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ABSTRACT
In this paper, we present MobiTrade, a utility driven trad-
ing system for efficient content dissemination on top of a
disruption tolerant network. While simple tit-for-tat (TFT)
mechanisms can force nodes to “give one to get one”, dealing
with the inherent tendency of peers to take much but give
back little, they can quickly lead to deadlocks when some (or
most) of interesting content must be somehow fetched across
the network. To resolve this, MobiTrade proposes a trading
mechanism that allows a node (“merchant”) to buy, store,
and carry content for other nodes (its “clients”) so that it
can later trade it for content it is personally interested in.
To exploit this extra degree of freedom, MobiTrade nodes
continuously profile the type of content requested and the
collaboration level of encountered devices. An appropriate
utility function is then used to collect an optimal inventory
that maximizes the expected value of stored content for fu-
ture encounters, matched to the observed mobility patterns,
interest patterns, and collaboration levels of encountered
nodes. Using NS3 simulations based on synthetic and real
mobility traces, we show that MobiTrade achieves up to 2×
higher query success rates compared to other content dis-
semination schemes. Furthermore, we show that MobiTrade
successfully isolates selfish devices.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.10 [Software Engineering]: Design

General Terms
Algorithms Design Experimentation

Keywords
Content Centric, DTN, Content Trading, Selfish Users, Chan-
nel, Interest, Utility Driven, Game Theory

1. INTRODUCTION
Mobile networking is quickly reaching a tipping point.

While data has been a second-class customer for cellular
networks until recently, the wide spread of smart phones,
and the access they provide to existing and novel applica-
tions, are generating unprecedented amounts of mobile data.
The capacity of current cellular infrastructures has already
been driven to the limit [1]. To support the increasing num-
ber of devices generating data at high rates, ISPs will in-
evitably be pushed towards either lowering bandwidth quo-
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tas [1], adopting non flat rate plans, or deploying (expensive)
next generation equipment. This has lead many researchers
(and industry) to explore alternative or hybrid architectural
solutions [13].

To this end, direct mobile-to-mobile communication can
be leveraged to harvest the large amounts of unused band-
width between wireless devices in proximity. While multi-
hop communication over mobile devices has been recently
dealt with in the context of Delay Tolerant Networks (DTNs),
increasing user demand for content is creating a shift in focus
towards content and data centric systems (e.g. CCN [11]),
in both wired and wireless Internet. As a result, a number of
content dissemination systems have been recently proposed
for mobile devices in the wild to exchange content of interest
in a peer-to-peer manner [19, 18, 16, 17, 7, 15, 14, 6].

In addition to dealing with the challenging networking
conditions, content sharing systems for DTNs have two main
functions to perform: (i) propagation of interests and con-
tent discovery; (ii) delivery of matching content (over one
or more hops); A number of architectural decisions can be
made to achieve these goals, leading to publish/subscribe
systems [19, 18], query-based and broker-based [16, 20, 17,
7, 15, 14, 6], etc. These systems aim to maximize the
amount of useful content users can receive from the net-
work. Nevertheless, distributed (or peer-to-peer) content
sharing systems have one more important goal: (iii) to en-
sure enough nodes collaborate to make the system interest-
ing to participants. This latter goal is often conflicting with
optimal algorithms for (i) and (ii), and has been a major
deal-breaker in most envisioned architectures for mobile ad
hoc networks [12]. Mobile devices are controlled by rational
people and we should expect them to behave selfishly by
attempting to maximize their revenues and conserve their
resources, unless cooperation is somehow incentivized and
free-riders penalized.

The following architectural dilemma arises then when con-
sidering a content sharing architecture over non-altruistic
mobile devices. Nodes can choose to only store and share
content they personally consume (thus somewhat mitigat-
ing selfish inclinations) [16]. This greatly simplifies content
discovery and delivery. To further protect nodes against
free-riders, a tit-for-tat (TFT) mechanism could be enforced.
Yet, this approach is very restrictive: content of interest can
be retrieved only if the set of encountered nodes are also in-
terested in (and thus carry) the requested content. This can
lead to long delays and a suboptimal query success rate even
if TFT is not used, if nodes with common interest do not
meet each other often.

