitution into (17) gives (14) and substitution into (17) gives:

0 = −λ
(
1−Q(γ−2)

)
E
[
W 2

]
+ 2α (E [W ]− PMM) . (17)

The latter is a linear combination of (14) and (16) and, hence, leads to (15).
For the case γ = 2 and N ≡ 1, the formula given in [14] for E

[
W 2

]
(below

Formula (4) in that reference) differs from (17) by a factor −α = −1/RTT .
This resulted in a third (incorrect) equation which is independent of (14)
and (15) from which PM was determined simultaneously with E [W ] and
E
[
W 2

]
. In Section 6 we show how PM can be determined correctly and

computed efficiently.

5 Window size distribution function

In this section we determine the cumulative distribution function of the
window size explicitly. The distribution of the transmission rate can be
simply obtained by rescaling the window axis by 1/RTT. We start with the
case where M < ∞, providing an expression of the distribution function in
the intervals [M/γk,M/γk−1] with k = 1, 2, . . .. Then, for the case M = ∞,
we give an expression of the distribution for any x > 0 as an infinite sum of
exponentials.

5.1 Window distribution for finite M

For M/γ ≤ x < M , Equation (4) reduces to:

−α
d

dx
F (x) = λF (x),

14



hence,

F (x) = PMe
λ
α
(M−x),

M

γ
≤ x < M. (18)

To find the entire distribution we introduce, for k = 1, 2, 3, . . .,

F k(x) := F (x),
M

γk
≤ x <

M

γk−1
. (19)

Equation (4) can now be written as:

d

dx
F k(x) = −λ

α
F k(x) +

λ

α

k−1∑
n=1

qnF k−n(γ
nx). (20)

Since F (x) is continuous for 0 < x < M we have:

F k(
M

γk−1
) = F k−1(

M

γk−1
), k = 2, 3, . . . . (21)

F k is recursively given by

F k(x) = F k−1(M/γk−1)e
λ
α

(
M

γk−1−x

)
−λ

α
e−

λ
α
x
∫ M/γk−1

u=x
e

λ
α
u
k−1∑
n=1

qnF k−n(γ
nu)du.

We conclude from the above recursion that a solution to (20) and (21) has
the following form

F k(x) = PM

k∑
i=1

c
(k)
i e−

λ
α
γi−1x, k = 1, 2, ... (22)

To determine the coefficients c
(k)
i , we substitute (22) into (20) and change

the order of summation in the last term λ
α

∑k−1
n=1 qnF k−n(γ

nx):

PM

k∑
i=1

c
(k)
i (−λ

α
γi−1)e−

λ
α
γi−1x) =

= −λ

α
PM

k∑
i=1

c
(k)
i e−

λ
α
γi−1x +

λ

α
PM

k−1∑
i=1

[
i∑

n=1

qnc
(k−n)
i−n+1

]
e−

λ
α
γix

15



By equating the terms with the same exponents, we get the following recur-
sive formula

c
(k)
i+1 =

1

1− γi

i∑
n=1

qnc
(k−n)
i−n+1, i = 1, ..., k − 1. (23)

Once the coefficients c
(k)
i , i = 2, ..., k are computed, the coefficient c

(k)
1 can

be determined from (21):

c
(k)
1 = e

λ
α

M

γk−1

[
k−1∑
i=1

c
(k−1)
i e−

λ
α
γi−kM −

k∑
i=2

c
(k)
i e−

λ
α
γi−kM

]
. (24)

Note that to compute the coefficients c
(k)
i , we do not need PM . Hence, using

that F (x) is a complementary distribution function, PM is then determined
by:

1 = F (0) = lim
k→∞

F k(M/γk−1) = PM

(
lim
k→∞

k∑
i=1

c
(k)
i e−

λ
α
M/γk−i

)
. (25)

However, this relation is not suitable to compute PM , see Remark 5.2 below.

Remark 5.1 With (19) and (22) we have found an equilibrium distribu-
tion function F (x) satisfying (4). By Thm. 2.1 it is the unique solution and,
hence, the assumption that F (x) is continuous for x < M is justified.

