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ABSTRACT
Most of the theoretical work on sampling has addressed the
inversion of general traffic properties such as flow size dis-
tribution, average flow size, or total number of flows. In
this paper, we make a step towards understanding the im-
pact of packet sampling on individual flow properties. We
study how to detect and rank the largest flows on a link. To
this end, we develop an analytical model that we validate
on real traces from two networks. First we study a blind
ranking method where only the number of sampled packets
from each flow is known. Then, we propose a new method,
protocol-aware ranking, where we make use of the packet
sequence number (when available in transport header) to
infer the number of non-sampled packets from a flow, and
hence to improve the ranking. Surprisingly, our analytical
and experimental results indicate that a high sampling rate
(10% and even more depending on the number of top flows
to be ranked) is required for a correct blind ranking of the
largest flows. The sampling rate can be reduced by an order
of magnitude if one just aims at detecting these flows or by
using the protocol-aware method.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: PERFORMANCE
OF SYSTEMS—Measurement techniques

General Terms
Measurement, Performance, Experimentation
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Packet sampling, largest flow detection and ranking, perfor-
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1. INTRODUCTION
The list of the top users or applications is one of the most

useful statistics to be extracted from network traffic.
Network operators use the knowledge of the most popular

destinations to identify emerging markets and applications
or to locate where to setup new Points of Presence. Con-
tent delivery networks use the popularity of sites to define
caching and replication strategies. In traffic engineering, the
identification of heavy hitters in the network can be used to
treat and route them differently across the network [20, 17,
10]. Keeping track of the network prefixes that generate
most traffic is also of great importance for anomaly detec-
tion. A variation in the pattern of the most common appli-
cations may be used as a warning sign and trigger careful
inspection of the packet streams.

However, the ability to identify the top users in a packet
stream is limited by the network monitoring technology.
Capturing and processing all packets on high speed links still
remains a challenge for today’s network equipment [16, 9].
In this context, a common solution is to sample the packet
stream to reduce the load on the monitoring system and to
simplify the task of sorting the list of items. The underlying
assumption in this approach is that the sampling process
does not alter the properties of the data distribution.

Sampled traffic data is then used to infer properties of the
original data (this operation is called inversion). The inver-
sion of sampled traffic is, however, an error-prone procedure
that often requires a deep study of the data distribution to
evaluate how the sampling rate impacts the accuracy of the
metric of interest. Although the inversion may be simple
for aggregate link statistics (e.g., to estimate the number
of packets transmitted on a link, it is usually sufficient to
multiply the number of sampled packets by the inverse of
the sampling rate), it is much harder for the properties of
individual connections or “flows” [9, 11, 8].

For these reasons, in this paper, we address this simple,
and so far unanswered, question: which sampling rate is
needed to correctly detect and rank the flows that carry the
most packets?

We define the problem as follows. Consider a traffic mon-
itor that samples packets independently of each other with
probability p (random sampling) and classifies them into
sampled flows. At the end of the measurement period, the
monitor processes the list of sampled flows, ranks them
based on their size in packets, and returns an ordered list of
the t largest flows.

We are interested in knowing (i) whether the ordered list
contains all the actual largest flows in the original packet



stream (detection), and (ii) if the items in the list appear in
the correct order (ranking).

We build an analytical model and define a performance
metric that evaluates the accuracy of identification and rank-
ing of the largest flows. We consider a flow to consist of a
single TCP connection. However, our results are general
and can be applied to alternative definitions of flow, as well.

We evaluate two approaches to sort the list of flows:
(i) Blind, where the sampled flows are ranked just based

on their sampled size. This method can be applied to any
definition of flow.

(ii) Protocol-aware, where we make use of additional in-
formation in the packet header (e.g., the sequence number
in TCP packets) to infer the number of non-sampled packets
between sampled ones. This method can only be applied to
flow definitions that preserve the protocol level details.

The contributions of this work are the following: (1) We
perform an analytical study of the problem of ranking two
sampled flows and compute the probability that they are
misranked. We propose a Gaussian approximation to make
the problem numerically tractable. (2) We introduce the
protocol-aware ranking method that uses protocol level in-
formation to complement the flow statistics and render the
detection and ranking of the largest flows more accurate. (3)
Based on the model for the ranking of two flows, we propose
a general model to study the detection and ranking problem,
given a generic flow size distribution. We define a perfor-
mance metric and evaluate the impact of several metric’s
parameter on the accuracy of the ranking. (4) We validate
our findings on measurement data using publicly-available
packet-level traces. Our results indicate that a surprisingly
high sampling rate is required to obtain a good accuracy
with the blind approach (10% and even more depending on
the number of flows of interest). As for the protocol-aware
approach, it allows to reduce the required sampling rate by
an order of magnitude compared to the blind approach.

The paper is structured as follows. Next, we discuss the
related literature. In Section 3 and 4, we present our model.
Section 5 analyzes the model numerically and Section 6 val-
idates it on real packet-level traces. Section 7 concludes the
paper and provides perspectives for our future research.

2. RELATED WORK
The inversion of sampled traffic has been extensively stud-

ied in the literature. The main focus has been on the inver-
sion of aggregate flow properties such as flow size distribu-
tion [9, 11], average flow size or total number of flows [8] on
a given network link. Duffield et al. [8] study the problem of
flow splitting and propose estimators for the total number
of flows and for the average flow size in the original traffic
stream. [9, 11] study the inversion of the flow size distribu-
tion with two different methods. They both show that the
major difficulty comes from the number of flows that are not
sampled at all and that need to be estimated with an auxil-
iary method. As an auxiliary method, [8, 9] propose the use
of the SYN flag in the TCP header to mark the beginning of
a flow. [9] shows that periodic and random sampling provide
roughly the same result on high speed links, and so random
sampling can be used for mathematical analysis due to its
appealing features. [4] finds the sampling rate that assures
a bounded error on the estimation of the size of flows con-
tributing to more than some predefined percentage of the
traffic volume. [14] studies whether the number of sampled

packets is a good estimator for the detection of large flows
without considering its impact on the flow ranking.

