
UNIVERSITY OF NICE - SOPHIA ANTIPOLIS

DOCTORAL SCHOOL STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

PhD of Science

of the University of Nice - Sophia Antipolis
Specialty : Computer Science

Defended by

Amir Krifa

Towards better content
dissemination applications for
Disruption Tolerant Networks

Thesis Advisor: Chadi Barakat

prepared at INRIA Sophia Antipolis, Planete Project-Team
to be defended on Monday, April 23, 2012

Jury :

President : Christian Bonnet - EURECOM, Sophia Antipolis, France
Reviewers : Jorg Ott - COMNET, Aalto University, Finland

Marcelo Dias de Amorim - LIP6, Paris, France
Advisor : Chadi Barakat - INRIA, Sophia Antipolis, France
Examinator : Thomas Karagiannis - Microsoft Research, Cambridge, UK

Thrasyvoulos Spyropoulos - EURECOM, Sophia Antipolis, France

Acknowledgments

I would like to express my deepest gratitude to Professor Chadi Barakat, my advisor
and Professor Thrasyvoulos Spyropoulos. I thank you for your continuing guidance
and support during my three years of research. Your sharp sense of research direc-
tion, great enthusiasm, and strong belief in the potential of this research has been
a tremendous force for the completion of this work. I have learned so many things
from you. Most importantly, I thank you for encouraging me in each step of my
growing path. Your strong belief in me and continuous encouragement have made
this research such an exciting experience that our collaboration finally produces
something that we are both proud of.

This thesis would not have been possible without the assistance of many people.
I would also like to express my extreme appreciation to my thesis committee mem-
bers: Christian Bonnet, Jorg Ott, Marcelo Dias de Amorim and Thomas Karagian-
nis. They contributed their precious time to read my thesis, and provided valuable
suggestions and comments that helped to improve the quality of this thesis. I would
also like to thank my colleagues and friends at Planete team. There are many other
people whose names are not mentioned here. It does not mean that I have forgotten
you or your help. It is a privilege for me to work and share life with so many bright
and energetic people.

I would never get this far without the support of my parents. Thank you for
always believing in me and supporting me. Your love and encouragement have been
and will always be a great source of inspiration in my life.

Meriem, my dear fiance, you are always my strength. I owe my deepest gratitude
to you for your infinite patience that accompanied me along this long journey.

iii

Abstract

The rapid proliferation of advanced mobile devices has created a growing demand
for data content. Existing approaches cannot keep up with the large volume of
content generated and requested, without the deployment of new expensive infras-
tructure. Exchanging content of interest opportunistically, when two nodes are in
range, presents a low cost and high bandwidth alternative for popular, bulky con-
tent. Yet, efficiently collecting, storing, and sharing the content while preventing
selfish users from impairing collaborative ones, poses major challenges.

In this thesis, we start by discussing the state of the art in terms of proposed
solutions for both point-to-point content routing and point-to-multipoint content
sharing solutions in DTN(s) (Delay Tolerant Network). Our main observations
were (i) despite a large amount of effort invested in the design of efficient routing
protocols for DTN, there has not been a similar focus on storage management and
scheduling policies, and (ii) in addition to dealing with the resources management
challenges, distributed (or peer-to-peer) content sharing systems over non-altruistic
mobile devices have one more important issue to deal with: to ensure enough nodes
collaborate to make the system interesting to participants. This latter goal is often
conflicting with optimal resources management policies.

Following this preliminary study, we try to solve the highlighted problems in
their foundations. We focus first on the problem of optimal resource management
in the context point-to-point content routing through a DTN. This problem was
first studied in scenarios related to environment and habitat monitoring based on
sensor networks [1, 2], in project willing to connect rural villages [3, 4, 5, 6, 7], and
even in scenarios related to space technologies based on DTN protocols [8, 9]. We
propose a practical and efficient joint scheduling and drop policy that can optimize
different performance metrics, such as average delay and delivery probability. We
first use the theory of encounter-based message dissemination to derive the optimal
policy based on global knowledge about the network (GBSD, Global knowledge
Based Scheduling and Drop). Then, we introduce a method that estimates all
necessary parameters using locally collected statistics. Based on this, we derive a
distributed scheduling and drop policy that can approximate the performance of the
optimal policy in practice (HBSD, History Based Scheduling and Drop). Finally,
we study how sampled statistics can reduce the signaling overhead of our algorithm
and examine its behavior under different congestion regimes.

In a second effort, we revisit the problem of optimal resource management in
the context of large scale interests-driven content sharing over non-altruistic mobile
devices. Our ultimate goal is to enable people, through a channel based architecture
to express their interests, head out in the real world and wait to get notified whenever
a content that matches their interests is retrieved. To achieve this, we propose
MobiTrade as a candidate architecture. MobiTrade is a utility driven trading system
for efficient content sharing on top of a DTN. It does not only take care of the
network and device resources, but also carefully considers: (i) the propagation of
interests of participating users, (ii) the matching of these interests to individual

iv

node mobility patterns, and (iii) the willingness of involved users to collaborate.
While simple tit-for-tat (TFT) mechanisms can force nodes to give one to get one,
dealing with the inherent tendency of peers to take much but give back little, they
can quickly lead to deadlocks when some (or most) of interesting content must be
somehow fetched across the network. To resolve this, MobiTrade relies on a trading
mechanism that allows a node merchant to buy, store, and carry content for other
nodes (its clients) so that it can later trade it for content it is personally interested
in. To exploit this extra degree of freedom, MobiTrade nodes continuously profile
the type of content requested and the collaboration level of encountered devices.
An appropriate utility function is then used to collect an optimal inventory that
maximizes the expected value of stored content for future encounters, matched to the
observed mobility patterns, interest patterns, and collaboration levels of encountered
nodes.

Both our resources management solutions for point-to-point DTN routing
(HBSD) and our channel based content sharing architecture (MobiTrade) have been
validated respectively through extensive NS-2 and NS-3 simulations along with a
multitude of synthetic mobility models and real mobility traces. Furthermore, in
order to ensure the feasibility of our protocols and offer them to users, we imple-
mented respectively HBSD and MobiTrade for the DTN2 reference architecture and
on real Android powered mobile devices and did further experiments in real envi-
ronments.
Keywords: Disruption and Delay Tolerant Networks, Mobile Ad Hoc Networks,
P2P Networks, Routing, Resources Management, Content Sharing Architecture,
Selfishness, BitTorrent, DTN2, Android

Contents

1 Introduction 1
1.1 Challenges faced by content routing and sharing in DTN(s) 2
1.2 Contributions . 3
1.3 Organization . 5

2 Background 7
2.1 Content sharing in MANETs . 9

2.1.1 MANETs . 9
2.1.2 MANETs and the P2P paradigm 10
2.1.3 BitHoc: A P2P Content Sharing Solution for MANETs 11

2.2 Content sharing in Disruption Tolerant Networks 17
2.2.1 Disruption Tolerant Networks 17
2.2.2 Content sharing in Disruption Tolerant Networks 19

2.3 Conclusions and open issues . 28

3 Optimal Buffer Management and Scheduling for Unicast Ruting in
DTNs 29
3.1 Optimal Joint Scheduling and Drop Policy 31

3.1.1 Assumptions and Problem Description 31
3.1.2 Maximizing the average delivery rate 34
3.1.3 Minimizing the average delivery delay 36
3.1.4 The Case of Non-Homogeneous Mobility 37
3.1.5 Optimality of Gradient Ascent Policy 40

3.2 Using Network History to Approximate Global Knowledge in Practice 41
3.2.1 Estimators for the Delivery Rate Utility 42
3.2.2 Estimators for the Delivery Delay Utility 43

3.3 Performance Evaluation . 43
3.3.1 Experimental Setup . 43
3.3.2 Performance evaluation for delivery rate 45
3.3.3 Performance evaluation for delivery delay 46
3.3.4 Optimality . 47

3.4 Maintaining Network History . 49
3.4.1 Maintaining Buffer State History 50
3.4.2 Collecting Network Statistics 51
3.4.3 Performance Tradeoffs of Statistics Collection 53

3.5 Distribution of HBSD Utilities . 58
3.6 Summary and Open Issues . 61

vi Contents

4 HBSD: Implementation on top of the DTN2 reference architecture 63
4.1 DTN2 Platform Overview . 63

4.1.1 Bundles/Messages Processing Modules 64
4.1.2 Management Modules . 65
4.1.3 Application Support Module 66

4.2 DTN2 External Router Interface Operation 66
4.3 HBSD Implementation Overview . 67
4.4 Main HBSD external router building blocks 68
4.5 Configuring HBSD . 72
4.6 Summary and Open Issues . 76

5 Interest Driven Content Sharing Architecture for Disruption Tol-
erant Networks 77
5.1 MobiTrade Architecture . 79

5.1.1 MobiTrade Data Records . 79
5.1.2 MobiTrade Protocol . 81
5.1.3 Proportional Storage and Bandwidth Allocation 82
5.1.4 Tit-For-Tat Trading . 83

5.2 Inference of Channel Utility . 84
5.3 Performance Evaluation . 87

5.3.1 Experimental Setup . 87
5.3.2 Collaborative Scenarios . 88
5.3.3 Scenarios with Selfish Users (SU) 92
5.3.4 Choosing Strategies in MobiTrade 94

5.4 Summary and Open Issues . 96

6 MobiTrade: Implementation on Android Platform 97
6.1 MobiTrade Architecture Overview 97

6.1.1 MobiTrade Functional Architecture 97
6.1.2 MobiTrade Android Device Model 99
6.1.3 MobiTrade Session . 100

6.2 MobiTrade Support for Bluetooth . 101
6.2.1 Bluetooth Overview . 102
6.2.2 Android Platform Support for Bluetooth 106

6.3 Functionalities provided by the MobiTrade Android Application . . . 106
6.4 Summary and Open Issues . 111

7 Conclusions and perspectives 113

Bibliography 115

Chapter 1

Introduction

Mobile networking is quickly reaching a tipping point. While content has been a
second-class customer for cellular networks until recently, the wide spread of smart
phones, and the access these provide to existing and novel applications (e.g. social
networking and personal content delivery), are generating unprecedented amounts
of mobile content. Indeed, user demand for content is increasing and creating a
shift in focus towards content and content centric systems [10], in both wired and
wireless Internet. According to statistics published by ComScore [11], content shar-
ing through social networking ranks as the fastest-growing mobile content category.
It was also reported that mobile content traffic exerted by mobile devices fetching
content from the Internet is already fast depleting mobile operators’ network re-
sources [12, 13, 14] . Similar to the wired Internet, mobile users are now coping
with the congestion at the network gateway. The capacity of current cellular in-
frastructures (e.g. GPRS and 3G) can already be pushed to the limit by even a
small number of eager data plan users [12]. To support the increasing number of
devices generating content at high rates, ISPs will inevitably be pushed towards
either lowering bandwidth quotas [12], adopting non flat rate plans, or deploying
(expensive) next generation equipment (e.g. LTE). This has lead many researchers
(and industry) to explore alternative or hybrid architectural solutions [15, 16].

To this end, direct mobile-to-mobile communication can be leveraged to harvest
the large amounts of unused bandwidth between wireless devices in proximity. Mo-
bile devices with multiple wireless interfaces (e.g. Bluetooth and WiFi) allow two
users in range to exchange content at much higher speeds, lower power consumption
per bit, and essentially no (direct) monetary cost [17]. This raises an opportunity for
a content sharing overlay over the large number of mobile devices in the wild, meet-
ing with each other in passing. Nevertheless, users mobility and the much shorter
range of high speed interfaces make contacts between devices inherently intermittent
and time limited. Indeed, as the topology is very unstable, content providers and
content consumers might be completely unaware of each other and never connected
at the same time to the same part of the network. Therefore, content should be
replicated and moved towards users in a store-carry-and-forward manner. The lat-
ter approach falls within the concept of Disruption Tolerant Networks (DTNs) that
tolerate network partitions, long disconnections and topology instability in general
and that consider users mobility as being the most effective way to deliver content
to interested users.

Since the DTN concept was introduced [18], a significant share of research has
focused on the design of point-to-point content routing protocols and applications

2 Chapter 1. Introduction

like the ones dedicated for large-scale disaster recovery, ecological and ocean mon-
itoring [19, 20], vehicular networks [21], and projects such as TIER [7], Digital
Study Hall [22] and One Laptop Per Child [23] to benefit developing nations. And
recently, researchers switched the focus to a second category of DTN architectures,
the ones based on point-to-multipoint communication model that aims to provide
complementary content sharing solutions to the Internet based ones.

Irrespective of the DTN application category, the uncertainty about network
conditions in a disruption tolerant environment makes content routing and sharing
a challenging problem and raises many questions with regards to the management
of the mobile devices resources (storage, energy, etc). Moreover, mobile devices are
usually small and light equipments with limited resources (storage, battery power,
limited radio range). Consequently, if an application context requires the cooper-
ation from rational users, one should expect them to adopt selfish behaviors when
deciding to replicate the content for the purpose of maximizing their revenues and
conserving their resources (for example, their battery life or storage capacity). This
context introduces a new class of problems for content routing and sharing in DTN(s)
which we detail in the following section.

1.1 Challenges faced by content routing and sharing in
DTN(s)

Mobility Due to frequent topology changes, network partitioning and disruptions
occur very often in mobile networks than in wired networks. Network partitioning
severely reduces content availability when the user that holds the desired content
is not in the same partition where the client users are. Replicating content in fu-
ture separate partitions before the occurrence of network partitioning can improve
content availability. Content redundancy can also increase the chance for users to
find the closest content while moving. Therefore, the replication mechanism should
consider all these dynamic natures of mobile networks in order to replicate content
items beforehand. However, the combination of long-term storage and the, often
expensive content replication, imposes a high storage overhead on wireless devices.
Therefore, the replication mechanism should also take into consideration the de-
vices storage limitation and provide the suitable management mechanisms towards
delivering contents under optimal conditions. For the same reasons, when mobility
results in short contacts between users, available bandwidth could be insufficient
to communicate all intended contents. Consequently, efficient scheduling policies
should be provided to decide which content should be chosen and forwarded first
when bandwidth is limited, regardless of the specific routing algorithm used.

Content availability A disruption tolerant network may involve a large popula-
tion with thousands of devices, for example, in a crowded scenario like at a stadium
or in a museum. In such dense and large network, to lookup for a content, a query
sent by a client device may need to traverse a long path to reach a replica, therefore

1.2. Contributions 3

increasing the query cost and latency. Moreover, the existence of a large number
of querying devices may cause more channel interference among clients, which thus
decreases considerably the available bandwidth and increases channel access delay.
High users mobility may also affect the availability of content. Thus, the replication
scheme should also be designed in such way that its performance will not be greatly
affected by the large number of devices and high mobility.

Users selfishness Mobile devices are controlled by rational users who are aware
of the energy constraint and the cost to share and replicate content. Given this
fact, one can predict that participants in such a network can be either cooperative
or selfish. If all nodes are cooperative, each of them carries messages for others
voluntarily. On the other hand, if a node is selfish, it may be reluctant to consume
its energy, buffer and bandwidth resources for other nodes, and thus refuse to carry
any messages other than the ones interested by itself. In the worst case where every
node is selfish, data are not shared at all among mobile nodes, leading to poor
network performance. To this end, an incentive scheme is imperative to stimulate
nodal cooperation and penalize free-riders.

1.2 Contributions

In this thesis, we start by discussing the problem of content routing in wireless
environments. We describe briefly a solution (BitHoc) that we developed towards
managing in an efficient way content sharing in a mobile Ad Hoc network environ-
ment (MANET) and we give an overview of the limitations that the latter solution
could face in a wireless disruption prone environment (DTN network) which is the
main context of this thesis. We then study in detail the state of the art in terms of
proposed solutions for both point-to-point content routing and point-to-multipoint
sharing solutions in DTN(s). Our main observations were first that (i) despite a
large amount of effort invested in the design of efficient routing and content sharing
protocols for DTN, there has not been a similar focus on storage management and
scheduling policies and second (ii), in addition to dealing with the resources man-
agement challenges, distributed point-to-multipoint content sharing systems over
non-altruistic mobile devices have one more important issue to deal with: the one
to ensure enough nodes collaborate to make the system interesting to participants.
This latter goal is often conflicting with optimal resources management algorithms.

Starting from the above preliminary study, we wanted to solve the highlighted
problems in their foundations. In a first direction, we focus on the problem of point-
to-point content routing through a DTN. This problem was first studied in scenarios
related to environment and habitat monitoring based on sensor networks [1, 2], in
project willing to connect rural villages [3, 4, 5, 6, 7], and even in scenarios related to
space technologies based on DTN protocols [8, 9]. We develop a theoretical frame-
work based on Epidemic message dissemination [24, 25, 26], and propose a greedy
optimal joint content scheduling and storage management policy, GBSD (Global

4 Chapter 1. Introduction

knowledge Based Scheduling and Drop) [27, 28], that can either maximize the aver-
age delivery rate or minimize the average delivery delay in the context of a congested
delay tolerant network. GBSD derives a per-message utility by taking into account
all information that are relevant for message delivery, and manages messages accord-
ingly. Yet, to derive these utilities, it requires global network information, making
its implementation difficult in practice, especially given the intermittently connected
nature of the targeted environments. In order to amend this, we propose a second
policy, HBSD (History Based Scheduling and Drop) [27, 28], a distributed (local)
algorithm based on statistical learning. HBSD uses network history to estimate
the current state of required (global) network parameters and uses these estimates,
rather than actual values (as in GBSD), to calculate message utilities for each per-
formance target metric. Furthermore, we look deeper into our distributed statis-
tics collection solution and identify the available trade-offs between the collection
overhead and the resulting performance. Aggressively collecting statistics and ex-
changing them with every encountered device allows estimates to converge faster
(and thus achieves good performance), but it can potentially result in high energy
and bandwidth consumption, and can also interfere with data transmissions. Our
results suggest that close to optimal performance can still be achieved even when
the signaling overhead is forced (through sampling) to take only a small percentage
of the contact bandwidth. Finally, in this direction, we examine how our algorithm
behaves under different congestion regimes. Interestingly, we find that at low to
moderately congested regimes, the optimal policy is simply equivalent to dropping
the message with the oldest age (similarly to the findings of [29]), while at highly
congested regimes, the optimal policy is not linear with message age; some young
messages have to be dropped, as a means of indirect admission control, to allow
older messages to create enough replicas and have a chance to be delivered. Hence,
our framework can also explain what popular heuristic policies are doing, in this
context, with respect to the optimal one.

In a second direction, we address the problem of efficiently handling large scale
content sharing over non-altruistic mobile devices. Our ultimate goal is to enable
people through a channel based architecture to express their interests, head out
in the real world and wait to get notified whenever a content that matches their
interests is retrieved [10, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. To achieve this, can-
didate architecture should not only take care of the network and device resources,
but also carefully consider: (i) the propagation of interests of participating users,
(ii) the matching of these interests to individual node mobility patterns, and (iii)
the willingness of involved users to collaborate. This latter point can be a major
deal-breaker in any envisioned architecture (as is the case for example in traditional
MANETs [40]). As an answer to the latter challenges, we propose MobiTrade, an
interest driven content sharing architecture for opportunistic networks. MobiTrade
optimizes the content sharing strategy from the perspective of each individual par-
ticipant. First, we argue that Tit-For-Tat (TFT) should be directly employed in
order to isolate free-riders and create incentives for nodes to share their resources.
This latter point is of key importance as TFT gives content of non-direct interest

1.3. Organization 5

monetary value. If a node B has content that A is interested in, but A does not
have something to give back, A has the incentive to fetch something for B. B now
retrieves content that would otherwise be inaccessible to it, and A retrieves content
that is easily accessible but that it couldn’t afford before. While TFT is well known
both in P2P [41] and opportunistic networks [42] communities, it does not answer
itself how mobile devices should optimally (re-)act in the presence of TFT towards
maximizing their revenues. MobiTrade answers this question by introducing a con-
tent utility framework that aims to maximize the expected future exchange value of
the content inventory stored by each node. Intuitively, the value of a piece of content
to a node A should depend on (i) how many nodes are interested in it, (ii) how
often does A see these nodes, (iii) how much content, interesting to A, do these
nodes have and (iv) how well-behaved are these nodes. MobiTrade uses a simply,
robust utility function that implicitly captures all these features, without explicitly
measuring each one, and that turns each node into a merchant fetching the content
that has the highest chance to be sold (and exchanged for content of interest) to its
good clients. Summarizing, our major contributions in this direction are:

1. We formulate the optimal content sharing problem in DTNs from the perspec-
tive of non-altruistic nodes while relying on a tit-for-tat mechanism to isolate
free-riders.

2. We propose MobiTrade, a utility-based solution to this problem that predicts
the (exchange) value of each piece of content and provides a customized re-
source allocation strategy for each node, matched to its own interests and
mobility pattern.

To our best knowledge, MobiTrade is the first content sharing system for DTNs that
can both deal with rational and selfish users while at the same time achieving good
global outcomes without explicit hard constraints on the topology and dependency of
nodes on their social behavior.

The performance evaluation of our two main contributions GBSD/HBSD and
MobiTrade is done respectively through extensive NS2 and NS3 simulations supplied
by real mobility traces. In Chapter 4, we implement HBSD, a real external router
for the DTN2 [28] reference architecture. The proposed router runs on top of the
DTN2 forwarding block, collects and analyses the network history towards approxi-
mating network level parameters and providing the right content drop or scheduling
decisions to apply in case of a device storage congestion or a contact disruption. We
also describe in Chapter 6, the implementation of our channel based content shar-
ing architecture, MobiTrade, for smart-phones equipped with the Android operating
system.

1.3 Organization

The remainder of this thesis is organized as follows. In the next chapter we introduce
our problems background and discuss a list of related works. Chapter 3 describes the

6 Chapter 1. Introduction

greedy optimal solution that we propose for point-to-point content routing within
a disruption tolerant network. Chapter 4 details the implementation issues of our
History Based Scheduling and Drop (HBSD) content routing scheme as an external
router for the DTN2 reference architecture. In Chapter 5, we present MobiTrade,
our point-to-multipoint interest driven content sharing architecture for DTN. Then,
we provide in Chapter 6 a detailed implementation analysis of MobiTrade for smart-
phones equipped with the Android platform. In Chapter 7, we conclude the results
of our study and outline the direction for our future work.

Chapter 2

Background

Contents
2.1 Content sharing in MANETs 9

2.1.1 MANETs . 9

2.1.2 MANETs and the P2P paradigm 10

2.1.3 BitHoc: A P2P Content Sharing Solution for MANETs . . . 11

2.2 Content sharing in Disruption Tolerant Networks 17

2.2.1 Disruption Tolerant Networks 17

2.2.2 Content sharing in Disruption Tolerant Networks 19

2.3 Conclusions and open issues 28

Content sharing is currently a universal concern among computer users and has
recently become an important requirement for mobile devices. Indeed, thanks to
the efficient wireless connectivity offered by mobile devices, users are frequently
brought to locate and share content of interest (photos, videos, etc) with other
members of the same spontaneous community. Depending on the use case, the lat-
ter spontaneous community can be considered as either a mobile ad hoc network
(MANET) where by definition it is always possible to find end-to-end paths between
communicating u and thus support end-to-end semantics of existing transports and
applications. Or, the mobile user can belong to a larger spontaneous community,
namely a delay tolerant network (DTN). The latter networking architecture offers
support for communication scenarios where nodes are sparse and the contacts be-
tween them are short-lived, e.g., due to high node mobility. The DTN approach
allows the intermediate nodes to store messages for extended period of time (i.e.,
carry), and to deliver messages towards destination when opportunity to forward a
message becomes available. Thus, in contrary to MANET approach, the DTNs can
deliver messages also when instantaneous end-to-end path between the nodes does
not exist.

With current technologies, users are mainly using point-to-point basic connec-
tions, which can be considered as an efficient solution when the number of users
interested in the sharing session is very small and that there is no risk of connection
disruption. However, even with a guaranteed wireless connection and in the case of
a large community (for example, mobile device users assisting to a conference and
willing to share some papers), one is facing the following problem: increasing the
number of parallel point-to-point communications may decrease the global Ad Hoc

8 Chapter 2. Background

network capacity, while increasing dramatically the download time. The multi-hop
point-to-point communication over long paths is also a serious issue. Therefore,
there is a strong need to organize the communication overlay among devices in a
way to distribute fairly the burden of content sharing among the set of participants
while aiming to decrease the global download time. P2P file sharing solutions are
good candidates for such infrastructureless networks (MANET) as they are based on
multi-sourcing which balances resource consumption among users and reduces the
dependency on any central entity. But unfortunately, P2P content sharing appli-
cations developed for the Internet cannot directly be plugged and used into mobile
devices. Indeed, on one hand, these solutions are not adapted to the constraints of
multi-hop wireless networks. For example, it is known that in a resource constrained
environment, the choice of the users to whom to connect cannot be done indepen-
dently of information on the underlying dynamic topology. Moreover, centralized
users management approaches like the centralized tracker used in BitTorrent do not
perform well in such environment as the tracker can be either far away or even
invisible by some users because of disconnections. Furthermore, computer users
rely on Internet search engines and dedicated desktop applications to look for the
content they are willing to share. This approach becomes obsolete in the case of a
spontaneous MANET based community and thus, a dedicated distributed content
discovery approach must be provided.

Then, if we consider a more general/challenging mobile environment where the
topology is unstable and users’ contact can be disrupted frequently (for example,
mobile devices users moving in the street), users cannot rely any more on the content
sharing systems proposed for conventional MANETs [41] [37]. Indeed, the later ones
are built based on the assumption that the network path are almost stable and that
content providers and content consumers are connected to the same part of the
network at the same time. Therefore, they are not suitable for disruption tolerant
environment. From this perspective and to allow some services to operate even
under these challenging conditions, researchers have proposed a new networking
paradigm, often referred to as Disruption Tolerant Networking, based on the store-
carry-and-forward routing principle. Devices there, rather than dropping a session
(and respectively packets) when no forwarding opportunity is available, store and
carry content until new communication opportunities arise.

This chapter describes the background behind our work. At first hand, we discuss
briefly content sharing challenges in MANETs. We focus on P2P content sharing
solutions and we give an overview of BitHoc, the P2P open-source standalone content
sharing solution that we proposed and developed for MANETs. We then discuss the
reasons that could prevent users from adopting BitHoc as a content sharing solution
in the context of a disruption tolerant environment. At second hand, we focus on
the main context of this thesis, namely content sharing in a DTN environment, we
study in details already existing solutions for content sharing in a disruption tolerant
environment (both point-to-point content routing and point to multi-point routing
protocols), we detail the limitations of the different proposed approaches and we
discuss those we are able to overcome through the solutions we are proposing in this

2.1. Content sharing in MANETs 9

thesis.

2.1 Content sharing in MANETs

2.1.1 MANETs

Nowadays, wireless networks have become more and more popular as they are easily
deployable. These networks play a crucial role among computer networks, since they
offer solutions to support mobility and essential services without the need of any
installed infrastructure. Wireless networks can be classified into two categories:
infrastructure wireless networks using generally the cellular communication model
and wireless networks without any infrastructure called mobile ad hoc networks
(shortly MANET). An ad hoc network consists of a set of mobile entities (computers,
PDAs, mobile phones, etc) moving in any environment and using wireless interfaces
as communication links. The main sources of problems encountered in such networks
are bandwidth limitation, energy limitation and the pseudo-random mobility of
nodes. Here are more details about the characteristics of mobile ad hoc networks:

• A dynamic topology due to the mobility of nodes and churn. The network can
even be partitioned into separate islands when nodes go out of the wireless
range of each other’s.

• A limited bandwidth that diminishes dramatically with the size of the ex-
changed information. Apart from being scarce, this bandwidth is shared
among the set of nodes. In fact, nodes in the transmission rage of each other
cannot send packets simultaneously because of radio interferences. Further-
more, sending packets too far away destinations steals bandwidth in interme-
diate nodes acting as routers.

• Nodes are constrained energetically and their autonomy is dependent on their
battery loads. Hence, they must minimize packet transmissions to limit energy
consumption if they want to increase their lifetime.

• Wireless channels can be subject to severe errors and losses due to fading and
collisions and other exterior interferences.

Despite of these constraints, wireless ad hoc networks have the particularity
of being self-constructed, self-organized and self-configurable without needing any
fixed infrastructure. Wireless ad hoc networks are traditionally used in military
applications, emergency services (earthquakes, fires, flooding, etc) and sensor net-
works (climatology, meteorology, detecting earth movements, etc). Nevertheless, the
tremendous increase in computing abilities of devices and their network capacities
has encouraged users to connect to each other to form communities in order to share
their experience (social networks, content sharing, video streaming, etc). Hence, new
applications already popular in the Internet such as Instant Messaging, file sharing
and social networks are being migrated for the wireless ad hoc environment.

10 Chapter 2. Background

To run the applications described above, one need to ensure the connectivity of
the network and the routing of packets. The routing algorithm is a strategy that
ensures the connectivity between each couple of nodes at any moment. If the nodes
are not in range of each others, the connectivity passes by other nodes which serve
as relay or router. This strategy must take into consideration the changes in the
network topology and other important characteristics such as the bandwidth, the
number of links, the limitation of energy, etc. Considering this challenge, many
routing protocols have emerged to answer different objectives and solve different
problems. In the following paragraphs, we present the main routing solutions for
wireless ad hoc networks using different current strategies. There are many criteria
to design and classify routing protocols for wireless ad hoc networks: how nodes
exchange routing information, when and how paths are computed, etc. Hence,
three large categories of routing protocols [43, 44] can be distinguished:

• Proactive protocols: Paths are pre-established based on a periodic exchange
of routing tables.

• Reactive protocols: Paths are found by the network on-demand. Nodes
request each other in order to detect a possible path to the destination.

• Hybrid protocols: They combine the proactive and reactive approaches to
profit of their advantages and reduce their drawbacks.