Remark 5.2 Recursion (23) is suitable to determine the distribution func-
tion on an interval M/γk ≤ x ≤ M when k is not too large. For large k the
recursion may become instable, since it involves subtraction of numbers of
the same order. Therefore (25) is not suitable to compute PM . In Section 6
below we derive an alternative expression for PM , which leads to a numeri-
cally stable and efficient algorithm to compute PM .

Remark 5.3 One can alternatively show that the functions F k(x) are of
the form (22) using Laplace Transform techniques. Note that by means of
the differential equations (20), these functions can be extended beyond the
intervals [M/γk,M/γk−1] to the whole real line. Of course, outside the in-
tervals [M/γk,M/γk−1] the functions F k(x) may (and will) be unequal to
F . One may take Laplace Transforms in (20), solve the resulting recursion

16



on k, and invert the transforms after applying partial fraction expansion.
This approach is used in Sections 5.2 and 6.

5.2 Window distribution for infinite M

In this case, the results derived in the previous subsection cannot be applied
immediately by letting M go to infinity. However, we can derive the LST of
the window size distribution by similar arguments as before. When M = ∞,
(12) becomes

f̂(ω) = −λ

α

[
f̂(ω)

ω
−

∞∑
n=1

qn
f̂(γ−nω)

ω

]
,

or, equivalently,

f̂(ω) =
λ
α

ω + λ
α

∞∑
n=1

qnf̂(γ
−nω). (26)

Substituting the above equation repeatedly into itself l times, applying par-
tial fraction expansion at each step, and then taking l → ∞, we conclude
that f̂(ω) can be expressed as follows:

f̂(ω) =
∞∑
i=0

ci
−λ

αγ
i

ω + λ
αγ

i
, (27)

for certain coefficients ci (this is formally justified later). To determine the
constants ci, i = 0, 1, ..., we substitute (27) into (26) and equate coefficients
multiplying the terms 1/(ω + λ

αγ
i). This leads to the recursive formula

ci
c0

=
1

1− γi

i∑
k=1

qk
ci−k

c0
,

which determines the ratios ci/c0 (it is for this reason that both sides contain
a factor 1/c0). The coefficient c0 follows from f̂(0) = −

∑∞
i=0 ci = 1:

c0 = −(1 +
∞∑
i=1

ci
c0
)−1. (28)

Inversion of (27) back into the time domain gives:

F (x) = C +
∞∑
i=0

cie
− λ

α
γix, (29)
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with C = 1 (because F (0) = 0). Note that the above series is absolutely
convergent for any value of x ∈ [0,∞). Thus, it is the (unique!) solution
to (4) when M = ∞. For the case of no window size limitation and N ≡
1, (q1 = 1), F (x) was already obtained in [17].

6 The probability of maximum window size

In Sections 4 and 5 we determined the window size distribution and its
moments in terms of PM . In this section we derive an expression for PM

from which it can be computed efficiently. For this we introduce the random
variable T (x) which is the time until the window size returns to the value
x, starting just after a loss event occurs with the window size being equal
to x ∈ (0,M ]. We denote its expectation by E(x) := E [T (x)], x ∈ (0,M ].
Then, from elementary renewal theory,

PM := P {W = M} =
1/λ

1/λ+ E(M)
. (30)

We now proceed to find the function E(x). A typical evolution of the window
size is depicted in Figure 2. For simplicity in the figure only losses having
N = 1 are depicted and the times to recover from losses are partly cut out
of the picture (denoted by the shaded areas). Suppose for the moment that
the initial loss (at the level x) was such that N = n (in the figure n = 1).
Let Tn(x) be the time to get back at level x conditional on N = n and we
further write En(x) := E [Tn(x)] := E [T (x)|N = n]. Note that

E(x) =
∞∑
n=1

qnEn(x). (31)

If no losses occur during the time Tn(x) then Tn(x) = (1−γ−n)x/α, i.e., the
window size x is reached in a straight line from the starting point at γ−nx
(in the figure γ−1x). Each time a loss occurs at a level y ∈ (γ−nx, x) it
takes T (y) time units to get back at the level y. Because of the memoryless
property of the Poisson process, if we take out the shaded areas in Figure 2
and concatenate the non-shaded areas then the cut points (where the shaded
areas used to be) form a Poisson process on the straight line from γ−nx to
x. Thus if the cut points are given by y1, y2, . . . , ym (in the figure m = 2)
then