To improve hit rates, nodes could use their spare resources
(contact bandwidth, disk space) to collect, store, and relay
additional content, not meant to be consumed locally [7,
14, 15, 14, 6]. An interesting optimization problem then
arises: how should the total storage space in the network
be optimally allocated to available content so as to max-
imize the overall network hit rate? Answers include ran-
domized or popularity-based local heuristics [17], using the
available buffer space only for friends and social peers [7,
14, 6], as well as optimal distributed algorithms [15]. Unfor-
tunately, none of these solutions answers why participating



nodes should collaborate implementing the policy of choice.
In fact, we argue that the above optimization problem needs
to be turned on its head, in light of the non-altruistic nature
of users.
MobiTrade optimizes the content sharing strategy from

the perspective of each individual participant. First, we ar-
gue that Tit-For-Tat (TFT) should be directly employed in
order to (a) isolate free-riders and (b) create incentives for
nodes to share their resources. This latter point is of key
importance as TFT gives content of non-direct interest mon-
etary value. If a node B has content that A is interested in,
but A does not have something to give back, A now has the
incentive to fetch something for B (perhaps from a remote
node that B never encounters). B now retrieves content
that would otherwise be inaccessible to it (due to its mobil-
ity pattern), and A retrieves content that is easy accessible
but that it couldn’t afford before. While TFT is well known
both in P2P [9] and opportunistic networks [8] communities,
it does not answer itself how mobile devices should optimally
(re-)act in the presence of TFT towards maximizing their
revenues. MobiTrade answers this question by introducing
a content utility framework that aims to maximize the ex-
pected future exchange value of the content inventory stored
by each node. Intuitively, the value of a piece of content
to a node A should depend on (i) how many nodes are in-
terested in it, (ii) how often does A see these nodes, (iii)
how much content, interesting to A, do these nodes have,
(iv) how well-behaved are these nodes. MobiTrade uses a
simply, robust utility function that implicitly captures all
these features, without explicitly measuring each one, and
that turns each node into a merchant fetching the content
that has the highest chance to be sold (and exchanged for
content of interest) to its good clients. Summarizing, the
major contributions of this paper are:

1. We formulate the optimal content sharing problem in
DTNs from the perspective of non-altruistic nodes while
relying on a tit-for-tat mechanism to isolate free-riders.

2. We propose MobiTrade, a utility-based solution to this
problem that predicts the (exchange) value of each
piece of content and provides a customized resource
allocation strategy for each node, matched to its own
interests and mobility pattern.

To our best knowledge, this is the first content sharing sys-
tem for DTNs that can both deal with rational and selfish
nodes while at the same time achieving good global out-
comes without explicit hard constraints on the topology and
dependency of nodes or on their social behavior. A work we
are aware of in a somewhat related direction is the unpub-
lished work of [21]. However, the authors there deal with
a content sharing system based on swarms explicitly resem-
bling existing P2P systems.
The rest of this paper is organized as follow. Section 2

describes the MobiTrade architecture. Then, we provide a
detailed simulation analysis in Section 3 based on both syn-
thetic and real mobility traces and we compare MobiTrade
to different content dissemination policies. Finally, we sum-
marize our conclusions and discuss future work in Section 4.

2. MOBITRADE
In this section, we start by presenting the main data records

and the generic communication protocol used in MobiTrade.
We then look deeper into the channel utility framework used
by each MobiTrade node to derive a trading strategy that
will maximize its reward, and to manage its resources ac-
cordingly. We have implemented our MobiTrade architec-
ture for the Android platform. More details about this archi-
tecture and its implementation can be found in [10] and [3],
respectively.

2.1 MobiTrade Data Records
In a content sharing architecture, users need first to ex-

press their interests for different contents. To this end, we

borrow the concept of channels, introduced in [17], because
of its generality and popularity [7, 15]. Specifically, the Mo-
biTrade architecture relies on two data records: content and
channel (Fig. 1).