2.1.2 MANETs and the P2P paradigm

Recently, P2P systems have gained a lot of popularity since users profit from re-
sources offered by thousands of other users. In fact, such systems are composed of
dynamic sets of nodes connected to the Internet and were initially designed to en-
sure file sharing. Nowadays, the P2P paradigm emerges as a general philosophy for
constructing large scale services and distributed applications in the Internet. Hence,
one can define without loss of generality P2P systems as being self-organizing and
distributed systems. The nodes of a P2P network play symmetric roles. Indeed, they
are both clients and servers. However, some of these nodes can be potentially non
reliable and can show different levels of collaboration. Furthermore, P2P networks
are a good example of Overlay networks. An Overlay network is an abstraction of
the physical network at the application level. Consequently, an ideal P2P overlay
network must be self-organized and decentralized and must hide the diversity and
heterogeneity of its nodes.

Although they are used independently, P2P overlay networks and MANETs share
many common characteristics like self-organization and decentralization. This is due
to the common nature of their distributed components. On one hand, a P2P Overlay
network is composed of a dynamic set of nodes connected through the Internet. On
the other hand, a mobile ad hoc network is composed of mobile nodes communicating
together with multi-hop wireless links. These common characteristics yield other
similarities:

2.1. Content sharing in MANETs 11

• Both networks have flat topologies with frequent changes caused by nodes
that join and leave the network. For wireless ad hoc networks, the physical
mobility of nodes also causes changes in the topology.

• Both networks establish connections hop by hop. Multi-hop connections in
P2P networks are typically constructed thanks to TCP connections without
physical limitation. However, in MANETs, multi-hop wireless connections are
limited by the range of radio transmission.

The common characteristics between P2P Overlay networks and MANETs show
that these two types of networks share the same main challenge of ensuring the
connectivity in a dynamic and decentralized environment. Hence, there is a syn-
ergy between the two networks in terms of their goals and the design principles of
their algorithms and protocols. These algorithms and protocols must consider the
dynamic nature of the network topology due to churn and mobility. The similarities
between P2P networks and MANETs and the design concerns shared among them
brought to life a new research direction in computer networks, which profits from
the synergy existing between P2P overlay networks and mobile ad hoc networks to
design better routing protocols and applications.

In the following section, we present BitHoc [41, 45], the architecture we proposed
for content sharing in MANETs and will answer the following important questions:

• Can one profit from the similarity existing between the architectures of P2P
networks and MANETs to design protocols and applications for content shar-
ing over MANETs?

• How to adapt P2P overlays to mobile ad hoc networks?

2.1.3 BitHoc: A P2P Content Sharing Solution for MANETs

MANETs are an adequate field for content sharing among communities of users.
Indeed, users can connect to each other in order to share data and multimedia files
without being connected to any infrastructure network. To ensure this connection
at the data transfer layer, they need to agree on a content distribution protocol.
The classical transfer methods namely the client/server and the application level
multicast methods are not the most suitable for wireless ad hoc network for many
reasons. First, they yield important overhead on the underlying wireless network as
their communication graph is not designed for networks where resources are limited
and shared. Moreover, the load of data transfer is not fairly distributed among the
set of nodes since the nodes that are nearer to the source of the content will send
more packets than other nodes that are far from it. The target of these methods is
to have a hierarchy of nodes where some of them sacrifice some of their capacities
to serve others without any incentives built in the protocol. Hence, a suitable
content sharing paradigm must minimize the consumption of network resources and
must divide the burden of sharing data equally among the set of nodes by thinking

12 Chapter 2. Background

about the topology of the network and giving enough incentives for fair sharing.
Furthermore, it must maximize the global capacity of the system by using the ability
to have parallel communications in different areas of multi-hop wireless networks.

Having these goals in mind and starting from the well known P2P file sharing
paradigm in the Internet where a peer uploads to other peers as much as it receives,
we adapt BitHoc to the constraints and the nature of wireless ad hoc networks. Our
objective is to come up with a general, stand-alone and efficient solution for content
sharing in wireless ad hoc networks that is inspired of the BitTorrent protocol [46].
The construction of the content sharing overlay in the Internet version of BitTorrent
is done independently of the underlying topology and can engender a big routing
overhead in a wireless ad hoc environment.

In the remaining of this section, we describe our solution for content sharing in
MANETs, BitHoc [41, 45]. The latter provide solutions to the following problems:

• In the classical Internet version of BitTorrent [46], peers periodically contact
a central rendezvous point called Tracker to obtain fresh information about
the peers interested in a specific content and to update their information on
the progress of the download. This membership information is dynamic since
peers can join and leave the content sharing overlay (called torrent) at any time
during the session. Because of the inappropriateness and the large overhead
of client/server architectures in wireless ad hoc networks, it is important to
introduce a distributed Tracker-less solution to manage the membership of the
sharing session. The BitHoc tracker component of our architecture is designed
for this purpose and is inspired from the membership management protocol
we presented in details in [41].

• The classical Internet version of BitTorrent [46] supposes that the cost of
sending data packets to peers is in somehow independent of their locations.
In an ad hoc network, performance metrics like achievable throughput, delay,
and energy consumption strongly depend on the number of hops to the peer
node. So, it is clearly suboptimal and even unrealistic to deal with peers
without considering the underlying topology. Furthermore, when applying
the classical BitTorrent incentives in a wireless multi-hop network, nodes fail
to reciprocate data fairly among them. The content sharing scheme is close to
a wave transferring data from the initial seed to the farthest peers. Through
new peer selection and content piece scheduling strategies, our solution is
topology-aware and ensures fair sharing. These strategies are described in
details in [41].

• To join a sharing session, a user should find and download the Torrent file
related to that session. In the Internet, peers usually find their torrent files by
the help of search engines which mainly look for the files in different central
servers. This method does not apply in a mobile ad hoc environment as
MANETs. The BitHoc search engine overcomes this challenge by maintaining

2.1. Content sharing in MANETs 13

a distributed Torrent file database thanks to the overlay constructed by the
BitHoc Tracker.

2.1.3.1 Architecture of BitHoc

Figure 2.1 depicts the principal components of this architecture and the interactions
between them. We illustrate these interactions through three typical usage scenarios:

Figure 2.1: Architecture of BitHoc

Content publishing and discovery A user willing to share some content with
the members of his community needs to indicate to the BitHoc client the location of
the content in the mobile device file system. First, the client creates a meta-info file
(Torrent file) that identifies in a unique manner a sharing session for this specific
content. After that, the user publishes (locally) the new torrent file and a short text
description of the related content using the BitHoc Search Engine service, which will
update the local Torrent file database maintained in the underlying BitHoc Tracker
via HTTP messages. A remote user, willing to share the same content, has to use
the BitHoc search engine to find and download the Torrent file. He specifies for that
the name of the content or some keywords related to its description. The request is
sent via HTTP messages to its local tracker which looks for the closest match in its
local database. If there are no matches, it forwards the HTTP request to the other
trackers in the discovery overlay. Then, it presents the received results through an
ergonomic user interface (see Figure 2.2). Based on the details of received answers
(fitness to the search, number of peers involved in the sharing session, number of
seeders, and number of lechers, etc), the user can choose the torrent file to download,
then start sharing the content using the BitHoc Client.

14 Chapter 2. Background

Figure 2.2: Search Engine screen shot

Membership management When a peer wants to join or leave the sharing ses-
sion, the BitHoc client informs the BitHoc Tracker about this event using a specific
HTTP message. This local agent disseminates this modification to the other BitHoc
Tracker agents in other nodes in order to update their knowledge about the global
membership information. The communications between Tracker agents are estab-
lished in an event-driven fashion and use HTTP messages. Each tracker holds a
HTTP server accepting HTTP requests from other agents and from the local Bit-
Torrent client. The BitHoc Tracker component receives from the routing daemon
up-to-date routing entries. In our test-bed, the dynamics of the Ad-Hoc network are
captured by the OLSR routing protocol [47]. Each time the number of hops toward
a given peer changes, the routing daemon fires an event, which will be caught by the
BitHoc Tracker and forwarded internally to the BitHoc client. This way we are sure
the peer selection strategy always uses the updated number of hops to other peers.
The parameters of the communications among tracker agents like HTTP listening
ports and IP addresses can easily be configured by users via an ergonomic GUI.
In addition to these functionalities, the BitHoc Tracker allows the user to monitor
in real-time the status of the overlay (Contents it shares, members of the session,
current topology of the Ad-Hoc network). He can even decide to keep traces about
all the events in a file. For this, he just needs to activate the tracing option provided
by the application.

Content sharing Before starting a new sharing session, the user can choose be-
tween two versions of BitTorrent algorithms: The classical version [46] and our
version adapted to mobile Ad-Hoc networks described in [41]. The BitHoc client

2.1. Content sharing in MANETs 15

offers a Wizard allowing the user to configure the parameters of BitTorrent (com-
munication ports, choking slot duration, minimum and maximum number of peers,
etc). Once the torrent file is obtained, the BitHoc client can start the sharing session
where it can either play the role of a leecher or a seed. It contacts periodically the
local BitHoc tracker to get the current list of members of the same content sharing
session (torrent). Using this list and the routing table, it manages the connections
with the interested peers. Briefly a client implementing our algorithms exchanges
pieces with close peers and only seeds distribute pieces across the network. Note
that we allow the user to pause or resume the download while conserving the ses-
sion context. He can also monitor in real time the status of the session (downloaded
bytes, uploaded bytes, numbers of leechers, number of seeders, elapsed time, etc).
Furthermore, the BitHoc client keeps in a log file statistics on the content sharing
session and provides different levels of event traces. It also manages the storage of
the downloaded contents and their classification. Figure 2.3 shows a screen-shot of
the BitHoc client.

Figure 2.3: BitHoc Client screen shot

2.1.3.2 Experimentation and results

Test-bed description Our wireless Ad-Hoc network experimental environment
consists of 14 mobile devices including 7 PDAs (HP iPAQ 214) and 7 smart-phones
(HP iPAQ 614c). Each hand-held is equipped with an IEEE802.11b wireless card.
The characteristics of the two types of devices are detailed in Table 2.1.3.2. The
Ad-Hoc connectivity is maintained thanks to OLSR daemons run by the different
devices. In our experiments, we constructed several network topologies containing
a maximum of 6 hops. The objective of the realized swarm was to download 4 MB

16 Chapter 2. Background

MP-3 content. All PDAs were supposed to participate to the sharing of the file. The
original seed of the content was chosen randomly among the set of the 14 PDAs.

Table 2.1: Characteristics of mobile hand-held(s)
PDA Smart-phone

Name HP iPAQ 214 HP iPAQ 614c
Processor speed 624 MHz 520 MHz
RAM 128 MB 128 MB
Operating system Windows Mobile 6 Windows Mobile 6

Figure 2.4: Sharing ratio

Figure 2.5: Download time

Experimentation results The metrics tracked during our experiments are the
download time and the average sharing ratio of nodes. We define Rh as the sharing

2.2. Content sharing in Disruption Tolerant Networks 17

ratio of peers located at h hops from the original seed. It measures the level of
reciprocity between downloads and uploads. In the ideal case, the ratio should be
close to 1. The two versions of BitTorrent (The legacy one and ours) have been
tested and the results are presented in Figures 2.4 and 2.5. Figure 2.4 shows a
dramatic increase of sharing opportunities when our adapted version is deployed.
The routing overhead generated by the classical version makes any gain obtained by
important diversification of pieces negligible. Our method finds the good equilibrium
between sharing and diversification. Figure 2.5 shows that BitHoc outperforms the
classical version of BitTorrent in terms of download time. It is in accordance with
our research results presented in [45]. More information about our experiments and
our GPL licensed open-source code can be found on the BitHoc web site [45].

2.1.3.3 BitHoc limitations with respect to a disruption prone environ-
ment

We should note that BitHoc is built based on the assumptions that the network path
are almost stable and that content providers and content consumers are connected to
the same part of the network at the same time. Indeed, as described in Figure 2.1,
BitHoc relies on the routing table built and maintained by the OLSR MANET
routing protocol towards maintaining the sharing sessions membership overlay and
in order to deliver messages to peers at more than one hop. Therefore, BitHoc is
not suitable solution for content sharing in a disruption tolerant environment.

2.2 Content sharing in Disruption Tolerant Networks

2.2.1 Disruption Tolerant Networks

Delay and disruption tolerant networks (DTNs) are a new class of wireless networks
that seek to address the networking issues in mobile or challenging environments
that lack continuous network connectivity. DTNs have emerged recently and are
continuing to gain extensive efforts from the networking research community [48,
49, 18]. In the literature, these networks are found under different terminologies
such as sparse mobile ad hoc networks, extreme wireless networks, or under another
commonly used term intermittently connected networks. Basically, DTNs appear
in areas where the network spans over large distances with low node density and/or
with high node mobility. DTNs might appear also due to short radio range, power
saving mechanism at the nodes, or nodes failure. Examples of such networking
scenarios include, but are not limited to:

• Vehicular networks, e.g. [21, 50]. In [50], the authors propose the Drive-thru
Internet architecture where the objective is to provide network and Internet
connectivity to mobile users in vehicles. The network is constituted by hot
spots that are placed along the roads providing thus intermittent connectivity
to the users that can connect within proximity. In [21], Burgess et al. introduce
UMass DieselNet which is a network made of 30 buses equipped with 802.11b

18 Chapter 2. Background

wireless interfaces and GPS devices. The objective of the network is to provide
real DTN test-bed for experimental and research studies. The buses move on
regular trajectories inside the UMass Amherst campus and surrounding areas.
When two buses pass nearby, they transfer data to each other. Additionally,
buses can connect to open wireless access points along the roads.

• Mobile sensor networks for environmental monitoring, e.g. [51, 52]. Ze-
branet [51] is a wireless networking architecture designed to support wildlife
tracking for biology research. In ZebraNet, the network is constituted by sen-
sor collars that are attached to zebras, which log movement patterns of the
zebras, and by base stations that are mounted on cars which move around
sporadically. When two zebras meet, the corresponding sensors exchange col-
lected data for a potential data delivery back to base-stations. Another similar
biological acquisition system has been proposed in [52], where the network is
made of a set of sensors attached to whales and a set of fixed info-stations
that act as collecting nodes.

• Communication between rural zones in developing countries, e.g. [53]. Ex-
amples include DakNet [53] which is a wireless ad hoc network that has the
capacity to provide asynchronous Internet access to remote rural residents
using motorcycles and buses to carry users email and web search messages.

• Deep space networks such as the Inter-planetary network (IPN) [54]. The in-
terplanetary network is a network of regional Internet networks. A region is an
area where the characteristics of communication are the same. An example of
regions includes the terrestrial Internet as a region or a ground-to-orbit region.
IPN aims to achieve end-to-end communication through multiple regions in a
disconnected, variable-delay environments.

• Challenged networks such as disaster healing networks after natural disaster,
travel information and advertisements dissemination systems in large cities
using local transport systems, military ad hoc networks where disconnection
occurs because of the war or for security reasons where some links need to be
shut down from time to time.

Generally speaking, DTNs are wireless networks that do not conform to Internet
or to traditional multi-hop and ad hoc wireless networks underlying structures and
assumptions. In particular, they are characterized mainly by the following specific
features [49, 55]:

• Intermittent connectivity where an end-to-end path between a given source-
destination pair does not exist most of the time. Path disconnections are fre-
quent and arise from two main factors, namely motion and/or limited power
at the nodes. Disconnections due to motion can arise when one or both nodes
at the end of a communication link move, or due to some intervening ob-
jects or signals that obstruct the communication. These disconnections can

2.2. Content sharing in Disruption Tolerant Networks 19

be predicted, for instance when the nodes move away according to a predeter-
mined schedule, or opportunistic for instance according to random walk of the
nodes. Disconnections that are due to power outage result commonly from
some power saving mechanisms at the wireless devices, e.g. case of sensor
networks. The latter disconnections are often predictable.

• Nodes have low power capabilities and limited resources. In many DTNs,
nodes are generally battery powered and/or deployed in areas lacking power
infrastructure. In some other situations, nodes have limited memory and/or
processing capabilities.

• Large delays which are basically due to long queuing times resulting from
frequent disconnections, or from low data rate at the devices.

2.2.2 Content sharing in Disruption Tolerant Networks

Due to frequent disconnections in DTNs, instantaneous end-to-end routes do not
exist, and hence most of the traditional Internet and/or mobile ad hoc content
routing protocols fail [56]. However, end-to-end routes may exist over time if the
nodes can take advantage of their mobility by exchanging and carrying other nodes
messages upon meetings, and by delivering them afterward to their corresponding
destinations. The latter concept has given rise to a novel routing paradigm in these
networks called the carry-and-forward approach, in which intermediate nodes serve
as relays for each other. Thus, the term "mobility-assisted routing approach" that
is used in conjunction to describe these schemes.

Unfortunately, these techniques result in high latency, since packets need to be
carried for long time periods before being delivered. When the delivery latency
is not critical, as the case of delay-tolerant networks, the store-carry-and-forward
paradigm can prove to be adequate. For instance, this is the case when the delivery
of the messages is very important, possibly more important than the delay. Basically,
with the store-carry-and-forward approach, the delivery delays of packets depend on
the rate at which contact opportunities are created in the network, as well as the
availability of network resources, such as storage space and energy. The various
studies that considered routing techniques in DTNs have examined the trade-offs
between optimizing the delivery ratio and delivery delay from one side, and reducing
nodes resources consumptions in terms of storage and battery usage from the other
side. However, the intricacy of each one depends on the particularity of network
environment at hand, the mobility model of the nodes, the performance objectives
to attain, and other criteria.

This section will survey and classify various research works that have considered
content routing schemes for DTNs. Actually, there are different approaches to cate-
gorize these schemes [57, 58]. Hereafter, we propose a classification that is based on
the content distribution method. Specifically, depending on whether these schemes
operate on a point-to-point basis or point-to-multipoint one.

20 Chapter 2. Background

2.2.2.1 Point to Point Content Routing in Disruption Tolerant Networks

We classify existing DTN point-to-point routing protocols as those that replicate
packets and those that forward only a single copy. Epidemic routing protocols
replicate packets at transfer opportunities hoping to find a path to the destination.
However, naive flooding wastes resources and can severely degrade performance.
Proposed protocols attempt to limit replication or otherwise clear useless packets
in various ways: (i) using historic meeting information [59, 60, 21]; (ii) removing
useless packets using acknowledgments of delivered data [21]; (iii) using probabilistic
mobility information to infer delivery [61]; (iv) replicating packets with a small
probability [62]; (v) using network coding [63] and coding with redundancy [64];
and (vi) bounding the number of replicas of a packet [61, 65, 66].

In contrast, forwarding routing protocols maintain at most one copy of a packet
in the network [56, 67, 68]. Jain et al. [56] propose a forwarding algorithm to min-
imize the average delay of packet delivery using oracles with varying degrees of
future knowledge. Deployment experience [69] suggests that, even for a scheduled
bus service, implementing the simplest oracle is difficult; connection opportunities
are affected by many factors in practice including weather, radio interference, and
system failure. Jones et al. [67] propose a link-state protocol based on epidemic prop-
agation to disseminate global knowledge, but use a single path to forward a packet.
Shah et al. [70] and Spyropoulos et al. [68] present an analytical framework for
the forwarding-only case assuming a grid-based mobility model. They subsequently
extend the model and propose a replication-based protocol, Spray and Wait [65].
The consensus [65] appears to be that replicating packets can improve performance
(or security [71]) over just forwarding, but can risk degrading performance when
resources are limited.

Our position is that most existing point-to-point routing schemes does not take
into consideration the impact of buffer management and scheduling policies on the
performance of the underlying system. The later issues have been largely disre-
garded, in comparison, by the DTN community. And thus, most routing protocols
only have an incidental effect on desired performance metrics, including commonly
evaluated metrics like average delay or delivery probability. For example, Spray
and Wait [65] like many other routing protocols [61, 66] that route packets using
the number of replicas as the heuristic to enhance a given routing metric, does
not take explicitly into account bandwidth or storage constraints which makes the
effect of their design decision on the performance of a given resource constrained
network scenario unclear. Nevertheless, some works already investigated the impact
of plugging simple drop policies to already existing routing protocols in [72], Zhang
et al. present an analysis of buffer constrained Epidemic routing, and evaluate some
simple drop policies like drop-front and drop-tail. The authors conclude that drop-
front, and a variant of it giving priority to source messages, outperform drop-tail
in the DTN context. A somewhat more extensive set of combinations of heuristic
buffer management policies and routing protocols for DTNs is evaluated in [29],
confirming the performance of drop-front. In [73], Dohyung et al. present a drop

2.2. Content sharing in Disruption Tolerant Networks 21

policy which discards a message with the largest expected number of copies first to
minimize the impact of message drop. However, all these policies are also heuristics,
i.e. not explicitly designed for optimality in the DTN context. Also, these works do
not address scheduling.

Yet, the combination of long-term storage and the, often expensive, message
replication performed by many DTN routing protocols impose a high bandwidth
and storage overhead on wireless nodes. Moreover, the data units disseminated in
this context, called bundles, are self contained, application-level data units, which
can often be large. As a result, it is expected that nodes’ buffers, in this context,
will often operate at full capacity. Similarly, the available bandwidth during a
contact could be insufficient to communicate all intended messages. Consequently,
we believe that regardless of the specific routing algorithm used, it is important to
have: (i) efficient drop policies to decide which content(s) should be discarded when
a node’s buffer is full, and (ii) efficient scheduling policies to decide which content(s)
should be chosen to exchange with another encountered node when bandwidth is
limited.

Table 2.2: A classification of some related work into DTN routing scenarios
Cat. Storage Bandwidth Routing Work (and mobility)
R1 Unlimited Unlimited Replication Epidemic [66], Spray and Wait [65]:

Constraint in the form of channel
contention (Grid-based synthetic)

R2 Unlimited Unlimited Forwarding Modified Djikstra’s algorithm
Jain et al. [56] (simple graph),
MobySpace [74] (Powerlaw)

R3 Finite Unlimited Replication Davis et al. [59] (Simple parti-
tioning synthetic), SWIM [61] (Ex-
ponential), MV [60](Community-
based synthetic), Prophet [75]
(Community-based synthetic)

R4 Finite Finite Forwarding Jones et al. [67] (AP traces), Jain et
al. [56] (Synthetic DTN topol- ogy)

R5 Finite Finite Replication Our proposal (Vehicular DTN
traces, testbed deployment),
RAPID [76] (Vehicular DTN
traces, testbed deployment),
MaxProp [21] (Vehicular DTN
traces)

Table 2.2 shows a taxonomy of many existing DTN routing protocols based
on assumptions about available bandwidth during transfer opportunities and the
storage capacity carried by wireless nodes; both are either finite or unlimited. For
each work, we state in parentheses the mobility model used. Categories R1 and
R2 2.2 are important to examine for valuable insights that theoretical tractability
yields but are impractical for real DTNs with limited resources. Many studies [77,
59, 60] analyze the case where storage at nodes is limited, but bandwidth is unlimited
(R3). This scenario may happen when the radios used and the duration of contacts

22 Chapter 2. Background

allow transmission of more data than can be stored by the nodes. However, we
found this scenario to be uncommon typically because storage is inexpensive and
energy efficient. Trends suggest that high bit rate radios will remain more expensive
and energy-intensive than storage [78]. Finally, for mobile DTNs, and especially
vehicular DTNs, transfer opportunities are short-lived [21].

We were able to find mainly two protocols that belong to the category R5. The
first, Max-Prop [21], assumes limited storage and bandwidth. However, it is unclear
how to optimize a specific routing metric using MaxProp, so we categorize it as an
incidental routing protocol. And the second, RAPID [69], is the first protocol to
explicitly assume both bandwidth and (to a lesser extent) buffer constraints exist,
and to handle the DTN routing problem as an optimal resource allocation problem,
given some assumption regarding node mobility. As such, it is the most related
to our work, and we will compare directly against it. Despite the elegance of the
approach, and performance benefits demonstrated compared to well-known routing
protocols, RAPID suffers mainly from the following drawbacks: (i) its policy is based
on suboptimal message utilities (more on this in Section 3.1); (ii) in order to derive
these utilities, RAPID requires the flooding of information about all the replicas of
a given message in the queues of all nodes in the network; yet, the information prop-
agated across the network might arrive stale to nodes (a problem that the authors
also note) due to change in the number of replicas, change in the number of mes-
sages and nodes, or if the message is delivered but acknowledgements have not yet
propagated in the network; and (iii) RAPID does not address the issue of signaling
overhead. Indeed, in [76], the authors showed that whenever the congested level of
the network starts increasing, their meta-data channel consumes more bandwidth.
This is rather undesirable, as meta-data exchange can start interfering with data
transmissions amplifying the effects of congestion. In another work [79], Yong et
al. present a buffer management scheme similar to RAPID. However they do not
address the scheduling issue nor the trade-off between the control channel overhead
and system performance. Through our proposal to be described in Chapters 3 and 4,
we successfully address all these three issues.

2.2.2.2 Point to Multi-Point Content Sharing in Disruption Tolerant
Networks

As highlighted in the latter section, a significant share of research on opportunistic
networks has focused on unicast point-to-point content routing (see e.g. [80] or [81]).
Instead, in a second part of this dissertation, we consider the problem of content
sharing. This is a key research problem, particularly in opportunistic networks. In
this environment, according to the user-generated content wave, users are expected
to generate large amounts of content by exploiting capability-rich mobile devices
(such as PDAs, smart-phones, etc.), and to share them with people around them.
The problem of efficiently disseminating contents in opportunistic networks is thus
very relevant, and not widely explored in the literature yet.

Content sharing in opportunistic networks is a difficult problem. As the topology

2.2. Content sharing in Disruption Tolerant Networks 23

is very unstable, and users appear and disappear from the network dynamically, con-
tent providers and content consumers might be completely unaware of each other,
and never connected at the same time to the same part of the network. Therefore,
contents should be moved and replicated in the network in order to carry them to
interested users despite disconnections and partitions. On the other hand, content
sharing systems should take care of both network and device resource constraints.
For example, a trivial solution would be to flood the whole network with any gen-
erated content, but this would clearly saturate both network resources (in terms of
available bandwidth) and device resources (e.g., in terms of energy, storage, etc.).
Content sharing systems should also take care of the willingness of people to collab-
orate. Indeed, experience teaches us that selfish behavior is often the norm, unless
incentives are provided, and can be a major impediment to any such peer-to-peer
system in the wild [40]. Thus, we believe that content sharing systems should con-
sider users to be inherently selfish, instead of inherently collaborative, and provide
the necessary mechanisms to enforce collaboration and prevent the bad impact of
selfish behaviors on the overall system performance.

Content sharing systems have been proposed for the Internet, and also for con-
ventional MANETs [41]. In general, these systems assume that network paths are
rather stable, and often generate a significant amount of traffic to maintain knowl-
edge of other devices’ caches. Therefore, they are not suitable for opportunistic
networks. Table 2.3 shows a taxonomy of most of existing DTN content sharing
systems. We classify the later systems into three categories, namely D1 content
centric sharing systems guided by users Interests, D2 systems driven by users in-
terests + social links and finally D3, sharing systems guided by users interests and
their locations. We also detail in Table 2.3 whether the presented content sharing
systems provide or not needed mechanisms to handle devices’ buffers management
in case of congestion, contents scheduling during short lived contact opportunities
and users selfishness.

Table 2.3: A classification of content sharing systems for DTN(s)
Cat. Driven by Work (buffer management, scheduling, users selfishness,

mobility)
D1 Users Inter-

ests
Our proposal, MobiTrade(handled, handled, inherently selfish,
Vehicular DTN traces & testbed deployment), DTN Podcast-
ing by May et al. [82] [83](not handled, not handled, inherently
collaborative, testbed deployment), TACO-DTN by Solazzo et
al. [38](handled, handled, inherently collaborative, random way-
point),

D2 Users Inter-
ests + Social
Links

ContentPlace by Boldrini et al. [84](handled, handled, inherently
collaborative, synthetic based on the HCMM model [85]), Social-
Cast by Helgason et al. [35, 36](not handled, not handled, inherently
collaborative, real human mobility traces + testbed deployment)

D3 Users In-
terests +
Location

Locus by Thompson et al. [86](handled, handled, inherently col-
laborative, synthetic via MobiSim [87]), PeopleNet by Motani
et al. [39](handled, not handled,inherently collaborative, random
walk)

24 Chapter 2. Background

TACO-DTN [38] by Sollazzo et al. is a time-aware approach to delay toler-
ant content based sharing. It is implemented as a publish/subscribe system and
is mainly designed to distribute temporal events to subscribed users. TACO-DTN
supposes that a number of nodes act as infostations, enjoying some form of con-
nectivity to the backbone, and other nodes are mobile devices, reachable sometimes
only through intermittent connectivity of carriers. Examples of applications bene-
fiting from such a system could be travel information sharing systems in large cities
(exploiting info-stations at bus stops) or on highways, advertisements dissemination
at specific times, and information dissemination to remote villages. In TACO-DTN,
temporal profiles are associated to each subscription and allow the construction of
temporal profiles of info-stations. Events also have temporal validity. TACO-DTN
uses temporal profiles in order to achieve two main tasks: (i) buffer management,
in order to decide which events to store when buffer space is limited, and (ii) event
routing, to select the right info-station or carrier on which to publish content. While
TACO-DTN is a content/event sharing system that handle both events routing as
well as info-stations’ buffers management, it does not provide an optimal sharing
scheme that maximizes the collaborative end users satisfaction and prevent selfish
ones from impairing the temporal events sharing process.

In [39], authors claim that people often use social contacts for time, location
and community-specific information rather than using powerful search engines or
libraries and that social contacts are generally good sources of this information.
Then, authors propose PeopleNet [39] as a simple and efficient mechanism to find
location, time, and community-specific information between people. PeopleNet is
a query matching system that exploits the: natural behaviors of social networking
and social mobility, together with the pervasiveness of mobile phones and their P2P
capabilities. Indeed, Peoplenet [39] is hybrid system that propagates and matches
queries over, first, infrastructure, and second, using DTN device-to-device commu-
nication in the wireless "last hop" (e.g. inside a cell) to forward further. It uses the
infrastructure to propagate queries of a given type to users in specific geographic
locations, called bazaars. Within each bazaar, the query is further propagated be-
tween neighboring nodes via peer to peer connectivity until it finds a matching
query. While authors provide a set of heuristics to manage content scheduling and
forwarding upon an opportunistic meeting between two mobile nodes, they do not
provide optimal buffer management policies in case of nodes buffers congestion.
Through PeopleNet [39], authors also suppose that wireless mobile nodes are inher-
ently collaborative and hence, do not address users selfishness problem. Indeed, in
such a context, experience teaches us that selfish behavior is often the norm, unless
incentives are provided, and can be a major impediment to any such peer to peer
system [40].