Given the potential applications of finding the list of top
users, it does not come as a surprise that there has been a
significant effort in the research community to find ways to
track frequent items in a data stream [5, 7, 3, 10]. However,
this problem has usually been addressed from a memory re-
quirement standpoint. All the works in the literature assume
that if the algorithm and the memory size is well chosen, the
largest flows can be detected and ranked with a high preci-
sion. However, in the presence of packet sampling, even if
the methods rank correctly the set of sampled flows, there
is no guarantee that the sampled rank corresponds to the
original rank. The problem we address in this paper com-
plements these works as it focuses on the impact of sampling
on the flow ranking.

3. BASIC MODEL: RANKING TWO FLOWS
In this section, we study the probability to misrank two

flows of original sizes S1 and S2 in packets. This probability
is the basis for the general model for detecting and ranking
the largest flows that we will present later. Indeed, the
detection and ranking of the largest flows can be transformed
into a problem of ranking over a set of flow pairs.

Without loss of generality, we assume S1 < S2. We con-
sider a random sampling of rate p. Let s1 and s2 denote
the sizes in packets of both flows after sampling. The two
sampled flows are misranked if (i) s1 is larger than s2, or
(ii) both flows are not sampled, i.e., their sampled sizes
equal to zero. By combining (i) and (ii), one can see that
the necessary condition for a good ranking is to sample at
least one packet from the larger flow (i.e., the smaller of
the two flows can disappear after sampling). The prob-
ability to misrank the two flows can then be written as
Pm(S1, S2) = P {s1 ≥ s2}. For the case S1 = S2, we con-
sider the two flows as misranked if s1 6= s2, or if both flows
are not sampled at all, i.e. s1 = s2 = 0.

We compute and study the misranking probability of two
flows of given sizes in the rest of this section. First, we con-
sider the blind ranking method where only the number of
sampled packets from a flow is known. For this method,
we express the misranking probability as a double sum of
binomials, then we present a Gaussian approximation to
make the problem tractable numerically. Second, we con-
sider the protocol-aware ranking method for which we cal-
culate a numerical-tractable closed-form expression of the
misraking probability. Note that the misranking probability
is a symmetric function, i.e., Pm(S1, S2) = Pm(S2, S1).

3.1 Blind ranking
With this method, s1 and s2 represent the number of

sampled packets from flows S1 and S2. Under our assump-
tions, these two variables are distributed according to a bi-
nomial distribution of probability p. Hence, we can write
for S1 < S2,

Pm(S1, S2) = P {s1 ≥ s2} =

S1∑
i=0

bp(i, S1)

i∑
j=0

bp(j, S2). (1)

bp(i, S) is the probability density function of a binomial dis-
tribution of probability p, i.e., the probability of obtaining i
successes out of S trials. We have bp(i, S) =

(
S
i

)
pi(1−p)S−i

for i = 0, 1, ..., S, and bp(i, S) = 0 for i < 0 and i > S. The



probability to misrank two flows of equal sizes is given by
P {s1 6= s2 or s1 = s2 = 0} = 1− P {s1 = s2 6= 0}
= 1−∑S1

i=1 b2
p(i, S1).

Unfortunately, the above expression for the misranking
probability is numerically untractable since it involves two
sums of binomials. For large flows of order S packets, the
number of operations required to compute such a probability
is on the order of O(S3), assuming that the complexity of
the binomial computation is on the order of O(S). The
problem becomes much more complex if one has to sum
over all possible flow sizes (i.e., O(S5)). For this reason, we
propose next a Gaussian approximation to the problem of
blind ranking that is accurate and easy to compute. We use
this approximation to study the ranking performance as a
function of the sampling rate and the flow sizes.

3.1.1 Gaussian approximation to blind ranking
Consider a flow made of S packets and sampled at rate

p. The sampled size follows a binomial distribution. How-
ever, it is well known that the binomial distribution can be
approximated by a Normal (or Gaussian) distribution when
p is small and when the product pS is on the order of one
(flows for which, on average, at least few packets are sam-
pled) [21, pages 108–109]. We assume that this is the case
for the largest flows, and we consider the sampled size of
a flow as distributed according to a Normal distribution of
average pS and of variance p(1 − p)S. Using this approxi-
mation, one can express the misranking probability for the
blind ranking problem in the following simple form.

Proposition 1. For any two flows of sizes S1 and S2

packets (S1 6= S2), the Gaussian approximation gives,

Pm(S1, S2) ' 1

2
erfc

(
|S2 − S1|√

2(1/p− 1)(S1 + S2)

)
, (2)

where erfc(x) = ( 2√
π
)
∫∞

x
e−u2

du is the complementary er-

ror cumulative function.

Proof: Consider two flows of sizes S1 and S2 in packets
such that S1 < S2. Their sampled versions s1 and s2 both
follow Normal distributions of averages pS1 and pS2, and
of variances p(1 − p)S1 and p(1 − p)S2. We know that the
sum of two Normal variables is a Normal variable. So the
difference s1 − s2 follows a Normal distribution of average
p(S1 − S2) and of variance p(1− p)(S1 + S2). We have then
this approximation for the misranking probability:

Pm(S1, S2) = P {s1 − s2 ≥ 0}

' P

{
V >

p(S2 − S1)√
p(1− p)(S1 + S2)

}

=
1

2
erfc

(
S2 − S1√

2(1/p− 1)(S1 + S2)

)
. (3)

V is a standard Normal random variable. Given the symme-
try of the misranking probability, one can take the absolute
value of S2 − S1 in (3) and get the expression stated in the
proposition, which is valid for all S1 and S2. ¤

For S1 = S2, one can safely approximate the misranking
probability to be equal to 1. This approximation is however
of little importance given the very low probability of having
two flows of equal sizes, especially when they are large.

3.2 Protocol-aware ranking
Packets can carry in their transport header an increasing

sequence number. A typical example is the byte sequence
number in the TCP header. Another example could be the
sequence number in the header of the Real Time Protocol
(RTP) [19]. One can use this sequence number, when avail-
able, to infer the number of non-sampled packets (or bytes
in the case of TCP) between sampled ones, and hence to im-
prove the accuracy of ranking. The size of the sampled flow
in this case is no longer the number of packets collected, but
rather the number of packets that exist between the first and
last sampled packets from the flow. Although this solution
is limited to flows whose packet carry a sequence number, we
believe that the study of this ranking method is important
given the widespread use of the TCP protocol. Our objective
is to understand how the use of protocol-level information
can supplement the simple, and more general, blind method
and if it is worth the additional overhead it introduces (i.e.,
storing two sequence numbers per flow record).