En(x) =
(1− γ−n)x

α
+ E(y1) + E(y2) + . . .+ E(ym).
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Figure 2: TCP window

Since the loss process is a Poisson process, the mean number of cut points
is λ(1 − γ−n)x/α and the position of each of the points yj is uniformly
distributed over the interval (γ−nx, x), see for instance [22, Thm. 1.2.5].
Hence,

En(x) =
(1− γ−n)x

α
+ λ

(1− γ−n)x

α

∫ x

y=γ−nx

E(y)

(1− γ−n)x
dy

=
(1− γ−n)x

α
+

λ

α

∫ x

y=γ−nx
E(y)dy. (32)

Using (1) and (31) we now arrive at

E(x) =
(1−Q(γ−1))x

α
+

λ

α

∞∑
n=1

qn

∫ x

y=γ−nx
E(y)dy. (33)

Although in the finite-window case (M < ∞) the above integral equation
has only meaning for 0 < x ≤ M , it is well defined for all x > 0. In the
following we solve the integral equation for all x > 0. First we note that it
has a unique solution, see Appendix A.1. Define the LT (Laplace Transform)
of E(x):

ê(ω) :=

∫ ∞

x=0
e−ωxE(x)dx.
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In Appendix A.2 it is shown that ê(ω) < ∞ for ω > λ/α. Hence, for ω large
enough and using that the qn and E(x) are non-negative to interchange the
order of integration and summation (twice), we can rewrite (33) as:

ê(ω) =
1−Q(γ−1)

αω2
+

λ

αω

(
ê(ω)−

∞∑
n=1

qnê(γ
nω)

)
.

This gives

ê(ω) =
1

αω − λ

(
1−Q(γ−1)

ω
− λ

∞∑
n=1

qnê(γ
nω)

)
. (34)

Substituting this equation repeatedly into itself, applying partial fraction
expansion at each step and using that ê(γkω) ↓ 0 as k → ∞ leads us to the
following candidate solution:

ê(ω) =
1−Q(γ−1)

ω

∞∑
i=0

ei
γiαω − λ

, (35)

where the ei are constants to be determined. This representation will be
justified by showing that it leads us to the (unique!) solutions to (34) and
(33). Substituting (35) into (34) and equating the coefficients multiplying
the terms 1/(γiαω − λ) leads to:

ei
e0

=
1

1− γ−i

i∑
n=1

γ−nqn
ei−n

e0
, i = 1, 2, 3, . . . , (36)

e0 =

1 + ∞∑
n=1

γ−nqn

∞∑
j=0

ej/e0
γj+n − 1

−1

. (37)

We note that the ratios ei/e0 are non negative and can be computed recur-
sively from (36). Then the normalizing constant e0 > 0 can be computed
from (37). ¿From (36) it can be shown (by induction on i) that

ei ≤ γ−ie0, i = 1, 2, . . . , (38)

i.e., the ei decay exponentially fast in i as i → ∞. Therefore the right hand
side of (35) certainly converges for ω > λ/α and, from its construction, (35)
is the solution to (34). By partial fraction (35) can be rewritten as:

ê(ω) =
1−Q(γ−1)

λ

∞∑
i=0

ei

(
1

ω − γ−iλ/α
− 1

ω

)
. (39)
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Inverting this LT gives:

E(x) =
1−Q(γ−1)

λ

∞∑
i=0

ei
(
eγ

−i(λ/α)x − 1
)
. (40)

Using this in (30) we have

PM =
1/λ

1/λ+ E(M)
=

(
1 +

(
1−Q(γ−1)

) ∞∑
i=0

ei
(
eγ

−i(λ/α)M − 1
))−1

.

(41)
Note that because of (38) and(

eγ
−i(λ/α)M − 1

)
∼ γ−i(λ/α)M, i → ∞,

PM can be computed efficiently from (41).