BlueTorrent [37] is an opportunistic file sharing application for Bluetooth en-
abled devices that mimics BitTorent [46]. Authors propose an index (shared con-
tents database) sharing and file swarming protocols for dynamic, sparse networks.
The concept of distributing large files using small atomic chunks is similar to our
proposal. However, BlueTorrent relies on Bluetooth whereas our proposal lever-

2.2. Content sharing in Disruption Tolerant Networks 25

ages any link-layer technologies. Furthermore, unlike BlueTorrent, we propose to
structure the data in the network into channels and rely instead on an entirely
receiver-driven content sharing protocol. Instead, BlueTorrent mimics BitTorent for
both contents and peers management. Indeed, it relies on a heavy content manage-
ment block that maintains a bitmap matrix for each content to track downloaded
and missed pieces, this bitmap matrix is later exchanged between peers. It also
relies on a heavy peers management block that should keep track of encountered
peers and their collaboration level in order to be able to select the best peers among
neighboring devices.

SocialCast [35, 36] is an interest driven content distribution framework that
complements the information about the receivers’ interests, necessary to routing in-
formation, with data about the social ties of people and their consequent predicted
movements. In SocialCast, Kalman filter forecasting techniques are used to pre-
dict the future evolution of the movement based on previous observations on some
attributes characterizing social behavior. These predictions are used to derive an
utility Ui per device and interest/channel i, the latter utility is used to identify
whether the corresponding device is the best carrier for the contents matching the
interest i or not with respect to all the neighbors devices. Compared to Social-
Cast, our solution does not rely on any self-declared social information/ties and
MobiTrade uses a considerably more sophisticated utility that tracks users physical
detected social links and considers both content demand/popularity as well as the
collaboration level of the encountered peers (in order to re-act to selfish behaviors).

In [88], Boldrini et al. present also a content centric approach for DTNs. Authors
propose a utility-based cooperative data sharing system in which the utility of data is
defined based on the social relationships (physical detected ones) between users. The
main idea is that nodes gather other users’ interests during contacts, and estimate
the availability of the corresponding data objects in the network. They use this
information to compute utility values for data objects (channels) they "see" (i.e.,
objects that are available on encountered nodes), and to decide what to fetch and
store locally. This decision is also based on the cost of the data objects in terms of
resource consumption (energy ...). They further consider that users are inherently
collaborative.

To our best knowledge, the only other work looking at pure content centric
sharing architecture for opportunistic networks is the research thread first initiated
by the PodNet project [82, 89]. This work proposes a DTN Podcasting architecture,
built around the concept of content channels, that we also use in our work. In the
first version of PodNet [82], users only store and share channels they are interested
in. So, there is no content forwarding. In a later version [89], simple strategies
to cache other foreign channels as well are considered, in order to force content
forwarding and improve the overall system performance.

ContentPlace [34] by Boldrini et al. attempts to improve Podcasting using ex-
plicit knowledge of social networking links of participants. The idea behind Con-
tentPlace is to exploit social information on the environment the nodes operate, in
order to enhance content sharing. In the framework of opportunistic networks, this

26 Chapter 2. Background

approach has already been successfully applied to message forwarding (e.g., [90]).
The idea is to move messages closer and closer to their destinations following a path
based on the social interactions between nodes. In the case of forwarding protocols,
however, messages have a specific destination node, while in ContentPlace, following
the user generated content approach, content generators might be unaware of the
nodes interested in their data, and so might be the content consumers about the
nodes that generate the content they are interested in. ContentPlace provides also
mechanisms to handle devices’ buffers congestion and content scheduling. Indeed, it
assumes that users belong to social communities, and learns in an autonomous way
the time spent by them in each community, which types of contents users of each
community are interested in, and how spread in the communities the contents are.
This information is used to evaluate the utility of each encountered content which
is later used to evaluate the contents the remote peer is carrying and to select the
ones that should be fetched in order to maximize the total utility of the contents
in the local buffer. Compared to ContentPlace, MobiTrade does not require such
user reported social information and does not make any hard assumptions regarding
node mobility.

Finally, the most recent work in this thread, by Hu et al [33], attempts a rigorous
formulation of the problem of optimally matching channels (to store) to a population
of devices. A distributed algorithm is then proposed based on the framework of
Markov Chain Monte Carlo optimization. While we find this framework particularly
interesting, it also comes at the expense of high complexity, long convergence delays
(known in MCMC), and a need for carefully tuned simulated annealing [91].

A major difference of our proposal (MobiTrade), is that we consider users to be
inherently selfish, instead of inherently collaborative as in all the aforementioned
studies. Experience teaches us that selfish behavior is often the norm, unless incen-
tives are provided, and can be a major impediment to any such peer-to-peer system
in the wild [40]. The only proposal we are aware of, dealing with selfish users in
the context of DTNs is [42], where a Tit-For-Tat mechanism (”bartering”) is also
used between nodes to exchange content. While Tit-For-Tat (TFT) ensures selfish
users are blocked, it does not answer itself how collaborative nodes should optimally
(re-)act in the presence of TFT. This is answered in MobiTrade by a personalized
inventory management mechanism, key to almost all the system’s functions and
good performance.

Note that many incentive approaches have been proposed in order to prevent
selfish users from impairing point to point content routing protocols in the context
of a delay tolerant network. However, as described in Table 2.3, almost all point-to-
multipoint content sharing systems in the literature do not considered this problem
and suppose that users are inherently collaborative.

As a snapshot of the incentive approaches provided to support point to multi-
point DTN routing systems we, cite:

1. In MoB [32], authors propose an infrastructure for collaborative wide-area
wireless data services that is supposed to provide access to the Internet (ei-

2.2. Content sharing in Disruption Tolerant Networks 27

ther through WLANs or cellular data networks). Towards that, MoB proposes
to decouple infrastructure providers from services providers and enables wire-
less services trading and sharing among interested users. MoB is also based
on third-party centralized tools for accounting and billing as well as for rep-
utation and trust management. Indeed, in order to enable such a services
market, MoB requires (i) a reputation and trust management system, and (ii)
a billing and accounting system, both of which can ideally be implemented by
independent providers as third-party services. MoB uses Vito as a reputation
management and accounting system. The design of the latter system is mod-
eled on eBay. Compared to MobiTrade, MoB focus on services availability
rather than content sharing and hence it does not provide any detailed archi-
tecture for optimal content sharing in the context of a DTN that can both
deal with rational, selfish nodes.

2. Through MobiCent [30], authors provide a credit-based system to support In-
ternet access service in a heterogeneous wireless network environment. The
considered case study scenario is the following: a mobile device is capable of
operating in two modes. It can use a long-range low-bandwidth radio to main-
tain an always-on connection while using a short-range and high-bandwidth
link (e.g., Wi-Fi) to opportunistically exchange large amount of data with
peers in its vicinity. Then, authors claim that by default mobile devices are
managed by autonomous and selfish parties, and hence propose an incentive
scheme to foster cooperation among participants in the DTN. The proposed
credit based system is supposed to work on top of any point-to-point DTN
routing protocol. So, in two words, MobiCent makes the underlying point-to-
point DTN routing protocol incentive compatible.

3. The work Incentive-Aware Routing in DTNs [31] is very similar to MobiCent.
Here also, authors suppose that DTN users are inherently selfish, therefore it
is necessary to design incentive-aware routing for DTNs in order to fully take
advantage of temporary connections. The proposed routing protocol is point-
to-point. And authors simply introduce an LP formulation including TFT
constraints in order to optimize the overall average delivery rate in a DTN.
And in order to overcome respectively the bootstrapping issue and the possible
lengthy retaliation between two neighbors, authors made propose to upgrade
the TFT constraints within the LP formulation by making them account also
for a generosity (enable initial cooperation of up to X) and contrition. This
work as well as MobiCent are proposals to deal with selfish users within a DTN
environment while considering an underlying point-to-point routing protocol.
And these proposals do not have anything to do with point to multi-point
content sharing nor content centric architectures.

As a final note, MobiTrade is not a reputation system, as e.g. [92]. In reputation
systems, nodes collect and share their opinions about peers with others. In our case,
each device forms a personal opinion of peers used to only optimize her actions.

28 Chapter 2. Background

Our system is more similar to a market of independent traders. As a result, a bad
customer for device X might be a good customer for device Y .

2.3 Conclusions and open issues

In this chapter, we describe the background behind our work and we present the
main solutions proposed in the literature for content routing in a disruption tolerant
environment (both point-to-point content routing and point-to-multipoint routing
protocols). However, as described in this chapter, despite the large amount of ef-
fort invested in the design of efficient point-to-point content routing protocols for
DTN, there has not been a similar focus on storage management and scheduling
policies. Indeed, we believe that regardless of the specific routing algorithm used, it
is important to have: (i) efficient drop policies to decide which content(s) should be
discarded when a node’s buffer is full, and (ii) efficient scheduling policies to decide
which content(s) should be chosen to exchange with another encountered node when
bandwidth is limited. We describe later in Chapter 3, the performance gain that
the latter policies can engender if they are optimally designed.

Furthermore, the point-to-multipoint content sharing solutions described in this
chapter does not provide an optimal sharing scheme that maximizes the collaborative
end users satisfaction and prevent selfish ones from impairing the content sharing
process. To achieve the latter goals, we propose MobiTrade in Chapter 5 as a
candidate architecture. MobiTrade is a utility driven trading system for efficient
content sharing on top of a DTN. It does not only take care of the network and device
resources, but also carefully considers: the propagation of interests of participating
users, the matching of these interests to individual node mobility patterns, and the
willingness of involved users to collaborate.

In the remainder of this thesis, we start by studying the case of point-to-point
content routing within a disruption tolerant network in Chapter 3 and we describe
the greedy optimal solution that we propose. Then, we detail in Chapter 4 the
implementation issues of the latter solution. In Chapter 5, we present MobiTrade,
our point-to-multipoint interest driven content sharing architecture for DTN. Then,
we provide in Chapter 6 a detailed implementation analysis of MobiTrade for smart-
phones equipped with the Android platform.

Chapter 3

Optimal Buffer Management and
Scheduling for Unicast Ruting in

DTNs

Contents
3.1 Optimal Joint Scheduling and Drop Policy 31

3.1.1 Assumptions and Problem Description 31
3.1.2 Maximizing the average delivery rate 34
3.1.3 Minimizing the average delivery delay 36
3.1.4 The Case of Non-Homogeneous Mobility 37
3.1.5 Optimality of Gradient Ascent Policy 40

3.2 Using Network History to Approximate Global Knowledge
in Practice . 41

3.2.1 Estimators for the Delivery Rate Utility 42
3.2.2 Estimators for the Delivery Delay Utility 43

3.3 Performance Evaluation . 43
3.3.1 Experimental Setup . 43
3.3.2 Performance evaluation for delivery rate 45
3.3.3 Performance evaluation for delivery delay 46
3.3.4 Optimality . 47

3.4 Maintaining Network History 49
3.4.1 Maintaining Buffer State History 50
3.4.2 Collecting Network Statistics 51
3.4.3 Performance Tradeoffs of Statistics Collection 53

3.5 Distribution of HBSD Utilities 58
3.6 Summary and Open Issues . 61

Mobile ad hoc networks (MANETs) had been treated, until recently, as a con-
nected graph over which end-to-end paths need to be established. This legacy
view might no longer be appropriate for modeling existing and emerging wireless
networks [56, 64, 93]. Wireless propagation phenomena, node mobility, power man-
agement, etc. often result in intermittent connectivity with end-to-end paths either
lacking or rapidly changing. To allow some services to operate even under these

30
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

challenging conditions, researchers have proposed a new networking paradigm, of-
ten referred to as Delay Tolerant Networking (DTN [18]), based on the store-carry-
and-forward routing principle [56]. Nodes there, rather than dropping a session
when no forwarding opportunity is available, store and carry messages until new
communication opportunities arise.

Despite a large amount of effort invested in the design of efficient routing al-
gorithms for DTNs, there has not been a similar focus on queue management and
message scheduling. Yet, the combination of long-term storage and the, often expen-
sive, message replication performed by many DTN routing protocols [66, 77] impose
a high bandwidth and storage overhead on wireless nodes [94]. Moreover, the data
units disseminated in this context, called bundles, are self-contained, application-
level data units, which can often be large [18]. As a result, it is expected that
nodes’ buffers, in this context, will often operate at full capacity. Similarly, the
available bandwidth during a contact could be insufficient to communicate all in-
tended messages. Consequently, regardless of the specific routing algorithm used, it
is important to have: (i) efficient drop policies to decide which message(s) should
be discarded when a nodes’ buffers are full, and (ii) efficient scheduling policies to
decide which message(s) should be chosen to exchange with other encountered nodes
when bandwidth is limited and in which order.

In this chapter, we solve this problem in its foundation. We develop a theoretical
framework based on replication-based message dissemination [24, 25, 26], and pro-
pose an optimal joint scheduling and drop policy, GBSD (Global knowledge Based
Scheduling and Drop) that can maximize the average delivery rate or minimize the
average delivery delay. GBSD derives a per-message utility by taking into account
all information that are relevant for message delivery, and manages messages accord-
ingly. Yet, to derive these utilities, we need global network information, making the
implementation difficult in practice, especially given the intermittently connected
nature of the targeted networks. In order to amend this, we propose a second policy,
HBSD (History Based Scheduling and Drop), a distributed (local) algorithm based
on statistical learning. HBSD uses network history to estimate the current state
of required (global) network parameters and uses these estimates, rather than ac-
tual values (as in GBSD), to calculate message utilities for each performance target
metric.

To our best knowledge, the recently proposed RAPID protocol [76] is the only
effort aiming at scheduling (and to a lesser extend message drop) using a simi-
lar theoretical framework. Yet, the utilities derived there are sub-optimal, as we
will explain later, and require global knowledge (as in GBSD), raising the same
implementation concerns. Simulations using both synthetic mobility models and
real traces show that our HSBD policy not only outperforms existing buffer man-
agement and scheduling policies (including RAPID), but can also approximate the
performance of the reference GBSD policy, in all considered scenarios.

Furthermore, we look deeper into our distributed statistics collection solution
and attempt to identify the available tradeoffs between the collection overhead and
the resulting performance. Aggressively collecting statistics and exchanging them

3.1. Optimal Joint Scheduling and Drop Policy 31

with every encountered node allows estimates to converge faster, but it can poten-
tially result in high energy and bandwidth consumption, and also can interfere with
data transmissions. Our results suggest that close to optimal performance can still
be achieved even when the signaling overhead is forced (through sampling) to take
only a small percentage of the contact bandwidth.

Finally, we examine how our algorithm behaves under different congestion
regimes. Interestingly, we find that at low to moderately congested regimes, the
optimal policy is simply equivalent to dropping the message with the oldest age
(similarly to the findings of [29]), while at highly congested regimes, the optimal
policy is not linear on message age; some young messages have to be dropped, as a
means of indirect admission control, to allow older messages to create enough repli-
cas and have a chance to be delivered. Hence, our framework can also explain what
popular heuristic policies are doing, in this context, relative to the optimal one.

The rest of this chapter is organized as follows. Section 3.1 describes the ”ref-
erence” optimal joint scheduling and drop policy that uses global knowledge about
the network. Then, we present in Section 3.2 a learning process that enables us to
approximate the global network state required by the reference policy. Section 3.3
discusses our evaluation setup and presents performance results for both policies
(GBSD and HBSD) using synthetic and real mobility traces. In Section 3.4, we
examine in detail our mechanism to collect and maintain network history statistics,
and evaluate the signaling-performance tradeoff. Section 3.5 studies the behavior of
our HBSD policy in different congestion regimes. Finally, we conclude this chapter
and present some future investigation directions in Section 3.6.

3.1 Optimal Joint Scheduling and Drop Policy

In this section, we first describe our problem setting and the assumptions for our
theoretical framework. We then use this framework to identify the optimal policy,
GBSD (Global Knowledge based Scheduling and Drop). This policy uses global
knowledge about the state of each message in the network (number of replicas).
Hence, it is difficult to implement it in a real world scenario, and will only serve
as reference. In the next section, we will propose a distributed algorithm that can
successfully approximate the performance of the optimal policy.

3.1.1 Assumptions and Problem Description

We assume there are L total nodes in the network. Each of these nodes has a
buffer, in which it can store up to B messages in transit, either messages belonging
to other nodes or messages generated by itself. Each message has a Time-To-Live
(TTL) value, after which the message is no more useful to the application and
should be dropped by its source and all intermediate nodes. The message can
also be dropped when a notification of delivery is received, or if an ”anti-packet”
mechanism is implemented [72].

32
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

Routing: Each message has a single destination (unicast) and is assumed to be
routed using a replication-based scheme [94]. During a contact, the routing scheme
used will create a list of messages to be replicated among the ones currently in
the buffer. Thus, different routing schemes might choose different messages. For
example, epidemic routing will replicate all messages not already present in the
encountered node’s buffer [66]. For the purposes of this work, we will use epidemic
routing as a case study, for the following reasons. First, its simplicity allows us to
concentrate on the problem of resource allocation, which is the focus of this work.
Second, it consumes the most resources per message compared to any other scheme.
As a result, it can be easily driven to medium or high congestion regimes, where
the efficient resource allocation problem is most critical. Third, given the nature of
random forwarding schemes, unless a buffer is found full or contact capacity is not
enough to transfer all messages, epidemic forwarding is optimal in terms of delay
and delivery probability. Consequently, epidemic routing along with appropriate
scheduling and message drop policies, can be viewed as a new routing scheme that
optimally adapts to available resources [76]. Finally, we note that our framework
could be used to treat other types of traffic (e.g. multicast), as well. However, we
focus on unicast traffic to elucidate the basic ideas behind our approach, and defer
the treatment of multi-point traffic to future work.

Mobility Model : Another important element in our analytical framework
is the impact of mobility. In the DTN context, message transmissions occur only
when nodes encounter each other. Thus, the time elapsed between nodes meetings
is the basic delay component. The meeting time distribution is a basic property
of the mobility model assumed [26, 25]. By meeting time we refer to the time
until two nodes starting from the stationary distribution come within range (”first
meeting-time”). If some of the nodes in the network are static, then one needs to use
hitting times between mobile and static nodes. Our theory can be easily modified
to account for static nodes by considering, for example, two classes of nodes with
different meeting rates (see e.g. [95]). To formulate the optimal policy problem, we
will first assume a class of mobility models that has the following properties:

A.1 Meeting times are exponentially distributed or have at least an exponential
tail ;

A.2 Nodes move independently of each other;

A.3 Mobility is homogeneous, that is, all node pairs have the same meeting rate
λ.

Regarding the first assumption, it has been shown that many simple synthetic
mobility models like Random Walk, Random Waypoint and Random Direction [26,
25] have such property. Furthermore, it is a known result in the theory of random
walks on graphs that hitting times on subsets of vertices usually have an exponential
tail [96]. Finally, it has recently been argued that meeting and inter-meeting times
observed in many traces also exhibit an exponential tail [97]. As we will see in

3.1. Optimal Joint Scheduling and Drop Policy 33

Section 3.1.2, in our framework, we sample the remaining meeting time only when a
drop or scheduling decision needs to be taken. In a sparse network (as in our case), it
can be shown that, at this time, the two nodes in question have already mixed with
high probability. Thus, the quantity sampled can be approximated by the meeting
time from stationarity, or the tail of the inter-meeting time distribution, which, as
explained, is often exponential [98]. In other words, it is not required to make the
stronger assumption of Poisson distributed inter-meeting times, as often done in
related literature.

Regarding the second assumption, although it might not always hold in some
scenarios, it turns out to be a useful approximation. In fact, one could use a mean-
field analysis argument to show that independence is not required, in the limit of
large number of nodes, for the analytical formulas derived to hold (see e.g. [99]).

Finally, in Section 3.1.4, we discuss how to remove assumption [A.3] and gener-
alize our framework to heterogeneous mobility models.

Buffer Management and Scheduling: Let us consider a time instant when a
new contact occurs between nodes i and j. The following resource allocation problem
arises when nodes are confronted with limited resources (i.e. contact bandwidth and
buffer space). We note that, by ”limited resources”, we do not imply that our focus
is only small, resource-limited nodes (e.g. wireless sensors or mobile phones), but
rather that the offered forwarding or storage load exceeds the available capacity. In
other words, we are interested in congestion regimes.

Scheduling Problem: if i has X messages in its local buffer that it should forward
to j (chosen by the routing algorithm), but does not know if the contact will last long
enough to forward all messages, which ones should it send first, so as to maximize the
global delivery probability or to minimize the global delivery delay for all messages
currently in the network?

Buffer Management Problem: if one (or more) of these messages arrive at j’s
buffer and find it full, what is the best message j should drop among the ones already
in its buffer (locally) and the newly arrived one, in order to maximize, let’s say, the
average delivery rate among all messages in the network (globally)?

To address these two questions, we propose the following policy. Given a routing
metric to optimize, our policy, GBSD, derives a per-message utility that captures
the marginal value of a given message copy, with respect to the chosen optimization
metric. Based on this utility, two main functions are performed:

1. Scheduling : at each contact, a node should replicate messages in decreasing
order of their utilities.

2. Drop: when a new message arrives at a node with a full buffer, this node
should drop the message with the smallest utility among the one just received
and the buffered messages.

We will derive next such a per-message utility for two popular metrics: the av-
erage delivery probability (rate), and the average delivery delay. Table 5.1 contains

34
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

Figure 3.1: GBSD optimization policy

some useful notation that we will use throughout this chapter. Finally, the GBSD
optimization policy is summarized in Figure 3.1.

3.1.2 Maximizing the average delivery rate

We first look into a scenario where each message has a finite TTL value. The
source of the message keeps a copy of it during the whole TTL duration, while
intermediate nodes are not obliged to do so. To maximize the average delivery
probability among all messages in the network, the optimal policy must use the per
message utility derived in the following theorem, in order to perform scheduling and
buffer management.

Theorem 3.1.1 Let us assume that there are K messages in the network, with
elapsed time Ti for the message i. For each message i ∈ [1,K], let ni(Ti) be the
number of nodes who have a copy of the message at this time instant, and mi(Ti)

those that have “seen” the message (excluding the source) since its creation (ni(Ti) 6
mi(Ti) + 1). We say that a node A has ”seen” a message i, when A had received a
copy of message i in the past, regardless of whether it still has the copy or has already
removed it from its buffer. To maximize the average delivery rate of all messages, a
DTN node should apply the GBSD policy using the following utility per message i:

3.1. Optimal Joint Scheduling and Drop Policy 35

Table 3.1: Notation
Variable Description
L Number of nodes in the network
K(t) Number of distinct messages in the network at time t
TTLi Initial Time To Live for message i
Ri Remaining Time To Live for message i
Ti = TTLi - Ri Elapsed Time for message i. It measures the time since

this message was generated by its source
ni(Ti) Number of copies of message i in the network after

elapsed time Ti
mi(Ti) Number of nodes (excluding source) that have seen

message i since its creation until elapsed time Ti
λ Meeting rate between two nodes; λ = 1

E[H]
where E[H]

is the average meeting time

Ui(DR) = (1− mi(Ti)

L− 1
)λRi exp(−λni(Ti)Ri). (3.1)

Proof : the probability that a copy of a message i will not be delivered by a
node is given by the probability that the next meeting time with the destination is
greater than Ri, the remaining lifetime of a message (Ri = TTL−Ti). This is equal
to exp(−λRi) under our assumptions.

Knowing that message i has ni(Ti) copies in the network, and assuming that the
message has not yet been delivered, we can derive the probability that the message
itself will not be delivered (i.e. none of the ni copies gets delivered):

P{message i not delivered | not delivered yet} =

ni(Ti)∏
k=1

exp(−λRi) = exp(−λni(Ti)Ri). (3.2)

We need also to take into consideration what has happened in the network
since the message generation, in the absence of an explicit delivery notification (this
part is not considered in RAPID [76], making the utility function derived there
suboptimal). Given that all nodes including the destination have the same chance
to see the message, the probability that a message i has been already delivered is
equal to:

P{message i already delivered} = mi(Ti)/(L− 1). (3.3)

Combining Eq.(3.2) and Eq.(3.3), the probability that a message i will get de-
livered before its TTL expires is:

36
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

Pi = P{message i not delivered yet} ∗ (1− exp(−λni(Ti)Ri))
+ P{message i already delivered}

= (1− mi(Ti)

L− 1
) ∗ (1− exp(−λni(Ti)Ri)) +

mi(Ti)

L− 1
.

So, if we take at instant t a snapshot of the network, the global delivery rate for
the whole network will be:

DR =

K(t)∑
i=1

[
(1− mi(Ti)

L− 1
) ∗ (1− exp(−λni(Ti)Ri)) +

mi(Ti)

L− 1

]
.

In case of a full buffer or limited transfer opportunity, a DTN node should take
respectively a drop or replication decision that leads to the best gain in the global
delivery rate DR. To define this optimal decision, we differentiate DR with respect
to ni(Ti),

∆(DR) =

K(t)∑
i=1

∂Pi

∂ni(Ti)
∗ 4ni(Ti)

=

K(t)∑
i=1

[
(1− mi(Ti)

L− 1
)λRi exp(−λni(Ti)Ri) ∗ 4ni(Ti)

]
.

Our aim is to maximize ∆(DR). In the case of message drop, for example, we
know that: ∆ni(Ti) = −1 if we drop an already existing message i from the buffer,
∆ni(Ti) = 0 if we don’t drop an already existing message i from the buffer, and
∆ni(Ti) = +1 if we keep and store the newly-received message i. Based on this,
GBSD ranks messages using the per message utility in Eq.(3.1), then schedules and
drops them accordingly. This utility can be viewed as the marginal utility value for
a copy of a message i with respect to the total delivery rate. The value of this utility
is a function of the global state of the message i (ni and mi) in the network.

As is evident from the above description, the GBSD policy is a greedy, locally
optimal policy. However, greedy policies in general, are not guaranteed to converge
to globally optimal outcomes. We will investigate the optimality properties of GBSD
further in Section 3.1.5.

3.1.3 Minimizing the average delivery delay

We next turn our attention to minimizing the average delivery delay. We now
assume that all messages generated have infinite TTL or at least a TTL value large
enough to ensure a delivery probability close to 1. The following Theorem derives the
optimal per-message utility, for the same setting and assumptions as Theorem 3.1.1.

3.1. Optimal Joint Scheduling and Drop Policy 37

Theorem 3.1.2 To minimize the average delivery delay of all messages, a DTN
node should apply the GBSD policy using the following utility for each message i:

Ui(DD) =
1

ni(Ti)2λ
(1− mi(Ti)

L− 1
). (3.4)

Proof: let us denote the delivery delay for message i with random variable Xi.
This delay is set to 0 (or any other constant value) if the message has been already
delivered. Then, the total expected delivery delay (DD) for all messages for which
copies still exist in the network is given by,

DD =

K(t)∑
i=1

[
mi(Ti)

L− 1
∗ 0 + (1− mi(Ti)

L− 1
) ∗ E[Xi|Xi > Ti]

]
. (3.5)

We know that the time until the first copy of the message i reaches the destina-
tion follows an exponential distribution with mean 1/(ni(Ti)λ). It follows that,

E[Xi|Xi > Ti] = Ti +
1

ni(Ti)λ
. (3.6)

Substituting Eq.(3.6) in Eq.(3.5), we get,

DD =

K(t)∑
i=1

(1− mi(Ti)

L− 1
)(Ti +

1

ni(Ti)λ
).

Now, we differentiate D with respect to ni(Ti) to find the policy that maximizes
the improvement in D,

∆(DD) =

K(t)∑
i=1

1

ni(Ti)2λ
(
mi(Ti)

L− 1
− 1) ∗∆ni(Ti).

The best drop or forwarding decision will be the one that maximizes |∆(DD)|
(or −∆(DD)). This leads to the per message utility in Eq.(3.4).

Note that, the per-message utility with respect to delivery delay is different than
the one for the delivery rate. This implies (naturally) that both metrics cannot be
optimized concurrently.

3.1.4 The Case of Non-Homogeneous Mobility

Throughout our analysis, we have so far assumed homogeneous node mobility. Re-
cent measurement studies have revealed that, often, different node pairs might have
different meeting rates. We extend here our analytical framework, in order to derive
per-message utilities that maximize the global performance metric, in face of such

38
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

heterogeneous mobility scenarios. We illustrate the extension with the delivery rate.
The treatment of delivery delay utilities does not involve Laplace transforms, but
poses no extra difficulties. Specifically, we assume that meetings between a given
node pair are exponentially distributed with meeting rate λ̃, where λ̃ is a random
variable such that:

λ̃ ∈ [0,∞), distributed as f(λ̃).

f(λ̃) is a probability distribution that models the heterogeneous meeting rates
between nodes, and can be any function integrable in [0,∞), capturing thus a very
large range of conceivable mobility models.

The analysis of Theorem 3.1.2 is thus modified as follows. Let’s assume that
message i has ni copies in the network, and that the ni carriers have (unknown)
meeting rates λ̃1, λ̃2, . . . , λ̃ni , respectively. Eq.(3.2) becomes:

P{message i not delivered | not delivered yet} =

Eλ̃1,λ̃2,..., ˜λni
[

ni∏
j=1

exp(−λ̃jRi)] = (3.7)

ni∏
j=1

∫ ∞
0

exp(−λ̃jRi)f(λ̃j)dλj = (FL(Ri))
ni , (3.8)

where FL(Ri) is the Laplace transform of distribution f(x) evaluated at Ri. Con-
tinuing as in the proof of Theorem 3.1.2, we get the unconditional probability of
delivery Pi:

Pi = (1− mi

L− 1
) ∗ (FL(Ri))

ni +
mi

L− 1
.

Differentiating Pi with respect to ni, we derive the following generic marginal
utility per message:

(1− mi

L− 1
) ∗ ln(FL(Ri)) ∗ (FL(Ri))

ni . (3.9)

We now consider some example distributions for node meeting rates, and derive
the respective marginal utility.