In the following, we calculate the misranking probability
of two flows of given sizes when using the protocol-aware
method. This probability will be used later in the general
ranking problem. The main contribution of this section is a
closed-form expression for the misranking probability that
is numerically tractable, without the need for any approxi-
mation.

Let S be the size of a flow in packets. Let sb, sb =
1, 2, ..., S, denote the (packet) sequence number carried by
the first sampled packet, and let se, se = S, S − 1, ..., sb,
denote the sequence number carried by the last sampled
packet. Given sb and se, one can estimate the size of the
sampled flow in packets to s = se − sb + 1. The error in
this estimation comes from the non-sampled packets that
are transmitted before sb and after se. We give next the
distribution of s, which is needed for the computation of
the misranking probability, then we state our main result.
Before presenting the analysis, note that this new flow size
estimator only counts the packets that are transmitted with
distinct sequence numbers. In the case of TCP, this corre-
sponds to the number of bytes received at the application
layer, rather then the number of bytes carried over the net-
work. It is equivalent to assuming that the probability of
sampling a retransmitted (or duplicated) packet is negligi-
ble. This is a reasonable assumption if the loss rate is low.
We will address this aspect in more detail in Section 6.

Consider a flow of size S ≥ 2 in packets. Using the above
definition for s, the sampled flow has a size of i packets,
i ≥ 2, with probability:

P {s = i} =

S−i+1∑

k=1

P {sb = k}P {se = k + i− 1} .

We have P {sb = k} = (1−p)k−1p, and P {se = k + i− 1} =
(1− p)S−k−i+1p. This gives

P {s = i} =

S−i+1∑

k=1

(1− p)k−1p(1− p)S−k−i+1p

= p2(1− p)S−i(S − i + 1). (4)

As for i = 0, we have P {s = 0} = (1 − p)S for S ≥ 1. And
for i = 1, we have P {s = 1} = p(1 − p)S−1S for S ≥ 1. It
is easy to prove that the cumulative distribution of s is the



following for all values of S:

P {s ≤ i 6= 0} = p(1− p)S−i(S − i + 1) + (1− p)S−i+1. (5)

We come now to the misranking probability, which we recall
is a symmetric function. For S1 < S2, we have

Pm(S1, S2) = P {s2 ≤ s1} =

S1∑
i=0

P {s1 = i}
i∑

j=0

P {s2 = j} .

(6)
And for S1 = S2, we have

Pm(S1, S2) = 1−
S1∑
i=1

P {s1 = i}2 . (7)

Our main result is the following.

Proposition 2. For S1 < S2, the misranking probability
is equal to

Pm(S1, S2) = (1− p)S1(1− p)S2

+ p(1− p)S1−1S1[p(1− p)S2−1S2 + (1− p)S2 ]

+ p3 ∂2F (1− p, 1− p)

∂x∂y
+ p2 ∂F (1− p, 1− p)

∂x
,

where

F (x, y) = xyS2−S1+1 + ... + xS1−1yS2−1

= xyS2−S1+1(1− (xy)S1−1)/(1− xy).

For S1 = S2 = S, the misranking probability is equal to

Pm(S, S) = 1− p2(1− p)2(S−1)S2 − p4 ∂2G(1− p, 1− p)

∂x∂y
,

where

G(x, y) = xy + x2y2 + xS−1yS−1 = (xy − (xy)S)/(1− xy).

Proof: One can validate the results by plugging (4) and (5)
into (6) and (7). ¤

Note that the main gain of writing the misraking proba-
bility in such a condensed form is a complexity that drops
from O(S3) in (6) to O(S) in our final result. This gain
comes from the closed-form expression for the cumulative
distribution in (5), and from introducing the two functions
F (x, y) and G(x, y). These two latter functions transform
two series whose complexity is O(S2) into a closed-form ex-
pression whose complexity is O(S).

We solve the derivatives in the above equations using the
symbolic toolbox of matlab, which gives explicit expressions
for the misranking probability. These expressions are simple
to compute, but span on multiple lines, so we omit them for
lack of space.

3.3 Analysis of the misranking probability

3.3.1 The blind case
We use the Gaussian approximation to study how the mis-

ranking probability varies with the sampling rate and with
the sizes of both flows, in particular their difference. The
study of the impact of the flow sizes is important to under-
stand the relation between flow size distribution and ranking
of the largest flows.

The misranking probability is a decreasing function of the
sampling rate. It moves to zero when p moves to 1 and to 0.5

when p approaches zero1. Therefore, there exists one sam-
pling rate that leads to some desired misranking probability,
and any lower sampling rate results in larger error.

We study now how the misranking probability varies with
the sizes of both flows. Take S1 = S2 − k, k a positive
integer. From (2) and for fixed k, the misranking probability
increases with S1 and S2 (erfc(x) is an increasing function in
x). This indicates that it is more difficult to rank correctly
two flows different by k packets as their sizes increase in
absolute terms. The result is different if we take the size of
one flow equal to α < 1 times the size of the second, i.e.,
S1 = αS2. Here, (S1 − S2)/

√
S1 + S2 is equal to

√
S1(1 −

α)/
√

1 + α, which increases with S1. Hence, the misranking
probability given in (2) decreases when S1 increases. We
conclude that, when the two flow sizes maintain the same
proportion, it is easier to obtain a correct ranking when they
are large in absolute terms.

We can now generalize the result above. One may think
that the larger the flows, the better the ranking of their
sampled versions. Our last two examples indicate that this
is not always the case. The ranking accuracy depends on
the relative difference of the flow sizes. In general, to have
a better ranking, the difference between the two flow sizes
must increase with the flow sizes and the increase must be
larger than a certain threshold. This threshold is given by
(2): the difference must increase at least as the square root
of the flow sizes. This is an interesting finding. In the con-
text of the general ranking problem, it can be interpreted
as follows. Suppose that the flow size has a cumulative dis-
tribution function y = F (x). As we move to the tail of the
distribution2, the size of the flows to be ranked increases.
The ranking performance improves if the difference between
flow sizes increases faster than

√
x. This is equivalent to

saying that dx/dy should increase with x faster than
√

x.
All common distributions satisfy this condition, at least at
their tails. For example, with the exponential distribution
we have dx/dy ∝ eλx (1/λ is the average), while for the
Pareto distribution we have dx/dy ∝ xβ+1 (β is the shape).

