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Abstract. We analyze the performance of an Additive Increase Multiplicative De-
crease (AIMD)-like flow control mechanism. The transmission rate is considered
to increase linearly in time until the receipt of a congestion notification, when the
transmission rate is multiplicatively decreased. AIMD captures the steady state be-
havior of TCP in the absence of timeouts and in the absence of maximum window
size limitation. We introduce a general fluid model based on a multi-state Markov
chain for the moments at which the congestion is detected. With this model, we are
able to account for correlation and burstiness in congestion moments. Furthermore,
we specify several simple versions of our general model and then we identify their
parameters from real TCP traces.
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1 Introduction

We present a framework to study the performance of Additive Increase Multiplica-
tive Decrease (AIMD) type flow control mechanisms. This is the kind of control
used by TCP, the widely-used transport protocol of the Internet [27]. However,
we anticipate that our results will also be applicable for other flow control mecha-
nisms (e.g., the ABR mechanism in ATM networks). We employ a fluid approach
[1,2,4–6] to model the controlled flow. Our model studies a general window-based
fluid AIMD mechanism. Our model applies to the TCP protocol when the window
size is large enough so that the packet nature of TCP is effectively diluted. The
transmission rate of the source is assumed to grow linearly at a rate α. In the case
of TCP where the flow is controlled via a congestion window, the transmission rate
at any instant is equal to the window size divided by the Round Trip Time (RTT)
of the connection. The growth of the transmission rate continues until the source
receives a notification of congestion from the network or until the maximum win-
dow size is reached. In the case of TCP, the congestion is inferred from the loss of
packets. It is an implicit notification compared to the explicit notification used by
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other flow control protocols as the ABR service in ATM or the ECN proposal in
the Internet. We call the moment at which the source reduces its transmission rate
a loss event. Upon detection of a loss, the transmission rate is scaled down by a
(possibly random) factor a ∈ [0, 1]. The scaling factor depends on many factors. In
the case of TCP, it depends on the version used, on the number of packet losses in
the congestion period and on the way by which the loss is detected (e.g., duplicate
ACKs or Timeout [27]). The Reno version of TCP divides its window by two for
every packet loss [12]. The Newreno and SACK versions do not divide their win-
dows by more than two in a RTT, regardless of the number of packet losses during
the RTT [12].
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Fig. 1. TCP window evolution

We adopt an end-to-end approach for modeling the AIMD congestion control mech-
anism [8]. The end-to-end approach considers the network as a black box whose
output is the process of loss events. The physical characteristics of the network
(topology, capacity, etc.) and the parameters of the traffic of other users are all
summarized by the process of loss events that we shall consider in our analysis.
The opposite of the end-to-end approach is the network specific approach [8] which
considers directly the characteristics of the network when modeling the AIMD type
protocols (e.g., [3,10,22] for TCP). The advantage of the end-to-end approach is
that it can be applied to all networks resulting in the same loss process as that
considered by the model. It is clear that the more general the loss process is, the
larger the number of networks the model is able to cover.

The process of loss events can be seen as a point process, where the appearance
of a point corresponds to the appearance of a congestion signal, interpreted as a
loss in the context of TCP, causing a reduction in the transmission rate. Different
models have been proposed to study the performance of an AIMD mechanism
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using the end-to-end approach [6,11,24,21], but these models make in general simple
assumptions on the loss process, as periodic, Poisson, iid, etc. These assumptions
may not hold on some Internet paths where losses are clustered or when the rate
of the loss process changes following some underlying Markov chain. Our aim in
this paper is to consider such paths. For example in Figure 1, one can observe a
scenario where the moments of transmission rate reduction are clustered together.
This figure corresponds to the window size evolution of a New Reno [12] TCP
connection running between two sites at the technology park Sophia Antipolis in
south of France.

Here we would like to explicitly mention that our model provides a framework
for analysing AIMD type flow control mechanisms in general and in particular the
AIMD behavior of TCP congestion avoidance phase. We are not claiming to model
other features of TCP protocol. In our analysis we only take the loss events from
the real TCP connection, and shall employ this real loss process to construct our
AIMD mechanism against which we compare our model.

Remark 1. Note that Figure 1 shows, in addition to the slow oscillations in the
congestion window caused by the congestion control algorithms of TCP, some quick
oscillations. These quick oscillations are caused by the burstiness of TCP. Indeed, we
measure the congestion window as the number of packets transmitted by the source
and not yet acknowledged (packets in the pipe). But, this number presents quick
oscillations due to the arrival in bursts of ACKs and consequently, the transmission
in bursts of packets. These quick oscillations can be absorbed by modifying the
operating system and reading the content of the variable describing the congestion
window of TCP.

Normally in the analysis of AIMD mechanisms it is assumed that the window is
divided by a constant factor upon congestion detection (e.g., by a factor of two in
the case of TCP), but we see in Figure 1 a more severe reduction due to multiple
consecutive divisions of the congestion window by two. When a congestion appears,
the network continues dropping packets over multiple round-trip times resulting in
these multiple consecutive divisions of the congestion window. In a previous pa-
per [1], we presented a two-state Markovian model to account for such a burstiness
of losses. In that paper, we considered a lossy path with two states Good and Bad
together with potential loss events. The transmission rate may be reduced upon
potential losses. A potential loss can transform into a real loss with probability pG

in the Good state and with probability pB in the Bad state (pG ≤ pB). The time
between potential loss events is assumed to be independently and identically dis-
tributed. Our main contribution in [1] was to show that the throughput of the flow
control mechanism increases with the increase in burstiness of losses when keeping
the average loss rate unchanged. We validated the model via simulations, but did
not provide any algorithm for the identification of its parameters from real traces.