Figure 1: MobiTrade data records and channel stor-
age

A user asks for a set of contents by creating locally a
channel record that encapsulates the set of keywords the
user thinks they better describe the contents she is looking
for or by subscribing to an existing channel [17]. A desirable
content is identified based on a match between the channel
keywords and the content description. A lot more can be
said about this channel structure (e.g. hierarchies, merging
and splitting of channels, semantic content matching, etc.).
We choose here to use a simple channel structure and focus
on the algorithmic part of the system. Each channel record
contains a utility entry. This is a key quantity for Mobi-
Trade, allowing our system to optimize various important
functions. Finally, a content record, in addition to its de-
scription, contains fields to deal with expired content and
security (see [10] for details).

2.2 MobiTrade Protocol
In addition to declaring interest in channels, each node

may choose to carry a set of channels, i.e. store and share
content for these channels. In other words, after consuming
a content, a node may choose to keep it in a shared part of
its storage and make it available to other nodes (similar to
seeding in P2P systems). Then, each time a new meeting
opportunity arises with another mobile device, each device
starts by sending its list of (subscribed) channels to the other
device. Based on it, each device identifies the contents in its
own buffer that match its peer’s interests.

Let node A meet node B, and let XA→B denote the shared
contents of A matching B’s interests, and XB→A the con-
tents of B matching A’s interests. If both nodes are collabora-
tive, A forwardsXA→B and receivesXB→A (this assumption
is made in most related DTN content sharing schemes [16,
17, 7, 15, 14, 6]). However, A has no way of ensuring that
B will do its part. In fact, it has no way of affecting B’s
strategy. B can decide to forward nothing back (e.g. to save
power, or because of malice/selfishness). To protect against
such free-riders, a Tit-Fot-Tat (TFT) mechanism can be im-
plemented, in which A gives back one content (or X bytes)
for every content (or X bytes) it receives from B. If we denote
with R(i) the reward (amount of content retrieved) for node
i by this transaction, the following outcomes are possible
(from the perspective of A):

1. RA = XB→A, RB = XA→B (TFT off | A and B col-
laborative)

2. RA = 0, RB = XA→B (TFT off | A collaborative, B
selfish)

3. RA = RB = 0 (TFT on | A collaborative, B selfish)

4. RA = RB = min{XB→A, XA→B} (TFT on | A and B
collaborative)

Outcomes (2) and (3) show the well-known effect of TFT
in isolating free-riders. However, outcomes (1) and (4) have
some deeper implications. First, if both nodes are collab-
orative, there is a potential penalty for each transaction if
TFT is on, equal to

|XB→A −XA→B | (potential loss due to TFT).



This is the amount of additional data that could have been
retrieved (by one of the peers) during this transaction. The
question raised then is whether nodes would have an incen-
tive to turn on TFT (e.g. if they assume that most peers
are collaborative). Due to space limitations, we refer the
interested reader to [10] for an answer to this question.
Second, TFT, in addition to dealing with free-riders, has

the important effect of giving exchange or monetary value
to each content stored. In other words, TFT couples the
strategies of participating peers, and allows nodes to affect
their peers’ policies through their own actions. Assume both
nodes are collaborative and XA→B > XB→A. Then with
TFT on, B cannot get all the content of interest in A’s shared
buffer, because it does not have enough to give back (i.e.
enough money to buy all this content). A new option is
now presented to B: it can try to collect, from around the
network, additional content matching A’s interests (perhaps
with a small additional penalty on its resource usage), in
order to increase XB→A

1. Two positive outcomes come as a
result of such a decision: (i) B can afford more of A’s shared
content of interest; (ii) A now receives additional content of
interest fetched over one more or multiple hops from nodes
that A may not see frequently or ever.
Summarizing, with the addition of TFT, nodes now have

incentives to increase the exchange value of their inventory,
so as to increase the amount of interesting content they can
buy from encountered nodes. In other words, the need for
nodes to store and relay foreign channels to improve global
performance (observed in [16, 15]) and nodes’ selfish inter-
ests are now (better) aligned in a type of market system
established by TFT. In this market system, the following op-
timization question arises from the perspective of each node:
which channels and how much of each should it carry in
its buffer, so as to maximize its future reward (amount of
interesting content retrieved in subsequent contacts)? The
following section provides answer to this question.