Remark 6.1 In particular cases we can find the coefficients ei explicitly.
For instance, when the reduction of the TCP window is always by a constant
factor γ, i.e., N ≡ 1 (hence, q1 = 1 and Q(z) ≡ z). Note that with γ = 2 we
have TCP’s most common window decrease factor (see Section 7 for more
specific results in that case). ¿From (36, 37) we get

ei
e0

=
γ−i∏i

j=1 (1− γ−j)
, i = 1, 2, . . . , (42)

e0 =

(
1 +

∞∑
i=1

γ−i ei
e0

)−1

. (43)

In this case we could have obtained these coefficients also in a direct way,
without using (35), see Appendix A.3. There it is also shown that in this
case

∞∑
i=0

ei =
1

1− γ−1
,

and, hence, from (41):

PM =

((
1− γ−1

) ∞∑
i=0

eie
γ−i(λ/α)M

)−1

. (44)
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7 Special case: single congestion signals and γ = 2

In this section we specify our results for the important particular case of
TCP flow control with only one division of the window by a factor 2 at loss
events. I.e., we take γ = 2 and N ≡ 1 (q1 = 1, and qn = 0, n = 2, 3, ...) in the
model with peak rate limitation, see [14] for a similar model. In Section 9.2
we compare the results from this particular case of our model to measure-
ments from the Internet. We worked with long distance connections where
congestion signals rarely appear in batches. From (14) and (15) we obtain
the expressions for the first two moments of the window size distribution:

E[W ] =
2α

λ
(1− PM ).

E[W 2] =
8α[2α(1− PM )− λPMM ]

3λ2
,

where PM is given by (44) with γ = 2. The throughput of TCP can be
obtained from Equation (11). The distribution function itself or the com-
plementary distribution function F (x) is computed successively on the in-
tervals [M/2k,M/2k−1], k = 1, 2, ... using (22) with γ = 2. Recursion (23)
reduces to

c
(k)
i+1 =

c
(k−1)
i

1− 2i
, i = 1, ..., k − 1,

and c
(k)
1 is given by (24). When M = ∞, the distribution function is given

by (29) with

ci =
1

1− 2i
ci−1, i = 1, 2, . . . ,

and c0 is given by (28).

8 General congestion limitation model

In the case of congestion limitation it seems unrealistic to assume that the
number of congestion signals in the batch that is generated when reaching
the maximum transmission rate has the same distribution as the size of the
batches generated by the Poisson process. Let us therefore assume that
the number of congestion signals that result from reaching the maximum
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transmission rate is distributed as the non negative discrete random variable
N (M) having p.g.f.

Q(M)(z) =
∞∑
n=1

znq(M)
n |z| ≤ 1.

Instead of (5) we then have for 0 < x < M :

−α
d

dx
F

cl
(x) = λ

(
F

cl
(x)−

∞∑
n=1

qnF
cl
(min(γnx,M))

)
+ λb(M)H(x), (45)

where

H(x) := P

{
N (M) ≥ ln(M)− ln(x)

ln(γ)

}
,

b(M) := −α

λ

d

dy
F

cl
(y)

∣∣∣∣
y=M−

.

Note thatH(x) is a non negative, non decreasing step function of the variable
x, constant on the intervals γ−kM < x ≤ γ−k+1M , k = 1, 2, . . ., with
H(M) = 1:

H(x) = hk := P
{
N (M) ≥ k

}
, γ−kM ≤ x < γ−k+1M.

8.1 The moments

Similar to Section 4 we find the following recursion on the moments after
taking Laplace Transforms in (45):

E

[(
W cl

)k]
=

kαE

[(
W cl

)k−1
]
− b(M)λMk

(
1−Q(M)(γ−k)

)
λ (1−Q(γ−k))

.

Note that if Q(M)(z) = Q(z) this recursion indeed reduces to (8).

8.2 The distribution function

Defining, for k = 1, 2, . . .,

F
cl
k (x) := F

cl
(x),

M

γk
≤ x <

M

γk−1
,
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we find by the same techniques as in Section 5:

F
cl
1 (x) = b(M)

(
e

λ
α
(M−x) − 1

)
,

F
cl
k (x) = −b(M)hk +

(
F

cl
k−1(M/γk−1) + b(M)hk

)
e

λ
α

(
M

γk−1−x

)

−λ

α
e−

λ
α
x
∫ M/γk−1

u=x
e

λ
α
u
k−1∑
n=1

qnF
cl
k−n(γ

nu)du.

This leads to:

F
cl
k (x) = b(M)

(
−d

(k)
0 +

k−1∑
i=1

d
(k)
i e−

λ
α
γi−1x

)
.