We would like to highlight here that by burstiness of losses, we mean loss events that
appear close to each other, and not packets that are lost in bursts. It is known that
TCP congestion control suffers when packets are lost in bursts [12]. A loss event
in our model can be the result of one or more packet losses. It is an event that
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results in a reduction of the congestion window. The factor by which the window
is reduced can model the number of lost events due to network congestion (or due
to some other phenomenon, e.g., noise in wireless networks).

The present work is an extension of our previous work [1] to a multi-state Marko-
vian case. Being motivated by some experimental results (e.g., Figure 1), we allow
the path of the connection to be described by more than two states. The need for
more than two states for describing the path is also motivated by modeling results
from [26,29] on mobile satellite channels, where it was shown that one needs typ-
ically at least four states. In [1], the scaling factor a is a random variable equal
to either 0.5 (the potential loss becomes a real loss) or 1 (a potential loss is not
transformed into a real loss). Here, we propose to study the scaling factor with a
general distribution that depends on the state of the path. We present then some
applications of our general model. These applications can be seen as different ways
to infer the parameters of the general model from a real TCP trace. In particular,
we provide a method for the parameter identification of our (two-state) model in [1].
A comparison among the different applications is provided to see which one is the
most efficient in predicting TCP performance.

In the following section, we overview related works on AIMD modeling in general
and on TCP modeling in particular. In Section 3, we present our general multi-state
multi-reduction model for the AIMD mechanism. This general model is analyzed
in Section 4. In Section 5, we provide several particular cases of the general model
as well as their application to TCP modeling. We finally conclude in Section 6.

2 Related works

AIMD mechanism portrays the behavior of a TCP connection in its steady state
and in the absence of timeouts and limitation on the throughput caused by the
receiver window. Thus the literature on TCP modeling overlaps with the litera-
ture on AIMD modeling. AIMD modeling approach (to which the current paper
belongs) normally assumes an exogenous packet loss process, thus neglecting the
impact of a single TCP connection on the loss process. This describes the situa-
tion of an interaction with a very large number of other connections. One of the
most important papers [24,25] makes assumption of independence between losses of
packets and obtains explicit expressions for the throughput of TCP as a function of
the loss probability taking into account also time-outs, and provides an extensive
validation through experimentation (through mainly very long TCP connections).
Rather than providng an exhaustive list of previous works on TCP modeling we
shall discuss works which deals with fluid models for AIMD mechanism, in the
spirit of the modeling approach followed in this paper. Interesting fluid models that
can be seen as limits of the independent packet loss process are given in [11,23].
In [4,5] and references therein, related modeling approaches have been used with
the assumptions of independent times between losses, focusing however, on non-
linearities in the window growth dynamics of TCP (which is induced by queueing
delays and the receiver window size limitation). In [2] we present a general model
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that accounts for any stationary ergodic process of loss events. No Markovian as-
sumptions are made. The advantage of using Markov chains is that it permits us to
reduce the number of parameters to infer from real traces. Moreover, a Markovian
model is easy to map to some networks whose loss processes are known to possess
some Markovian properties (wireless and satellite networks [26,29]).

A second modeling approach for AIMD consists of predicting simultaneously the
loss process together with the throughput. To do that, a precise knowledge of the
network topology and the number of ongoing connections (or their distribution) is
required. The throughputs of all connections are obtained using some fixed point
approach. This technique has been used in [22], where the authors propose a model
for a network of Active Queue Management routers, and further used in [3].

An abstraction of AIMD (Additive Increase Multiplicative Decrease) protocols,
based on deterministic fluid models, especially well adapted to ECN marking, has
been introduced recently. This approach is mainly due to F. Kelly (see [16] and
references therein). This, as well as other related models, have been extensively in-
vestigated by many researchers, see e.g. [19,17,28], and have been related to fairness
issues, to pricing and to utility optimization. Further, interested readers can find
a comprehensive survey on packet and fluid level modeling and analysis of TCP
in [8].

3 The model

Let X(t) be the transmission rate at time t. X(t) is equal to the current window
size divided by the Round Trip Time of the connection. Let K = {1, 2, . . . , N} be
the set of possible states of the path. We allow losses to occur in any of the N
states; the probability of the occurrence of losses in each of these states may be
different. To that end, we define a series of potential losses occurring with a certain
distribution of times between potential losses. Let Tn denote the time at which the
nth potential loss occurs and let Xn denote the transmission rate of AIMD just
prior to Tn. The pair {Tn, Xn} can be considered as a marked point process [7].
Let Dn, n ∈ Z be a sequence of times between potential losses: Dn = Tn+1 − Tn.
Dn are assumed to be i.i.d. with expectation d, second moment d(2) and Laplace
Stieltjes Transform D∗(s) = E[e−sDn ]. Let Yn be the state of the channel at the nth
potential loss instant. We assume further that the sequences {Yn} and {Dn} are
independent. We assume that {Yn} is an ergodic Markov chain with the following
transition probabilities,

pij = P{Yn+1 = j|Yn = i}, 1 ≤ i, j ≤ N.