Dirac delta funtion: Let f(λ̃) = δ(λ̃ − λ), where δ(x) is an impulse function
(Dirac’s delta function). This corresponds to the case of homogeneous mobility, con-
sidered earlier, with average meeting rates for all nodes equal to λ. The laplace dis-
tribution of f(λ̃) is then equal to FL(Ri) = exp(−λRi). Replacing this in Eq.(3.9),
the generic marginal utility, gives us Eq.(3.1), the utility for homogeneous mobility,
as expected.

Exponential distribution: Let f(λ̃) = λ0 exp(−λ̃λ0), for λ̃ ≥ 0. This corresponds
to a mobility model, where individual rates between pairs differ, but the variance
of these rates is not high and their average is equal to λ0. The laplace transform of
f(λ̃) is

3.1. Optimal Joint Scheduling and Drop Policy 39

FL(Ri) =
1

(Ri + λ0)2
.

Replacing this in Eq.(3.9) gives us the marginal utility per message that should be
used:

(1− mi

L− 1
) ∗ ln(

1

(Ri + λ0)2
) ∗ 1

(Ri + λ0)2ni
. (3.10)

Unknown distribution in large networks: If the actual probability distribution of
meeting rates is not known, the following approximation could be made in order to
derive marginal utilities per message and use them for buffer management. Let us
assume that the meeting rates come from an unknown distribution with first and
second moments λ̄ and σ2, respectively. Let us further assume that there is a large
number of nodes, such that ni, the number of copies of message i at steady state, is
large. Using the central limit theorem, we have:

Prob(

ni∑
j=1

λ̃j ≤ λ) ∼
ni→∞

N (niλ̄, σ
√
ni), (3.11)

that is, the sum of meeting rates with the destination of the ni relays for message
i is (approximately) normally distributed. Replacing this in Eq.(3.8), we get the
(unconditional) delivery probability Pi

Pi = (1− mi

L− 1
) ∗ FL(Ri) +

mi

L− 1
,

where FL(Ri) is the Laplace transform of the above normal distribution. Note that
the Laplace transform is not raised anymore to the nthi power, as the distribution
already corresponds to the sum of all rates. After some algebraic manipulations we
can get the new marginal utility for message i:

(1− mi

L− 1
) ∗

(λ̄2
√

8(ni)
− 1

2 +
√

2σ2(ni)
− 5

2) exp(ni
λ̄2

σ2 +
R2

i
4

)

8σ4
∗ erfc(Ri

2
). (3.12)

In a large enough network, even if the actual distribution of meeting rates is
not known, a node could still derive good utility approximations, by measuring and
maintaining an estimate for the first and second moments of observed or reported
meeting rates (e.g. with techniques similar to the ones discussed in the next Sec-
tion). Furthermore, the homogeneous assumption could be considered as a useful
approximation for large networks where the common rate is taken as λ̄. Addi-
tional complexity in the mobility model (e.g. correlated meeting rates) could still
be handled in our framework, yet at the expense of ease of interpretation (and thus
usefulness) of the respective utilities. We will therefore consider the simple case of
homogeneous mobility for the remainder of our discussion, in order to better eluci-
date some additional key issues related to buffer management in DTNs, and resort
to a simulation-based validation under realistic mobility patterns.

40
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

3.1.5 Optimality of Gradient Ascent Policy

We finally turn our attention back to the distributed (local) buffer management
policies of Sections 3.1.2 and 3.1.3, in order to further investigate their optimality 1.
Let us observe our network at a random time instant, and assume there are K total
undelivered messages, with remaining Times-To-Live R1, R2, . . . , RK , respectively.
The centralized version of our buffer management problem then consists of assigning
the available buffer space across the network (L nodes each able to store B message
copies) among the copies of these messages, n1, n2, . . . , nK , so as to maximize the
expected delivery probability for all these messages (where the expectation is taken
over mobility decisions of all nodes). This corresponds to the following optimization
problem:

max
n1,n2,...,nK

K∑
i=1

(1− exp(−λniRi)), (3.13)

K∑
i=1

ni − LB ≤ 0, (3.14)

ni − L ≤ 0,∀i, (3.15)

ni ≥ 1,∀i. (3.16)

This is a constrained optimization problem, with K variables and 2K + 1 in-
equality constraints. The optimization function in Eq.(3.13) is a concave function
in ni. Constraint in Eq.(3.14) says that the total number of copies (for all messages)
should not exceed the available buffer space in all L nodes, and is linear. Finally, the
2K constraints of Eq.(3.15) are also linear, and simply say that there is no point for
any node to store two copies of the same message. Consequently, if we assume that
ni are real random variables (rather than integers), this is a convex optimization
problem, which can be solved efficiently [100] (but not easily analytically).

Having found an optimal vector n, a centralized optimal algorithm can easily
assign the copies to different nodes (e.g. picking nodes sequentially and filling their
buffers up with any non-duplicate copy, starting from the messages with highest
assigned ni — due to uniform mobility the choice of specific nodes does not matter).
It is important to note that, given this assignment, no further message replication
or drop is needed. This is the optimal resource allocation averaged over all possible
future node movements. The optimal algorithm must perform the same process at
every subsequent time step in order to account for new messages, messages delivered,
and the smaller remaining times of undelivered messages.

Our local policies offer a distributed implementation of a gradient ascent algo-
rithm for this problem. Gradient ascent algorithms look at the current state, i.e.
vector n(k) at step k, and choose a neighboring vector n(k + 1) that improves the

1As a case study, we investigated the optimality of our solution with respect to the maximization
of messages expected delivery probability.

3.2. Using Network History to Approximate Global Knowledge in
Practice 41

optimization function in Eq.(3.13), and probably converges to the optimal solu-
tion [100]. In our case, a step corresponds to a contact between two nodes, and
the neighboring states and permitted transitions depend on the messages in the
buffers of the two nodes in contact. In other words, our gradient ascent algorithm
is supposed to make enough steps to converge to the optimal copy vector n∗, before
the state of the network (i.e. number and ID of messages) changes enough for the
optimal assignment to change significantly. This depends on the rate of update
steps (≈ λL2) and the message TTL. If TTL ∗ λ ∗ L2 � 1, then we expect the
distributed, local policy to be able to closely follow the optimal solution at any time
t. In Section 3.3.4, we use simulation to prove that this is indeed the case for the
scenarios considered.

3.2 Using Network History to Approximate Global
Knowledge in Practice

It is clear from the above description that the optimal policy (GBSD) requires global
information about the network and the ”spread” of messages, in order to optimize
a specific routing metric. In particular, for each message present in a node’s buffer,
we need to know the values of mi(Ti) and ni(Ti). In related work [76], it has been
suggested that this global view could be obtained through a secondary, “instanta-
neous” channel (e.g. cellular network), if available, or by flooding (“in-band”) all
necessary meta-data. Regarding the former option, cellular network connections are
known to be low bandwidth (measurements suggest only few kbps even for 2.5-3G
technologies [101]) and high cost in terms of power and actual monetary cost per
bit. In networks of more than a few nodes, the amount of signaling data might
make this option prohibitive. Concerning flooding, our experiments show that the
impact of the flooding delay on the performance of the algorithm is not negligible.
In practice, intermittent network connectivity and the long time it takes to flood
buffer status information across DTN nodes, make this approach inefficient.

A different, more robust approach is to find estimators for the unknown quanti-
ties involved in the calculation of message utilities, namely m and n. We do this by
designing and implementing a learning process that permits a DTN node to gather
knowledge about the global network state at different times in the past, by making
in-band exchanges with other nodes. Each node maintains a list of encountered
nodes and the state of each message carried by them as a function of time (i.e. its
buffer state history). Specifically, it logs whether a given message was present at
a given time T in a node’s buffer (counting towards n) or whether it was encoun-
tered earlier but is not anymore stored, e.g. it was dropped (counting towards m).
In Section 3.4, we describe our statistics maintenance and collection method, in
more detail, along with various optimizations to considerably reduce the signaling
overhead.

Since global information gathered thus about a specific message might take a
long time to propagate (as mentioned earlier) and hence might be obsolete when we

42
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

calculate the utility of the message, we follow a different route. Rather than looking
for the current value of mi(T) and ni(T) for a specific message i at an elapsed time
T , we look at what happens, on average, for all messages after an elapsed time
T . In other words, the mi(T) and ni(T) values for message i at elapsed time T are
estimated using measurements ofm and n for the same elapsed time T but measured
for (and averaged over) all other older messages. These estimations are then used
in the evaluation of the per-message utility.

Let’s denote by
∧
n (T) and

∧
m (T) the estimators for ni(T) and mi(T) of message

i. For the purpose of the analysis, we suppose that the variables mi(T) and ni(T) at
elapsed time T are instances of the random variables N(T) and M(T). We develop
our estimators

∧
n (T) and

∧
m (T) so that when plugged into the GBSD’s delivery rate

and delay per-message utilities calculated in Section 3.1, we get two new per-message
utilities that can be used by a DTN node without any need for global information
about messages. This results in a new scheduling and drop policy, called HBSD
(History Based Scheduling and Drop), a deployable variant of GBSD that uses the
same algorithm, yet with per-message utility values calculated using estimates of m
and n.

3.2.1 Estimators for the Delivery Rate Utility

When global information is unavailable, one can calculate the average delivery rate
of a message over all possible values ofM(T) and N(T), and then try to maximize it.
In the framework of the GBSD policy, this is equivalent to choosing the estimators
∧
n (T) and

∧
m (T) so that the calculation of the average delivery rate is unbiased:

E[(1− M(T)

L− 1
) ∗ (1− exp(−λN(T)Ri)) +

M(T)

L− 1
] =

(1−
∧
m (T)

L− 1
) ∗ (1− exp(−λ ∧n (T)Ri)) +

∧
m (T)

L− 1
.

Plugging any values for
∧
n (T) and

∧
m (T) that verify this equality into the ex-

pression for the per-message utility of Eq.(3.1), one can make sure that the obtained
policy maximizes the average delivery rate. This is exactly our purpose. Suppose
now that the best estimator for

∧
m (T) is its average, i.e.,

∧
m (T) =

−
m (T) = E[M(T)].

This approximation is driven by the observation we made that the histogram of the
random variable M(T) can be approximated by a Gaussian distribution with good
accuracy. To confirm this, we have applied the Lillie test [102], a robust version
of the well known Kolmogorov-Smirnov goodness-of-fit test, to M(T) for different
elapsed times (T = 25%,50% and 75% of the TTL). This test led to acceptance
for a 5% significance level. Consequently, the average of M(T) is at the same time
the unbiased estimator and the most frequent value among the vector M(T). Then,
solving for

∧
n (T) gives:

3.3. Performance Evaluation 43

∧
n (T) = − 1

λRi
ln(

E[(1− M(T)
L−1) exp(−λN(T)Ri)]

(1−
−
m(T)
L−1)

). (3.17)

Substituting this expression into Eq.(3.1) we obtain the following new per mes-
sage utility for our approximating HBSD policy:

λRiE[(1− M(T)

L− 1
) exp(−λRiN(T))]. (3.18)

The expectation in this expression is calculated by summing over all known
values of N(T) and M(T) for past messages at elapsed time T . Unlike Eq.(3.1),
this new per-message utility is a function of past history of messages and can be
calculated locally. It maximizes the average message delivery rate calculated over
a large number of messages. When the number of messages is large enough for the
law of large numbers to work, our history based policy should give the same result
as that of using the real global network information.

Finally, we note that L, the number of nodes in the network, could also be
calculated from the statistics maintained by each node in the network. In this work,
we assume it to be fixed and known, but one could estimate it similar to n and m,
or using different estimation algorithms like the ones proposed in [103].

3.2.2 Estimators for the Delivery Delay Utility

Similar to the case of delivery rate, we calculate the estimators
∧
n (T) and

∧
m (T) in

such a way that the average delay is not affected by the estimation. This gives the
following per-message utility specific to HBSD,

E[L−1−M(T)
N(T)]2

λ(L− 1)(L− 1− −m (T))
. (3.19)

This new per-message utility is only a function of the locally available history of
old messages and is thus independent of the actual global network state. For large
number of messages, it should lead to the same average delay as when the exact
values for m and n are used.

3.3 Performance Evaluation

3.3.1 Experimental Setup

To evaluate our policies, we have implemented a DTN framework into the Net-
work Simulator NS-2 [104]. This implementation includes (i) the Epidemic routing

44
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

protocol with FIFO for scheduling messages queued during a contact and drop-
tail for message drop, (ii) the RAPID routing protocol based on flooding (i.e. no
side-channel) as described, to our best understanding, in [76], (iii) a new version
of Epidemic routing enhanced with our optimal joint scheduling and drop policy
(GBSD), (iv) another version using our statistical learning based distributed al-
gorithm (HBSD), and (v) the VACCINE anti-packet mechanism described in [72].
Note that we have also performed simulations without any anti-packet mechanism,
from which similar conclusions can be drawn.

Table 3.2: Simulation parameters
Mobility pattern: RWP ZebraNet Taxis KAIST HCMM
Sim. Duration(h): 7 14 42 24 24
Sim. Area (km2): 3*3 3*3 - - 5*5
Nbr. of Nodes: 70 70 70 50 70
Avg. Speed (m/s): 2 - - - -
TTL(h): 1 2 6 4 4
CBR Interval(s): 360 720 2160 1440 1440

In our simulations, each node uses the 802.11b protocol to communicate, with
rate 11Mbits/sec. The transmission range is 100 meters, to obtain network scenarios
that are neither fully connected (e.g. MANET) nor extremely sparse. Our simula-
tions are based on five mobility scenarios: two synthetic mobility models and three
real-world mobility traces.

Synthetic Mobility Models: We have considered both the Random Waypoint
mobility model and the HCMM model [85]. HCMM is a mobility model inspired by
Watts’ Caveman model that was shown to reproduce statistics of human mobility,
such as inter-contact times and contact duration. In HCMM, the Caveman model
is used to define a graph (overlay) with nodes divided into (well connected) groups
and each group is assigned to a physical home location. Also, some users belonging
to different groups can have links to each other (bridges). These (intra- and inter-
group) links are used in HCMM to drive movements: each user moves towards a
given group’s home location with a probability proportional to the weight of its links
towards the group.

Real Mobility Traces: The first real trace is the one collected as part of the
ZebraNet wildlife tracking experiment in Kenya and described in [105]. The second
mobility trace tracks San Francisco’s Yellow Cab taxis. Many cab companies outfit
their cabs with GPS to aid in rapidly dispatching cabs to their customers. The
Cabspotting system [106] talks to the Yellow Cab server and stores the data in a
database. We have used an API provided by the Cabspotting system in order to
extract mobility traces. Note that this trace describes taxi’s positions according
to the GPS cylindrical coordinates (Longitude, Latitude). In order to uses these
traces as input for the NS-2 simulator, we have implemented a tool [104] based on
the Mercator cylindrical map projection which permit us to convert traces to plane

3.3. Performance Evaluation 45

coordinates. And finally, the third trace consists on the KAIST real mobility trace
collected from a university campus (KAIST) in South Korea [107]. We consider a
sample of the KAIST campus trace taken from 50 students, where the GPS receivers
log their position at every 30 seconds.

To each source node, we have associated a CBR (Constant Bit Rate) application,
which chooses randomly from [0, TTL] the time to start generating messages of 5KB

for a randomly chosen destination. We have also considered other message sizes (see
e.g. [27]), but found no significant differences in the qualitative and quantitative
conclusions drawn regarding the relative performance of different schemes.

Unless otherwise stated, each node maintains a buffer with a capacity of 20

messages to be able to push the network towards a congested state without exceeding
the processing and memory capabilities of our simulation cluster. We compare
the performance of the various routing protocols using the following two metrics:
the average delivery rate and average delivery delay of messages in the case of
infinite TTL. By infinite TTL, we mean any value large enough to ensure almost
all messages get delivered to their destination before the TTL expires. Finally, the
results presented here are averages from 20 simulation runs, which we found enough
to ensure convergence.

3.3.2 Performance evaluation for delivery rate

First, we compare the delivery rate of all policies for the three scenarios shown in
Table 3.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60 70

De
liv

er
y

Pr
ob

ab
ili

ty

Number of Sources

GBSD
HBSD
RAPID

FIFO/Drop-Tail

Figure 3.2: Delivery Probability for Epidemic Routing with different scheduling and
drop policies (both buffer and bandwidth constraints).

Table 3.3: Taxi Trace & Limited buffer and bandwidth
Policy: GBSD HBSD RAPID FIFO\DT

D. Probability: 0.72 0.66 0.44 0.34

D. Delay(s): 14244 15683 20915 36412

46
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 15 20 25 30 35 40 45 50

D
el

iv
er

y
Pr

ob
ab

ili
ty

Number of Sources

GBSD
HBSD
RAPID

FIFO/Drop-Tail

Figure 3.3: Delivery Probability (KAIST mobility trace).

Table 3.4: ZebraNet Trace & Limited buffer and bandwidth
Policy: GBSD HBSD RAPID FIFO\DT

D. Probability: 0.68 0.59 0.41 0.29

D. Delay(s): 4306 4612 6705 8819

Table 3.5: HCMM Trace (70 CBR sources)
Policy: GBSD HBSD RAPID FIFO\DT
D. Probabil-
ity:

0.62 0.55 0.38 0.23

D. Delay(s): 3920 4500 6650 8350

Figure 3.2 shows the delivery rate based on the Random Waypoint model. From
this plot, it can be seen that: the GBSD policy plugged into Epidemic routing gives
the best performance for all numbers of sources. When congestion-level decreases,
so does the difference between GBSD and other protocols, as expected. Moreover,
the HBSD policy also outperforms existing protocols (RAPID and Epidemic based
on FIFO/drop-tail) and performs very close to the optimal GBSD. Specifically, for
70 sources, HBSD offers an almost 60% improvement in delivery rate compared to
RAPID and is only 14% worse than GBSD. Similar conclusions can be also drawn for
the case of the real Taxi trace, ZebraNet trace, KAIST trace or the HCMM model
and 70 sources. Results for these cases are respectively summarized in Table 3.3,
Table 3.4, Figure 3.3 and Table 3.5.

3.3.3 Performance evaluation for delivery delay

To study delays, we increase messages’ TTL (and simulation duration), to ensure
almost every message gets delivered, as follows. RandomWaypoint: (duration 10.5h,
TTL = 1.5h). ZebraNet: (simulation duration = 28h, TTL = 4h). Taxi trace:
(simulation duration = 84h, TTL = 12h). Traffic rates are as in Section 3.3.2.

3.3. Performance Evaluation 47

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50 60 70

Av
er

ag
e

De
liv

er
y

De
la

y(
s)

Number of Sources

FIFO/Drop-Tail
RAPID
HBSD
GBSD

Figure 3.4: Delivery Delay for Epidemic Routing with different scheduling and drop
policies (both buffer and bandwidth constraints).

 2000

 4000

 6000

 8000

 10000

 12000

 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 D
el

iv
er

y
D

el
ay

(s
)

Number of Sources

FIFO/Drop-Tail
RAPID
HBSD
GBSD

Figure 3.5: Delivery Delay (KAIST mobility trace).

For the random waypoint mobility scenario, Figure 3.4 depicts the average deliv-
ery delay for the case of both limited buffer and bandwidth. As in the case of delivery
rate, GBSD gives the best performance for all considered scenarios. Moreover, the
HBSD policy outperforms the two routing protocols (Epidemic based on FIFO/drop-
tail, and RAPID) and performs close to GBSD. Specifically, for 70 sources and both
limited buffer and bandwidth, HBSD average delivery delay is 48% better than
RAPID and only 9% worse than GBSD.

Table 3.3, Table 3.4, Figure 3.5 and Table 3.5 show that similar conclusions can
be drawn for the delay under respectively the real Taxi(s), ZebraNet trace, KAIST
trace and the HCMM model.

3.3.4 Optimality

Here, we use simulations results (based on the RW scenario) that our proposed
policy (GBSD) can “keep up” with the optimal algorithm described in Section 3.1.5.

48
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 40 50 60 70 80 90 100 110 120

No
rm

al
iz

ed
 M

an
ha

tta
n

di
st

an
ce

Time (ms)

Normalized Manhattan distance
 between two consecutive N

 optimal vectors

Figure 3.6: Normalized Manhattan distance between two consecutive N optimal
vectors.

-2

 0

 2

 4

 6

 8

 0 100 200 300 400 500 600 700 800 900

Ab
so

lu
te

 d
iff

er
en

ce
 in

 te
rm

s
of

 N

br
 C

op
ie

s
pe

r m
es

sa
ge

 b
et

w
ee

n
 G

BS
D

an
d

th
e

op
tim

al
 p

ol
ic

y

Time (s)

Message 1
Message 2
Message 3
Message 4

Figure 3.7: Difference in terms of Nbr of copies.

Figure 3.6 plots the normalized Manhattan distance d(X,Y) =
∑K
i=1 |xi−yj |

K between
two consecutive optimal copy vectors, resulting from solving the optimal centralized
version offline. These optimal vectors are calculated every 4ms, corresponding to
the average time between any two consecutive contacts among the network. As
is evident in the figure, this distance is very small, implying that our distributed
gradient-ascent implementation of this policy (GBSD/HBSD) has enough time to
converge to the optimal vector, before this changes significantly. In order to further
validate the optimality of our policy, we compare in Figure 3.7 the absolute difference
between the number of copies assigned to a message by our GBSD policy and the
number of copies allocated to the same message by the optimal algorithm 3.1.5. We
have picked some messages randomly and plot this difference along a time window
in their lifetime. These results show that the GBSD policy stays is able to follow
the optimal one with an average error of 1 to 2 copies allocated at most. We
believe this result consolidates the optimality properties of our proposed distributed

3.4. Maintaining Network History 49

implementation of the optimal policy.

3.4 Maintaining Network History

The results of the previous section clearly show that our distributed policy (HBSD)
that uses estimators of global message state (rather than actual state) successfully
approximates the performance of the optimal policy (GBSD). This is as an impor-
tant step towards a practical implementation of efficient buffer management and
scheduling algorithms on wireless devices. Nevertheless, in order to derive good es-
timators in a distributed manner, nodes need to exchange (a possibly large amount
of) metadata during every node meeting. Potentially, each node needs to know the
history of all messages having passed through a node’s buffer, for every node in
the network. In a small network, the amount of such “control” data might not be
much, considering that large amounts of data transfers can be achieved between
802.11 transceivers during short contacts (data transfers of a few 10s of MBytes
have been reported for experiments between vehicles moving at high speeds [108]).
Nevertheless, in larger networks, this method can quickly become unsalable and in-
terfere with (or starve) data transmissions, if statistics maintenance and collection
is naively done.

In this section, we describe the type of statistics each node maintains towards
calculating the HBSD utility for each message, and propose a number of mechanisms
and optimizations to significantly reduce (and control) the amount of metadata ex-
changed during contacts. Finally, we explore the impact of reducing the amount
of collected statistics on the performance of our buffer management and scheduling
policy. Our results suggest that, with a carefully designed statistics collection and
maintenance scheme, order(s) of magnitude less metadata can be exchanged (com-
pared to maintaining a complete view about the network), without significantly
affecting performance.

Figure 3.8: Network History Data Structure

50
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

Figure 3.9: Example of Bin arrays

Figure 3.10: Statistics Exchange and Maintenance.

3.4.1 Maintaining Buffer State History

In order to keep track of the statistics about past messages necessary to assign
appropriate utility values to messages considered for transmission or dropping, we
propose that each node maintains the data structure depicted in Figure 3.8. Each
node maintains a list of messages whose history in the network it keeps track of
(we will see in the next section how a node chooses which messages to include in
this list). For each message, it maintains its ID (a unique string resulting from
the combination of some of its attributes), its TTL and the list of nodes that have
seen it before (i.e. had stored the messages at some time in the past and should be
accounted towards calculating m or n). Then, for each of the nodes in the list, it
maintains a data structure with the following data: (i) the node’s ID, (ii) a boolean
array Copies_Bin_Array, and (iii) the version Stat_V ersion associated to this
array.

The Copies_Bin_Array array (Figure 3.9) enables nodes to maintain dynam-
ically what each message experienced during its life time. For a given entry pair
(message a and node b) in this list, the Copies_Bin_Array[k] indicates if the node
a had already stored or not a copy of message b in its buffer during Bin k. In other
words, time is quantized into “bins” of size Bin_Size, and bin k correspond to the
period of time between k ∗Bin_Size and (k+ 1) ∗Bin_Size. As a result, the size
of the Copies_Bin_Array is equal to TTL/Bin_Size.

How should one choose Bin_Size? Clearly, the larger it is, the fewer the amount
of data a node needs to maintain and to exchange during each meeting; however, the
smaller is also the granularity of values the utility function can take and thus the
higher the probability of an incorrect (scheduling or buffer management) decision.
As already described in Section 3.1, message transmissions can occur only when

3.4. Maintaining Network History 51

nodes encounter each other. This is also the time granularity at which buffer state
changes occur. Hence, we believe that a good trade-off is to monitor the evolution of
each message’s state at a bin granularity in the order of meeting times. This already
results in a big reduction of the size of statistics to maintain locally (as opposed
to tracking messages at seconds or milliseconds granularity), while still enabling
us to infer the correct messages statistics. Note that according to the Nyquist-
Shannon [109] sampling theorem, a good approximation of the size of a Bin would
be equal to inter-meeting-time/2. A running average of the observed times between
consecutive meetings could be maintained easily, in order to dynamically adjust the
bin size [94].

Finally, the Stat_V ersion indicates the Bin at which the last update occurred.
Let’s assume that a message a is first stored at a node b during bin 3. It then
creates a new entry in its list for pair (a,b), inserts 0s in bins 0 − 2 of the new
Copies_Bin_Array and 1s in the rest of the bins, and sets the Stat_V ersion to
3. If later, at in bin 5 node b decides to drop this message, then the list entry
is maintained, but it sets all bins from 5 to TTL/Bin_Size to 0, and updates
the Stat_V ersion to 5. Finally, when the TTL for message a elapses (regard-
less of whether a is still present in b’s buffer or not), b sets the Stat_V ersion
to TTL/Bin_Size, which also indicates that all information about the history
of this message in this buffer is now available. The combination of how the
Copies_Bin_Array is maintained and the Stat_V ersion updated, ensures that
only the minimum amount of necessary metadata for this pair of (message, node)
is exchanged during a contact.

We note also that, in principle, a Message_Seen_Bin_Array could be
maintained, indicating if a node a had seen (rather than stored a mes-
sage b at time t, in order to estimate m(T). However, it is easy to
see that the Message_Seen_Bin_Array can be deduced directly from the
Copies_Bin_Array, and thus no extra storage is required. Summarizing, based
on this lists maintained by all nodes, any node can retrieve the vectors N(T) and
M(T) and can calculate the HBSD per-message utilities described in Section 3.2
without a need for an oracle.

3.4.2 Collecting Network Statistics

We have seen so far what types of statistics each node maintains about each past
(message ID, node ID) tuple it knows about. Each node is supposed to keep up-to-
date the statistics related to the messages it stores locally (i.e. entries in the list
of Figure 3.8 corresponding to its own node ID). However, it can only update its
knowledge (and the respective entry) about the state of a message a at a node b
when it either meets b directly, or it meets a node that has more recent information
about the (a, b) tuple (i.e. a higher Stat_V ersion). The goal of the statistics
collection method is that, through such message exchanges, nodes converge to a
unified view about the state of a given message at any buffer in the network, during
its lifetime.

52
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

Sampling Messages to Keep Track of: We now look in more detail into what kind
of metadata nodes should exchange. The first interesting question is the following:
should a node maintain global statistics for every message it has heard of or only a
subset? We argue that monitoring a dynamic subset of these messages is sufficient to
quickly2 converge to the correct expectations we need for our utility estimators. This
dynamic subset is illustrated in Figure 3.10 as being the Messages Under Monitoring,
which are stored in the MUM buffer; it is dynamic because its size is kept fixed while
messages inside it change. When a node decides to store a message for the first time,
if there is space in its MUM buffer, it also inserts it there and will track its global
state. In other words, each node randomly chooses a few messages it will sample, for
which it will attempt to collect global state, and does not keep track of all messages
currently alive in the network. The actual sampling rate depends on the size of the
MUM buffer and the offered traffic load, and results in significant further reduction
in the amount of metadata exchanged. At the same time, a smaller MUM buffer
might result to slower convergence (or even lack of). In Section 3.4.3 we study the
impact of MUM buffer size on the performance of our algorithm.

Handling Converged Messages: Once the node collects an entire history of a
given message, it removes it from the MUM buffer and pushes it to the buffer
of Messages with a Complete History (MCH). A node considers that it has
the complete history of a given message only when it gets the last version (i.e.
Stat_V ersion = TTL/Bin_Size) of the statistics entries related to all the nodes
the message goes through during its TTL. Note that there is a chance that a node
might “miss” some information about a message it pushes in its MCH. This oc-
curs, for example, if it receives the last version for a subset of nodes which had
the message, before it receives any version from another node that also had the
message. This probability depends on the statistics of the meeting time (first and
second moment) and the TTL value. Nevertheless, for many scenarios of interest,
this probability is small and it may only lead to slightly underestimating the m and
n values. Finally, note that, once a node decides to move a message to the MCH
buffer, it only needs to maintain a short summary (i.e. number of nodes with a copy
n(T) and number of nodes having seen the message, m(T), at time T) rather than
the per node state as in Figure 3.8.

Statistics Exchanged: Once a contact opportunity is present, both peers have to
ask only for newer versions of the statistics entries (message ID, node ID) related to
the set of messages buffered in their MUM buffer. This ensures that, even for the
sampled set of messages, only new information is exchanged and no bandwidth is
wasted. This optimization does not introduce any extra latency in the convergence
of our approximation scheme.

2While speed of convergence is not that important, due to our history-based approach, it be-
comes significant in non-stationary scenarios with traffic load fluctuations and node churn, as we
shall see.

3.4. Maintaining Network History 53

3.4.3 Performance Tradeoffs of Statistics Collection

We have presented a number of optimizations to (considerably) reduce the amount of
metadata stored and the amount of signaling overhead. Here, we explore the trade-
off between the signaling overhead, its impact on performance, and the dynamicity
of a given scenario. Our goal is to identify operation points where the amount of
signaling overhead is such that it interferes minimally with data transmission, while
at the same time it suffices to ensure timely convergence of the required utility
metrics per message. We will consider the random waypoint simulation scenario
described in Section 3.3.2. We have observed similar behavior for the trace-based
scenarios.