The coefficients d
(k)
i are given by:

d
(k)
0 = hk +

k−1∑
n=1

qnd
(k−n)
0 , k > 1,

d
(k)
i =

1

1− γi−1

i−1∑
n=1

qnd
(k−n)
i−n , k > i > 1,

and for k > 1:

d
(k)
1 =

(
−d

(k−1)
0 +

k−2∑
i=1

d
(k−1)
i e

λ
α
M/γk−i

+ hk

)
e

λ
α
M/γk−1

+
k−1∑
n=1

qne
λ
α
M/γk−n−1

(
d
(k−n)
0 −

k−n−1∑
i=1

d
(k−n)
i

1

1− γi−1+n
e−

λ
α
M/γk−i−2n

)
.

Note that the d
(k)
0 are all non negative, but that the signs of the d

(k)
i for

i > 0 alternate.

8.3 The constant b(M)

Note that, similar to (25) we find from F
cl
(0) = 1:

1

b(M)
= lim

k→∞

(
−d

(k)
0 +

k−1∑
i=1

d
(k)
i e−

λ
α
M/γk−i

)
. (46)

However, for computational purposes, we again prefer to translate the model
into a peak rate limitation type of model. Therefore, consider a peak rate
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limitation model in which congestion signal batches arrive according to a
Poisson process with rate λ but, different from the model in Section 2.1, with
the distribution of the batch size depending on whether the transmission rate
is below or at the maximum level M . The batch size has p.g.f. Q(z) if the
rate is below M , otherwise it has p.g.f. Q(M)(z). Similar to (9) we have:

b(M) =
P

(M)
M

1− P
(M)
M

,

where P
(M)
M is the probability of being at the maximum transmission rate

M . For 0 < x < M (as we shall see it is convenient not to include x = M),
let the functions E(x) and En(x), n = 1, 2, . . ., be defined as in Section 6.
Note that as long as the process is below the maximum level M , it behaves
exactly as the ordinary peak rate limitation model of Section 2.1. Therefore,
for 0 < x < M the functions E(x) and En(x) are exactly as we found in
Section 6, see (40) and (32). This is not true for x = M and to avoid
confusion we write E(M)(M) instead of E(M) for the return time to level
M in the present model. Of course,

P
(M)
M =

1

1 + λE(M)(M)
.

Similar to (31) we have:

E(M)(M) =
∞∑
n=1

q(M)
n En(M).

And using (32) and (40) we find:

E(M)(M) =

(
1−Q(M)(γ−1)

)
M

α

[
1−

(
1−Q(γ−1)

) ∞∑
i=0

ei

]

+
1−Q(γ−1)

λ

∞∑
i=0

γiei

∞∑
n=1

q(M)
n

(
eγ

−i(λ/α)M − eγ
−i−n(λ/α)M

)
.

9 Model validation

In this section we compare measurements from long distance and long life
TCP connections with the results of Section 7 (N ≡ 1, γ = 2, peak rate
limitation). Comparison of real measurements with the model with clustered
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(batch) arrivals of congestion signals is a topic of current research, see also
Section 10.

Due to the large number of hops and the multiplexing of exogenous
traffic in network routers, the Poisson loss process assumption is expected
to hold on long distance connections [14]. Our TCP receivers implement
the delay ACK mechanisms and our TCP senders increase their window in
the congestion avoidance mode by approximately one packet every window’s
worth of ACKs. Thus, we take α equal to 1/(2RTT ) [18]. First, we show
theoretically how the window size is distributed in the stationary regime.
Second, we compare our results to measurements from the Internet.

9.1 Numerical results

Consider the case of a long TCP connection with packets of size 1460 bytes
and a constant RTT of one second. Using the results of Section 7, we
plot the cumulative distribution function F (x) of the window size and its
probability density function f(x) for a range of values for the loss inten-
sity λ (or rather, for the mean inter-loss time s = 1/λ). Two values of
M are considered. First, we let the congestion window be limited by a re-
ceiver window of 32 kbytes. Then we consider the case where the window
is not limited and therefore continues to grow linearly until a loss occurs.
The numerical results are presented in Figures 3, 4, 5 and 6. For the case
M = 32 kbytes, we computed the distribution function successively for the
intervals [M/2,M ], [M/4,M/2] and so on. When computing PM we trun-
cate the infinite series in (44). In the case of an unlimited window, we also
truncate the infinite series in (29). As discussed previously, these infinite
series converge fast. We choose the number of terms of these series large
enough to get a negligible error.