Let P = {pij}
N
i,j=1 and let π be the stationary distribution of the Markov chain

associated to the path. Next we define N random variables (discrete or continuous),
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{Aj
n; 1 ≤ j ≤ N}, which describe the behavior of the transmission rate when a

potential loss occurs: is it reduced and if so by how much. These variables {Aj
n; 1 ≤

j ≤ N} correspond to the N possible states of the model for losses. Each random
variable Aj

n, 1 ≤ j ≤ N , takes real values in the interval [0, 1]. The choice of the
interval [0, 1] stems from the fact that we are scaling down the transmission rate
at the instant of losses. The set includes 1 since it corresponds to the case when
a potential loss is not transformed into a real loss and so the transmission rate is
unaltered. Aj

n, 1 ≤ j ≤ N has a distribution function F j(a) for all n ∈ Z. That is,
we take the distribution of Aj

n to be time homogeneous. Denote

ai :=

Z 1

0

adF i(a), 1 ≤ i ≤ N.

We assume that there is at least one i for which ai < 1. The dynamics of the system
can be given by the following stochastic recurrent equation,

Xn+1 =
N
X

j=1

Aj
nXn1{Yn = j} + αDn, (1)

where in the case of TCP α = 1
RTT2 (or α = 1

2RTT2 if the delayed acknowledgment
mechanism is enabled). An example of a typical window size evolution described
by (1) is shown in Fig. 2.
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AYnn Xn
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α

Fig. 2. Window evolution of the TCP model
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4 Performance Analysis

First we observe that equation (1) is a particular case of stochastic linear difference
equations of type Xn+1 = βnXn + γn, where {βn, γn} is a stationary and ergodic
processes (one can consider the Markov chain {Yn} in the stationary regime). It
follows from [9] and [15] that such equations have a stationary solution X∗

n given
by,

X∗

n =
∞
X

k=0

(
n−1
Y

i=n−k

βi)γn−k−1.

Moreover, for our problem, the stationary regime exists under the assumption that
there is at least one i for which ai < 1. Moreover, for any arbitrary starting point
X0, the sequence {Xn} will converge almost surely to this stationary regime, that
is

lim
n→∞

|Xn − X∗

n| = 0, P-a.s.

Therefore, we can assume without loss of generality that the process {Xn} is in the
stationary regime in order to compute the limit distribution. Next we compute the
moments of Xn in this regime. Let us denote,

xi = E[Xn1{Yn = i}], 1 ≤ i ≤ N.

Obviously, the expectation of Xn is given by,

E[Xn] =
N
X

i=1

xi.

To compute xi, 1 ≤ i ≤ N , we use the Laplace Stieltjes Transform approach.
Namely, define the following Laplace Stieltjes Transforms:

W (s, i) = E
h

e−sXn1{Yn = i}
i

, 1 ≤ i ≤ N,

where we assume that Xn is in the stationary regime.
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Theorem 1. The Laplace Stieltjes Transforms W (s, j), 1 ≤ j ≤ N , are solutions
of the following implicit equations,

W (s, j) = D∗(αs)

"

N
X

i=1

pij

Z 1

0

W (as, i)dF i(a)

#

, 1 ≤ j ≤ N (2)

Proof: We write for any j, 1 ≤ j ≤ N ,

E[e−sXn+11{Yn+1 = j}] =
N
X

i=1

E[e−sXn+11{Yn+1 = j}|Yn = i}P (Yn = i)

=
N
X

i=1

E[e−sXn+1 |Yn = i]E[1{Yn+1 = j}|Yn = i]P (Yn = i)

=
N
X

i=1

E[e−s(Ai

n
Xn+αDn)|Yn = i]pijP (Yn = i)

= D∗(αs)

N
X

i=1

Z 1

0

E[e−saXn |Yn = i]dF i(a)pijP (Yn = i)

= D∗(αs)

N
X

i=1

pij

Z 1

0

E[e−saXn1{Yn = i}]dF i(a)

This results in the implicit equations (2).
�

Although the Laplace Stieltjes Transforms in Theorem 1 are only given as solutions
of implicit equations, all moments of Xn1{Yn = i} for 1 ≤ i ≤ N (in the stationary
regime) can be obtained explicitly. Note that

E[Xk
n1{Yn = i}] = (−1)k dkW (s, i)

dsk

˛

˛

˛

˛

s=0

.

We shall now proceed to the calculation of expressions for the first and second
moments of Xn1{Yn = i} for 1 ≤ i ≤ N from the implicit expressions of the
Laplace Stieltjes transforms. Upon differentiating the implicit expressions (2) and
using the following relations,

W (0, i) = πi, 1 ≤ i ≤ N,

D∗(0) = 1,
dD∗(αs)

ds
|s=0 = −αd,
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we get N linear equations in N unknowns:

xj =
N
X

i=1

pijaixi + αdπj , 1 ≤ j ≤ N. (3)

Remark 2. Observe that in the stationary case, by multiplying both sides of (1) by
1{Yn+1 = j} and taking expectations we can obtain (3).

We shall now write the above N equations in matrix notation. Let x = [x1, x2, . . . , xN ]
and

A =

2

6

6

6

4

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . aN

3

7

7

7

5

.