2.3 Optimal Buffer Allocation
Let R

(n)
i be random variables measuring the total reward

node A receives upon contact n (with some random node)

for (selling) content of channel i. Clearly,
∑

i R
(n)
i = R(n),

the total amount of useful content A receives during this nth

contact. Then, if node A is at contact k − 1, it would like
to maximize the following quantity:

∞∑
n=k

∑
i

R
(n)
i =

∑
i

∞∑
n=k

R
(n)
i . (1)

Let now X
(n)
i be identically distributed random variables

with average X̄i, measuring the amount of content actually
requested by the encountered node for channel i. Assuming a
limited buffer space of size B and no deterministic knowledge
of future demands Xi, node A can allocate a fraction αiB
(0 ≤ αi ≤ 1) to carry content for channel i, in order to satisfy
the predicted demand (and reap the reward from selling this
much). Then

R
(n)
i = min{αiB,X

(n)
i } (2)

are identically distributed random variables.
Clearly, the higher αi the smaller the chance that the

actual demand will exceed the amount of content available,
and thus the smaller the opportunity cost. At the same time,
less space is left in the inventory for carrying content that
could satisfy demand for other channels. By the law of large

numbers,
∑∞

n=k R
(n)
i → E[Ri]. This implies that each node

can simply focus on maximizing the expected reward upon

1We note here that this is the case if the satisfaction of
getting X extra bytes is higher than the cost (battery, band-
width) expended to collect X bytes to be used in exchange.
In most cases, this is a reasonable assumption.

the next contact. Furthermore,

E[Ri] = E[min{αiB,Xi}] =
∫ αiB

0

P (Xi > x)dx. (3)

A node is then faced with the following optimization prob-
lem:

max
α1,α2,...,α|CH|

∑
i

∫ αiB

0

P (Xi > x)dx, (4)∑
i

αi ≤ 1, αi ≥ 0,∀i. (5)

The Lagrangian for this optimization problem is

L =
∑
i

E[Ri] + λ(
∑
i

αi − 1) +
∑
i

γiαi. (6)

and the KKT optimality conditions are

∂L
∂αi

= P (Xi > αiB) + λ+ γi = 0, (7)∑
i

αi − 1 = 0, γiαi = 0, ∀i, (8)

where the last two are the complementary slackness condi-
tions. This is a system of equations that can be solved for
αi. By observing Eq.(8) we can conclude that a node either
allocates no buffer space for channel i (αi = 0), or if some
buffer space is allocated (αi > 0, γi = 0), then

P (Xi > α∗
iB) = −λ (9)

that is, the optimal allocation α∗
iB is equal to the −λth

quantile of Xi (λ can be obtained from Eq.(7) and Eq.(8)).
Unknown Request Distribution : The above result

requires the distribution of requests for channel i, P (Xi ≤
x), to be known. If the distribution is not known or cannot
be obtained, except up to a first and/or second moment,
one can easily make an assumption on the shape of this dis-
tribution (e.g. Gaussian, exponential, weibull) and derive
the optimal buffer allocation as a function of the moments
of the random variable Xi. We show next the mathemati-
cal derivation for the particular case when the Xi follows a
Gaussian distribution.

P (Xi > αiB) = P (
Xi − X̄

σi
>

αiB − X̄

σi
) = −λ

⇒ αiB − X̄

σi
= f(−λ) ⇒ αiB = f(−λ)σi + X̄i,

where f(−λ) is given from the standard Gaussian.
We can solve

∑
i αi = 1 for f(−λ) and replace above to

get the optimal allocation

α∗
iB = X̄i + σi[

B −
∑

j X̄j∑
j σj

]. (10)

Eq.(10) has some very interesting implications:

• (
∑

j X̄j ≤ B) If the buffer is large enough to satisfy
the expected demand, then the optimal policy is to
gamble the remaining buffer space proportionally to
the variance for this channel.