3.3.2 The protocol-aware case
The first difference with the blind case is in the estimation

error (S− s = sb− 1+S− se), which can be safely assumed
to be independent of the flow size for large flows (only de-
pendent on p). This means that if two large flows keep the
same distance between them while their sizes increase, their
ranking maintains the same accuracy. Their ranking im-
proves if the difference between their sizes increases as well,
and it deteriorates if the difference between their sizes de-
creases. So in contrast to the blind case, the threshold for
the ranking here to improve is that the larger flow should
have its size increasing a little faster than the smaller one. In
the context of the general ranking problem where flow sizes
are distributed according to a cumulative distribution func-
tion y = F (x), and when the top flows become larger, the
protocol-aware ranking improves if the derivative dx/dy in-
creases with x. This is equivalent to saying that the function
F (x) should be concave, which is satisfied by most common
distributions at their tail. For blind ranking, concavity was

1The Gaussian approximation does not account for the case
p = 0 where the misranking probability should be equal to
1 based on our definition.
2Because we are more and more focusing on large flows or
because the number of available flows for ranking increases.



not enough to obtain a better ranking; the derivative dx/dy
had to increase faster than

√
x. So in conclusion, the condi-

tion to have a better ranking when we move to the tail of the
flow size distribution is less strict with the protocol-aware
method, which is an indication of its good performance.

The second difference with the blind case is in the rela-
tion between the ranking accuracy and the sampling rate.
Consider two large flows of sizes S1 and S2 in packets, and
let s1 and s2 denote their sampled sizes. The coefficient of
variation of the difference s2 − s1 is an indication on how
well the ranking performs (a small coefficient of variation
results in better ranking3). It is easy to prove that this co-
efficient of variation scales as 1/p for protocol-aware ranking
and as 1/

√
p for blind ranking. This is again an important

finding. It tells that when the sampling rate is very small,
blind ranking could (asymptotically) perform better than
protocol-aware ranking. Our numerical and experimental
results will confirm this finding.

4. GENERAL MODEL: DETECTING AND
RANKING THE LARGEST FLOWS

We generalize the previous model from the ranking of
two flows to the detection and ranking of the top t flows,
t = 1, 2, . . . , N . The misranking probability Pm(S1, S2) pre-
viously calculated is the basis for this generalization. Let
N ≥ t denote the total number of flows available in the mea-
surement period before sampling. We want the sampled list
of top t flows to match the list of top t flows in the original
traffic. Two criteria are considered to decide whether this
match is accurate. First, we require the two lists to be iden-
tical. This corresponds to the ranking problem. The second,
less constrained, criterion requires the two lists to contain
the same flows regardless of their relative order within the
list. This corresponds to the detection problem. For both
problems, the quality of the result is expressed as a function
of the sampling rate p, the flow size distribution, the number
of flows to rank t, and the total number of flows N .

4.1 Performance metric
In order to evaluate the accuracy of detection and rank-

ing, we need to define a performance metric that is easy
to compute and that focuses on the largest flows. A flow
at the top of the list can be misranked with a neighboring
large flow or a distant small flow. We want our metric to
differentiate between these two cases and to penalize more
the latter one; a top-10 flow replaced by the 100-th flow in
the sampled top list is worse than the top-10 flow being re-
placed by the 11-th flow. We also want our metric to be zero
when the detection and ranking of the top flows are correct.

We introduce our performance metric using the ranking
problem. The performance metric for the detection prob-
lem is a straightforward extension. Let’s form all flow pairs
where the first element of a pair is a flow in the top t and
the second element is anywhere in the sorted list of the
N original flows. The number of these pairs is equal to
N−1+N−2+ · · ·+N−t = (2N−t−1)t/2. We then count
the pairs in this set that are misranked after sampling and
we take the sum as our metric for ranking accuracy. This

3For S1 < S2, we are interested in P {s1 ≥ s2}. According
to Tchebychev inequality, this probability can be supposed
to behave like VAR[s1−s2]/E [s1 − s2]

2, which is the square
of the coefficient of variation.

sum indicates how good the ranking is at the top of the list.
It is equal to zero when the ranking is correct. When the
ranking is not correct, it takes a value proportional to the
original rank of the flows that have taken a slot in the top-t
list. For example, if the top flow is replaced by its immediate
successor in the list, the metric will return a ranking error
of 1. Instead, if the same flow is replaced by a distant flow,
say the 100-th, the metric will return an error of 99. Also,
note that our metric does not account for any misranking of
flows outside the list of top t flows. For any two flows n and
m, such that n > m > t, the fact that n takes the position
of m does not add anything to our performance metric since
our metric requires at least one element of a flow pair to be
in the original list of top t flows.

In the detection problem, we are no longer interested in
comparing flow pairs whose both elements are in the top t
list. We are only interested in the ranking between flows
in the top t list and those outside the list. Therefore, our
detection metric is defined as the number of misranked flow
pairs, where the first element of a pair is in the list of top t
flows and the second element is outside this list (non top t).

The above metrics return one value for each realization
of flow sizes and of sampled packets. Given that we want
to account for all realizations, we define the performance
metrics as the number of misranked flow pairs averaged over
all possible values of flow sizes in the original list of N flows
and over all sampling runs. We deem the ranking/detection
as acceptable when our metric takes a value below one (i.e.,
on average less than one flow pair is misranked).

In addition to the above, our metrics have the advantage
of being easily and exactly calculable. Performance metrics
based on probabilities (e.g.,[12]) require lot of assumptions
that make them only suitable for computing bounds, but
not exact values.