Then, the equations (3) take the form

x = xAP + αdπ. (4)

Recall that 0 ≤ ai ≤ 1 for all i. Furthermore, we assume that there is at least one i
for which ai < 1. The latter guarantees that the matrix AP is sub-stochastic (there
is an i for which

PN

j=1 pijai <
PN

j=1 pij = 1). Recall that moduli of all eigenvalues
of a sub-stochastic matrix are strictly less than one. Therefore, matrix I −AP has
no zero eigenvalue, and consequently, equation (4) has a unique solution. Thus we
can state the following result:

Theorem 2. Let Xn be in the stationary regime. Then E[Xn] is given by

E[Xn] = xe = αdπ(I − AP )−1e,

where e is a column vector of ones.

To compute the second moment of Xn, we first define

x
(2)
i = E[X2

n1{Yn = i}], 1 ≤ i ≤ N.

Clearly,

E[X2
n] =

N
X

i=1

x
(2)
i .
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Also let x(2) = [x
(2)
1 , x

(2)
2 , . . . , x

(2)
N ] and

A(2) =

2

6

6

6

6

4

a
(2)
1 0 . . . 0

0 a
(2)
2 . . . 0

...
...

. . .
...

0 0 . . . a
(2)
N

3

7

7

7

7

5

,

where

a
(2)
i =

Z 1

0

a2dF i(a), 1 ≤ i ≤ N.

Then, in the next Theorem we give an explicit expression for E[X2
n].

Theorem 3. Let {Xn} be in the stationary regime and there is at least one i for
which ai < 1. Then, E[X2

n] is given by

E[X2
n] = x(2)e =

“

2αd(xAP ) + α2d(2)π
”

(I − A(2)P )
−1

e.

Proof: Differentiating twice the implicit expressions (2), we obtain

d2W (s, j)

ds2
= D∗(αs)

"

N
X

i=1

pij

Z 1

0

d2W (as, i)

ds2
dF i(a)

#

+
d2D∗(αs)

ds2

"

N
X

i=1

pij

Z 1

0

W (as, i)dF i(a)

#

+ 2
dD∗(αs)

ds

"

N
X

i=1

pij

Z 1

0

dW (as, i)

ds
dF i(a)

#

Now evaluating the above derivatives at s = 0, we get

x
(2)
j =

N
X

i=1

pija
(2)
i x

(2)
i + 2αd

N
X

i=1

pijaixi + α2d(2)πj .

Next, we rewrite the equations in matrix notation

x(2) = x(2)A(2)P + 2αd(xAP ) + α2d(2)π.

Solving for x(2), we get

x(2) =
“

2αd(xAP ) + α2d(2)π
”

(I − A(2)P )
−1

.
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The existence of (I − A(2)P )
−1

is guaranteed, because A(2)P is again sub-stochastic

as the sum of the elements of the ith row of A(2)P is
PN

j=1 pija
(2)
j <

PN

j=1 pij = 1.
�

Observe that we computed the expectation of the transmission rate with respect to
loss instants. This expectation is also referred to as Palm expectation in the context
of marked point processes [7]. Of course, the most interesting is the calculation of
the expectation of the transmission rate at an arbitrary time moment. For ergodic
processes, the latter expectation coincides with the following time average P-a.s.,

x̄ = lim
T→∞

1

T

Z T

0

X(t)dt.

This is no other than the throughput of the TCP transfer. It is the total volume of
transmitted data over the transfer time. We proceed to evaluate this throughput
by employing the concept of Palm probability.

Theorem 4. The throughput, or the time-average transmission rate, is given by

x̄ = E[X(t)] =
N
X

i=1

aixi +
1

2
α

d(2)

d
= axT +

1

2
α

d(2)

d
, (5)

where a = [a1, a2, . . . , aN ], and x is given in Theorem 2.

Proof: To compute E[X(t)], one can use the following inversion formula (see e.g.,
[7] Ch.1 Sec.4),

E[X(t)] =
1

d
E0[

Z T1

0

X(t)dt], (6)

where E0[.] is an expectation associated with Palm distribution. Thus we can write,

E[X(t)] =
1

d
E0[

Z T1

0

(

N
X

i=1

Ai
0X01{Y0 = i} + αt)dt].

Because of the independence of Xn and {Dk, k ≥ n} and also because of the
independence of {Dn} and {Yn} we can write,

E[X(t)] =
1

d
[

N
X

i=1

“

E0[Ai
0]E

0[X01{Y0 = i}]
”

E0[D0]] +
α

2d
E0[D2

0 ]
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=
N
X

i=1

aixi +
1

2
α

d(2)

d
= axT +

1

2
α

d(2)

d

�

In the next theorem we evaluate the second moment of the transmission rate at an
arbitrary time instant. This second moment describes how much the transmission
rate varies. It could be used by TCP-friendly real-time applications (e.g., audio or
video transmissions) [13]. These applications may choose to change their parameters
for increasing the window and decreasing it so as to minimize the oscillation of the
transmission rate while keeping the same throughput as in the case of TCP. A
smoother transmission is a requirement for a better quality of service in case of
such delay-sensitive applications. The latter requirement on the throughput stems
from fairness arguments.

Theorem 5. Let d(3) be the third moment of the time between potential losses. The
second moment of the input rate over a long time interval is equal to:

x̄(2) = lim
t→∞

1

t

Z t

0

X2(t)dt

=
1

3
α2 d(3)

d
+

1

d
αd(2)axT + a(2)x(2)T

where a(2) = [a
(2)
1 , a

(2)
2 , . . . , a

(2)
N ] and x(2) is given in Theorem 3.