• (
∑

j X̄j > B) However, if the buffer space cannot even
fit the expected demand, the optimal policy is to be
conservative and not give much space on risky (high
variance) channels.

Finally, if we further assume that the standard deviation
for the random request is proportional to the mean, that is,
σi = cX̄i or σi

X̄i
= c, for some constant c, (i.e. the relative

uncertainty for each channel is the same), then

α∗
iB =

X̄i∑
j X̄j

B. (11)



In other words, the optimal strategy for each node is to (try)
to allocate its buffer space proportionally to the expected
demand per channel X̄i.

2.4 Channel Utility in Practice
The previous section calculates the optimal buffer alloca-

tion, given knowledge about the channel demand distribu-
tion P (Xi = x), and its mean X̄i

2. Given this mean, a node
can derive appropriate utilities per channel i, that will be
used to drop content (if the buffer is full) and schedule con-
tent (if contact duration is limited). However, in practice, a
node cannot measure Xi directly. Instead, it can only mea-
sure the actual amount sold for channel i during contact n,

namely the reward R
(n)
i , given by Eq.(2).

For a given class of distributions of the demand Xi, we can
show this corresponds to an allocation proportional to the
actual measured demand Ri. This is in particular the case
when the mean of Ri is proportional to the mean of Xi,
which according to Eq.(3) holds when the distributions of
demands by the different channels are proportional to each
other (i.e. having the same shape with one parameter being
the mean of the demand per channel).
In practice, in order to absorb spikes in demand, as well

as to keep track with long-term trend changes in the per
channel demand, we choose to use an Exponential Weighted
Moving Average (low pass) filter for averaging. Specifically,
for a channel CH, the current estimate of the channel utility

R̂CH (i.e. the expected reward for CH) is updated as:

R̂
(n+1)
CH = ωR̂

(n)
CH + (1− ω)I(CH)CL

(n+1)
CH , (12)

where ω is the weight associated to the low pass filter. I(CH)
is a binary variable that expresses whether the encountered
node B is interested or not in CH (e.g. a channel that node
A is not currying yet, but B would like A to bring some con-
tent for CH next time - see also next section). This variable
captures the popularity of a given channel over all Mobi-

Trade devices met by A. CL
(n+1)
CH captures the volume of

contents that could be sold to device B in the future. This
is equal to the actual reward in this round R

(n+1)
CH plus a

speculation component used for (a) bootstrapping and (b)
converging to the actual demand, as shown next.
Collaboration and Bootstrapping : If a channel is re-

quested for the first time at the (n+1)th meeting, its R
(n+1)
CH

would be initialized to zero. A new node that asks for a
channel CH, would see its request being ignored, as no con-
tent for CH was exchanged in this round. Clearly, an ap-
propriate bootstrapping mechanism is needed. This can be
implemented as some slack or generosity in the CLCH cal-
culation and the TFT mechanism. At the same time, this
generosity should be such that it cannot be exploited by self-
ish nodes. The calculation of CLCH below is inspired from
TCP slow start, and attempts to best satisfy the above two
(conflicting) goals:

CL
(n)
CH =

{
Max(α, 2.R

(n)
CH) if R

(n)
CH < β,

R
(n)
CH + α otherwise.

If the (last) measured reward R
(n)
CH is less than some thresh-

old β, the predicted future reward (i.e. the future utility of
the channel) is doubled, to accelerate the collaboration pro-
cess at its beginning; after β (we take an optimistic approach
and choose it equal to the maximum utility value over all
channels of A), the generosity of device A switches into a lin-
ear mode when it believes it has successfully approximated
the steady-state demand, and only speculates an additional

α to R
(n)
CH .