4.2 Computation of the performance metric
for the ranking problem

Consider a flow of i packets belonging to the list of top t
flows in the original traffic (before sampling). First, we com-
pute the probability that this flow is misranked with another
flow of general size and general position. Denote this prob-
ability by Pmt(i), where m stands for misranking and t for
top. Then, we average over all values of i to get P̄mt

4. This
latter function gives us the probability that, on average, the
top t-th flow is misranked with another flow. Thus, our per-
formance metric, which is defined as the average number of
misranked flow pairs where at least one element of a pair
is in the top t, is equal to (2N − t − 1)tP̄mt/2. Next, we
compute the value of P̄mt.

Let pi denote the probability that the size of a general
flow is equal to i packets, and Pi denote the flow size com-
plementary cumulative distribution, i.e., Pi =

∑∞
j=i pj . For

a large number of flows N and a high degree of multiplexing,
we consider safe to assume that flow sizes are independent
of each other (see [2] for a study of the flow size correlation
on a OC-12 IP backbone link). A flow of size i belongs to
the list of top t flows if the number of flows in the original
total list, with a size larger than i, is less or equal than t−1.
Since each flow can be larger than i with probability Pi in-
dependently of the other flows, we can write the probability
that a flow of size i belongs to the list of the top t flows

4Note that the distribution of the size of a flow at the top
of the list is different from that of a generic flow.



as Pt(i, t, N) =
∑t−1

k=0 bPi(k, N − 1), where bPi(k, N − 1)
is the probability to obtain k successes out of N − 1 tri-
als, Pi being the probability of a success. The probability
that the t-th largest flow has a size of i packets is equal
to Pt(i) = piPt(i, t, N)/P̄t(t, N). P̄t(t, N) is the probability
that a flow of general size is among the top t in the original
total list, which is simply equal to t/N .

Using the above notation, one can write the misranking
probability between a top t flow of original size i packets
and any other flow as follows

Pmt(i) =
1

Pt(i, t, N)

(
i−1∑
j=1

pjPt(i, t, N − 1)Pm(j, i)+

∞∑
j=i

pjPt(i, t− 1, N − 1)Pm(i, j)

)
. (8)

In this expression, we sum over all possible original sizes
of the other flow (the variable j) and we separate the case
when this other flow is smaller than i from the case when it
is larger than i 5. Pm(i, j) is the misranking probability of
two flows of sizes i and j packets, which we calculated in the
previous section for the two ranking methods. P̄mt is then
equal to

∑∞
i=1 Pt(i)Pmt(i).

For protocol-aware ranking, Pm(i, j) is given explicitly
in Proposition 2 and can be easily computed. For blind
ranking, we use the Gaussian approximation summarized in
Proposition 2, which we recall holds when at least one of the
two flows to be compared is large.

4.3 Computation of the performance metric
for the detection problem

Consider the probability that a flow among the top t is
swapped with a flow that does belong to the top t. Let
P̄ ?

mt denote this probability. Following the same approach
described in Section 4, we can write

P̄ ?
mt =

1

P̄ ?
t

∞∑

i=1

i−1∑

j=1

pipjP ?
t (j, i, t, N)Pm(j, i).

To get this expression for P̄ ?
mt, we sum over all possible

values for the size of the flow in the top t (index i) and
all possible values for the size of the other flow not among
the top t (index j). In this expression, pi and pj represent
the probability that the size of a flow is equal to i or j
packets, respectively. Pm(j, i) is the probability that two
flows of sizes i and j are misranked – it is given by the
Gaussian approximation described in Proposition 1 for the
blind method and the result stated in Proposition 2 for the
protocol-aware method. P ?

t (j, i, t, N) is the joint probability
that a flow of size i belongs to the list of the top t flows while
another flow of size j does not belong to it (i.e., it is in the
bottom N − t flows). P̄ ?

t is the joint probability that a flow
of any size belongs to the list of the top t flows while another
flow of any size does not belong to this list. It is equal to
t(N − t)/(N(N − 1)).

We now compute P ?
t (j, i, t, N) for j < i, i.e., the proba-

bility that flow i belongs to the top list while flow j does
not. The number of flows larger than i should be smaller
than t, while the number of flows larger than j should be
larger than t. The probability that a flow size is larger than

5In the case j ≥ i, at most t − 2 flows can be larger than i
packets if we want the flow of size i to be in the top t.

Trace Jussieu Abilene
Link speed GigE (1 Gbps) OC-48 (2.5 Gbps)
Duration 2 hours 30 minutes
TCP connections 11M 15M
Packets 112M 125M

Table 1: Summary of the traces

i is Pi =
∑∞

k=i pk. The probability that it is larger than j is
Pj =

∑∞
k=j pk. The probability that a flow size is between

j and i given that it is smaller than i is (Pj − Pi)/(1− Pi).
We call it Pj,i. It follows that:

P ?
t (j, i, t, N) =

t−1∑

k=0

bPi(k, N − 2)

N−k−2∑

l=t−k−1

bPj,i(l, N − k − 2).

The first sum accounts for the probability to see less than t
flows above i packets. The second sum accounts for the
probability to see more than t flows above j given that
k flows (k < t) were already seen above i. For t = 1,
P ?

t (j, i, t, N) is no other than Pt(i, t, N − 1), and both P̄ ?
mt

and P̄mt are equal (i.e., the ranking and the detection prob-
lems are the same).

Once P̄ ?
mt is computed, we multiply it by the total number

of flow pairs whose one element is in the top t and the other
one is not. This total number is equal to t(N−t). Our metric
for the detection problem is the result of this multiplication.
As for the ranking problem, we want this metric to be less
than one for the detection of the top t flows to be accurate.

5. NUMERICAL RESULTS
We analyze now the accuracy of identifying and ranking

the largest flows in a packet stream for both the blind and
protocol-aware methods. Our metrics require the following
input: pi, the flow size distribution and N , the total number
of flows observed on the link during the measurement period.

To derive realistic values for these two quantities, we con-
sider two publicly available packet-level traces. The first
trace is Abilene-I collected by NLANR [15] on an OC-48
(2.5 Gbps) link on the Abilene Network [1]. The second
trace has been collected by the Metropolis project [13] on
a Gigabit Ethernet access link from the Jussieu University
campus in Paris to the Renater Network [18]. Table 1 sum-
marizes the characteristics of the two traces.