Proof: Again by the inversion formula from Palm probability,

E[X2(t)] =
1

d
E0[

Z T1

0

X2(t)dt]

=
1

d
E0

2

4

Z T1

0

 

N
X

i=1

Ai
0X01{Y0 = i} + αt

!2

dt

3

5

=
1

d
E0

"

α2D3
0

3
+ αD2

0

N
X

i=1

Ai
0X01{Y0 = i} +

N
X

i=1

(Ai
0)

2
X2

01{Y0 = i}D0

#

=
1

3
α2 d(3)

d
+

1

d
αd(2)

N
X

i=1

aixi +
N
X

i=1

a
(2)
i x2

i

=
1

3
α2 d(3)

d
+

1

d
αd(2)axT + a(2)x(2)T

�
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Having obtained the expressions for the general case of N states, we shall now
focus on some particular cases in the following sections. We will show how the
parameters of our model can be inferred from a real trace of a TCP connection.
Different possible applications of the model to the same trace are presented and
the results are then compared to show which method is the most efficient. We will
see in the sequel how much the model is general and how multiple sub-models can
be derived from it by setting differently the parameters.

5 Specifications of the general model

In this section, we present different ways for the application of our general model to
predict the performance of a TCP-like flow control mechanism. We chose to work
with real loss processes. From the trace of a TCP connection, we determine the
moments of window reduction. We reconstruct then the evolution of TCP congestion
window over time under the assumption that the window increases linearly between
two consecutive losses. We call this reconstructed window evolution the Exact Fluid
Model and we use it below as a reference. We try then to derive simple closed
form expressions for the throughput of the exact fluid model, and therefore for the
throughput of TCP, using simple versions of our general model.

We ran long-lived TCP connections between INRIA and different machines over
the Internet. Our total results, which are summarized in [2], have shown that the
process of loss events is indeed bursty in metropolitan networks. Figure 1 is a proof
of this burstiness. In wide area networks however, the process of loss events is close
to Poisson and a simple model can then be used to predict the performance of TCP.
Hence, to validate our present model that accounts for correlation and burstiness
of loss events, we only consider the results obtained in a metropolitan network.
These results are collected from a TCP connection ran between machines in Sophia
Antipolis park, 1Km apart from each other.

The reason for which we chose to use the Exact Fluid Model as a reference and not
TCP itself, is that on the connection we considered, the evolution of the congestion
window has been found to be strongly sub-linear. Sub-linearity in TCP dynamics,
which is very hard to model (see [5] for a modeling of this sub-linearity in the case
of a Poisson process of loss events), appears when the round-trip time of the TCP
connection increases with the congestion window. It seems to be impossible to get
explicit expressions for TCP throughput in presence of such sub-linearity. Given
that our main objective is to well model the process of loss events, we decided to
eliminate such sub-linearity in TCP dynamics by using the Exact Fluid Model. As
it is explained in [5,8], keeping this sub-linearity can make a wrong model for loss
events gives better results than a right model. The introduction of sub-linearity
into our present model will be the topic of our future research.

Our experimentation consists then of a long-lived New-Reno TCP connection run-
ning between clope.inria.fr at INRIA and nessie.essi.fr at ESSI, both located
in the technology park Sophia Antipolis in south of France. The two machines are
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connected to the same metropolitan network. The TCP connection is run eleven
times for approximately 20 minutes each at the most busy periods (between 10 am
and 2 pm). The choice of 20 minutes as a duration of every run of the TCP connec-
tion is only made by our will to ensure around 500 loss events per run, which allows
a low estimation error for moments and transition probabilities. The trace of the
connection is captured at the source using the tcpdump tool [18] and a program is
developed to analyze the traces in order to find the moments at which the conges-
tion window is divided by two. We noticed that most of the time, the loss of packets
is detected with the Fast Retransmit algorithm (3 Duplicate ACKs) [27]. We also
noticed that the maximum window advertised by the receiver is rarely reached due
to working at busy periods.

5.1 The basic model

We consider here the very simple case where the path has a single state and where
the transmission rate is divided once by two at every potential loss event. We assume
that the times between losses are iid. This gives the following expression for the
throughput,

E[X(t)] = αd +
1

2
α

d(2)

d
. (7)

Obviously, if times between losses are really iid, this model must give a very close
throughput to that given by the exact fluid model. And indeed, in our experiments,
we did not find a significant correlation among inter-loss times. Figure 3 confirms
this conclusion. The throughput given by formula (7) follows closely the one given
by the exact fluid model. However, to use formula (7) for the throughput calculation,
one must know the second moment of inter-loss times. In Figure 3, we compute this
second moment from our measurements. Usually, this quantity is difficult to find
since it requires the knowledge of all inter-loss times for the modeled connection.
Note that, by contrast, d can be easily calculated by dividing the total time of
the connection by the number of loss events. The number of losses in turn can
be calculated using the packet loss probability. One way to eliminate d(2) is to
express it as a function of d. For example, one can assume that inter-loss times
form a Poisson process and hence take d(2) = 2d2. The problem with this solution
is that it hides the impact of burstiness and expresses the throughput only as a
function of the average loss rate. Indeed, in Figure 3, the throughput calculated
according to the Poisson assumption does not match well the throughput of the
exact fluid model. The reason for this mismatch is clearly explained by Figure 4
where we plot the histogram of inter-loss times. This figure shows the deviation
of the inter-loss time distribution from the exponential shape. This deviation is
caused by the appearance of bursts of losses which causes the pulse of probability
around the origin. Indeed, we noticed from the real traces of a TCP connection
that the congestion window is divided multiple times by two when a congestion
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occurs and this due to the loss of packets in multiple consecutive Round Trips (see
also Figure 1). However, the important notice we made from Figure 4 is that the
time between bursts can still be well approximated by the exponential distribution.
Figure 5 shows the distribution of times between losses after the elimination of the
pulse around the origin. In the next two sections, we will present two methods to
account for this bursty behavior of losses.
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5.2 The aggregate loss method