When M = 32 kbytes, the discontinuities of F (x) and f(x) at x = M
and x = M/2, respectively, are clearly illustrated in Figures 3 and 4. The
discontinuities are most noticeable for large inter-loss times. The disconti-
nuity of F (x) is also depicted in Figure 4 by plotting a pulse for f(x) at
x = M such that its area is equal to PM . When M = ∞, the density
function exhibits neither pulses nor discontinuities (Figure 6).

9.2 Experimental results

Our experimental testbed consists of a long life and long distance TCP
connection between INRIA Sophia Antipolis (France) and Michigan State
University (US). The TCP connection is fed at INRIA by an infinite amount
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Figure 3: Limited receiver window: M = 32 kbytes
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Figure 4: Limited receiver window: M = 32 kbytes
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Figure 5: Unlimited receiver window: M = ∞
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Figure 6: Unlimited receiver window: M = ∞
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of data. The New Reno version of TCP [7] is used for data transfer. We
change the socket buffer at the receiver in order to account for different
values of M . We considered three values of M : 32, 48 and 64 kbytes. For
every value of M , we ran the TCP connection for approximately one hour
and we registered the trace of the connection using the tcpdump tool of
LBNL [12]. We developed a tool that analyzes the trace of the connection
and that detects the times at which the window is reduced. This tool gives
also the average RTT of the connection and the statistics of the window
per RTT. We plotted for the three values of M , the distribution of the
window size from measurements and that given by our model. The results
are plotted in Figures 7, 8 and 9.

When M is small, we observe a good match between the measured dis-
tribution and the one resulting from our model. For larger values of M ,
the difference between the two increases. In particular, as M increases, the
measured probability density concentrates around the average window size.
This deviation can be explained from the measured inter-loss time distribu-
tion. In Figure 10, we plot this distribution for M = 32. This distribution
is in agreement with an exponential law, resulting in a good match between
the model and the measurements. Figures 11 and 12 show the measured dis-
tributions for the other two values of M . We observe that the loss process
is no longer Poisson, but closer to a deterministic process. Small inter-loss
times are less frequent as M increases and the tail of the distribution also
becomes less important (although it still looks like the tail of an exponential
distribution). This results in a degradation of the correspondence between
our model and the measurements.

One explanation of the deviation of the loss process from a Poisson pro-
cess for larger values of M is the following. A true Poisson loss process
implies that the time until the next loss event is independent of the past.
This is the case when the congestion of the network is dominated by the
exogenous traffic and not dependent on the measured connection. I.e., it is
the case when the measured connection’s share of the available bandwidth
on the path is small compared to that of the exogenous traffic. A small M
limits the bandwidth share of our connection and limits its impact on the
network, resulting in a loss process close to Poisson. However for large M ,
the measured connection achieves a larger share and thus contributes more
to the congestion of network routers. When it reduces its window, the state
of the network changes and becomes under-loaded. For a certain amount of
time the occurrence of a new congestion is less likely. When the network
is again more heavily loaded the next congestion signal is likely to appear
soon. This explains why we observe a low density for small inter-loss times
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(Figures 12), then a peak in the middle followed by an exponential decay.
In summary, our model leads to accurate results when the times be-

tween losses are exponentially distributed. However, in situations where the
congestion in the network is largely due to the TCP connection under con-
sideration, the loss process is close to a deterministic process and a simple
heuristic as that proposed in [3, 18] can be used to approximate the achieved
throughput.

10 Conclusions and future research

We studied additive-increase multiplicative-decrease flow control mecha-
nisms under the assumption that congestion signals arrive in batches ac-
cording to a Poisson process. As highlighted in [14], the model can be
reformulated as an M/G/1 queuing problem with service time dependent on
system workload. We tried to keep the model as general as possible in order
to account for a wide range of congestion control strategies. We derived
closed form expressions for the moments as well as the distribution of the
transmission rate. For the case of single congestion signals, we compared our
results to measurements from TCP connections over the Internet. ¿From
our experiments, we concluded that our model with single congestion signals
leads to accurate results when the times between losses are close to being
exponentially distributed.