The same factor α also serves to keep selfish nodes in con-
trol. Node A will give at most α to node B for channel CH,

2While second and higher moments of the demand Xi could
be estimated and considered when dropping or scheduling
content (as in Eq.(9) and (10)), due to space limitations, we
focus on the simple case of Eq.(11).

before asking for something in exchange (when TFT is im-
plemented). If B either does not have content to exchange
or chooses not to reciprocate, then the weight of its request
in Eq.(12) will stay minimal (≤ α); a selfish/malicious user
is then obliged to collaborate in order to increase the utilities
of her channels and thus the portion of content storage these
are given. Otherwise, her request is essentially ignored not
affecting the optimal buffer allocation. From the perspective
of a collaborative trader node, a community of non collab-
orative users is equivalent to a community of users not re-
questing channels. We believe this improves the robustness
of the system and allows it to scale to large networks, with-
out the need for explicit blacklisting or reputation systems.
Buffer Management and Scheduling Algorithm : Based

on the future reward estimates for channel i, R̂i, maintained
as shown above, each node can define a buffer quota Bi for
each channel.

B(i) =
R̂i∑
j R̂j

B. (13)

Then if the amount of storage channel i is currently occu-
pying is S(i), a node receiving a content (of W bytes) for
channel i will perform the following actions:

• if S(i) +W < B(i), then store the content.

• if S(i)+W > B(i) and W +
∑

i S(i) < B, then store the
content.

• if S(i) +W > B(i) and W +
∑

i S(i) > B, then pick the
channel j maximizing maxj(S(j) − B(j)) and drop the
oldest content for this channel.

Points (2) and (3) above imply that the quotas B(i) are soft.
Channels can exceed their share and take over free space, if
any is available. However, as soon as the buffer is full, the
policy pushes the buffer shares back to their just proportion.

Finally, in the presence of limited contact durations, a
device cannot simply forward contents by decreasing order
of the utilities of their channels since a channel can match
more than one content which causes unfairness. Instead,
MobiTrade applies the Weighted Fair Queuing policy to pre-
vent starvation of channels and ensures that contents are
forwarded proportionally to the utility value of the channel
they match. More details could be found in [10].

3. PERFORMANCE EVALUATION
Protocols: We have implemented MobiTrade in the NS3

simulator [4]. Throughout our simulations we will be con-
sidering two versions of MobiTrade, with (MobiTrade +
TFT) and without Tit-For-Tat (MobiTrade - TFT). Note
that this only corresponds to the forwarding process. The
channel utility maintenance is kept on in all scenarios. We
have also implemented two different versions of the PodNet
scheme as a baseline for comparison, as described, to our
best understanding in [17] and [16]: (i) non-collaborative
Podcasting, where users just carry and share their own chan-
nels [17] (Podcasting); (ii) collaborative Podcasting with
theUniform channel sharing strategy, where, a device records
all channels it has seen in the past and solicits contents for
these channels randomly [16] (Podcasting + Uniform).
This latter strategy was shown to perform best in [16], com-
pared to other heuristics taking into account channel popu-
larity.

Mobility Models: To evaluate the different protocols, we
use two mobility scenarios, a synthetic mobility model
(HCMM) [5] and a real mobility trace (KAIST) [2]. More
details about these scenarios can be found in [10]. We in-
tegrated both mobility models in NS3. Both case studies
consist of simulations that last 24 hours where devices use
the 802.11b protocol to communicate with a transmission
range around 60 meters.

Traffic Model: Unless otherwise stated, each user joins
randomly 2 channels at the beginning of the simulation. For



simplicity, we assume that all generated contents have the
same size. However, different channels do not need to have
the same size (the size of a channel is equal to the sum of
its contents’ sizes). Finally, we consider that each user gen-
erates contents periodically that match one of the channels
that were requested by users from other groups3.

3.1 Collaborative scenarios
We first evaluate MobiTrade, assuming all nodes are col-

laborative, using the following four scenarios (Table 1) (there
are 50 channels in total): SC1 implements a homogeneous
traffic pattern, i.e. each channel has the same size and each
user joins the same number of channels. In SC2, users
choose a random number of channels to join, but channels
still have the same size. In SC3, users ask for the same
number of channels but these have random sizes. Finally,
SC4 introduces some churn, where 10 of the users join the
simulation after 8 hours, while existing sessions are ongoing,
and leave again 8 hours later.