As was noticed in Figure 4, the inter-loss time distribution is a mixture of two dis-
tributions, one around the origin represents the time between losses within bursts
and another away from the origin represents the time between bursts. This prompts
us to aggregate the losses inside a burst into a single loss and to divide the transmis-
sion rate upon an aggregate loss occurrence (or a burst occurrence) by two power
the number of aggregated losses inside the burst. The aggregate loss process can
be considered now as a Poisson process. Upon the arrival of an aggregate loss, the
transmission rate is divided by a random factor that can be greater than two. The
question that one may ask here is how to characterize a burst, in other words how
to decide that two consecutive losses are within the same burst or within two dif-
ferent bursts. In this section we use the following empirical method: we look at the
distribution of inter-loss times and try to find a point which clearly separates the
two distributions. We zoom in Figure 6, the distribution of inter-loss times (Fig-
ure 4) around the origin. It is clear that two bursts are separated by approximately
δ =0.4s. We use this δ for the identification of bursts. In the following, we present
two different ways to describe the behavior of the random reduction factor. The
first way is to assume that it is iid. The second way is to model it with a Markov
chain.

First, let us consider the case of iid reduction factor. The evolution of the trans-
mission rate in this case is given by

Xn+1 = AnXn + αDn,

where the reduction factor An has a distribution function F (a). Dn is the time
between bursts which can be approximated by a Poisson process. Of course, this
can be viewed as a particular case of our general model where the path of the
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connection has only one state. The general results of Section 2 can be specified for
the present case as follows,

E[Xn] =
αd

1 − ā
,

x̄ = E[X(t)] =
αdā

1 − ā
+

1

2
α

d(2)

d
, (8)

where ā =
R 1

0
adF (a). Here, the reduction factor An is a discrete random variable

which takes the values multiple of 1/2. Thus, we calculated ā as

ā =
m
X

i=1

1

2i
pi, i

where the probabilities pi are estimated from the TCP connection trace. Let n be
the total number of aggregate losses in the trace. We can write

pi =
n
X

k=1

1{ak = 1/2i}/n.

Note here that the main gain from aggregation, is that the second moment of Dn can
now be taken as 2d2 (exponential random variable). Furthermore, from Figure 5,
one can see that the distribution of Dn is a shifted exponential distribution given
that the time between two aggregate losses is always larger than δ. Thus, a more
correct estimation for the second moment is given by

d(2) = δ2 − 2δd + 2d2.
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Next we consider the case where the reduction factor is modeled using a Markov
chain. We associate a multi-state Markov chain to the path. The transitions of the
chain occur upon aggregate loss arrivals. The state of the chain when an aggregate
loss arrives is equal to the number of losses within the burst. The Markov chain
determines then how many times the transmission rate is divided by two. Figure 7
explains how the transmission rate and the Markov chain change together. Observe
that, dividing the y-axis values in Figure 7 by 1000 we get the values for the y-scale
corresponding to the Markov chain. A interval of 0.4s is used to identify the losses
belonging to the same burst. The evolution of the transmission rate in this case can
be described as follows,

Xn+1 =

N
X

j=1

aj1{Yn = j}Xn + αDn, (9)

where aj is constant equal to 1/2j and where Yn is the state of the Markov chain. Dn

again represents the time between bursts which can be approximated by a Poisson
process. As a corollary of Theorem 3, the throughput can be written as

x̄ = E[X(t)] =

N
X

j=1

ajxj +
αd(2)

2d
. (10)
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The estimations of transition probabilities pij , i, j = 1, ..., N , of the Markov chain
{Yk} are identified from the trace of the TCP connection as follows,

pij =
n−1
X

k=1

1{Yk+1 = j, Yk = i}/
n−1
X

k=1

1{Yk = i},

where the Markov chain state Yk corresponds to the number of transmission rate
reduction at the event of the kth aggregate loss and n is the total number of
aggregate loss events. If the number of transmission rate reductions at the aggregate
loss moment is greater than N , we assume that the Markov chain is in the state N .
Since N is chosen so that it is unlikely to have the rate reduced more than N times
during a burst, this assumption should not cause any problem. In the following we
take N = 4.