We model the flow size distribution in the traces with
Pareto. We opted for Pareto since it is known to be appro-
priate to model flow sizes in the Internet due to its heavy
tailed feature [6]. Note that it is not our goal to find an ac-
curate approximation of the distribution of flow sizes in our
traces, but rather to find a general, well-known, distribution
that approaches the actual flow size. In this section we an-
alyze a wide range of parameters while Section 6 focuses on
the performance we observe in the two packet-level traces.

The Pareto distribution is continuous with a complemen-
tary cumulative distribution function given by P {S > x} =
(x/a)−β . β > 0 is a parameter describing the shape of the
distribution and a > 0 is a parameter describing its scale.
The Pareto random variable takes values larger than a, and
has an average value equal to aβ/(β − 1). The tail of the
Pareto distribution becomes heavier as β decreases.

We use our traces to derive an indicative value of the
shape parameter β. To this end, we compute the empirical
complementary cumulative distribution of flow sizes and we
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Figure 1: Empirical flow size distribution

plot it on a log-log scale. A heavy-tailed distribution of
shape parameter β decays linearly on a log-log scale at rate
−β. The empirical distributions are shown in Figure 1. The
plots show that β equal to 2 suits the Abilene trace and β
equal to 1.5 suits the Jussieu one. This means that the flow
size distribution has a heavier tail in the Jussieu trace.

Then, we compute the average flow size in packets to get
the starting point a for the Pareto distribution. As an av-
erage flow size we measure 5.76 Kbytes and 7.35 packets on
the Abilene trace, and 9.22 Kbytes and 9.9 packets on the
Jussieu trace. The total number of flows N is set by taking a
measurement interval equal to one minute, then multiplying
this interval by the average arrival rate of flows per second
on each trace. This gives N = 487 Kflows for the Abilene
trace and N = 103 Kflows for the Jussieu one.

In the rest of this section, all figures plot the ranking met-
ric versus the packet sampling rate p on a log-log scale. We
vary p from 0.1% to 50%. Each figure shows different lines
that correspond to different combinations of t, β, and N .
We are interested in the regions where the value of the met-
ric is below one, indicating that the ranking is accurate on
average. To ease the interpretation of results in the figures,
we plot the horizontal line of ordinate 1.

5.1 Blind ranking

5.1.1 Impact of the number of flows of interest
The first parameter we study is t, the number of largest

flows to rank. The purpose is to show how many flows can
be detected and ranked correctly for a given sampling rate.
We set β, N , and the average flow size to the values de-
scribed before. The performance of blind ranking the top t
flows is shown in Figure 2 for both traces. We observe that
the larger the number of top flows of interest, the more dif-
ficult it is to detect and rank them correctly. In particular,
with a sampling rate on the order of 1%, it is possible to
rank at most the top one or two flows. As we focus at larger
values of t, the required sampling rate to get a correct rank-
ing increases well above 10%. Note that with a sampling
rate on the order of 0.1%, it is almost impossible to detect
even the largest flow. We also observe that the ranking on
the Jussieu trace behaves slightly better than that on the
Abilene trace. The Jussieu trace has a heavier tail for its
flow size distribution, and so the probability to get larger
flows at the top of the list is higher, which makes the rank-
ing more accurate. This will be made clear next as we will
study the impact of the shape parameter β.

5.1.2 Impact of the flow size distribution
We consider the blind ranking of the top 10 flows varying
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Figure 2: Performance of blind ranking varying the
number t of top flows of interest

the shape parameter for the Pareto distribution among five
distinct values: 3, 2.5, 2, 1.5 and 1.2. Note that for β ≤ 2
the Pareto distribution is known to be heavy tailed (infinite
variance). The other parameters of the model (N and the
average flow size) are set as before. The values taken by our
metric are shown in Figure 3 for both traces. We can make
the following observations from the figure:

• Given a sampling rate, the ranking accuracy improves
as β becomes smaller, i.e., the tail of the flow size
distribution becomes heavier. Indeed, when the distri-
bution tail becomes heavier, the probability to obtain
larger flows at the top of the list increases, and since it
is simpler to blindly rank larger flows (for distributions
satisfying the square root condition, see Section 3.1.1),
the ranking becomes more accurate.

• The ranking is never correct unless the sampling rate is
very high. In our setting, one needs to sample at more
than 50% to obtain an average number of misranked
flow pairs below one for a value of β equal to 1.5 (i.e,
heavy tailed distribution), and at more than 10% for
a value of β equal to 1.2 (i.e., pronounced heavy tailed
distribution). For larger values of β (i.e., lighter tail),
the sampling rate needs to be as high as 100%.

5.1.3 Impact of the total number of flows
Another important parameter in the ranking problem is

N , the total number of flows available during the measure-
ment period. When N increases, the flows at the top of
the list should become larger, and therefore as we saw in
Section 3.1.1, the blind ranking accuracy should improve
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Figure 3: Performance of blind ranking varying the
shape parameter of the flow size distribution

for flow size distributions satisfying the square root condi-
tion (in particular the Pareto distribution we are considering
here). N varies with the utilization of the monitored link –
the higher the utilization, the larger the number of flows. N
can also vary with the duration of the measurement period
– the longer we wait before ranking and reporting results,
the larger the number of flows.

We study the impact of N on the blind ranking accu-
racy. We take the same value of N used in the previous
sections and computed over one minute measurement pe-
riod (487 Kflows for the Abilene trace and 103 Kflows for
the Jussieu trace), then we multiply it by some constant
factor ranging from 0.5 (2 times fewer flows) to 5 (5 times
more flows). Results are shown in Figure 4. The lines in
the figures correspond to a factor value equal to: 0.5, 1,
2.5, and 5. In these figures, we consider the ranking of the
top 10 flows with the values of β and average flow size set
from the traces. Clearly, the ranking accuracy improves as
N increases. However, in our setting, this improvement is
still not enough to allow a perfect ranking. One can always
imagine increasing N (e.g., by increasing the measurement
period) until the top t flows are extremely large and hence,
perfectly detected and ranked.