Amount of Signaling Overhead per Contact: We start by studying the
effect of varying the size of the MUM buffer (number of messages under monitoring)
on the average size of exchanged statistics per-meeting. Figure 3.11 compares the
average size of statistics exchanged during a meeting between two nodes for three
different sizes of the MUM buffer (20, 50 and 80), as well as for the basic epidemic
statistics exchange method (i.e. unlimited MUM). We vary the number of sources
in order to cover different congestions regimes.

Our first observation is that increasing the traffic load (and thus the amount
of congestion) results in decreasing the average amount of statistics exchanged per-
meeting (except for the MUM size of 20 messages). This might be slightly counterin-
tuitive, since a higher traffic load implies more messages to keep track of. However,
note that a higher congestion level also implies that much fewer copies per message
will co-exist at any time (and new versions are less frequently created). As a re-
sult, much less metadata per message is maintained and exchanged, resulting in a
downward trend. In the case of a MUM size of 20, it seems that these two effects
balance each other out. In any case, the key property here is that, in contrast with
the flooding-based method of [76], our distributed collection method scales well, not
increasing the amount of signaling overhead during high congestion.

A second observation is that, using our statistics collection method, a node can
reduce the amount of signaling overhead per meeting up to an order of magnitude
(e.g. for MUM = 20), compared to the unlimited MUM case, even in this relatively
small scenario of 70 nodes. (Note also that, the plot shown for the epidemic case,
already implements the binning and versioning optimizations of Section 3.4.1).)

Finally, we plot in Figure 3.12 the average size of exchanged (non-signaling)
data per-meeting. We can observe that increasing the size of the MUM buffer
results in a slight decrease of the data exchanged. This is due to the priority we
give to statistics exchange during a contact. We note also that this effect becomes
less pronounced when congestion increases (in line with Figure 3.11). Finally, in
the scenario considered, we can observe that, for MUM sizes less than 50, signaling
does not interfere with data transmissions (remember that packet size is 5KB).
This suggests that, in this scenario, a MUM size of 50 messages represents a good
choice with respect to the resulting signaling overhead. In practice, a node could
find this value online, by dynamically adjusting its MUM size and comparing the

54
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70

Av
g

Si
ze

 o
f E

xc
ha

ng
ed

 S

ta
tis

tic
s

pe
r-M

ee
tin

g(
Kb

)

Number of Sources

Unlimited MUM
MUM Size = 80
MUM Size = 50
MUM Size = 20

Figure 3.11: Signalling overhead (per contact) resulting from HBSD statistics col-
lection.

resulting signaling overhead with average data transfer. It is beyond the scope of
this work to propose such an algorithm. Instead, we are interested in exposing the
various tradeoffs and choices involved in efficient distributed estimation of statistics.
Towards this goal, we explore next the effect of the MUM sizes considered on the
performance of our HBSD algorithm.

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70

Av
er

ag
e

Si
ze

 o
f

 E
xc

ha
ng

ed
 D

at
a

pe
r-M

ee
tin

g(
Kb

)

Number of Sources

MUM Size = 20
MUM Size = 80

MUM Size = 120
MUM Size = 200

Figure 3.12: Average size of exchanged (non-signaling) data per contact.

Convergence of Utilities and Performance of the HBSD Policy : In
this last part, we fix the number of sources to 50 and we look at the impact of the
size of the MUM buffer on (i) the time it takes the HBSD delivery rate utility to
converge, and (ii) its accuracy. We use the mean relative square error to measure
the accuracy of the HBSD delivery rate utility, defined as follows:

1

#Bins
∗
∑
Bins

(A−B)2

B2
,

3.4. Maintaining Network History 55

where, for each bin, A is the estimated utility value of Eq. (3.18) (calculated using
the approximate values of m and n, collected with the method described previously)
and B is the utility value calculated using the real values of m and n.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2000 4000 6000 8000 10000 12000 14000

M
ea

n
Re

la
tiv

e
Sq

ua
re

 E
rro

r

Time(s)

TTL

MUM Size = 20
MUM Size = 50
MUM Size = 80

Figure 3.13: Mean relative square errors for HBSD delivery rate utility.

Figure 3.13 plots the mean relative square errors for the HBSD delivery rate
utility, as a function of time. We can observe that, increasing the size of the MUM
buffer results in faster reduction of the mean relative square error function. With a
MUM buffer of 80 messages, the delivery rate utility estimate converges 800 seconds
faster than using an MUM buffer of 20 messages. Indeed, the more messages a node
tracks in parallel, the faster it can collect a working history of past messages that it
can use to calculate utilities for new messages considered for drop or transmission.
We observe also that all plots converge to the same very small error value 3. Note also
that it is not the absolute value of the utility function (during different time bins)
that we care about, but rather the shape of this function, whether it is increasing
or decreasing, and the relative utility values. (We will look into the shape of this
function at different congestion regimes in the next section.)

In fact, we are more interested in the end performance of our HBSD, as a function
of how “aggressively” nodes collect message history. In Figures 3.14 and 3.15, we plot
the delivery rate and delay of HBSD, respectively, for different MUM sizes. These
results correspond to the scenario described in Section 3.3.2, where we have a fixed
number of CBR sources. As is evident from these figures, regardless of the size of the
MUM buffer sizes, nodes eventually gather enough past message history to ensure
an accurate estimation of per message utilities, and a close-to-optimal performance.
In such scenarios, where traffic intensity is relatively stable, even a rather small
MUM size (i.e. very low sampling rate) suffices to achieve good performance. This
is not necessarily the case when traffic load experiences significant fluctuations (e.g.
due to new popular content appearing in the network).

When the offered traffic load changes frequently (or node churn is high, e.g.
3We speculate that this remaining error might be due to slightly underestimating m and n, as

explained earlier.

56
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80

De
liv

er
y

Pr
ob

ab
ili

ty

Size of the MUM buffer

Nbr Src = 10
Nbr Src = 40
Nbr Src = 70

Figure 3.14: Delivery Probability for HBSD with statistics collection (static traffic
load).

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80

Av
er

ag
e

De
liv

er
y

De
la

y(
s)

Size of the MUM buffer

Nbr Src = 10
Nbr Src = 40
Nbr Src = 70

Figure 3.15: Deliver Delay for HBSD with statistics collection (static traffic load).

experiencing “flash crowds”), convergence speed becomes important. The bigger the
MUM buffer the faster our HBSD policy react to changing congestion levels. We
illustrate this with the following experiment. We maintain the same simulation
scenario, but we vary the number of CBR sources among each two consecutive
TTL(s), from 10 to 70 sources (i.e. the first and second TTL window we have
10 sources, the third and fourth window 70 sources, etc. — this is close to a
worst case scenario, as there is a sevenfold increase in traffic intensity within a
time window barely higher than a TTL, which is the minimum required interval
to collect any statistics). Furthermore, to ensure nodes use non-obsolete statistics
towards calculating utilities, we force nodes to apply a sliding window of one TTL
to the messages with complete history stored in the MCH buffer, and to delete

3.4. Maintaining Network History 57

messages out of this sliding window4.

Figures 3.16 and 3.17 again plot the HBSD policy delivery rate and delay, re-
spectively, as a function of MUM buffer size. Unlike the constant load case, it is
easy to see there that, increasing the size of the MUM buffer, results in consider-
able performance improvement. Nevertheless, even in this rather dynamic scenario,
nodes manage to keep up and produce good utility estimates, with only a modest
increase on the amount of signaling overhead required.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

De
liv

er
y

Pr
ob

ab
ili

ty

Size of the MUM buffer

GBSD
HBSD Unlimited MUM

HBSD Fixed MUM

Figure 3.16: Deliver Probability for HBSD with statistics collection (dynamic traffic
load).

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80

Av
er

ag
e

De
liv

er
y

De
la

y(
s)

Size of the MUM buffer

HBSD Fixed MUM
HBSD Unlimited MUM

GBSD

Figure 3.17: Deliver Delay for HBSD with statistics collection (dynamic traffic load).

4A running average could be used for smoother performance. We only care here to demonstrate
the effect of dynamic traffic loads.

58
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

3.5 Distribution of HBSD Utilities

We have described how to efficiently collect the necessary statistics in practice,
and derive good estimates for the HBSD utility distribution during the lifetime of
a message. In this last section, we turn our attention to the utility distributions
themselves. First, we are interested whether the resulting distributions for HBSD
delivery rate and delivery delay utilities react differently to different congestion
levels, that is, if the priority given to messages of different ages shifts based on
the offered load. Furthermore, we are interested whether the resulting utility shape
(and respective optimal policy) could be approximated by simple(r) policies, in some
congestion regimes.

We consider again the simulation scenario used in Section 3.3.2 and Section 3.4.3.
First, we fix the number of sources to 50, corresponding to a high congestion regime
in our setting. In Figure 3.18 and Figure 3.19, we plot the distribution of the HBSD
delivery rate and delivery delay utilities described in Sections 3.2.1 and 3.2.2. It is
evident there that the optimal utility distribution has a non-trivial shape for both
optimization metrics, resulting in a complex optimal scheduling and drop policy.
This also helps explain why simple drop and scheduling policies (e.g. Drop Youngest
or Oldest Message, DropTail, FIFO or LIFO scheduling, etc.), considered in earlier
work [72, 27] lead to incorrect decisions during congestion and perform worse than
the GBSD and HBSD policies [27].

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 500 1000 1500 2000 2500 3000 3500 4000

Di
st

rib
ut

io
n

of
 H

BS
D

DR
 U

til
ity

Time(s)

HBSD DR Utility

Figure 3.18: Distribution of HBSD DR utility in a congested network.

Next, we consider a scenario with low congestion. We reduce the number of
sources to 15 and keep the buffer size of 20 messages, but we also decrease the CBR
rate of sources from 10 to 2 messages/TTL. In Figures 3.20 and 3.21, we plot the
distribution of the HBSD delivery rate and delivery delay utilities, respectively, for
this low congestion scenario. Surprisingly, our HBSD policy behaves very differently
now, with both utility functions decaying monotonically as a function of time (albeit
not at constant rate). This suggests that the optimal policy in low congestion
regimes could be approximated by the simple “Drop Oldest Message” (or schedule

3.5. Distribution of HBSD Utilities 59

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000

Di
st

rib
ut

io
n

of
 H

BS
D

DD
 U

til
ity

Time(s)

HBSD DD Utility

Figure 3.19: Distribution of HBSD DD utility in a congested network.

younger messages first) policy, which does not require any signaling and statistics
collection between nodes.

To test this, in Tables 3.6 and 3.7, we compare the performance of the HBSD
policy against a simple combination of “Drop Oldest Message” (for Buffer Manage-
ment) and “Transmit Youngest Message First” (for Scheduling during a contact).
We observe, that in the low congestion regime (Tables 3.7) the two policies indeed
have similar performance (4% and 5% difference in delivery rate and delivery de-
lay, respectively). However, in the case of a congested network (Table 3.6), HBSD
clearly outperforms the simple policy combination.

We can look more carefully at Figures 3.18 and 3.19 to understand what is
happening in high congestion regimes. The number of copies per message created at
steady state depends on the total number of messages co-existing at any time instant,
and the aggregate buffer capacity. When too many messages exist in the network (for
the provided buffer space per node), uniformly assigning the available messages to
the existing buffers (which is what a random drop and scheduling policy would do),
would imply that every message can have only a few copies created. Specifically, for
congestion higher than some level, the average number of copies per message allowed
is so low that most messages cannot reach their destination during their TTL (this
depends only on the number of copies and mobility model). Uniformly assigning
resources between nodes is no more optimal. Instead, to ensure that at least some
messages can be delivered on time, the optimal policy gives higher priority to older
messages that have managed to survive long enough (and have probably created
enough copies), and “kills” some of the new ones being generated. This is evident
by the values assigned at different bins (especially in the delivery delay case). In
other words, when congestion is excessive, our policy performs an indirect admission
control function.

Contrary to this, when the offered load is low enough to ensure that all messages
can on average create enough copies to ensure delivery, the optimal policy simply

60
Chapter 3. Optimal Buffer Management and Scheduling for Unicast

Ruting in DTNs

performs a fair (i.e. equal) distribution of resources (ensured by the utility functions
of Figures 3.20 and 3.21).

Table 3.6: HBSD vs. Schedule Younger First\Drop-Oldest in a congested network.
Policies: HBSD Schedule Younger First\Drop-Oldest

D. Rate(%): 54 29

D. Delay(s): 1967 3443

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 500 1000 1500 2000 2500 3000 3500 4000

Di
st

rib
ut

io
n

of
 H

BS
D

DR
 U

til
ity

Time(s)

HBSD DR Utility

Figure 3.20: Distribution of HBSD DR utility in a low congested network.

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000

Di
st

rib
ut

io
n

of
 H

BS
D

DD
 U

til
ity

Time(s)

HBSD DD Utility

Figure 3.21: Distribution of HBSD DD utility in a low congested network.

The above findings suggest that it would be quite useful to find a generic way
to signal the congestion level and identify the threshold based on which nodes can
decide to either activate our HBSD scheme or use a simple Drop/Scheduling policy.
Suspending a complex Drop/Scheduling mechanism and its underlying statistics
collection and maintenance methods, whenever not needed, can help nodes save

3.6. Summary and Open Issues 61

Table 3.7: HBSD vs Schedule Younger First\Drop-Oldest in a low congested net-
work.

Policies: HBSD Schedule Younger First\Drop-Oldest

D. Rate(%): 87 83

D. Delay(s): 1530 1618

an important amount of resources (e.g. energy), while maintaining the same end
performance. Finally, we believe that the indirect signaling provided by the behavior
of the utility function during congestion, could provide the basis for an end-to-end
flow control mechanism, a problem remaining largely not addressed in the DTN
context.

3.6 Summary and Open Issues

In this chapter, we have investigated the problems of scheduling and buffer man-
agement in DTNs. We have proposed an optimal joint scheduling and buffer man-
agement policy and introduced an approximation scheme for the required global
knowledge of the optimal algorithm. Using simulations based on a synthetic and
real mobility traces, we showed that our policy based on statistical learning success-
fully approximates the performance of the optimal algorithm. Both policies (GBSD
and HBSD) plugged into the Epidemic routing protocol outperform current state-
of-the-art protocols like RAPID [76] with respect to both delivery rate and delivery
delay, in all considered scenarios. Moreover, we discussed how to implement our
HBSD policy in practice, by using a distributed statistics collection method, illus-
trating that our approach is realistic and effective. We showed also that, unlike
related works [76, 79], our statistics collection method scales well, not increasing the
amount of signaling overhead during high congestion. Finally, we have studied the
distributions of HBSD utilities under different congestion levels and showed that the
optimal policy heavily depends on the congestion level. The above findings suggest
that methods to signal the congestion level could allow nodes to switch off the more
sophisticated but “heavier-duty” HBSD policy and use simpler local policies, when
congestion is below some threshold. This framework paves the way for an end-to-end
congestion scheme that we intend to look into in future work.

Chapter 4

HBSD: Implementation on top of
the DTN2 reference architecture

Contents
4.1 DTN2 Platform Overview . 63

4.1.1 Bundles/Messages Processing Modules 64
4.1.2 Management Modules . 65
4.1.3 Application Support Module 66

4.2 DTN2 External Router Interface Operation 66
4.3 HBSD Implementation Overview 67
4.4 Main HBSD external router building blocks 68
4.5 Configuring HBSD . 72
4.6 Summary and Open Issues . 76

We have implemented our HBSD framework for the Delay-Tolerant Networking
Research Group’s DTN reference implementation (DTN2). In our DTN2 implemen-
tation of HBSD, users can tune the configuration and choose either to maximize the
delivery probability or to minimize the delivery delay for all DTN2 bundles. HBSD
executes as an external DTN2 router, using DTN2’s XML-based External Router
Interface. HBSD is implemented in C++. This Chapter provides an overview of the
implementation of HBSD for DTN2. We start by describing shortly the DTN2 ar-
chitecture, then we detail the DTN2 external router interface operation and describe
the implementation of the HBSD external router.

4.1 DTN2 Platform Overview

As explained in [110], the goal of the Delay-Tolerant Networking Research Group’s
DTN2 implementation is to clearly embody the components of the DTN architec-
ture, while also providing a robust and flexible software framework for experimen-
tation, extension, and real-world deployment.

Figure 4.1 is a block diagram enumerating the major components of the DTN2
Bundle (application specified data unit) forwarding system [111]. As can be seen
from the diagram, the bundle router module represents the most central component
of the implementation; in general, it requires the most detailed information regarding
the state of the system upon which to base routing decisions. Decisions made by

64
Chapter 4. HBSD: Implementation on top of the DTN2 reference

architecture

the router are passed as a set of instructions (actions) to the forwarder which is
responsible for executing the actions. This separation between policy and function
allows for easy extension, modification, and replacement of the potentially complex
router module.

Figure 4.1: DTN2 Architecture.

As described in [111, 110], the DTN2 architecture provides also a set of generic
external interfaces that enable third-party developers to implement plug-in modules
without having to rewrite or understand the internal workings of the DTN2 reference
implementation. Plug-in modules are stand-alone processes designed to work in
collaboration with DTN.

The External Router Interface is the first DTN external interface designed to
move bundle forwarding decisions to an external process or processes. Benefits of
this interface can be summarized as: (i) classified and proprietary bundle routing
algorithms are protected, (ii) external routers may be written in any programming
language (XML based interface), (iii) prototyping of new bundle routing algorithms
is streamlined, and (iv) routing algorithms may be added and removed at runtime.

4.1.1 Bundles/Messages Processing Modules

Bundle Router and Bundle Forwarder The router component implements all
the route selection and scheduling policy decision making. It takes as input a large
variety of events that could potentially affect routing decisions and issue encoded
instructions that are passed to the bundle forwarder, which in turn is charged with
the responsibility to execute them. The forwarder executes the router’s decisions by
interacting with the Convergence Layers, Registrations, and the Persistent Store.
The separation of router from forwarder represents an instance of separating policy

4.1. DTN2 Platform Overview 65

from mechanism. Also, since there are different varieties of possible routing policies,
separating the calculation of instructions from their execution helps to isolate the
routing code from changes in the other internal APIs.

Convergence Layers Convergence Layers are the adapters between the DTN
bundling protocols and various underlying transports, similar to drivers within an
operating system. At the most basic level, they perform basic data plane functions:
a particular layer must be able to transmit and receive bundles over a single hop (in
the overlay topology). In some cases they also process signaling information required
by the bundle router (e.g. such as failed connections and restarts). Convergence
Layers are discussed in more detail in the following section.

Persistent Store Persistent storage is used to hold the contents of bundles during
the store-and-forward process. This module provides a common abstraction for
persistence storage which enables the use of a wide variety of storage methods for
holding in-transit bundles. This allows a particular system instance to select (at
runtime) to use either a relational database model or a simple file model.

Fragmentation Module The fragmentation module is responsible for fragment-
ing and reassembling bundle fragments. In DTN, fragmentation is used in routing
both pro-actively when a large message is to be moved over a contact of smaller
known finite volume as well as reactively when a data transfer fails unexpectedly.
This module is able to signal the bundle router when all the fragments of a subject
bundle have been received.

4.1.2 Management Modules

Contact Manager The Contact Manager is responsible for keeping track of which
links are currently available, any historical information regarding their connectiv-
ity or performance, and any known future schedules of when connectivity may be
available. The primary task of the contact manager is to transform the information
learned about contacts from environment-specific mechanisms into abstract contact
descriptions that can be used by the bundle router.

Management Interface The management interface is used to signal the bundle
router about any special policy constraints or preferences that may affect its data
routing decisions. It is implemented as a generic inter-process communication ca-
pability so that multiple applications or processes may be supported. For example,
this hook could be used to signal the router to scan for potential contacts when a
WiFi link detects a hotspot.

Console / Config The console/configuration module provides a command line
interface and an event loop for testing and debugging of the implementation, as well
as a structured method to set initial configuration options.

66
Chapter 4. HBSD: Implementation on top of the DTN2 reference

architecture

4.1.3 Application Support Module

Application IPC / Registration Module DTN applications are written to use
a thin library that communicates with the router via an inter-process communica-
tion channel. Most of this interaction relates to sending and receiving application
messages and manipulating message multiplexing bindings.

4.2 DTN2 External Router Interface Operation

Before diving into the details of HBSD implementation, this section discusses the
overall design and operation of the DTN2 external router interface. When compiled,
the DTN2 produces one multi-threaded executable, a DTN daemon. This daemon
is a complete DTN node; it accepts bundles from a number of built-in convergence
layers, provides persistent bundle storage, delivers bundles to local DTN applica-
tions, selects routes using built-in routing logic, and forwards bundles to peer DTN
nodes. A forwarder is a DTN daemon as described above, but in our case, the lat-
ter depends on external routing processes to make bundle routing decisions on its
behalf.

The forwarder communicates with external routing processes with an XML-
based messaging protocol using a well-known IPv4 multicast address and UDP port
on local or remote hosts. Before forwarders and external routers can communicate,
they each must join the all-routers multicast group (224.0.0.2) and bind to a well-
known UDP port. Forwarders are not aware if zero, one, or more external routers
have joined the multicast group. It is the responsibility of the system administrator
to ensure router availability.

Nothing in the interface design precludes running forwarders and external routers
on different hosts, however this approach is not recommended especially in wireless
and/or bandwidth-constrained environments. The interface is fairly chatty, UDP
is unreliable, and there is a high risk of packet loss leading to a breakdown in
synchronized state 1.

Inter-process messages are XML-based and must be valid against the external
router XML scheme. Interface messages are broadly divided into four categories.
Event messages are issued by forwarders to indicate state changes that may be of
interest to external routers. Request messages are sent by external routers to direct
forwarders to perform an action (e.g. "forward the bundle with ID 56 out link
tcp0"). Query and report messages are used by external routers to synchronize
their state with forwarders after boot-up or during failure recovery. The proper
usage and interpretation of each interface message is covered in the next section.

Note that DTN2 forwarder does not authenticate external processes. The for-
warder makes the assumption that (local or remote) external routers are within the
same security domain. In addition, system administrators must ensure there exists

1The DTN2 external router interface is hard coded to use the loop-back interface and therefore
requires forwarders and external routers to reside on the same host.

4.3. HBSD Implementation Overview 67

one authoritative router or policy module per DTN node, or that multiple external
routers are configured in a cooperative manner to correctly handle all events.

4.3 HBSD Implementation Overview

The DTN2 / HBSD architecture is very simple at the highest level. The DTN2
daemon sends multicast packets to be received by a local router process. These
packets contain XML data and provide notification of events, such as the creation
of a link or the receipt of a bundle. The router process, in this case HBSD, sends
multicast XML messages to the DTN2 daemon requesting that some action be taken,
such as the transmission of a bundle. Note that the exchanged messages are not
to be viewed only as being conversational. For example, HBSD may request that
the DTN2 daemon transmits a bundle but it does not expect a response. If the
DTN2 daemon does transmit the bundle, it will send a multicast message about the
transmission, but that message is a separate event and not a reply to the transmit
request. The implication of this is that requests to the DTN2 daemon do not
have negative acknowledgments. When DTN2 establishes a connection between two
nodes, HBSD is notified and the HBSD peers exchange meta data. This information
is used to prioritize the transmission of bundles in subsequent meetings between
nodes and to decide of the bundles to be deleted in case of storage congestion.

The exchanged meta data consist of a subset of the matrix described in Fig-
ure 4.2. The subset is defined based on the received list of (Message_ID, Node_ID)
entries and their associated statistics versions.

Figure 4.2: HBSD: matrix used to maintain network statistics.

By default, when the DTN2 daemon successfully transmits a bundle, it then
deletes the bundle. This is not the desired behavior. Because HBSD will not be

68
Chapter 4. HBSD: Implementation on top of the DTN2 reference

architecture

able to replicate bundles on multiple nodes. That is why it’s important to set
early_deletion to false in the DTN2 configuration [28]. The proper behavior is for
dtnd to retain a copy of the bundle after transmission.

In the case where a bundle is destined for the local node, the DTN2 daemon
will automatically delete the bundle after it has been received by the endpoint. The
DTN2 daemon will then send HBSD a bundle deletion notification. And in the
case of a given bundle TTL expiration, the DTN2 daemon will delete it and send
notifications to HBSD.

If HBSD learns of a bundle delivery acknowledgement via meta data and it is
in possession of that bundle, it will ask the DTN2 daemon to delete the bundle.
If HBSD forwards a bundle to the destination node, HBSD will request that the
bundle be deleted.

Needless to say, HBSD does not actually possess, delete or transmit bundles.
This is all performed by the DTN2 daemon, dtnd. Instead, HBSD makes decisions
and informs the DTN2 daemon which bundles are to be transmitted or deleted.

4.4 Main HBSD external router building blocks

Figure 4.3 is class diagram that identifies the different building blocks/classes of the
HBSD DTN2 external router. We detail in this section the functionalities supported
by HBSD main classes as well as the interaction between them.

StatisticsManager class: This class implements the algorithms [112] we de-
signed to maintain network history and infer the utilities needed by HBSD either
to maximize the messages average delivery probability or to minimize their average
delivery delay. StatisticsManager class maintains network statistics and update it
each time a new meta-data bundle is received or whenever some local storage re-
lated events occur (a bundle is dropped due to congestion, a new bundle is added,...).
StatisticsManager also calculates and returns the utility of a given bundle (given its
life time) with respect to the routing metric to optimize (either the average delivery
rate or delivery delay).

PeerListener Class: The PeerListener object exists as a thread dedicated
to processing HBSD router-specific bundles received by peer routers. DTN2
specifies that any EID with an endpoint that begins with ext.rtr (e.g.,
dtn://node.dtn/ext.rtr/HBSD) is to be destined for an external router, and it gener-
ates a specific XML event when it receives a bundle containing the ext.rtr endpoint.
When the HBSD Routing class receives the event, it dispatches the PeerListener
objects thread to process the bundle. Specifically, the PeerListener thread extracts
the data from the bundle, deletes the bundle, and then makes a call into the Policy
Manager passing the bundles data. This is the recipient half of the mechanism for
exchanging meta data between routers. To send meta data, the policy manager

4.4. Main HBSD external router building blocks 69

Figure 4.3: HBSD class diagram

must inject a bundle into DTN2. This is done by the Policy Manager via a method
in the Requester class.

Requester Class: This is a utility class responsible for composing and sending
all XML messages to the DTN2 daemon. These classes are used throughout HBSD.
To expand on injecting a bundle, since it is fundamental to HBSD exchanging meta
data with a peer node: When the Requester injects a bundle for the router it assigns
a unique request ID to the bundle. It is up to the policy manager to later associate
the injected bundle with the request using the id. The Requester only plays a minor

70
Chapter 4. HBSD: Implementation on top of the DTN2 reference

architecture

role in injecting bundles: it sends the request to DTN2 after the policy manager
creates the data. But it should be noted that injected bundles are handled differently
from other bundles by HBSD. HBSD creates a Bundle object for an injected bundle,
but it does not retain knowledge of the bundle in the Bundles class.

GBOF class : This is another utility class. In DTN2, a bundle is uniquely identi-
fied by a global identifier known as a GBOF (global bundle or fragment) identifier,
or simply GBOF. The GBOF utility class contains static methods for manipulating
the GBOF. This includes formatting the GBOF as XML as required by DTN2. It
also includes methods for creating a hash key from the values that make up the
GBOF. This hash key is used extensively and consistently throughout HBSD and
the Policy Manager for referencing uniquely a bundle.

HBSD class : The HBSD class contains the main body of the router. This class
reads the command line arguments, loads the configuration file (if defined), starts
logging, and sets up the SAX (Simple API for XML) handler. Once initialized, it
joins the DTN2 multi-cast group and continuously loops receiving locally broadcast
messages from the DTN2 daemon, dtnd. When XML messages are received from
DTN2, the SAX handler is responsible for parsing the message and dispatching the
appropriate method.

HBSD SAX class : This class is invoked when HBSD receives an XML message
from the DTN2 daemon. It extends the C++ SAX DefaultHandler class. HBSD
SAX parses the XML message and calls the corresponding method in the Handlers
class.

Handlers class : This is an abstract class that defines a method for each XML
event message that may be received by HBSD SAX. The HBSD Routing class is the
real implementation of the Handlers class. We use an abstract class that supplies
null methods for all XML messages. If the class that extends Handlers, i.e. HBSD
Routing, does not support an event then the empty method in Handlers in invoked.

XMLTree class : This is a utility class. When HBSD SAX parses an XML
message each element is placed in an XMLTree object. XMLTree objects may be
linked to each other to represent the hierarchy of elements in an XML message.
XMLTree objects have methods for accessing attributes and child elements.

HBSD Routing class : The HBSD Routing class is the heart of the router,
extending the methods defined by Handlers. It is here that the XML messages sent
by the DTN2 daemon, as represented by XMLTree objects, are initially acted upon.

Logging class : This is an interface that defines the logging class used by the
HBSD router. HBSD provides one implementation of the Logging class: Console

4.4. Main HBSD external router building blocks 71

Logging. By default, Console Logging is used though you can define which imple-
mentation to invoke via the HBSD configuration file.

Console Logging class : This is a simple implementation of the Logging interface
that outputs logging messages to stdout. It is the default logging class

ConfFile class : This is a utility class that reads and parses the HBSD configu-
ration file.

Bundles class : This class manages the set of individual Bundle objects.

Node class : A Node object represents a node, e.g. dtn://node.dtn. HBSD
creates a Node object whenever it learns of a node, such as when a link is established
to a node, or when a received bundle references a node.

Nodes class : This is the class that manages the set of individual Node objects.

Link class : A Link object represents a DTN2 link and an instance is created
whenever DTN2 notifies HBSD that it has created a link. A Link object may become
associated with a Node object when the link is opened; a DTN2 link that is not open
is not associated with a Node. When a link is open it represents communication with
another node. HBSD will associate the Link with the corresponding Node object,
unless the Node object is already associated with another Link object. A node will
never be associated with more than one link, even if there are multiple links open
to the same node.

Links class : The Link class manages the set of individual Link objects.