Using the maximum distance of 0.4s between losses within a burst (Figure 6), we
aggregate in bursts the moments at which the transmission is divided by two. As
before, we assume that the resulting aggregate loss process is Poisson. We approxi-
mate the throughput of the exact fluid model using equations (8) and (10). Figure 8
shows the results. The iid batch model denotes the first case where the number of
losses in a burst is described by an iid random variable. The Markovian batch model
denotes the second case where this number is described by a Markov chain. We no-
tice that the two methods give approximately the same result which means that
the number of losses within a burst is really iid distributed. The result is closer
to that of the exact fluid model than the throughput calculated for the Poisson
model. However, it is not as good as we expected. The main reason is that we are
ignoring the length of a burst which is here comparable to the time between bursts.
Possibly, for other connections where losses are more clustered together, this batch
method will have a better performance. One may expect that the Markov version
of the batch model will perform better than the iid version on connections where
strong correlation exists among burst sizes. In the next subsection, we will present
a model that accounts for the time the connection spends during a burst.

5.3 The two-state model

Consider a particular case of our general model where the path switches between
two different states. Namely, let N = 2 and let the state 1 corresponds to the Good
state of the path and the state 2 to the Bad state. We also denote the transition
probabilities of the Markov chain as follows: p11 = g, p12 = ḡ = 1−g, p21 = b̄ = 1−b
and p22 = b. The stationary distribution of this chain are equal to,

π1 =
b̄

b̄ + ḡ
, π2 =

ḡ

b̄ + ḡ
.

The following results can be easily obtained as straightforward corollaries of the
theorems for the general N state model.
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Fig. 8. Comparison among the different methods

Corollary 1 The Laplace Stieltjes Transforms W (s, i), i = 1, 2, are the solutions
of the following implicit equations,

W (s, 1) = D∗(αs)[g

Z 1

0

W (as,1)dF 1(a)] + D∗(αs)[b̄

Z 1

0

W (as,2)dF 2(a)],

W (s, 2) = D∗(αs)[ḡ

Z 1

0

W (as,1)dF 1(a)] + D∗(αs)[b

Z 1

0

W (as,2)dF 2(a)].

We shall now proceed to obtain explicit expressions for the first and second moments
of the transmission rate at potential loss instants.

Corollary 2 The first moment of the transmission rate at a potential loss event is
given by

E[Xn] = x1 + x2,

where

x1 = αd
a2(π2 − b) + π1

1 − a2b − a1g + a1a2(g + b − 1)
(11)

x2 = αd
a1(π1 − g) + π2

1 − a2b − a1g + a1a2(g + b − 1)
(12)
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Corollary 3 The second moment of the transmission rate at a potential loss event
is given by

E[Xn] = x
(2)
1 + x

(2)
1 ,

where

x
(2)
1 =

2αda1a
(2)
2 x1(1 − g − b) + 2αd(a2x2ḡ + a1x1g) + α2d(2)(a

(2)
2 π2 + π1 − ba

(2)
2 )

“

1 − ga
(2)
1 − ba

(2)
2 − a

(2)
1 a

(2)
2 (1 − g − b)

”

(13)

x
(2)
2 =

2αda
(2)
1 a2x2(1 − g − b) + 2αd(a1x1ḡ + a2x2b) + α2d(2)(a

(2)
1 π1 + π2 − ga

(2)
1 )

“

1 − ga
(2)
1 − ba

(2)
2 − a

(2)
1 a

(2)
2 (1 − g − b)

”

(14)

Corollary 4 The throughput, or the time-average of the transmission rate, is given
by

E[X(t)] = a1x1 + a2x2 +
1

2
α

d(2)

d
,

where x1 and x2 are given in Equations (11) and (12).

Corollary 5 The second moment of the transmission rate at an arbitrary time
instant is given by

E[X2(t)] = a
(2)
1 x

(2)
1 + a

(2)
2 x

(2)
2 +

αd(2)(a1x1 + a2x2)

d
+

1

3
α2 d(3)

d
,

where x1 and x2 are given in Equations (11) and (12) and x
(2)
1 and x

(2)
2 in Equations

(13) and (14) respectively.

Next we specialize the model further by taking Aj
n, for j ∈ {1, 2} and ∀n ≥ 0, to

be discrete random variables with values in {0.5, 1}. Note that Aj
n = 0.5 represents

the case when a potential loss is transformed into a real loss, namely when it causes
a reduction in the transmission rate, whereas Aj

n = 1 represents the case when
the transmission rate is not reduced at the potential loss event. We get here the
same model as that described in [1]. Note that in [1] we validate via simulation a
particular case of this two-state model that corresponds to pG = 0, pB = 1. In the
present work, we show how to set the different parameters of the two-state model
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in its general case. {Dn} is the sequence of the times between potential losses. We
also denote pG := P{A1

n = 0.5} = 1 − P{A1
n = 1}, as the probability of the event

when a potential loss is transformed into a real loss in the Good state. Analogously,
we define the probability of a potential loss becoming a real loss in the Bad state
as pB := P{A2

n = 0.5} = 1 − P{A2
n = 1}. We assume that pG ≤ pB. Clearly,

a1 = 1 −
1

2
pG and a2 = 1 −

1

2
pB.