5.2 Protocol-aware ranking
Protocol-aware ranking takes advantage of the informa-

tion carried in the transport header of the sampled packets
to infer the number of non-sampled packets of a flow. We
use our model to check whether this improvement exists and
to evaluate it. Remember that we are always in the context
of low retransmission and duplication rates, which is neces-
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Figure 4: Performance of blind ranking varying the
total number of flows

sary to remove the discrepancy between carried data volume
(throughput) and application data volume (goodput).

Using the previous values for N , β and average flow size,
we reproduce Figure 2, but this time for the protocol-aware
case. This leads to Figure 5, which illustrates the impact of
the number of largest flows to rank. For lack of space, we
omit the other figures.

We compare this new figure to its counterpart in the blind
case. We make the following two observations:

(i) The protocol-aware method improves the accuracy of
the largest flows ranking by an order of magnitude for high
sampling rates (above 1%). For example, for the Abilene
trace, a sampling rate on the order of 50% was necessary to
detect and rank the largest 5 flows with the blind method.
Now, with the protocol-aware method, a sampling rate on
the order of 5% is sufficient. The same conclusion applies
to the Jussieu trace. A sampling rate on the order of 10%
is needed. With the protocol-aware method, it becomes on
the order of 1%.

(ii) The protocol-aware method does not improve the per-
formance when applied at low sampling rates (above 1%).
This can be clearly seen if we compare the plots between
both figures for sampling rates below 1%. This results con-
firms our observations in Section 3.3.2.

5.3 Largest flows detection
To illustrate the difference between ranking and detection,

we consider the same scenario as in Section 5.1.1. We plot
the detection metric as a function of the sampling rate for
different values of t (the number of top flows of interest) and
for both Abilene and Jussieu traces. This gives Figure 6 for
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Figure 5: Performance of protocol-aware ranking
varying the number t of top flows of interest

blind ranking and Figure 7 for protocol-aware ranking. A
comparison between these results and their counterparts in
Figure 2 and 5, respectively, shows a significant improve-
ment in the detection case for both ranking methods. All
plots are shifted down by an order of magnitude. For ex-
ample, in the case of blind ranking, the required sampling
rate to correctly rank the top 5 flows was around 50% for
the Abilene trace and 10% for the Jussieu trace. Now, with
blind detection, it is around 10% and 3%, respectively. An-
other example is with the protocol-aware method where a
sampling rate around 10% was required to rank the largest
10 flows (Figure 5), whereas now, a sampling rate around
1% is sufficient to only detect them. The same gain can be
observed if we reconsider the other scenarios in Section 5.1
(not presented here for lack of space). Also, note how in
the detection case the protocol aware method allows a bet-
ter accuracy for high sampling rates when compared to the
blind method. For low sampling rates (e.g., below 1%), the
accuracy does not improve.

6. EXPERIMENTAL RESULTS
In this section we present the results of running random

sampling experiments directly on the packet traces. We use
the traces described in Section 5 and compute the perfor-
mance metrics defined in Section 4.1.

In our traces we consider only TCP packets. Since TCP
sequence numbers count bytes, we express the flow sizes in
bytes instead of packets throughout this section.

Our experiments are meant to address four major issues
that arise when we move from the analytical study to a real
network setting: (i) how to deal with invalid TCP sequence
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Figure 6: Only detecting the largest flows: Perfor-
mance of blind ranking varying the number t of top
flows of interest

numbers in the packet stream; (ii) the importance of flow
size distributions and duration of the measurement interval;
(iii) the impact of packet loss rates on individual flows –
lost packets trigger retransmissions by the TCP senders; (iv)
the variability of the detection/ranking performance across
multiple bins and packet sampling patterns.

6.1 Implementation of protocol-aware
ranking

The protocol-aware method depends on TCP sequence
numbers to perform the ranking. For a given flow, it keeps
track of the lowest and highest sequence number observed
(taking care of packets that wrap around the sequence num-
ber space), sb and se respectively.

Note that an actual implementation of this method would
just require two 32 bit fields per flow to store the two se-
quence numbers.

At the end of the measurement period, we compute the
difference between the highest and lowest sequence numbers
for each sampled flow, and we use the obtained values to
rank flows. We then compare this ranking with the one
obtained by counting all the bytes each flow transmits in
the original non sampled traffic.

In order to discard invalid packets carrying incorrect se-
quence numbers that would corrupt the ranking, we im-
plement a simple heuristic to update se and sb. A sam-
pled packet with sequence number S > se causes an update
se ← S if S − se < (α ∗MTU)/p. The same rule applies to
the updates of sb. This way we set a limit on the maximum
distance in the sequence space between two sampled pack-
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Figure 7: Only detecting the largest flows: Perfor-
mance of protocol-aware ranking varying the num-
ber t of top flows of interest

ets. This distance is inversely proportional to the sampling
rate and depends on the Maximum Transmission Unit.

Furthermore, we use the parameter α that allows to make
this threshold more or less “permissive” in order to account
for the randomness of the sampling process and for other
transport-layer events (e.g., packet retransmissions when the
TCP window is large). We have run several experiments
with different values of α and the results have shown little
sensitivity to values of α > 10. All the results in this Section
are derived with α = 100.

6.2 Flow size distribution and measurement
interval

As shown in Figure 1, flow size distributions do not follow
a perfect Pareto. Furthermore, the measurement interval
itself plays a major role in shaping the distribution: it caps
the size of the largest flows, that is not unbounded but now
depends on the link speed. Indeed, network operators often
run measurements using a “binning” method, where packets
are sampled for a time interval, classified into flows, ranked,
and then reported. At the end of the interval, the memory is
cleared and the operation is repeated for the next measure-
ment interval. With this binning method, all flows active at
the end of the measurement interval are truncated, so that
not all sampled packets of the truncated flow are consid-
ered at the same time for the ranking. The truncation may,
therefore, penalize large flows and alter the tail of the flow
size distribution (where flows are of large size and probably
last longer than the measurement interval).

Each experiment consists of the following. We run ran-
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Figure 8: Performance of blind and protocol-aware
ranking on Jussieu trace (60s measurement inter-
val).

dom sampling on the packet traces and classify the sampled
packets into flows. At the end of each measurement interval
(set to 1 or 5 minutes), we collect the flows and rank them
by the number of bytes sampled for each flow. We compare
the ranking before and after sampling using our performance
metric (Section 4.1). For each sampling rate we conduct 15
runs and we calculate averages.