Currently, we are working on the validation of our model with clustered
congestion signals. Internet measurements have shown that on some paths
(especially short distance ones) the loss process exhibits a high degree of
burstiness. We also study the extension of the analysis to more general
inter-loss processes, in particular to Markov Modulated Poisson Processes.
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Appendix

A.1 Uniqueness of E(x)

If Ẽ(x) is a second solution to (33) then D(x) := E(x)− Ẽ(x) satisfies:

D(x) =
λ

α

∞∑
n=1

qn

∫ x

y=γ−nx
D(y)dy, x ≥ 0,

hence,

|D(x)| ≤ λ

α

∞∑
n=1

qn

∫ x

y=γ−nx
|D(y)|dy

≤ λ

α

∫ x

y=0
|D(y)|dy. (47)

Define the function h(x), x ≥ 0, by∫ x

y=0
|D(y)|dy =: e

λ
α
xh(x),

|D(x)| =
λ

α
e

λ
α
xh(x) + e

λ
α
x d

dx
h(x).

Substitution into (47) gives

d

dx
h(x) ≤ 0,

Obviously, from its definition above, h(x) ≥ 0 and h(0) = 0, hence, h(x) = 0
for all x ≥ 0. This proves that D(x) ≡ 0.

A.2 Existence of ê(ω)

Using that E(y) is non negative for y ≥ 0 it follows from (33) that

E(x) ≤ (1−Q(γ−1))x

α
+

λ

α

∫ x

y=0
E(y)dy.

Writing ∫ x

y=0
E(y)dy =: e

λ
α
xh(x),

gives

d

dx
h(x) ≤ (1−Q(γ−1))x

α
e−

λ
α
x,
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hence,

0 ≤ h(x) ≤ 1−Q(γ−1)

α

[(
α

λ

)2 (
1− e−

λ
α
x
)
− α

λ
xe−

λ
α
x

]
.

Therefore ê(ω) < ∞ for ω > λ/α.

A.3 Direct derivation of PM for single congestion signals

Consider the case where N ≡ 1. We show a direct approach to find the
coefficients ei without using the ‘candidate’ (35). We shall need the following
identities (which hold for γ > 1):(

1 +
∞∑
i=1

γ−2i∏i
j=1 (1− γ−j)

)−1

=
∞∑
k=0

γ−k∏k
l=1 (1− γl)

, (48)

k∑
i=0

1∏k−i
m=1 (1− γm)

∏i
n=1 (1− γ−n)

= 1. (49)

Equation (34) becomes:

ê(ω) =
1

αω − λ

(
1− γ−1

ω
− λê(γω)

)
,

and substituting this equation repeatedly into itself we find:

ê(ω) =
1− γ−1

ω

∞∑
k=0

(−λγ−1)k∏k
j=0 (γ

jαω − λ)
. (50)

Note that the infinite sum converges absolutely for all ω ̸= 0 and ω ̸=
γ−jλ/α, for j = 0, 1, 2, . . ., because the k-th term is of the order of γ−k2/2

when k → ∞. By partial fraction expansion we have:

ê(ω) = (1− γ−1)
∞∑
k=0

γ−k

− 1

λω
+

α

λ

k∑
i=0

(∏k
j=0,j ̸=i(1− γj−i)

)−1

αω − γ−iλ


= − 1

λω
+ (1− γ−1)

α

λ

∞∑
k=0

γ−k
k∑

i=0

(∏k
j=0,j ̸=i(1− γj−i)

)−1

αω − γ−iλ
. (51)

(By convention the empty product equals 1.) Using the absolute convergence
of the infinite series we have:

E(x) = − 1

λ
+

1− γ−1

λ

∞∑
k=0

γ−k
k∑

i=0

 k∏
j=0,j ̸=i

(1− γj−i)

−1

exp

(
λx

αγi

)
. (52)
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Using (48) we obtain the coefficients ei in (42) and (43). If we use (49) we
can also show that in this case

∞∑
i=0

ei =
1

1− γ−1
,

and, hence, from (41) we obtain (44).
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