Policy class : The Policy class defines the interface to be implemented by a Policy
Manager. The interface source code describes the individual methods. By default,
HBSD Policy implements this class, but other implementations can be defined via
the HBSD configuration file.

HBSD Policy class : This class is an implementation of the Policy class. It
provides the HBSD scheduling and drop algorithm, but it is also generically referred
to as the Policy Manager. There are calls into the Policy class sprinkled throughout
the router, often mirroring the XML events defined by the /etc/router.xsd scheme
file. HBSD Policy largely consists of manipulating shadow data structures dealing
with bundles and nodes. The primary function of HBSD Policy is to prioritize the
delivery and replication of bundles in anticipation of the local node coming into
contact with another node. The assumption is that HBSD will be able to replicate
only a subset of its bundles on each node that it meets, and that some of the bundles
will expire before HBSD comes in contact with the actual destination node.

72
Chapter 4. HBSD: Implementation on top of the DTN2 reference

architecture

4.5 Configuring HBSD

HBSD can be customized through a configuration file specified in the runtime com-
mand line. There must be no more than one configuration option per line in the
file, and must be specified using the syntax: variable=value. The value may be
double or single-quoted. Lines that begin with a hash character (#) are treated as
comments and ignored. Comments should not appear on the same line as a configu-
ration value. The options defined in the following table are supported. The default
values for most, if not all variables should be sufficient.

Variable Type Default Description
routerEndpoint string ext.rtr/HBSD Defines the external router’s

endpoint, which is typically
used to receive control mes-
sages from peer instances of
the router. An example is
meta data exchanged between
the routers. DTN2 special-
cases endpoints that begin
with "ext.rtr/". All commu-
nicating routers need to agree
on the endpoint name.

multicastGroup string 224.0.0.2 Defines the multicast group
the router is to join for ex-
changing XML messages with
the DTN2 daemon. This is de-
fined by DTN2.

multicastPort int 8001 Defines the multicast port
used by the DTN2 daemon.
This is defined by DTN2.

multicastSends bool false Defines the type of socket used
to send requests to dtnd. If
true, use a multicast socket
joined to the multicast group
and a TTL of 0. If false, use a
datagram socket bound to the
loopback address. The goal
is to send messages with their
scope limited to the local sys-
tem. On some systems the
TTL is not honored. On other
systems, not using a multicast
socket does not work.

4.5. Configuring HBSD 73

loopbackAddress string 127.0.0.1 Address to bind to if multicas-
tSends=false.

xmlSchema string router.xsd File containing the XML
scheme definition for the
messages exchanged with
dtnd, the DTN2 daemon.
This file should be supplied
by DTN2. The command line
has precedence.

xmlValidate bool true If set to false then the XML re-
ceived from the daemon is not
validated against the scheme.

loggingClass string Console_
Logging

Allows for a user-specified log-
ging class. The default is Con-
sole_Logging.

logConfiguration string Logging configuration file.
The command line has prece-
dence. The format of the file
is logging class specific. The
command line has precedence.

logLevel int 6 Logging level. The command
line has precedence. If not
specified, the default is de-
fined by the logger.

terminateWithDTN bool true By default HBSD terminates
when dtnd indicates that it is
shutting down. Set to false to
override this behavior.

bundlesActiveCapacity int 384 Initial capacity of the Map of
all bundles on the system.

linksHashCapacity int 16 Initial capacity of the Map of
all links.

nodesHashCapacity int 32 Initial capacity of the Map of
all nodes.

enableHbsdOptimization bool false Says whether to enable or
disable the HBSD statistics
based optimization or to just
run the epidemic routing pro-
tocol.

74
Chapter 4. HBSD: Implementation on top of the DTN2 reference

architecture

hbsdOptimize Perfor-
mance

int 0 Selection of the optimization
problem 0 means that the
HBSD policy will try to man-
age both the buffer and links
congestion in order to maxi-
mize the network average de-
livery rate. 1 means that the
HBSD policy will try to man-
age both the buffer and links
congestion in order to mini-
mize the network average de-
livery delay.

numberOfNodesWithin
TheNetwork

int - The approximated number of
nodes in the Network.

useOnlineAproximated
NumberOfNodes

bool true If set to true then the HBSD
policy will use the on-line ap-
proximated number of nodes
instead of the user provided
one (numberNodes above) .

binSize int 100 The bin size. Could be ap-
proximated by the average
nodes meeting time.

numberOfBins int 36 The length of the Bins table.
Should be equal to the mes-
sages TTL (total time to live)
divided by binSize. Here we
are supposing that all the gen-
erated messages have the same
TTL value.

mumBufferCapacity int 50 The maximum capacity of the
MUM buffer, the one hold-
ing the message under moni-
toring.

4.5. Configuring HBSD 75

mchBufferCapacity int 1000 The maximum capacity of the
MCH buffer, the one hold-
ing the message with com-
plete history. (Note: keep this
buffer infinite if you are sure
that your network will main-
tain the same behavior during
time otherwise choose the cor-
rect capacity in order to track
the network dynamics.

useBinSizeAsAvg Meet-
ingTime

bool true Specifies either to use the bin-
Size as an expected average
meeting time or to calculate
on-line the average meeting
time between nodes. Note
that you should figure out
an approximation of your net-
work average meeting time
in order to correctly track
the dynamics of the network
through the binSize.

More details about how to install/run both the DTN2 daemon as well as our
HBSD external router could be found in HBSD web-page [28]. HBSD open source
code is also available for downloading from [28].

Figure 4.4: SCORPION testbed mobile nodes.

76
Chapter 4. HBSD: Implementation on top of the DTN2 reference

architecture

Figure 4.5: SCORPION testbed mobile nodes.

4.6 Summary and Open Issues

We have described in this chapter the design and implementation of our HBSD
framework for the DTN reference platform (DTN2). Our experience from the im-
plementation is that the DTN2 platform is quite mature and is very modular. The
XML external router interface provided by the DTN2 implementation makes it pos-
sible to develop and easily integrate a separate routing process that takes care of
the bundles routing decisions as well as buffer management ones. We believe that
our HBSD external routing process design as well as the utilities framework and
the network history collection implementation is quite generic/modular and that
it can be easily extended in order to support more complex communication sce-
nario(s) (one-to-many, many-to-many, etc) and hence more advanced utilities. We
have tested our HBSD external router on the SCORPION testbed at University of
California Santa Cruz [28]. Figure 4.5 and 4.4 depicts some of the mobile testbed
nodes.

Chapter 5

Interest Driven Content Sharing
Architecture for Disruption

Tolerant Networks

Contents
5.1 MobiTrade Architecture . 79

5.1.1 MobiTrade Data Records . 79

5.1.2 MobiTrade Protocol . 81

5.1.3 Proportional Storage and Bandwidth Allocation 82

5.1.4 Tit-For-Tat Trading . 83

5.2 Inference of Channel Utility 84

5.3 Performance Evaluation . 87

5.3.1 Experimental Setup . 87

5.3.2 Collaborative Scenarios . 88

5.3.3 Scenarios with Selfish Users (SU) 92

5.3.4 Choosing Strategies in MobiTrade 94

5.4 Summary and Open Issues . 96

With recent advances in Web technologies, we are currently observing a paradigm
shift in the way electronic content is created, shared and consumed. Whereas pub-
lished news, photographs, audio programs or movies have traditionally been pro-
duced by a small group of professionals and consumed by a large audience, tech-
nology today allows more and more content to be provided by the mobile users
themselves, for a broad community of people with common interests. To support
this unprecedented amounts of user-generated mobile data, ISPs will inevitably be
pushed towards either lowering bandwidth quotas [12], adopting non flat rate plans,
or deploying (expensive) next generation equipment. This has lead many researchers
(and industry) to explore alternative or hybrid architectural solutions [15].

To this end, direct mobile-to-mobile communication can be leveraged to harvest
the large amounts of unused bandwidth between wireless devices in proximity. While
multi-hop communication over mobile devices has been recently dealt with in the
context of Delay Tolerant Networks (DTNs), increasing user demand for content
is creating a shift in focus towards content and data centric systems (e.g. the

78
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

CCN project [10]), in both wired and wireless Internet. As a result, a number of
content sharing systems have been recently proposed for mobile devices in the wild to
exchange content of interest in a peer-to-peer manner [38, 39, 89, 82, 34, 33, 36, 88].

In addition to dealing with the challenging networking conditions, content
sharing systems for DTNs have two main functions to perform: (i) propaga-
tion of interests and content discovery; (ii) delivery of matching content (over
one or more hops); A number of architectural decisions can be made to achieve
these goals, leading to publish/subscribe systems [38, 39], query-based, broker-
based [89, 86, 82, 34, 33, 36, 88], etc. These systems aim to maximize the amount
of useful content users can receive from the network. Nevertheless, distributed (or
peer-to-peer) content sharing systems have one more important goal: (iii) to ensure
enough nodes collaborate to make the system interesting to participants. This goal
is often conflicting with optimal algorithms for (i) and (ii), and has been a major
“deal-breaker” in most envisioned architectures for mobile ad hoc networks [40]. Mo-
bile devices are controlled by rational people and we should expect them to behave
selfishly by attempting to maximize their revenues and conserve their resources,
unless cooperation is somehow incentivized and free-riders penalized.

The following “architectural dilemma” arises then when considering a content
sharing architecture over non-altruistic mobile devices. Nodes can choose to only
store and share content they personally consume (thus somewhat mitigating self-
ish “inclinations”), and new content of interest can be retrieved from encountered
nodes [89]. This greatly simplifies content discovery and delivery. To further protect
nodes against free-riders, a tit-for-tat (TFT) mechanism could be enforced. Yet, this
approach is very restrictive: content of interest can be retrieved only if the set of
encountered nodes are also interested in (and carry) the requested content. This can
lead to long delays and a suboptimal query success rate even if TFT is not used, if
the mobility of nodes with common interests do not coincide.

To improve hit rates, nodes could use their spare resources (contact bandwidth,
disk space) to collect, store, and relay additional content, not to be consumed lo-
cally [34, 36, 33, 36, 88]. An interesting optimization problem then arises: how
should the total spare bandwidth in the network be optimally allocated to available
content so as to maximize the overall network hit rate? Answers include random-
ized or popularity-based local heuristics [82], using this buffer space only for “friends”
and social peers [34, 36, 88], as well as optimal distributed algorithms [33]. Unfortu-
nately, none of these solutions answers why participating nodes should collaborate
implementing the policy of choice. In fact, we argue that this optimization problem
needs to be turned on its head, in light of the non-altruistic nature of users.

Through this chapter, we propose MobiTrade, an approach that optimizes the
content sharing strategy from the perspective of each individual participant, rather
than that of the network. First, we argue that Tit-For-Tat (TFT) should be directly
employed in order to isolate free-riders and create incentives for nodes to share
their resources. TFT gives content of non-direct interest monetary value. If a
node B has content that A is interested in, but A does not have something to give
back, A now has the incentive to fetch something for B (perhaps from a remote

5.1. MobiTrade Architecture 79

node that B never encounters). B now retrieves content that would otherwise be
inaccessible to it (due to its mobility pattern), and A retrieves content that is easy
accessible but that it couldn’t “afford” before. While TFT is well known both in
P2P [41] and opportunistic networks [42] communities, it does not answer itself, how
mobile devices should optimally (re-)act in the presence of TFT towards maximizing
their revenues. MobiTrade answers this question by introducing a content utility
framework that aims to maximize the expected future exchange value of the content
inventory stored by each node. Intuitively, the value of a piece of content to a node
A should depend on (i) how many are interested in it, (ii) how often does A see these
nodes, (iii) how much content, interesting to A, do these nodes have, and (iv) how
“well-behaved” are these nodes. MobiTrade uses a simply, robust utility function
that implicitly captures all these features, without explicitly measuring each one,
that turns each node into a merchant fetching the content that has the highest
chance to be sold (and exchanged for content of interest) to its good clients

Summarizing, the major contributions of this work are the following:

1. We formulate the optimal content sharing problem in DTNs from the perspec-
tive of non-altruistic nodes and assuming a tit-for-tat mechanism to isolate
free-riders.

2. We propose MobiTrade, a utility-based solution to this problem that predicts
the (exchange) value of each piece of content and provides a customized re-
source allocation strategy for each node, matched to each own interests and
mobility pattern.

3. Using a game-theoretic framework and simulations (with both real and syn-
thetic mobility), we show that turning on the MobiTrade mechanism is an
efficient Nash equilibrium.

To our best knowledge, this is the first content sharing system for DTNs that
can both deal with rational, selfish nodes while at the same time achieving good
global outcomes without explicit hard constraints on the topology and dependency of
nodes.

The rest of this chapter is organized as follow. Section 5.1 describes the Mobi-
Trade architecture. Section 5.2 details MobiTrade channels management algorithms.
Then, we provide a detailed simulation analysis in Section 5.3 based on both syn-
thetic [85] and real mobility traces [107] and we compare MobiTrade to different
content sharing policies. Finally, we summarize our conclusions and discuss future
work in Section 5.4.

5.1 MobiTrade Architecture

5.1.1 MobiTrade Data Records

In a content sharing architecture, nodes need first to somehow express their interests
for different (types of) content and advertise these interests. To this end, we borrow

80
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

the concept of channels, introduced in [82]. Specifically, the MobiTrade architecture
relies on two data records: content and channel records (Figure 5.1).

Channel Record: A user asks for a set of contents by creating locally a channel
record that encapsulates the set of keywords the user thinks they better describe
the contents she is looking for. Channels can be added or deleted by the user, at
any time. In contrast to the CCN model [10], the channel record in MobiTrade is
one-for-many (not one-for-one). A desirable content is identified based on a match
between the channel keywords and the content description (also characterized by a
set of keywords). We think that such a match process is more appropriate for the
communication model we are proposing; where the user might not know the exact
content he is looking for, or might anyway be interested in all contents matching
the description (e.g. Madonna songs, photos of Nice, sports tickets for sale).

A lot more can be said about this channel structure (e.g. hierarchies, merging
and splitting of channels, semantic content matching, etc.), but this is beyond the
scope of this thesis. Instead, we choose to use a simple channel structure here and
focus on the algorithmic part of the system. Finally, each channel record contains
a utility entry. This is a key quantity for MobiTrade, allowing our system to opti-
mize various important functions (scheduling, inventory management, collaboration
profiling, etc.). For now, we will assume this as given, but Section 5.2 is devoted to
how this utility is derived.

Content Record: In addition to the content description, a content record contains
a number of additional fields. First, we associate to each MobiTrade content a
TTL (Time to Live). By the end of this time, records can be removed. The cases
requiring this TTL field are many, for example someone could be interested in selling
something today. To ensure devices respect this TTL field, MobiTrade devices do
not reward each other for expired content.

Figure 5.1: MobiTrade data records and channel storage.

Furthermore, to provide users with a full control over their privacy (i.e., the
contents they publish and their center of interests), we choose to keep anonymous
any generated channel record (no user or device ID are stored). Nevertheless, for
contents, one still has the possibility to associate to them a canonical source name

5.1. MobiTrade Architecture 81

that refers in some way to the content publisher. This field does not correspond
necessarily to the user device address, but it can hold the publisher postal address or
its phone number, which can be used for distinguishing between contents, feedback
mechanisms on separate communication mediums or authentication purposes.

Finally, to provide for some MobiTrade security, we choose to use a CCN like
content-based security model [10]. With this model, protection and trust travel with
the content itself, rather than being a property of the connections over which it is
transmitted. MobiTrade devices authenticate via the signature field (Figure 5.1), the
binding between the content source ID, its description and some parts of its data. In
addition to this signature, each signed MobiTrade content carries with it the public
key necessary for its verification by other devices. The signature algorithm can be
selected to meet the performance requirements of that particular published data.

5.1.2 MobiTrade Protocol

Communication within the MobiTrade architecture is driven by the consumers of
contents. A user asks for contents by “joining” a channel to which these might
belong, storing the respective record(s) locally on the device until it becomes out
of date. Then, each time a new meeting opportunity arises with another mobile
device; both devices initiate the MobiTrade communication protocol that has two
main functions:

• Fair Content Exchange to help nodes identify content of interest in their peer’s
inventory (buffer) and provide a set of rules to exchange such content in a fair
manner.

• Inventory Management to allow nodes to profile each exchange (learning) and
use this knowledge to improve the outcome of future interactions (prediction).

The MobiTrade protocol is summarized in Figure 5.2. Each device starts by
sending its list of channels to the other device. Based on it, each device decides on
the set of contents to forward, i.e. content in its buffer matching one of the channels
requested by its peer. These contents are scheduled for transmission and passed to
the Tit-For-Tat (TFT) trading algorithm (Section 5.1.4) that ensures an equitable
exchange.

In addition to channels the node is personally interested in, if extra space is
available, it might choose to join “foreign” channels. Content for these channels is
not stored for personal consumption, but can be used as exchange currency during
the TFT phase, in order to acquire additional content of interest. This provides
the incentive to nodes to act as merchants, collecting and carrying content to be
used only for trading. This also allows content to propagate efficiently across the
network and between remote producer-consumer pairs, without any explicit routing
mechanism.

After content starts being exchanged (one-by-one), a node receiving a content
might need to perform some inventory management. First, if it already has this piece

82
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

of content (or the content is expired), it will drop it1. If the content is new, and
there is available buffer space for the channel this belongs to, the content is stored
in the buffer. The exchange finishes once the transfer of the requested contents ends
or the two devices get out of the range of each other. At this point, both devices
update the set of channels they are keeping track of as well as their corresponding
utilities based on the (profiled) outcome of the session (as explained in Section 5.2).

5.1.3 Proportional Storage and Bandwidth Allocation

In a context with many nodes, various channels, and lots of multimedia content,
node buffers will be operated most of the time at capacity and contact duration
between nodes might not suffice to exchange all intended content. This highlights
the need for efficient resource allocation algorithms. Unlike related work [34] [82],
MobiTrade allocates both buffer space and contact bandwidth in an equitable way
among the different channels.

First, MobiTrade implements a mechanism of proportional soft quotas to share
available buffer space among channels. Let a node carry N channels with channel
utilities U(i), i ∈ {1, N}, and have a total buffer capacity of B. Then, the quota
B(i) of the buffer space channel i is entitled to is

B(i) =
U(i)∑
i U(i)

B.

The proportion of storage allocated to a channel is proportional to its utility.
Quotas are updated whenever one or more of the channel utilities change or channels
are added/removed.

Based on these quotas and the amount of storage channel i is currently occupy-
ing, let S(i), a node receiving a content (of W bytes) for channel i will perform the
following actions:

• If S(i) +W < B(i), then store the content.

• If S(i) +W > B(i) and
∑

i S(i) +W < B, then store content.

• If S(i)+W > B(i) and
∑

i S(i)+W > B, then pick the channel j maximizing
maxj(S(j)−B(j)) and drop the oldest content for this channel.

Points (2) and (3) above imply that the quotas B(i) are soft. Channels can
exceed their share and take over free space, if any is available. However, as soon as
the buffer is full, the policy pushes shares back to their just proportion.

Finally, in the presence of limited contact durations, a device cannot simply for-
ward contents by decreasing order of the utilities of their channels since a channel

1This is possible, since nodes only send to each other lists of channels and not a detailed list of
contents. This is a coding trade-off that tries to avoid large amounts of meta-data being exchanged
before any actual content is sent. On the other hand, it might also lead to some wasted bandwidth
if lots of duplicate content is transmitted. A possible middle-ground solution to this problem could
be the use of Bloom filters.

5.1. MobiTrade Architecture 83

can match more than one content. For example, a MobiTrade device can face a situ-
ation where many contents match a popular channel, and hence it keeps forwarding
only those contents at the expense of other channels which are less popular. To
remedy this, MobiTrade applies the Weighted Fair Queuing policy which prevents
starvation of channels and ensures that contents are forwarded proportionally to the
utility value of the channel they match.

As a final note, when the scheduling policy decides to forward a set of contents
from the same channel, MobiTrade sends the youngest contents first. This decision
is motivated by our findings in [112] and is complementary to the drop oldest policy
applied among the contents of the same channel in case of congestion. More so-
phisticated policies could be also applied [112], but this is beyond the scope of this
work.

Figure 5.2: MobiTrade protocol.

5.1.4 Tit-For-Tat Trading

One major difference of our system compared to other content sharing solutions for
DTNs (e.g. [82, 34, 38]) is that we assume that participating users are selfish by
default. Thus they might act as free-riders: during a meeting they receive content
they want but don’t give something back (even if they have), in order to save
transmission power or to save some bandwidth. Or, they might not collect content

84
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

their peers are requesting. Experience teaches us that even in the absence of power
or storage concerns (e.g. wired users of BitTorrent), additional concerns (legal,
malice), might motivate users to circumvent collaborative mechanisms [113]. We
believe these are powerful incentives that could sabotage any collaborative content
sharing system, if not properly handled.

In order to remedy this and isolate selfish users, a strict Tit-For-Tat (TFT)
trading is enforced during meetings. Content scheduled for exchange is forwarded
one-by-one (or in equally sized blocks/pieces, if contents are not of equal size), i.e.
node A sends some, then node B sends some, then node A again, etc. Forwarding
of content stops when the other device cannot (or chooses not to) reciprocate the
amount of bytes it received2.

In addition to this TFT mechanism ensuring that selfish nodes are not served
when content for them is available, a utility maintenance mechanism (to be de-
scribed in Section 5.2) further ensures that well-intended nodes will not waste their
resources collecting content for selfish nodes from which they will not receive any
reward.

5.2 Inference of Channel Utility

MobiTrade aims at maximizing the number of collected contents while providing
incentives for devices to collaborate. To have their requests satisfied, MobiTrade
devices have to propose contents to other devices in counterpart of what they are
looking for. As said before, each device is equipped with a storage space that is filled
with contents from the different existing channels, which are used later as trading
currency. This storage space is filled so as to satisfy the future demand: each channel
occupies a proportion of the storage equal to the reward it is expected to bring upon
future meetings. Due to Tit-For-Tat trading, the reward from carrying a channel
is the amount of data from this channel a device will sell upon future meetings (to
get both data for its own usage and data used for later trading). Hence, to optimize
performance, MobiTrade devices should be able to quantify the expected reward from
the channels they carry.

In MobiTrade, the expected reward from each channel is modeled through a
utility function used for ranking contents upon a meeting and for dropping them
upon saturation of the storage. In this section, we detail how these utilities are
calculated. Table 5.1 summarizes some useful notation.

For each channel CH, MobiTrade defines its utility UCH(n) at the nth meeting
(counted over all devices) in a way to reflect the expected number of bytes the device
will sell from this channel (and thus the bytes of interest these will buy back) with
any random device it will meet3. This is clearly a complex interplay of mobility

2In order to solve the bootstrapping issue, when two well-intended devices meet for the first
time, MobiTrade enables generous cooperation up to a certain amount as described in Section 5.2.

3Note that MobiTrade does not differentiate between own and foreign channels (these could
also overlap) at the level of calculating utilities. However, foreign content doesn’t interfere with
content for own consumption. If a peer has content of interest for own consumption, this will

5.2. Inference of Channel Utility 85

Table 5.1: Notation
Variable Description
UCH(n) In bytes. Models the utility of the channel CH at the nth meeting.
X(CH) 0 or 1. Expresses whether the met device is also interested in channel

CH or not.
CL(CH) In bytes. Expresses the collaboration level of the met device during a

given meeting with respect to the channel CH.
SC(CH) In bytes. Expresses the number of bytes sent to the met device during

a given meeting with respect to the channel CH.
ω Between 0 and 1. A weight that decides on the elapsed time window

over which we average the utility of channels.
α In bytes. Expresses MobiTrade device generosity level, used to de-block

the situation when two devices meet for the first time and request new
channels.

β In bytes. Controls the speculation that a MobiTrade device makes
regarding the expected future reward from a given channel.

patterns, available channels and content, and node interests. We choose to keep our
framework as assumption free as possible about mobility and interest patterns, and
take the following approach.

Calculation and update of channel utilities Assuming stationarity of the
network over at least a time window of 2T , the expected reward from carrying a
channel CH can be calculated by averaging all experienced rewards over all meetings
in the past time window T . Meetings that do not request channel CH count as zero.
To facilitate implementation, an Exponential Weighted Moving Average (low pass)
filter is used for averaging.

Let’s consider a device A and let’s suppose that an (n+1)th meeting opportunity
arises. After the establishment of the physical connection, both devices exchange
matching contents while applying the Tit-For-Tat trading algorithm (as in Fig-
ure 5.2). Once done, they both record the volume of exchanged data and update
each the utilities of the channels they carry. For device A and channel CH, this
update is done as follows:

UCH(n+ 1) = ω.UCH(n) + (1− ω).X(CH).CL(CH),

where ω = (tn− tn−1)/T is the weight associated to the low pass filter4. Concerning
the term on the right hand side, it models the amount of data exchanged with
the met device B from channel CH. X(CH) is a binary variable that expresses
whether B is interested or not in CH. This variable captures the popularity of a
given channel over all MobiTrade devices met by A. As for CL(CH), it captures
the volume of contents that could be sold to device B in the future (i.e. a prediction
of B’s future demand for CH).

always be retrieved, provided it can be ”bought”, and passed to the application. MobiTrade only
decides whether this should be further cached in the content storage for future trading.

4By making it function of the elapsed time between the current meeting and the previous one,
one can ensure an averaging over a time window T .

86
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

This calculation leads to several nice properties. First, this utility calculation is
per channel and does not account for the physical addresses of encountered devices.
The same device met several times or different devices met the same number of times
count the same from the viewpoint of MobiTrade, as long as the amount of data sold
was the same. This avoids tracking individual devices which improves the scalability
of MobiTrade. Second, it does not try to over-optimize for the next meeting only
(as could be the case with detailed mobility prediction) but rather optimizes the
inventory over a larger time horizon, enough to absorb prediction inaccuracies at
individual meetings. Finally, coupled with the Tit-For-Tat algorithm, our utility
(through CL(CH)) accounts for the collaboration of devices in addition to the
popularity of channels. In lack of this feature, a channel widely requested among a
group of users, who do not collaborate by bringing back interesting contents for A,
could force A to keep collecting contents matching CH, only to discover later that
this content buys him nothing. The storage of A could have been better used by
carrying contents for less popular channels but more collaborative devices.

Collaboration and Bootstrapping The CL(CH) term above expresses the
collaboration level of the device B with respect to the channel CH. If a channel
however is requested for the first time at the (n + 1)th meeting, its UCH(n) would
be initialized to zero. A new node that asks for a channel CH, would see its request
being ignored, as no content for CH was exchanged in this round. Clearly, an
appropriate bootstrapping mechanism is needed, in order to avoid this chicken and
egg problem for new nodes or channels. This can be implemented as some slack
or generosity in the CL(CH) calculation and the TFT mechanism. At the same
time, this generosity should be such that it cannot be exploited by selfish nodes.
The calculation of CL(CH) below is inspired from TCP slow start, and attempts
to best satisfy the above two (conflicting) goals:

CL(CH) =

{
Max(α, 2.SC(CH)) if SC(CH) < β,

SC(CH) + α otherwise.

The collaboration level CL(CH), that is, the prediction of future demand, is
thus a function of the actual (last exchange) demand SC(CH). If SC(CH) is less
than some threshold β, we allow SC(CH) to double, to accelerate the collaboration
process at its beginning; otherwise, devices will have to meet more often to reach a
satisfactory collaboration level. After β5, the generosity of device A switches into
a linear mode when it believes it has successfully approximated the steady-state
demand, and only speculates an additional α to SC(CH).

The same factor α is equally used as minimal value for CL(CH) to unblock
the situation when device B asks for a new channel (SC(CH) equals zero in this
latter case). If a channel does not bring the expected reward for any reason (lack
of collaboration, oldness of the contents carried, etc.), this will be reflected by a
decrease in SC(CH), which automatically leads to a decrease in the utility value we

5We take an optimistic approach and choose it equal to the maximum utility value over all
channels of A.

5.3. Performance Evaluation 87

associate to this channel. Similarly, α also serves to keeps selfish nodes in control.
If some selfish device asks for a long list of new channels, MobiTrade will associate
initially a small utility value to them. A selfish/malicious user is then obliged to
collaborate in order to increase the utilities of his channels and thus the portion of
content storage these are given.

From the perspective of a collaborative trader node, a community of non col-
laborative users is equivalent to a community of users not requesting channels. We
believe this improves the robustness of the system and allows it to scale to large
networks, without the need for explicit blacklisting and reputation systems (at least
for selfish nodes).

5.3 Performance Evaluation

We move now to performance evaluation of our system. We first describe our ex-
perimental setup, then present simulations results for two main types of scenarios:
collaborative scenarios and scenarios including selfish users.

5.3.1 Experimental Setup

Protocols: We have implemented the MobiTrade content sharing protocol in the NS3
simulator [114]. Throughout our simulations we will be considering two versions of
MobiTrade, with (MobiTrade + TFT) and without Tit-For-Tat (MobiTrade
- TFT). Note that this corresponds only to the forwarding module, described in
Section 5.1.4. The channel utility maintenance, described in Section 5.2, is kept on
in all scenarios. We have also implemented two different versions of the podnet07
scheme as a baseline for comparison6, as described, to our best understanding in [82]
and [115]: non-collaborative Podcasting, where users just carry and share their own
channels [82] (Podcasting); collaborative Podcasting with the Uniform channel
sharing strategy, where, a device records all channels it has seen in the past and
solicits contents for these channels randomly [115] (Podcasting + Uniform). This
latter strategy was shown to perform best in [115], compared to other heuristics tak-
ing into account channel popularity. As a final note, we stress that MobiTrade’s first
goal is not to compete with optimal collaborative schemes, but rather to efficiently
deal with selfish nodes, without compromising the socially optimal (collaborative)
performance.

Mobility Models: To evaluate the different protocols, we use two type of mobility
scenarios, a state-of-the-art synthetic mobility model (HCMM) [85] and a real mo-
bility trace (KAIST) [107]. In our HCMM scenario, we consider 50 users distributed

6We choose the PodNet framework, as it is the most directly comparable to our scheme, and
consists of simple enough mechanisms that we consider practical for implementation. For exam-
ple, [33] is considerably more complex and based on an MCMC framework that requires careful
simulated annealing and might take a long time to converge. Furthermore, [34] requires explicit
knowledge of social network links, not available in our framework.