Table 1: Collaborative simulation scenarios
Scenario: SC1 SC2 SC3 SC4

Nbr. of Users: 50 50 50 40 + 10
transient

Requested
CH(s)/User

2 random
[1, 20]

2 2

Size of CH(s)
(contents)

20 20 random
[1, 20]

20

Scenario SC1: Fig. 2 compares the performance of Mobi-
Trade with and without TFT and the two versions of Pod-
casting. The figure of merit is the average delivery rate
(DR) 4, defined as the amount of content received for chan-
nels a node requested divided by the total amount of content
generated for these channels. This is averaged over all nodes.
There are three main observations to be made in Fig. 2.
First, collecting and sharing foreign channels (MobiTrade
and Podcasting + Uniform) improves performance com-
pared to only storing own channels. This confirms the find-
ings of [16]. Second, the uniform sharing policy [16] is clearly
not optimal (as suggested also in [15]), and is significantly
outperformed by MobiTrade’s framework (by up to 2×).
This is more pronounced as storage is increased. Third,
using Tit-For-Tat (TFT) in a context where all nodes are
well-intended results in a small drop of the average DR by
about 6%, compared to the case without TFT. Using game
theoretic terms, we show in our our technical report [10] that
rational users will choose to pay this price to secure them-
selves from selfish users. Finally, Table 2, summarizes the
respective results for the KAIST trace. The results for the
KAIST trace (row 1) corroborate the above findings.

Table 2: Avg. DR (Real KAIST trace, collaborative
scenario, content storage size = 110 contents).
Policy: MobiTrade

+ TFT
MobiTrade
- TFT

Podcasting Podcasting
Uniform

SC1 0.83 0.89 0.6 0.72
SC2 0.78 0.86 0.75 0.69
SC3 0.79 0.88 0.68 0.74

Scenarios SC2 and SC3: These two scenarios consider
the effect of heterogeneity with respect to channel demand
(SC2) and channel size (SC3). The goal is to examine
whether asymmetry of demand or supply of content could
give rise to deadlocks due to the inherent symmetry of the
TFT mechanism. Figures 3 and 4 show the respective DR
for these two scenarios, as a function of storage space. As
we can see, traffic asymmetry does not affect the main ob-
servations made in scenario SC1. Results for the KAIST

3The content generation interval depends on the number of
contents for a channel and the duration of the simulation.
4More results about the Delivery Delay performance study
could be found in our technical report [10]
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Figure 2: Scenario SC1.
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Figure 3: Scenario SC2.

trace are again in agreement (rows 2 and 3 of Table 2)). We
conclude that, even in the presence of asymmetric traffic,
MobiTrade performs up to almost 2× better even without
selfish nodes. While it is clear that these two scenarios do
not suffice to exclude every probability of a deadlock, they
constitute positive evidence to the robustness of MobiTrade.
Scenarios SC4: The objective of this scenario is to study
the impact of node churn and the ability of MobiTrade to
efficiently bootstrap new users. Here, 10 new users join the
simulation after 8 hours, each one of them asks for 2 already
existing channels, then, it leaves the simulation 8 hours later.
Fig. 5 plots the average DR among the 10 new users and the
40 existing ones as a function of time. It is evident there,
that the new users are not blocked. Instead, once they join
the channels, they are able to collaborate and quickly scale
up their performance.
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Figure 4: Scenario SC3.
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Figure 5: Scenario SC4

3.2 Scenarios with selfish users (SU)
We now turn our attention to scenarios where few or more

nodes (selfish) might not reciprocate for content they re-
ceive. We deem such scenarios as the norm rather than
the exception in the real world. As mentioned earlier, most
related proposals do not deal (explicitly) with such users.
We consider two such scenarios, as described in Table 3: In
SS1, we consider 10 selfish users (SU) among 50 that ask
for different channels than those requested by the remaining
collaborative users (CU). In SS2, we consider the same num-
ber of selfish users which ask randomly for channels already
requested by collaborative users.