Next we demonstrate how the introduced above parameters as well as d and the
transition matrix P can be determined from the data in real TCP traces. First, we
obtain an estimation of the transition matrix for the Markov chain {Yn}. Recall
that this is the Markov chain obtained when looking at the state of the channel at
potential loss events. Let {Sn} be a sequence of inter-loss times measured from a
TCP trace. We need to determine when the path is in the “Good” state and when
it is in the “Bad” state. We use the following simple method. Choose some time
interval τ . We will explain later how to make this choice. If the inter-loss time Sn is
less than τ then the path is in the Bad state, otherwise the path is considered to be
in the Good state. If two or more inter-loss times correspond to the same state, we
will merge these intervals together and call the new interval LG

k or LB
k depending

on the state. Note that these new intervals represent the time during which the
path of the connection is either in the Good or in the Bad state. Denote nG (resp.
nB) the number of the time intervals SG

k (resp. SB
k ) during the time interval that

we use for measurement. Then, the evolution of the path of the TCP connection
can be described by a two-state continuous time Markov process with the following
infinitesimal generator matrix,

Q =

»

−σG σG

σB −σB

–

(15)

where the rates σG and σB are calculated as follows:

σG =
1

E[SG
k ]

'
nG

PnG

k=1 SG
k

, σB =
1

E[SB
k ]

'
nB

PnB

k=1 SB
k

.

Note that on some paths, say a wireless link, this Markov chain is apriori known and
can be directly used without the need to look at the trace of the TCP connection.
In case it is not known, we need to define it using the parameter τ as described
above. We present now two approaches for the determination of τ . The first one
is more empirical. We look at the histogram of the inter-loss times (Figure 4) and
we choose τ as the time separating the two distributions it encloses (0.4s in the
figure). The second method is less empirical and was used in the context of Markov-
modulated Poisson processes [20]. In this second approach we define parameter τ
as the expectation of the inter-loss times, that is

τ = E[Sk] '
1

n

n
X

k=1

Sk,
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where n is the total number of inter-loss intervals we get from the trace. Given
the continuous time Markov chain associated to the channel, we can now extract
the parameters of the discrete time Markov chain embedded at the potential loss
events. We use for this purpose the uniformization technique [30]. Let us choose
the potential loss process {Dn} as a Poisson process with intensity 1/d higher
than both σG and σB . For example, a reasonable choice of d is the estimation of
the average Round Trip Time of the connection. According to the uniformization
technique [30], the state of the path described by the Markov process (15) and
sampled at the moments of potential losses can be equivalently given by a discrete
time Markov chain with the following transition matrix,

P =

»

1 − dσG dσG

dσB 1 − dσB

–

.

Having chosen d and calculated σG and σB from the trace, we can easily deduce
the parameters b and g of the loss model. Namely, ḡ = dσG and b̄ = dσB. Now we
determine pG and pB. Let ωG

k (ωB
k ) be the number of real losses in the time interval

SG
k (resp. in SB

k ). Then the probabilities pG and pB are given by

pG =

PnG

k=1 ωG
k

PnG

k=1 SG
k /d

=
d
PnG

k=1 ωG
k

PnG

k=1 SG
k

= dλG, pB =

PnB

k=1 ωB
k

PnB

k=1 SB
k /d

=
d
PnB

k=1 ωB
k

PnB

k=1 SB
k

= dλB.

1/λG and 1/λB represent the average time between window reductions in the Good
and in the Bad state respectively. For the same eleven traces obtained in our exper-
iments, we calculated the parameters of the model. We use τ = δ =0.4s to separate
the Bad state from the Good state. In Figure 8, we compare the result with that
of the exact fluid model. A close match is noticed. In addition to the good results
and the closed form expression it provides, this model has the advantage of having
simple parameters. All what we need to approximate the throughput of TCP are
the parameters of the two-state Markov chain associated to the path and the in-
tensity of losses in both states. Concerning the parameter d, it is enough to choose
in a way that the intensity of potential losses 1/d is higher than the intensity of
losses in the Bad state λB.

The maximum receiver window in the 11 runs of our TCP connection is equal to
64 Kbytes (which gives approximately 44 packets of 1460 bytes). Our connections
show an average round-trip time equal to 100 ms, which is relatively large due to
queuing delays in intermediate routers.

6 Concluding Remarks

We considered in this paper a multi-state Markov model to describe the loss process
experienced by a flow control mechanism that has a linear window increase between
losses, and a multiplicative window decrease upon a loss event. The modeling of
some channels using a Markov chain with more than two states have long been
advocated, see e.g. [26,29].



24 Altman et al: AIMD over a multi-state Markovian path

Using an approach based on Laplace Stieltjes Transform, we derived explicit ex-
pressions for the two first moments of the transmission rate of the mechanism just
prior to losses, as well as the two first moments of the transmission rate at arbitrary
time. The first moment of the transmission rate of the flow-control mechanism at
an arbitrary time is often the measure of its throughput. We note that the expres-
sion for the second moment of the transmission rate at arbitrary time (call it the
second moment of the throughput) could be useful in designing TCP friendly pro-
tocols for real time applications [13]. In these applications, other parameters of the
linear increase and multiplicative decrease are chosen so as to maintain the same
throughput (as a function of the loss process and of the round-trip time) as the
original TCP protocol (The latter requirement on the throughput stems from fair-
ness arguments.). Such applications (e.g., interactive voice or video transmissions)
typically require a smaller variance of the transmission rate than the one of the
original TCP in order to ensure a reasonable quality of service.

In [2] we have succeeded in analyzing non Markovian models for loss events [2], and
obtained similar performance measures using a completely different approach (that
relies on some covariance functions of the inter-loss times). The approach proposed
here, in contrast, leads to formulae that involve only a finite and small number
of easily computable parameters. In addition, we proposed here methods for the
identification of such parameters.
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