The results of the experiments confirm the numerical re-
sults of the previous section. In the interest of space, we
plot the results of two representative experiments on which
we make several observations. The difference between nu-
merical and experimental results, especially at low sampling
rates, is caused by the non perfect match of the empirical
flow size distribution with Pareto (Figure 1).

Figure 8 shows the performance of ranking flows on the
Jussieu trace when the measurement bin is 60s. We consider
a wide range of sampling rates from 0.1% to 50% and study
the performance when ranking the top 1, 2, 5, 10 and 25
flows in the packet stream. The top graph in Figure 8 is de-
rived using the blind method while the bottom graph shows
the performance of the protocol-aware methods. These re-
sults are very similar to the numerical results. For sampling
rates above 1%, protocol-aware ranking gives approximately
an order of magnitude gain on the performance when com-
pared to blind ranking. When the sampling rate is lower
than 1%, however, the performance of the two methods is
similar. Overall, the blind method requires a sampling rate
of 10% to correctly identify the largest flow in the packet
stream. The same sampling rate allows to correctly rank
the largest 5 flows when using the protocol-aware method.



6.3 Impact of loss rate
In the analysis of the protocol-aware method in Section 3.2,

we made the assumption of negligible number of retransmis-
sions for all the flows in the packet stream.

A retransmitted packet may cause inconsistency between
the blind and protocol-aware method depending on the lo-
cation of the monitoring point. Indeed, the blind method
counts the total number of bytes sent by the flow while the
protocol-aware method considers only the data sent by the
transport layer. Therefore, if the packet is lost before the
monitoring point, the blind and protocol-aware method will
have a consistent view of the number of bytes sent. Instead,
if the packet is lost after the monitoring point, the blind
method may count this packet twice.

The impact of packet losses on the detection and ranking
of the largest flows depends on the metric used to estimate
the size of the flows. If flow sizes are estimated according to
the total number of bytes sent (i.e., the throughput), then
the protocol-aware method may incur in an underestimation
error that is independent of the sampling rate (it will occur
even if all packets are sampled!). On the other hand, if the
flow sizes are estimated according to the transport data sent
(i.e., the goodput), then the blind method may incur in an
overestimation error independently of the sampling rate.

To illustrate the effect of packet loss rates, we plot in
Figure 9 the performance of detecting the largest flows in the
Abilene trace when the measurement bin is 5 minutes and
the flow sizes are measured using the total number of bytes
sent over the link. The top graph shows the performance
of the blind method, while the bottom graph presents the
results for the protocol-aware method.

We can make the following observations:

• The protocol-aware method keeps performing better
than the blind method when the sampling rate is above
1%. At lower sampling rates, the blind method per-
forms better although it presents very large errors.

• For sampling rates above 2%, the curve relative to
the detection of the top-25 flows in the protocol-aware
method flattens to a value around 70. This is due
to the presence of a few flows that experience a high
loss rate when compared to other flows. Increasing
the sampling rate does not help the protocol-aware
method in detecting the largest flows when the vol-
ume of bytes sent is used to define the flow size. How-
ever, the protocol-aware method can correctly detect
the top-25 flows when their size is defined in terms of
transport data (see Figure 10).

In summary, the network operator has to choose the met-
ric of interest that depends on the application. For exam-
ple, for anomaly detection or traffic engineering, a metric
that counts the number of bytes sent may be more appro-
priate. Instead, for dimensioning caches and proxies, the
metric that considers the size of the objects transferred may
be preferred. This latter metric suits more the protocol-
aware method.

6.4 Variability of the results
A last important aspect that we need to address is the

variability of the results across multiple measurement in-
tervals and different realizations of the sampling process.
Indeed, moving from one measurement interval to another,
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Figure 9: Performance of blind (top) and protocol-
aware (bottom) detection on Abilene trace (300s
measurement interval).

the composition of flows varies and with it the flow size dis-
tribution. Moreover, the sampling process may “get lucky”
in certain cases and provide good results. The opposite is
also possible.

Figure 11 shows the average performance over 15 sam-
pling experiments of the detection of the top-10 flows in
the Abilene trace over the 5-minute measurement intervals.
The error bars indicate the standard deviation across the
15 experiments. As usual, the top graph refers to the blind
method, while the bottom graph presents the protocol-aware
method results.

As we can see the average performance shows limited
variability. A sampling rate of 0.1% gives poor results for
all bins, while increasing the sampling rates consistently
helps. With a sampling rate of 10% the performance met-
ric (i.e., average number of misranked flow pairs) for the
blind method is always below 100 while the protocol-aware
method is always below 1.

Looking at the standard deviation, we observe large val-
ues for the blind method and much smaller values for the
protocol-aware method. This indicates that the blind method
is more sensitive to the sampling process than the protocol-
aware method. The explanation is given in Section 3.3.2
where we showed that that the blind method presents a
larger error for large flow sizes (expect when the sampling
rate is very low).

7. CONCLUSIONS
We study the problem of detection and ranking the largest

flows from a traffic sampled at the packet level. The study is
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Figure 10: Performance of protocol-aware detection
on Abilene trace (300s measurement interval) when
using actual amount of data sent by the transport
layer application.

done with stochastic tools and real packet-level traces. We
find that the ranking accuracy is strongly dependent on the
sampling rate, the flow size distribution, the total number
of flows and the number of largest flows to be detected and
ranked. By changing all these parameters, we conclude that
ranking the largest flows requires a high sampling rate (10%
and even more). One can reduce the required sampling rate
by only detecting the largest flows without considering their
relative order.

We also introduce a new method for flow ranking that
exploits the information carried in transport header. By
analysis and experimentation, we demonstrate that this new
technique allows to reduce the required sampling rate by an
order of magnitude.

We are currently exploring two possible future directions
for this work. First, we want to study the accuracy of the
ranking when the sampled traffic is fed into one of the mech-
anisms proposed in [10, 12] for sorting flows with reduced
memory requirements. Second, we are exploring the use of
adaptive schemes that set the sampling rate based on the
characteristics of the observed traffic.
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