88
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

into 5 groups. The plane is divided into a 10*10 grid of cells (5000 meters wide),
and each cell can serve as a home location for a group.

The KAIST scenario consists of real human mobility traces collected from a
university campus (KAIST) in South Korea [107]. We consider a sample of the
KAIST campus traces taken from 50 students, where the GPS receivers log their
position at every 30 seconds. We integrated both mobility models in NS3. Both
case studies consist of simulations that last 24 hours where devices use the 802.11b

protocol to communicate with a transmission range around 60 meters.
Traffic Model: Unless otherwise stated, each user joins randomly 2 channels

at the beginning of the simulation. For simplicity, we assume that all generated
contents have the same size7. However, different channels do not need to have the
same size (the size of a channel is equal to the sum of its contents’ sizes). Some
channels might have lots of content, and others less. Finally, we consider that
each user generates contents periodically that match one of the channels that were
requested by users from other groups8.

5.3.2 Collaborative Scenarios

We first evaluate MobiTrade, assuming all nodes are collaborative, using the fol-
lowing four scenarios (described in Table 5.2) (there are 50 channels in total): SC1

implements a homogeneous traffic pattern, i.e. each channel has the same size and
each user joins the same number of channels. In SC2, users choose a random num-
ber of channels to join, but channels still have the same size. In SC3, users ask for
the same number of channels but these have random sizes. Finally, SC4 introduces
some churn, where 10 of the users join the simulation after 8 hours, while existing
sessions are ongoing, and leave again 8 hours later. For all scenarios, we show plots
for the HCMM mobility model, accompanied with respective results for the KAIST
trace summarized in Tables.

Table 5.2: Collaborative simulation scenarios
Sim. Scenario: SC1 SC2 SC3 SC4

Nbr. of Users: 50 50 50 40 + 10 tran-
sient

Requested CH(s)
per User

2 random [1, 20] 2 2

Size of CH(s) (#
of contents)

20 20 Random [1,
20]

20

Effect of TTL Before we proceed, we take a quick look first into the impact of
content TTL. As explained in Section 5.1, our buffer drop and scheduling policies

7Variable sized content could still be split to equal sized pieces or blocks. We defer the study
of more complex content structures to future work.

8The content generation interval depends on the number of contents for a channel and the
duration of the simulation.

5.3. Performance Evaluation 89

give priority to younger messages9. This is not only in accordance with our daily
experience (for many types of content, e.g. news feeds, we prefer to have the most
recent version), but has also been shown to be an efficient resource allocation policy
in the context of a single channel [112] (intuitively, older content has a higher chance
to have been delivered already). Figure 5.3 depicts the MobiTrade average delivery
rate as a function of the content TTL (for scenario SC1), with and without priori-
tizing younger messages (per channel). It is evident that the higher the (application
chosen) TTL the more old content “hogs” node buffer and contact bandwidth, not
allowing new content to reach its audience. When prioritizing younger messages,
not only does performance stabilize, but with an infinite TTL the gain from just
this mechanism is up to 76%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Av
er

ag
e

De
liv

er
y

Ra
te

Content TTL (hour)

MobiTrade + Youngest

MobiTrade - Youngest

Figure 5.3: Drop and Scheduling policy inside the same channel (SC1).

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100 110

Av
er

ag
e

De
liv

er
y

Ra
te

Content Storage Size (content)

MobiTrade - TFT

MobiTrade + TFT

Podcasting + Uniform

Podcasting

Figure 5.4: Fixed number of channels per user and fixed channel size (SC1).

9Note that this age only corresponds to the time the content was inserted in the network by its
publisher, and does not (directly) relate to the actual age (e.g. an old vs. a new rock song.)

90
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

Scenario SC1 Figure 5.4 compares the performance of MobiTrade with and
without TFT and the two versions of Podcasting described in Section 5.3.1. The
figure of merit is, again, the average delivery rate, defined as the amount of con-
tent received for channels a node requested divided by the total amount of content
generated for these channels (throughout the simulation). This is averaged over all
nodes. Delivery rate is plotted as a function of node storage.

There are three main observations to be made in Figure 5.4. First, collecting and
sharing foreign channels (MobiTrade and Podcasting + Uniform) improves per-
formance compared to only storing own channel. This confirms the findings of [115].
Second, the uniform sharing policy [115] is clearly not optimal (as suggested also
in [33]), and is significantly outperformed by MobiTrade’s inventory management
(by up to 2×). This is more pronounced as storage is increased. Third, using Tit-
For-Tat (TFT) in a context where all nodes are well-intended results in a small drop
of the average delivery rate by about 6%, compared to the case without TFT. Using
game theoretic terms, in Section 5.3.4, we show that rational users will choose to
pay this price to secure themselves from selfish users. Finally, Table 5.3, summarizes
the respective results for the KAIST trace (we only show values for a buffer of 110

contents; the plot trend is similar to Figure 5.4). The results for the KAIST trace
(row 1) corroborate the above findings.

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100 110

Av
er

ag
e

De
liv

er
y

Ra
te

Content Storage Size (content)

MobiTrade - TFT

MobiTrade + TFT

Podcasting + Uniform

Podcasting

Figure 5.5: Scenario SC2.

Table 5.3: Avg. delivery rate based on the real KAIST trace (collaborative scenario,
content storage size = 110 contents).

Policy: MobiTrade
+ TFT

MobiTrade
- TFT

Podcasting Podcasting
Uniform

Scenario SC1 0.83 0.89 0.6 0.72
Scenario SC2 0.78 0.86 0.75 0.69
Scenario SC3 0.79 0.88 0.68 0.74

Scenarios SC2 and SC3 These two scenarios consider the effect of heterogene-

5.3. Performance Evaluation 91

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100 110

Av
er

ag
e

De
liv

er
y

Ra
te

Content Storage Size (content)

MobiTrade - TFT

MobiTrade + TFT

Podcasting + Uniform

Podcasting

Figure 5.6: Scenario SC3.

ity with respect to channel demand (SC2) and channel size (SC3). The goal is
to examine whether asymmetry of demand or supply of content (common in prac-
tice) could give rise to deadlocks due to the inherent symmetry of the Tit-For-Tat
mechanism.

Figures 5.5 and 5.6 show the respective delivery rate for these two scenarios, as a
function of storage space. As we can see, traffic asymmetry does not affect the main
observations made in scenario SC1. Interestingly, for (SC2), Podcasting only own
channels seems to outperform uniform sharing of foreign channels. Results for the
KAIST trace are again in agreement (rows 2 and 3 of Table 5.3)). We conclude that,
even in the presence of asymmetric traffic, MobiTrade performs up to almost 2×
better even without selfish nodes. Finally, while it is clear that these two scenarios
do not suffice to exclude every probability of a deadlock, they constitute positive
evidence to the robustness of MobiTrade. We defer an analytical treatment of
deadlocks to future work.

Scenarios SC4 The objective of this last scenario is to study the impact of
node churn and the ability of MobiTrade to efficiently bootstrap new nodes. Here,
10 new users join the simulation after 8 hours, each one of them asks for 2 already
existing channels, then, it leaves the simulation 8 hours later. Figure 5.7 plots the
average delivery rate among the 10 new users and the 40 existing ones as a function
of time. It is evident there, that when the new users join already existing channels,
they are not blocked. Instead, they are able to collaborate and quickly scale up
their performance10.

Delay Finally, in Figure 5.8, we look at the average delivery delay of different
schemes (scenario SC1), measured as time a matching content is received − time
it was inserted in the channel. We can clearly see that the ranking of schemes in

10The important thing in this plot is the slope of the curves for new and old nodes, which matches,
implying that both types get similar service. They differences in absolute value are only because
nodes joining late have already missed part of the content already generated for this channel (and
possibly dropped due to congestion).

92
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

terms of delay is similar to the one for delivery ratio (Figure 5.4).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

A
ve

ra
g

e
D

el
iv

er
y

R
at

e

Time (hour)

MobiTrade + TFT (40 existing users)

MobiTrade + TFT (10 new users)

Figure 5.7: Scenario SC4, 10 new users ask for already existing channels.

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 30 40 50 60 70 80 90 100 110

A
ve

ra
g

e
D

el
iv

er
y

D
el

ay
(s

)

Content Storage Size (content)

Podcasting

Podcasting + Uniform

MobiTrade + TFT

MobiTrade - TFT

Figure 5.8: Scenario SC1, studying the average delivery delay.

5.3.3 Scenarios with Selfish Users (SU)

Having established the good performance of MobiTrade in the absence of selfish
nodes, we now turn our attention to scenarios where few or more nodes might not
reciprocate for content they receive. We deem such scenarios as the norm rather
than the exception in the real world. As mentioned earlier, most related proposals
do not deal (explicitly) with such users. We consider two such scenarios, as described
in Table 5.4: In SS1, we consider 10 selfish users among 50 that ask for different
channels than those requested by the remaining collaborative users. In SS2, we
consider the same number of selfish users which ask randomly for channels already
requested by collaborative users. Selfish users and Collaborative users are denoted
with “SU” and “CU”, respectively.

5.3. Performance Evaluation 93

Table 5.4: Simulation scenarios including selfish users.
Sim. Scenario: SS1 SS2

Nbr. of Users: 40 CU + 10 SU 40 CU + 10 SU
Nbr. of CH(s) CU: 2/20 - SU: 2/10 (SU and

CU channels differ)
CU, SU: 2/20 (among same
channels)

Size of CH(s) CU: 20 - SU: 40 CU, SU: 20

Scenario SS1 Figure 5.9 depicts the average delivery rate (for different user
strategies, CU and SU) with and without the TFT mechanism enabled. At high
congestion (storage of 50 contents), enabling the TFT mechanism increases the
average delivery rate among collaborative users by 15% (16% using the KAIST
trace, Table 5.5) and decreases it among selfish users by 63%. Indeed, enabling the
TFT mechanism blocks selfish users and makes MobiTrade re-dispatch/reuse the
saved resources among the channels shared by collaborative users. For a storage of
110, collaborative users are able to reach 73% higher throughput than selfish ones,
by using TFT. The latter see a 3−4× drop in performance. In the same context, as
shown in Table 5.6, the Podcasting scheme cannot control selfish nodes, as expected,
and as their numbers increase, the latter end up outperforming collaborative ones.

Scenario SS2 Here, the 10 selfish nodes ask for channels already requested and
carried by collaborative ones. This means that the utility management mechanism
cannot affect them, allowing more opportunities to “scrape” content. Figure 5.10
plots the average delivery rate of (MobiTrade + TFT) among collaborative users
in two cases: first, when selfish users are active and second when they are inactive.
Clearly, when TFT is used, the performance of collaborative users is not harmed
(verified also for the KAIST trace, Table 5.5), while the one of selfish users drops
severely, by up to 2.1× for a storage of 110 contents11. This result consolidates our
findings in Section 5.2 regarding the impact of selfish users on the performance of
collaborative ones once they both join the same channels. Indeed, selfish users are
simply considered by MobiTrade as users which don’t ask for the channels. The
system resources are kept safe and only dispatched among collaborative users.

Table 5.5: Avg. delivery rate based on the real KAIST trace (scenario including
selfish users, content storage size = 50 contents).
Policy: MobiTrade

(CU)
MobiTrade
(CU)

MobiTrade +
TFT(SU)

MobiTrade -
TFT(SU)

SS1: 0.79 (+TFT) 0.68 (-TFT) 0.21 0.57
SS2: 0.81 (+TFT, In-

active SU)
0.78 (+TFT, Ac-
tive SU)

0.24 0.77

11We observe that in this, as well as the previous scenario, selfish users are not 100% isolated.
This is only due to the generosity mechanism described in Section 5.2 and the fact that we chose
the minimum unit of transmission α to be one content, for simplicity. Increasing the amount of
content in the network or reducing the value of α (note that this does not affect collaborative users
much, due to the multiplicative increase), further isolates selfish nodes.

94
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100 110

Av
er

ag
e

De
liv

er
y

Ra
te

Content Storage Size (content)

MobiTrade + TFT (CU)

MobiTrade - TFT (CU)

MobiTrade - TFT (SU)

MobiTrade + TFT (SU)

Figure 5.9: Scenario SS1, impact on selfish and collaborative users.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 50 60 70 80 90 100 110

A
ve

ra
ge

 D
el

iv
er

y
R

at
e

Content Storage Size (content)

MobiTrade + TFT (CU, Active SU)

MobiTrade - TFT (SU)

MobiTrade + TFT (CU, Inactive SU)

MobiTrade + TFT (SU)

Figure 5.10: Scenario SS2, impact on collaborative users.

Table 5.6: Avg. delivery rate (HCCM mobility model, content storage size = 110
contents, CU and SU ask for different channels).

Nbr. SU(s): 5 10 15 20

MobiTrade + TFT(CU): 0.8 0.76 0.71 0.62
MobiTrade + TFT(SU): 0.25 0.22 0.2 0.17
Podcasting + Uniform(CU): 0.46 0.4 0.37 0.34
Podcasting + Uniform(SU): 0.29 0.33 0.36 0.39

5.3.4 Choosing Strategies in MobiTrade

We have so far considered scenarios with x collaborative nodes or y selfish ones.
But why would any node choose to be selfish or collaborative? Our results suggest
that selfish behavior pays off if other nodes have TFT off, but hurts when TFT is
on. And why would a collaborative node choose to employ our TFT mechanism?
Our results suggest that if all nodes are collaborative they might get more content

5.3. Performance Evaluation 95

by turning TFT off. When multiple nodes have with these choices, where would the
system converge? We sketch below a game theoretic framework that tries to answer
these questions.

Let’s consider a simple case of two nodes with contents to exchange. The set
of strategies A for each node is to choose from is: (i) being selfish (SU), (ii) being
collaborative while activating TFT (CU + TFT) or (iii) being collaborative but not
activating TFT (CU - TFT). LetM be the amount of content these nodes get if they
normally use MobiTrade (CU+TFT). Let finally γ be a discount factor, capturing
the cost to a node (e.g. energy) of reciprocating a piece of content (0 ≤ γ ≤ 1). The
total payoff to each node from getting M contents is

payoff = γM.

The following matrix describes the “MobiTrade game” and the respective payoffs in
normal form. It is not a zero-sum game.

Table 5.7: MobiTrade Game and Payoffs.
CU + TFT CU - TFT SU

CU + TFT [γM, γM] [γM+, γM] [0, 0]

CU - TFT [γM, γM+] [γM+, γM+] [(γ − 1)M+,M+]

SU [0, 0] [M+, (γ − 1)M+] [0, 0]

We note thatM+ is the somewhat higher payoff a node gets if both nodes are not
selfish and disable TFT (see e.g. Figure 5.4) and (γ−1)M(≤ 0) is the cost to a node
of sending M contents without getting something back. We can see that if γ = 0

(cost per content is equal to gain), then no user has an incentive to participate in
the system (i.e. users will be selfish). This however, as well as γ = 1, are unrealistic
cases.

The more interesting cases are for 0 < γ < 1. In this case, it is easy to see
that the game has a single Nash equilibrium at (CU + TFT, CU + TFT) with
payoffs (γM, γM). That is, none of the two nodes can strictly improve its payoff by
a unilateral change of strategy [116]. In other words, for nodes participating in our
network choosing to use MobiTrade with TFT is the optimal (selfish or rational)
strategy, which is a very desirable outcome for our system. This analysis can be
easily extended to N nodes. The main difference there is that (CU+TFT) has a
non-zero reward even if all but one other users are not SU (making the equilibrium
stronger).

Finally, deactivating TFT, i.e. point (CU-TFT, CU-TFT), is the socially optimal
operating point and is also Pareto optimal. However, it is not an equilibrium except
for the limiting case of γ = 1 (no cost). For all other cases, the price of anarchy per
node is equal to γ(M+ −M), which as we saw in the results of this section, is only
a small price to pay.

96
Chapter 5. Interest Driven Content Sharing Architecture for

Disruption Tolerant Networks

5.4 Summary and Open Issues

In this chapter, we investigated the point-to-multipoint content sharing problem
over DTN while considering the possible existence of selfish users. Inspired from real
life trading behavior and the CCN [10] interest driven content sharing approach, we
proposed MobiTrade, a complete framework that incites users to collaborate, profiles
their needs and manages their device resources optimally towards maximizing their
revenues in terms of contents. Using NS3 simulations based on a synthetic mobility
model (HCMM), and a real mobility trace (KAIST), we show that selfish users are
isolated and system resources are only allocated among collaborative users. Finally,
using a game theoretic framework, we show that turning on MobiTrade is the optimal
strategy to use for selfish, rational users. In future work, we intend to consider more
complex content structures (e.g. hierarchical channels, semantic matching, etc.)
and their effect on our system.

Chapter 6

MobiTrade: Implementation on
Android Platform

Contents
6.1 MobiTrade Architecture Overview 97

6.1.1 MobiTrade Functional Architecture 97

6.1.2 MobiTrade Android Device Model 99

6.1.3 MobiTrade Session . 100

6.2 MobiTrade Support for Bluetooth 101

6.2.1 Bluetooth Overview . 102

6.2.2 Android Platform Support for Bluetooth 106

6.3 Functionalities provided by the MobiTrade Android Appli-
cation . 106

6.4 Summary and Open Issues . 111

We present in this chapter the software design of the MobiTrade application
for opportunistic collaborative content sharing that we have implemented for the
android platform. We follow a top-down description approach. We start by giving
a high level overview of the MobiTrade application architecture and its design prin-
ciples in Section 6.1 namely MobiTrade functional blocks, followed by a description
of the mobile application architecture and the content sharing session. Then, we dig
deeper into the network and link level technical details of the MobiTrade android
application in Section 6.2. In Section 6.3, we describe through screen shots the set
of functionalities actually provided by MobiTrade [117]. Finally, we conclude this
chapter with a discussion of the open issues and a summary in Section 6.4.

6.1 MobiTrade Architecture Overview

6.1.1 MobiTrade Functional Architecture

Having described MobiTrade algorithms in Chapter 5, we give here some more
details on the MobiTrade functional architecture that encapsulates the latter al-
gorithms. Figure 6.1 is a schematic of MobiTrade functional architecture which
encapsulates 5 building blocks:

98 Chapter 6. MobiTrade: Implementation on Android Platform

Figure 6.1: MobiTrade protocol functional building blocks

The Application Interface is designed so that developers can easily extend Mo-
biTrade and create new content sharing applications that use the MobiTrade func-
tionalities. Each MobiTrade application has a unique ID that it registers at the
application interface. The application then simply communicates with the Mobi-
Trade system using event handlers.

The Scheduling Block defines the order to follow while forwarding a set of re-
quested contents within a limited contact opportunity. This ordering is done based
on the matching channels utility values.

The Tit-For-Tat Trading and Forwarding Block takes in charge the forward-
ing of the stored channels records whenever a new contact is established, and the
negotiation and forwarding of the requested contents.

The Content/Channel Management Block manages the channel and content stor-
age space. It provides an API for storing and retrieving channel and content records
that hides the storage technology specifics. This block also takes in charge utility
updates for the stored channels and buffer management.

The Link Controller Block is the lowest layer in the MobiTrade architecture.
It provides a common interface for sending and receiving data across the differ-
ent available wireless interfaces. It is also responsible for periodically scanning the
neighborhood for devices, for establishing the contacts whenever meeting opportu-
nities arise and for triggering the Tit-For-Tat trading and forwarding block. The
link controller provides an API that hides network technology specifics (Bluetooth
or Wi-Fi) from the rest of the upstream blocks.

6.1. MobiTrade Architecture Overview 99

6.1.2 MobiTrade Android Device Model

Here, we cast the functional architecture described in the latter section within the
android platform in order to figure out the right device model and to identify the
suitable technical components.

As we have described before in the previous Chapter, the MobiTrade architecture
relies on user collaboration and on a content trading scheme in order to maximize
user revenues in terms of content of interest to him. Whenever a user expresses his
interest on a given channel and unless he is already connected to other users that
can immediately provide the contents he is interested, the user cannot expect to
get an immediate answer to its content request. Instead, the common behavior will
consist on the fact that the MobiTrade application will keep running in background
for an amount of time (could be long) in order to able to exploit any future possible
meeting opportunity and try to get back the content its local user is looking for. In
short, the user should be able to express his interests, head out in the real world
and wait to get notified whenever a content of interest is retrieved. In order to fulfill
such a need and as described in Figure 6.2, we choose to encapsulate the MobiTrade
functional blocks already described in the previous section within an android service
which has the capabilities to keep running in background even if the user is not
interacting with the MobiTrade application. At the same time, we developed a
separate graphic user interface based on android activities in order to provide to
the user a full control of the running service if needed. Indeed, as described in
Figure 6.2, from within the MobiTrade user interface, the user has access to four
different tabs that mainly enable him to request channels, publish contents, explore
existing channels and contents, tune MobiTrade algorithms configuration, etc. We
will provide later in this chapter more details about theses different tabs through
real screen shots.

The MobiTrade android application supports also a set of advanced notifica-
tions which could be easily tuned by the user via the configuration tab function of
its needs. As described in Figure 6.2, these notifications are triggered by the Mobi-
Trade service (running in background) and translated by the android Notifications
Manager API into either a personalized device physical vibration or text message
exposed to the user via the SmartPhone notification bar.

Since MobiTrade is based on store-carry-and-forward content sharing approach,
nodes should be able to efficiently store channels records as well as their associated
contents. Also, in the context of time/bandwidth limited contacts, MobiTrade appli-
cation should also be able to identify and extract efficiently the list of contents that
match a set of received channels records in order to answer the remote device upon
a MobiTrade session. Convinced that the latter needs could be fully satisfied by a
relational database engine and taking into consideration the fact that the selected
engine should be supported by our target platform (android), we choose to work
with an SQLite database engine. Indeed, an SQLite [118] database requires little or
no administration, it is a good choice for devices or services that must work unat-
tended and without human support. SQLite is a good fit for use in SmartPhones

100 Chapter 6. MobiTrade: Implementation on Android Platform

Figure 6.2: MobiTrade Device Model

and it works very well as an embedded database in applications. So, as described
in Figure 6.2, our MobiTrade mobile application uses and SQLite database engine
for channels and contents records management.

With regards to the underlying wireless technology we choose to initially base our
implementation on Bluetooth technology rather than on Wi-Fi but, we also intend
to support the Wi-Fi in ad hoc mode in the future. Indeed, the current android
Java libraries do not support the ad hoc mode of Wi-Fi although this is supported
by both the driver and the hardware interface on almost android mobile devices.
Therefore, making our implementation supporting the ad hoc mode requires the
device to be run in privileged user mode (i.e. rooted mode) so that the interface
can be reconfigured to run in ad hoc mode.

6.1.3 MobiTrade Session

We mean by a MobiTrade session the protocol followed by a pair of mobile devices
following a successful meeting and a wireless (Bluetooth) connection establishment.
Figure 6.3 depicts a UML (Unified Modeling Language) sequence diagram that
describes in details the dynamics of a MobiTrade session between two devices A and
B.

As described in Figure 6.3, the MobiTrade session is triggered by the device A
that starts by serializing the channels records that it stores locally into an XML
message (described in Figure 6.4) then, it sends the serialized message through the
established Bluetooth channel towards the remote peer. Once received, the channels
XML record is parsed within the device B using an XML SAX parser 1. The latter

1There are many XML parsers that are available. Choosing a right one for a situation might

6.2. MobiTrade Support for Bluetooth 101

device extracts the channels attributes (keywords, utilities ...) and decides based on
them of the set of contents that could be of interest to the device A. Once the later
contents are identified, MobiTrade schedules them based on the utilities of their
matching channels and prepares them for forwarding upon a possible request from
the TFT block. At the mean time, the device B serializes also its locally stored list
of channels and sends them back to the device A. The latter follows the same steps
as done by device B in order to identify any possible matching content. Once done,
the MobiTrade protocol triggers the TFT algorithm within device A in order to run
and manage the contents exchanging process. The TFT block serializes the first
scheduled content into an XML message (described in Figure 6.5) and forwards the
latter one to device B which in return decides of the content to forward back based
on the size of the received one. The TFT process continues until one of the devices
or both of them exhaust their list of scheduled contents.

In order to simplify the MobiTrade session and to make it as more efficient
as possible, we choose to serialize also the content binary data within the XML
document (see Figure 6.5). It is true that XML is not the ideal carrier for binary
data. It is a text format, and as such does not cope well with raw bits. But,
if binary data is properly encoded, using something like the W3C XML scheme
types Base64Binary, then using the XML converters reading and writing binary
files becomes a snap. So, in our case, we use the Base-64 encoding/decoding format
in order to be able respectively to include the content binary data as an element
within the XML document (see Figure 6.5) at the sender side and to extract it at
the receiver one.

6.2 MobiTrade Support for Bluetooth

As explained before, we choose to initially base our implementation only on Blue-
tooth technology since the current android Java libraries do not support the ad-hoc
mode of 802.11. Bluetooth is a low-power short-range wireless communication tech-
nology intended to replace the cables connecting electronic devices. Below we give
a short overview on the Bluetooth protocol stack, the device discovery procedure
(called inquiry scan in Bluetooth terminology), supported higher layer protocols and
the application programming interfaces.

be challenging. Only three XML parsing techniques are extremely popular and are used for Java.
Document Object Model (DOM), is W3C provided mature standard, and simple API for XML
(SAX), it was one of the first to be widely adapted form of API for XML in Java and has become
the standard. The third one is Streaming API for XML (SAX), which is a new model for parsing
in XML but is very efficient and has a promising future. Each one of the mentioned techniques
has their advantages and disadvantages. Choosing the right technique depends mainly on the
application, its requirements and the hosting device capabilities. We choose to use a SAX parser
since it is an event-driven parser that does not need to build the entire tree describing the XML
document within memory and hence it does not require lot of memory space which is something
we try to minimize within MobiTrade.

102 Chapter 6. MobiTrade: Implementation on Android Platform

Figure 6.3: MobiTrade session.

6.2.1 Bluetooth Overview

Bluetooth operates on a license-free ISM band at 2.4GHz (the same as used by
802.11). The physical layer is based on frequency hopping spread spectrum (FHSS)
and transmits data on up to 79 frequency bands (1 MHz each). Each frequency
band is divided into time slots and full duplex transmission is provided through the
use of a time-division duplex (TDD) scheme.

Bluetooth network has a master-slave structure. A master device can commu-
nicate with up to seven devices forming a so called piconet. In a piconet devices
communicate on the same physical channel that is defined by a common clock (set by

6.2. MobiTrade Support for Bluetooth 103

Figure 6.4: Channels xml description.

Figure 6.5: Content XML description.

the master) and a frequency hopping pattern. By definition, the device that initiates
a connection becomes the master. Once a piconet has been established, master-slave
roles may be exchanged. At any given time, data can be transferred between the
master and one other device, but never directly between two slaves. A device can
only be synchronized to a single channel at a time. Multiple simultaneous oper-
ations (e.g. participating in various piconets, being discoverable and connectable)

104 Chapter 6. MobiTrade: Implementation on Android Platform

are supported using time-division multiplexing between various channels. However,
device can only be the master of a single piconet.

Above the physical layer in the architecture there is a number of logical links
for control and data traffic. These are managed by a L2CAP layer that provides a
channel based abstraction for applications. One logical (and physical) link can thus
carry data for multiple applications. L2CAP provides reliable transmission perform-
ing flow control, CRC checks and retransmissions upon request. The main traffic
services provided are asynchronous connection-oriented unicast and isochronous con-
stant rate channel (e.g. for audio streaming). However, these channels are rarely
used directly by applications; instead several higher layer protocols have been stan-
dardized and implemented in various client libraries.

The most commonly adopted Bluetooth specifications include v1.2, v2.0 and v2.1
all being backwards compatible. The specifications differ mainly in supported bit
rates and support for some advanced features. The nominal rate for Bluetooth v1.2
is 1Mbit/s. Bluetooth v2.0 increases the bit rate up to 2Mbit/s (Basic Rate) and
3Mbit/s (Enhanced Data Rate or EDR). v2.1 extends the inquiry responses (more
on this below) and adds secure pairing among other minor tweaks. The operational
ranges of Bluetooth devices vary from approximately 1, 10 to 100 meters (class 3,
class 2 and class 1 respectively). Smartphones are generally class 2 devices.

Inquiry Scan Procedure The Bluetooth specification defines two separate phys-
ical channels for device discovery (inquiry scan channel) and connection setup (page
scan channel). Each Bluetooth devices can be in one of the four states: (i) con-
nectable and discoverable, (ii) connectable, (iii) discoverable, or (iv) neither discov-
erable nor connectable. A device cannot be discovered nor connected unless it is
configured in the correct state.

A discoverable device listens for inquiry requests periodically (called inquiry scan
state) on its inquiry scan channel that has a reduced number of hop frequencies
and a slower rate of hopping. In order to discover neighboring devices, an inquiring
device hops through all possible inquiry scan channel frequencies in a pseudo-random
fashion, sending an inquiry request on each frequency and listening for responses.
This is done at a faster rate, allowing the inquiring device to cover all inquiry
scan frequencies in a reasonably short time period. The Bluetooth specification
recommends inquiry duration of 10.24s. Then, with high probability, all neighboring
devices will have entered their inquiry scan state and will hear the inquiry.

An inquiry response consists of a unique 48-bit device address of the discovered
device and a 24-bit Class-of-Device code (CoD). The CoD consists of a major and
minor device codes. The device codes are standardized and provide information
about the device type: major code can tell if the device is a computer or a phone
for example while the minor code can specify if the device is a cellular or cordless
phone. In addition, each device may have a human readable name that can be
queried using a separate control request. The extended inquiry response available
in v2.1 can provided the human readable name and additional information about

6.2. MobiTrade Support for Bluetooth 105

supported services directly in the inquiry response. Older Bluetooth devices must
use the separate control request and a service discovery protocol (see below) instead.

Once a device is discovered, a connection setup can take place. A connectable
device is listening on its page scan channel for connection requests that are sent in
a similar fashion as inquiry scans. The connection setup must be completed before
any data can be transmitted between the devices.