Table 3: Simulation scenarios including selfish users.
Scenario: SS1 SS2

Nbr. of Users 40 CU + 10 SU 40 CU + 10 SU
Nbr. of
CH(s)

CU: 2/20 - SU: 2/10
(SU and CU chan-
nels differ)

CU, SU: 2/20
(among same
channels)

Size of CH(s) CU: 20 - SU: 40 CU, SU: 20

Scenario SS1: Fig. 6 depicts the average DR (for dif-
ferent user strategies, CU and SU) with and without the
TFT mechanism enabled. At high congestion (storage of 50
contents), enabling the TFT mechanism increases the aver-
age DR among collaborative users by 15% (16% using the
KAIST trace, Table 4) and decreases it among selfish users
by 63%. Indeed, enabling the TFT mechanism blocks self-
ish users and makes MobiTrade re-dispatch/reuse the saved
resources among the channels shared by collaborative users.
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For a storage of 110, collaborative users are able to reach
73% higher throughput than selfish ones, by using TFT.
The latter see a 3 − 4× drop in performance. In the same
context, as shown in Table 5, the Podcasting scheme can-
not control selfish nodes, as expected, and as their numbers
increase, the latter end up outperforming collaborative ones.

Table 4: Avg. DR (real KAIST trace, scenario in-
cluding SU, content storage size = 50 contents).
Policy: MobiTrade

(CU)
MobiTrade
(CU)

MobiTrade
+ TFT(SU)

MobiTrade
- TFT(SU)

SS1: 0.79
(+TFT)

0.68
(-TFT)

0.21 0.57

SS2: 0.81
(+TFT,
Inactive
SU)

0.78
(+TFT,
Active
SU)

0.24 0.77

Scenario SS2: Here, the 10 selfish nodes ask for channels
already requested and carried by collaborative ones. This
means that the utility management mechanism cannot af-
fect them, allowing more opportunities to scrape content.
Fig. 7 plots the average DR of (MobiTrade + TFT) among
collaborative users in two cases: first (i), when selfish users
are active and second (ii) when they are inactive. Clearly,
when TFT is used, the performance of collaborative users
is not harmed (verified also for the KAIST trace, Table 4),
while the one of selfish users drops severely, by up to 2.1×
for a storage of 110 contents5. This result consolidates our
findings in Section 2.3 regarding the impact of selfish users
on the performance of collaborative ones once they both join
the same channels. Indeed, selfish users are simply consid-
ered by MobiTrade as users which don’t ask for the chan-
nels. The system resources are kept safe and only dispatched
among collaborative users.

Table 5: Avg. DR (HCCM mobility, CU/SU ask
for different CH.(s), content storage size = 110 con-
tents).
Nbr. SU(s): 5 10 15 20
MobiTrade + TFT(CU): 0.8 0.76 0.71 0.62
MobiTrade + TFT(SU): 0.25 0.22 0.2 0.17
Pod. + Uniform(CU): 0.46 0.4 0.37 0.34
Pod. + Uniform(SU): 0.29 0.33 0.36 0.39

Remark: As a final note, our results suggest that selfish be-
havior pays off if other nodes have TFT off, but hurts when
TFT is on. Furthermore, if all nodes are collaborative they
might get more content by turning TFT off. We have used
a simple game theoretic framework to show that turning on
our MobiTrade scheme (and TFT) is an efficient Nash Equi-
librium. Due to space limitations, the interested reader is
reffered to [10].
5We observe that in this, as well as the previous scenario,
selfish users are not 100% isolated. This is only due to the
generosity mechanism described in Section 2.3 and the fact
that we chose the minimum unit of transmission α to be one
content, for simplicity. Increasing the amount of content
in the network or reducing the value of α, further isolates
selfish nodes.

4. CONCLUSIONS AND FUTURE WORK
In this work, we investigated the content dissemination

problem over DTN while considering the possible existence
of selfish users. Inspired from real life trading behavior,
we proposed MobiTrade, a complete framework that incites
users to collaborate, profiles their needs and manages their
device resources optimally towards maximizing their rev-
enues in terms of contents. Using NS3 simulations based
on a synthetic mobility model (HCMM), and a real mobil-
ity trace (KAIST), we show that selfish users are isolated
and system resources are only allocated among collaborative
users. In future work, we intend to consider more complex
content structures and their effect on our system.
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