Higher Layer Protocols Each Bluetooth device must support the Service Dis-
covery Protocol (SDP). The service discovery mechanism provides the means for
client applications to discover the existence of services provided by server applica-
tions as well as the attributes of those services. The attributes of a service include
the type or class of the service and the protocol information needed to access the
service. The SDP protocol itself is run by a SDP server on the device that is re-
sponsible of maintaining the local service records and answering service discovery
queries for SDP clients on other Bluetooth devices.

The Bluetooth specifications define various specialized protocols on top of the
L2CAP layer for different purposes such as audio streaming, telephony and data
transmissions. The most commonly used serial data stream protocol is RFCOMM.
The RFCOMM protocol provides emulation of serial ports (up to 60 ports can be
used simultaneously depending on the implementation). It provides a simple reliable
data stream service, similar to TCP. In order to connect to another Bluetooth device
over RFCOMM, the client must know the server channel which can be resolved using
SDP. It is also possible to use hard-coded channels, but dynamic channel numbers
are recommended since the number of available channels is very limited (30).

Our MobiTrade android implementation makes use of the service discovery pro-
tocol (SDP) and establishes an RFCOMM serial data stream in order to efficiently
run a given MobiTrade session and to exchange the needed meta-data messages as
well as the contents themselves. According to MobiTrade architecture, each mobile
device plays at the same time the role of a client and a server. So, it hosts a Mo-
biTrade service which in return will accept and manage incoming connections and
supports needed functionalities in order to initiate and run a MobiTrade session.
Indeed, using SDP, a MobiTrade device has the ability to identify whether the re-
mote peer hosts a MobiTrade service or not. If a running service is discovered, then,
the mobile device establishes an RFCOMM channel with the remote peer in order
to exchange the needed messages.

Application Programming Interfaces The main interface between user level
applications and the Bluetooth device is called Host Controller Interface (HCI) that
is standardized in the Bluetooth specification. However, existing Bluetooth protocol
stack implementations typically do not allow direct access to the HCI interface but
provide their own abstractions of the main Bluetooth operations. The main stacks in
use include BlueZ for Linux based devices 2, Windows Bluetooth stack and WinSock
for Windows and Windows CE based devices 3 and Broadcom’s Bluetooth stack for

106 Chapter 6. MobiTrade: Implementation on Android Platform

Windows based devices 4.
The client APIs let the applications control the device state (discoverable and/or

connectable), the human readable Bluetooth device name and very often the CoD
value. The device inquiry can be initiated at anytime through the Bluetooth API
and the applications can typically control the duration of the inquiry and/or the
number of responses to wait for. The applications can also query for the human
readable names of the discovered devices, create local SDP records for the services
they provide and query the records of nearby devices. The data services such as
RFCOMM are typically accessed using a special type of socket and the familiar
socket API.

6.2.2 Android Platform Support for Bluetooth

Since the android platform is based on a Linux kernel, the provided android Blue-
tooth API is nothing but a Java wrapper around the Linux BlueZ stack. These
APIs let applications wirelessly connect to other Bluetooth devices, enabling point-
to-point and multi-point wireless features. Using the Bluetooth APIs, an android
application can perform the following:

• Scan for other Bluetooth devices

• Query the local Bluetooth adapter for paired Bluetooth devices

• Establish RFCOMM channels

• Connect to other devices through service discovery

• Transfer data to and from other devices

• Manage multiple connections

More details about the android Bluetooth API that we used for the development
of the MobiTrade application are provided in [119].

6.3 Functionalities provided by the MobiTrade Android
Application

The current android implementation of MobiTrade provides to the user a simplified
dashboard (see Figure 6.6) from which he can both follow and interact on real time
with the MobiTrade service. Indeed, the user have access to the current device
Bluetooth state (whether the adapter is on or off, whether it is in discoverable
mode or not and whether the device is currently running a discovery session or not).
A set of statistics are also presented within the dashboard like the total number of
contents stored within the device, the % of used space with respect to the total space
allocated to the MobiTrade application, the total number of channels maintained

6.3. Functionalities provided by the MobiTrade Android Application107

Figure 6.6: MobiTrade dashboard.

within the system, how much among the latter ones the user requested locally and
finally the number of Bluetooth discovered devices that run MobiTrade.

In terms of functionalities, from within the dashboard depicted in Figure 6.6, the
user is able to control the device Bluetooth discoverability, to control the Bluetooth
discovery session, to manage channels (create new ones or join existing ones) and
contents (create new contents or publish existing ones). We detail in the following
paragraphs the latter functionalities.

Bluetooth Interface Management One of the limitations that we faced along
the implementation of MobiTrade was related to the android Bluetooth stack. In-
deed, there was no way to keep the mobile device discoverable to other non paired
devices for more than 300 seconds. Enabling discoverability is necessary for Mo-
biTrade to host a server socket that will accept incoming connections, because the
remote non paired devices must be able to discover the device before it can initiate
the connection. According to the android SDK, by default, enabling discoverability
makes the device discoverable for 120 seconds. The android SDK provides a way to
define a different duration by adding the EXTRA_DISCOVERABLE_DURATION
Intent extra, however the maximum duration is fixed to 300 seconds.

In order to overcome the latter limitation, we have added a broadcast receiver
to MobiTrade to catch android Bluetooth scan mode changements. Then, whenever
the scan mode changes to not discoverable the user is notified, so he can decide
whether to re-enable discoverability or not. This could be done via the button
"Turn On Discoverable Mode" provided in the dashboard (see Figure 6.6).

Through the dashboard as well as the configuration tab described in Figure 6.15,

108 Chapter 6. MobiTrade: Implementation on Android Platform

we also provide to the user the control over the Bluetooth discovery sessions. In-
deed, by default, whenever the MobiTrade service does not have a running content
sharing session, it launches a Bluetooth discovery session trying to find new sharing
opportunities. It is obvious that the latter behavior maximizes the probability of
identifying new MobiTrade devices (sharing opportunities) however it can turn out
very quickly to be a useless waste of energy (device battery). Indeed, if the user
knows that he is going to be completely physically isolated from any possible sharing
opportunity, he can decide to stop temporary the Bluetooth discovery mechanism
and even the Bluetooth adapter itself towards saving some energy then, restart ev-
erything later. To do this, the user should ask MobiTrade to give him back control
over the Bluetooth discovery mechanism by updating the corresponding entry in the
configuration tab described in Figure 6.15. Then, the user can drive the discovery
from within the dashboard (run it or stop it whenever needed).

Channels/Contents Management As describer in Chapter 5, MobiTrade man-
ages autonomously the channels as well as their corresponding content records to-
wards maximizing the revenues of the local user. At the same time, the current
MobiTrade prototype provides to the user the possibility to interact and manage
the set of locally stored channels/contents. Indeed, as described in Figure 6.7, Mo-
biTrade dashboard enables the user to ask for joining a new channel. The latter
channel could be either an already discovered foreign channel (see Figure 6.8 or a
new channel that the user wants to create as depicted in Figure 6.11.

Figure 6.7: MobiTrade:
Joining a new channel.

Figure 6.8: MobiTrade:
Joining an existing chan-
nel.

The channels tab described in Figure 6.9 enables the user to navigate through
the available channels: the foreign channels that MobiTrade decides to collect and

6.3. Functionalities provided by the MobiTrade Android Application109

maintain locally for future trading as well as the locally requested ones. All the
channel records are organized within a scrollable list which makes it easy for the
user to navigate forward to the channels’ corresponding contents (see Figure 6.14)
and backward to the channels tab. Note that the locally requested channels are also
presented apart in a separate tab (see Figure 6.10) which we think provides a quick
access to the channels of local interest and their matching contents.

Figure 6.9: MobiTrade:
List of all channels.

Figure 6.10: MobiTrade:
List of locally requested
channels.

From within the dashboard, the user is also able to publish a new content record.
Once this task is initiated, the user is first asked to select the channel within which
he wants to publish the new content. Then, as described in Figure 6.12, the user can
choose to either publish an existing content or create a new one (see Figure 6.13),
and in both cases the user has to associate to the new content a short description
which is used later by MobiTrade to run the matching process between the contents
and the channels records.

MobiTrade Configuration As described in Figure 6.15, MobiTrade configura-
tion tab provides to the user the possibility to tune some important parameters
within the MobiTrade architecture. Namely, towards controlling the device resources
usage (both local storage as well as battery), first it is made possible for the user
to specify the maximum amount of storage space that MobiTrade is allowed to use
both for storing locally requested contents as well as contents used for trading. And
second, as described above in this section, the user can either leverage the control of
the Bluetooth discovery sessions to MobiTrade service which will try to keep always
discovering new sharing opportunities, or he can take the control over that process
and decide the moment at which the device should run a discovery session. Follow-

110 Chapter 6. MobiTrade: Implementation on Android Platform

Figure 6.11: MobiTrade:
Creating a new channel.

Figure 6.12: MobiTrade:
Publishing a new con-
tent.

Figure 6.13: MobiTrade:
Creating a new con-
tent/message.

Figure 6.14: MobiTrade:
List of available contents
with respect to the se-
lected channel.

ing the latter option, the user can save lot of battery power without losing in terms
of expected revenues from possible sharing opportunities.

Through the Configuration tab, the user also have the possibility to specify

6.4. Summary and Open Issues 111

whether he wants or not to get notified via the device vibrator (if supported) when-
ever a new content that matches a locally requested channel is received. Indeed,
this is a very interesting option because the user is not supposed to keep tracking on
real-time the status of the content sharing sessions. Instead, the user can start Mo-
biTrade service, choose to get notified, and then close the MobiTrade UI and head
out on the real world. Whenever a new content of interest is received, the user is
notified. Note that the MobiTrade UI is completely decoupled from the MobiTrade
service in terms of life cycle. MobiTrade UI could be down and at the same time
MobiTrade service is running in background. Any time the user launches the Mobi-
Trade activity (UI), he can control/follow on real time from within the dashboard
what is going on with the MobiTrade service.

Note that MobiTrade configuration is maintained persistently within the mobile
device. Thus, each time the user decides to update one of the configuration entries,
he should validate the new configuration from within the tab. There will be always
the possibility to re-load default configuration entries.

Figure 6.15: MobiTrade: Configuring the daemon.

6.4 Summary and Open Issues

We have described the design and implementation of our architecture for the Google
android platform. Our experience from the implementation is that android is a very
powerful platform and quite mature. The Java based environment provides a famil-
iar environment with good support for most common OS primitives such as threads
and concurrency, database and content storage and inter process communication
through the android service binding mechanism. Some features are however still

112 Chapter 6. MobiTrade: Implementation on Android Platform

missing, in particular support for the 802.11 ad hoc mode (which needs to be im-
plemented in native code). We believe that our design is general and facilitates the
implementation of advanced content-centric applications. MobiTrade protocol and
resources management policies can be easily customized which enables to quickly
setup and evaluate various experimental scenarios. There are however some issues
that are not, or only partially addressed by our design. We do currently not address
particularly the issues of privacy, security and power management. The latter are
one of our primary directions for future work.

Chapter 7

Conclusions and perspectives

In this thesis, we have investigated the problem of mobile devices resources manage-
ment towards setting up both efficient point-to-point content routing and sharing
within a delay tolerant network.

We first addressed the problem within the context of point-to-point DTN routing
and proposed an optimal joint scheduling and buffer management policy (GBSD).
We then introduced an approximation scheme (HBSD) for the required global knowl-
edge of the optimal algorithm. Using NS2 simulations based on synthetic and real
mobility traces, we showed that our policy based on statistical learning successfully
approximates the performance of the optimal algorithm. Both policies (GBSD and
HBSD) plugged into the Epidemic routing protocol outperform current state-of-
the-art protocols like RAPID [76] with respect to both delivery rate and delivery
delay, in all considered scenarios. Moreover, we discussed how to implement our
HBSD policy in practice, by using a distributed statistics collection method, illus-
trating that our approach is realistic and effective. We also showed that, unlike
related works [76, 79], our statistics collection method scales well, not increasing
the amount of signaling overhead during high congestion. We have also studied the
distributions of HBSD utilities under different congestion levels and showed that the
optimal policy heavily depends on the congestion level. The above findings suggest
that methods to signal the congestion level could allow nodes to switch off the more
sophisticated but heavier-duty HBSD policy and use simpler local policies, when
congestion is below some threshold.

We then, investigated the large scale point-to-multipoint content sharing prob-
lem over DTN while considering the possible existence of selfish users. We have first
formulated the optimal content sharing problem in DTNs from the perspective of
non-altruistic nodes while relying on a tit-for-tat mechanism to isolate free-riders.
Then, we have proposed MobiTrade, a utility-based solution to this problem that
predicts the (exchange) value of each piece of content and provides a customized
resource allocation strategy for each node, matched to its own interests and mobility
pattern. Finally, we have showed, using a game-theoretic framework that turning
on MobiTrade leads to an efficient Nash equilibrium. To our best knowledge, Mobi-
Trade is the first content sharing system for DTNs that can both deal with rational
and selfish users while at the same time achieving good global outcomes without
explicit hard constraints on the topology and dependency of nodes or on their social
behavior. Indeed, MobiTrade establishes real life trading principles by inciting users
to collaborate, profiling their needs and managing their device resources optimally
towards maximizing their revenues in terms of contents. Using NS3 simulations

114 Chapter 7. Conclusions and perspectives

based on a synthetic mobility model (HCMM), and a real mobility trace (KAIST),
we showed that selfish users are isolated and system resources are only allocated
among collaborative users.

To consolidate the NS-2/NS-3 simulations, we implemented our HBSD and Mo-
biTrade protocols respectively as an external router for the DTN2 reference platform
and as standalone mobile application for the Android powered devices. HBSD real
implementation is available on our web site [28], users can easily download and de-
ploy both the DTN2 platform along with the HBSD external router and tune latter
if needed. With respect to MobiTrade, the Android mobile application prototype is
available for download on our web site [117]. We detail in [117] the architecture as
well as the features of the MobiTrade prototype.

As a future work, and towards consolidation our proposal (HBSD) for the point-
to-point content routing problem over DTN, it would be interesting to define buffer
management and scheduling policies that take into account different messages sizes
(in this work, we considered that all messages have the same size). For example,
in case of congestion, the end-to-end delay versus message delivery trade-off could
be influenced by the choice of dropping several small messages or one large message
that occupies the entire node’s buffer. Then, starting from our findings which state
that the optimal policy heavily depends on the congestion level, another interesting
future work direction would be to study and design an end-to-end congestion control
scheme. Indeed, signaling the congestion level could allow nodes to switch off the
more sophisticated but heavier-duty HBSD policy and use simpler local policies,
when congestion is below some threshold. We believe that such a mechanism, if
available, would enable mobile nodes to save lot of resources (energy, storage and
contacts’ bandwidth). The latter problem remains largely not addressed in the DTN
context.

Then, with respect to our proposal (MobiTrade) for the point-to-multipoint con-
tent sharing problem over DTN, we aim at implementing the MobiTrade protocol
for other types of devices and experiment with real large scale communities of users,
and hence it will be possible to study MobiTrade architecture scalability under real
conditions. Furthermore, it would be interesting to consider more complex content
structures and their effect on MobiTrade performance. Moreover, one can go one
step further with the study of the needed mechanisms to control possible advanced
malicious attacks and behaviors that could impair MobiTrade content sharing ses-
sions. Such mechanisms could be easily integrated within MobiTrade channels’
utilities.

Bibliography

[1] “MOnitoring with Motes,” http://www.iteam.upv.es. (Cited on pages iii
and 3.)

[2] “Wireless Sensor Networks for Habitat Monitoring,” http://www.arnetminer.
org/viewpub.do?pid=505717/. (Cited on pages iii and 3.)

[3] “Resilient and Survivable Networks,” https://wiki.ittc.ku.edu/resilinets/
Main_Page. (Cited on pages iii and 3.)

[4] “UMass DieselNet,” http://prisms.cs.umass.edu/dome/umassdieselnet. (Cited
on pages iii and 3.)

[5] “The KioskNet Project,” http://blizzard.cs.uwaterloo.ca/tetherless/index.
php/KioskNet. (Cited on pages iii and 3.)

[6] “Delay Tolerant Networks on Android Pones,” http://www.tslab.ssvl.kth.se/
csd/projects/092106/. (Cited on pages iii and 3.)

[7] “TIER project, uc berkeley,” http://tier.cs.berkeley.edu/. (Cited on pages iii,
2 and 3.)

[8] “BioServe, Space Technologies,” http://www.colorado.edu/engineering/
BioServe/. (Cited on pages iii and 3.)

[9] “Interplanetary Internet Demonstrated from Space,” http://personal.ee.
surrey.ac.uk/Personal/L.Wood/dtn/saratoga?/. (Cited on pages iii and 3.)

[10] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R. Braynard,
“Networking named content,” in Proc. of ACM CoNEXT, 2009. (Cited on
pages 1, 4, 78, 80, 81 and 96.)

[11] “Comscore statistics,” http://www.comscore.com. (Cited on page 1.)

[12] “AT&T: Improving 3G network,” http://gigaom.com/2008/06/08/
3g-network-iphone/. (Cited on pages 1 and 77.)

[13] “Iphone users eating up AT&T’s network,” http://venturebeat.com/2009/05/
11/iphone-users-eating-up-atts-network/. (Cited on page 1.)

[14] A. Lindgren and P. Hui., “The quest for a killer app for opportunistic and
delay tolerant networks,” in Proc. of ACM MobiCom Workshop on Challenged
Networks, Beijing, China, 2009. (Cited on page 1.)

[15] B. Han, P. Hui, M. Marathe, G. Pei, A. Srinivasan, and A. Vullikanti, “Cellular
traffic offloading through opportunistic communications: A case study,” in
Proc. of ACM CHANTS, 2010. (Cited on pages 1 and 77.)

http://www.iteam.upv.es
http://www.arnetminer.org/viewpub.do?pid=505717/
http://www.arnetminer.org/viewpub.do?pid=505717/
https://wiki.ittc.ku.edu/resilinets/Main_Page
https://wiki.ittc.ku.edu/resilinets/Main_Page
http://prisms.cs.umass.edu/dome/umassdieselnet
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/KioskNet
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/KioskNet
http://www.tslab.ssvl.kth.se/csd/projects/092106/
http://www.tslab.ssvl.kth.se/csd/projects/092106/
http://www.colorado.edu/engineering/BioServe/
http://www.colorado.edu/engineering/BioServe/
http://personal.ee.surrey.ac.uk/Personal/L.Wood/dtn/saratoga?/
http://personal.ee.surrey.ac.uk/Personal/L.Wood/dtn/saratoga?/
http://www.comscore.com
http://gigaom.com/2008/06/08/3g-network-iphone/
http://gigaom.com/2008/06/08/3g-network-iphone/
http://venturebeat.com/2009/05/11/iphone-users-eating-up-atts-network/
http://venturebeat.com/2009/05/11/iphone-users-eating-up-atts-network/

116 Bibliography

[16] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting mo-
bile 3g using wifi,” in Proc. of ACM MobiSys, 2010. (Cited on page 1.)

[17] M. R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and M. J. Neely,
“Energy-delay tradeoffs in smartphone applications,” in Proc. of MobiSys, San
Francisco, California, USA, 2010. (Cited on page 1.)

[18] “Delay tolerant networking research group,” http://www.dtnrg.org . (Cited on
pages 1, 17 and 30.)

[19] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: design tradeoffs and early
experiences with zebranet,” in Proceedings of ACM ASPLOS, 2002. (Cited on
page 2.)

[20] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Research challenges
and applications for underwater sensor networking,” in Proceedings of the
IEEE Wireless Communications and Networking Conference, 2006. (Cited
on page 2.)

[21] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp: Routing
for Vehicle-Based Disruption-Tolerant Networks,” in Proc. IEEE INFOCOM,
2006. (Cited on pages 2, 17, 20, 21 and 22.)

[22] “Digital studyhall (DSH),” http://dsh.cs.washington.edu/. (Cited on page 2.)

[23] “One laptop per child,” http://one.laptop.org/. (Cited on page 2.)

[24] Z. J. Haas and T. Small, “A new networking model for biological applications
of ad hoc sensor networks.” IEEE/ACM Transactions on Networking, vol. 14,
no. 1, pp. 27–40, 2006. (Cited on pages 3 and 30.)

[25] R.Groenevelt, G. Koole, and P. Nain, “Message delay in manet (extended
abstract),” in Proc. ACM Sigmetrics, 2005. (Cited on pages 3, 30 and 32.)

[26] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Performance analysis
of mobility-assisted routing,” in Proceedings of ACM/IEEE MOBIHOC, 2006.
(Cited on pages 3, 30 and 32.)

[27] A. Krifa, C. Barakat, and T. Spyropoulos, “Optimal buffer management poli-
cies for delay tolerant networks,” in IEEE SECON, 2008. (Cited on pages 4,
45 and 58.)

[28] “HBSD DTN2 external router,” http://planete.inria.fr/{HBSD}_{DTN2}.
(Cited on pages 4, 5, 68, 75, 76 and 114.)

[29] A. Lindgren and K. S. Phanse, “Evaluation of queuing policies and forwarding
strategies for routing in intermittently connected networks,” in Proceedings of
IEEE COMSWARE, 2006. (Cited on pages 4, 20 and 31.)

http://www.dtnrg.org
http://dsh.cs.washington.edu/
http://one.laptop.org/
http://planete.inria.fr/{HBSD}_{DTN2}

Bibliography 117

[30] B. B. Chen and M. C. Chan, “Mobicent: a credit based incentive system for
disruption tolerant network,” in Proc. of IEEE INFOCOM, 2010. (Cited on
pages 4 and 27.)

[31] U. Shevade, H. Song, L. Qiu, and Y. Zhang, “Incentive aware routing in dtns,”
in Proc. of IEEE ICNP, 2008. (Cited on pages 4 and 27.)

[32] R. Chakravorty, S. Agarwal, and S. Banerjee, “MoB: A mobile bazaar for
wide-area wireless services,” in in Proc. ACM MobiCom, Cologne, Germany,
2005. (Cited on pages 4 and 26.)

[33] L. Hu, J. L. Boudec, and M. Vojnovic, “Optimal channel choice for collabo-
rative ad-hoc dissemination,” in Proc. of IEEE INFOCOM, San Diego, CA,
USA, 2010. (Cited on pages 4, 26, 78, 87 and 90.)

[34] C. Boldrini, M. Conti, and A. Passarella, “Design and performance evaluation
of contentplace, a social-aware data dissemination system for opportunistic
networks,” in Elsevier Computer Networks, 2010. (Cited on pages 4, 25, 78,
82, 83 and 87.)

[35] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco, “Socially-aware routing
for publish-subscribe in delay-tolerant mobile ad hoc networks,” Transactions
on IEEE Selected Areas in Communications, 2008. (Cited on pages 4, 23
and 25.)

[36] O. Helgason, E. Yavuz, S. Kouyoumdjieva, L. Pajevic, and G. Karlsson, “A
mobile peer-to-peer system for opportunistic content-centric networking,” in
Proc. of ACM MobiHeld, 2010. (Cited on pages 4, 23, 25 and 78.)

[37] S. Jung, U. Lee, A. Chang, D. Cho, and M. Gerla, “Bluetorrent: Cooperative
content sharing for bluetooth users,” in Proc. of IEEE PerCom, 2007. (Cited
on pages 4, 8 and 24.)

[38] G. Sollazzo, M. Musolesi, and C. Mascolo, “TACO-DTN: A time-aware
content-based dissemination system for delay tolerant networks,” in Proc. of
ACM MobiOpp, 2007. (Cited on pages 4, 23, 24, 78 and 83.)

[39] M. Motani, V. Srinivasan, and P. S. Nuggehalli, “Peoplenet: engineering a
wireless virtual social network,” in MobiCom ’05: Proceedings of the 11th
annual international conference on Mobile computing and networking, 2005.
(Cited on pages 4, 23, 24 and 78.)

[40] M. Felegyhazi, J. P. Hubaux, and L. Buttyan, “Nash equilibria of packet for-
warding strategies in wireless ad hoc networks,” Transactions on Mobile Com-
puting, 2006. (Cited on pages 4, 23, 24, 26 and 78.)

[41] A. Krifa, M. K. Sbai, C. Barakat, and T. Turletti, “Bithoc: A content sharing
application for wireless ad hoc networks,” in Proc. of IEEE PerCom, 2009.
(Cited on pages 5, 8, 11, 12, 14, 23 and 79.)

118 Bibliography

[42] L. Buttyan, M. Felegyhazi, and I. Vajda, “Barter-based cooperation in delay-
tolerant personal wireless networks,” in Proc. of IEEE AOC, Helsinki, Finland,
2007. (Cited on pages 5, 26 and 79.)

[43] E. Royer and C.-K. Toh, “A review of current routing protocols for ad-hoc
mobile wireless networks,” IEEE Communications Magazine, apr 1999. (Cited
on page 10.)

[44] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A perfor-
mance comparison of multi-hop wireless ad hoc network routing protocols,” in
Mobile Computing and Networking, 1998. (Cited on page 10.)

[45] “BitHoc,” http://planete.inria.fr/bithoc/. (Cited on pages 11, 12 and 17.)

[46] (Cited on pages 12, 14 and 24.)

[47] T. Clausen and P. Jacquet, Optimized Link State Routing Protocol, draft-
ietfmanet-olsr-11.txt, 2003. (Cited on page 14.)

[48] “Bundle protocol specification,” http://www.ietf.org/rfc/rfc5050.txt. (Cited
on page 17.)

[49] K. Fall, “A delay-tolerant network architecture for challenged internets,” in
ACM SIGCOMM, 2003. (Cited on pages 17 and 18.)

[50] J. Ott and D. Kutscher, “A disconnection-tolerant transport for drive-thru in-
ternet environments,” in Proceedings of INFOCOM, 2005. (Cited on page 17.)

[51] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: design tradeoffs and early
experiences with zebranet,” in ASPLOS-X, 2002. (Cited on page 18.)

[52] T. Small and Z. J. Haas, “The shared wireless infostation model : A new ad
hoc networking paradigm,” in In Proc. ACM MobiHoc, Anapolis, MD, USA,
2003. (Cited on page 18.)

[53] E. Brewer, M. Demmer, B. Du, M. Ho, M. Kam, S. Nedevschi, J. Pal, R. Patra,
S. Surana, and K. Fall, “The case for technology in developing regions,” IEEE
Computer, 2005. (Cited on page 18.)

[54] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott, and
H. Weiss, “Delay-tolerant networking: an approach to interplanetary internet,”
IEEE Communications Magazine, 2003. (Cited on page 18.)

[55] “Delay-tolerant networks (DTNs) : A tutorial,” http://www.dtnrg.org/wiki/
Docs. (Cited on page 18.)

[56] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
Proceedings of ACM SIGCOMM, Aug. 2004. (Cited on pages 19, 20, 21, 29
and 30.)

http://planete.inria.fr/bithoc/
http://www.ietf.org/rfc/rfc5050.txt
http://www.dtnrg.org/wiki/Docs
http://www.dtnrg.org/wiki/Docs

Bibliography 119

[57] E. P. Jones and P. A. Ward, “Routing strategies for delay-tolerant networks,”
Submitted to ACM Computer Communication Review (CCR). (Cited on
page 19.)

[58] Z. Zhang., “Routing in intermittently connected mobile ad hoc networks and
delay tolerant networks,” IEEE Communications Surveys and Tutorials, 2006.
(Cited on page 19.)

[59] J. Davis, A. Fagg, , and B. N. Levine, “Wearable computers and packet trans-
port mechanisms in highly partitioned ad hoc networks,” in Proc. of IEEE
ISWC, 2001. (Cited on pages 20 and 21.)

[60] O. B. B. Burns and B. N. Levine, “Mv routing and capacity building in disrup-
tion tolerant networks,” in In Proc. IEEE Infocom, 2005. (Cited on pages 20
and 21.)

[61] T. Small and Z. Haas, “Resource and performance tradeoffs in delay-tolerant
wireless networks,” in Proceedings of ACM SIGCOMM workshop on Delay
Tolerant Networking (WDTN), 2005. (Cited on pages 20 and 21.)

[62] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” Wireless Networks, vol. 8, no. 2/3,
2002. (Cited on page 20.)

[63] J. Widmer and J.-Y. L. Boudec, “Network coding for efficient communication
in extreme networks,” in Proceedings of ACM SIGCOMM workshop on Delay
Tolerant Networking (WDTN), 2005. (Cited on page 20.)

[64] S. Jain, M. Demmer, R. Patra, and K. Fall, “Using redundancy to cope with
failures in a delay tolerant network,” in Proceedings of ACM SIGCOMM, 2005.
(Cited on pages 20 and 29.)

[65] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: Efficient
routing in intermittently connected mobile networks,” in Proceedings of ACM
SIGCOMM workshop on Delay Tolerant Networking (WDTN), 2005. (Cited
on pages 20 and 21.)

[66] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc
networks,” Duke University, Tech. Rep. CS-200006, 2000. (Cited on pages 20,
21, 30 and 32.)

[67] E. P. C. Jones, L. Li, and P. A. S. Ward, “Practical routing in delay-tolerant
networks,” in Proceedings of ACM SIGCOMM workshop on Delay Tolerant
Networking (WDTN), 2005. (Cited on pages 20 and 21.)

[68] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Single-copy routing in
intermittently connected mobile networks,” in Proceedings of IEEE SECON,
2004. (Cited on page 20.)

120 Bibliography

[69] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “Dtn routing as a
resource allocation problem,” in ACM SIGCOMM, 2007. (Cited on pages 20
and 22.)

[70] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling and
analysis of a three-tier architecture for sparse sensor networks,” Elsevier Ad
Hoc Networks Journal, 2003. (Cited on page 20.)

[71] J. Burgess, G. Bissias, M. Corner, and B. Levine, “Surviving attacks
on disruption-tolerant networks without authentication,” in to appear in
IEEE/ACM MobiHoc, 2007. (Cited on page 20.)

[72] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance modeling of epi-
demic routing,” in Proceedings of IFIP Networking, 2006. (Cited on pages 20,
31, 44 and 58.)

[73] H. P. Dohyung Kim and I. Yeom, “Minimizing the impact of buffer overflow in
dtn,” in Proceedings International Conference on Future Internet Technologies
(CFI), 2008. (Cited on page 20.)

[74] J. Leguay, T. Friedman, and V. Conan, “DTN routing in a mobility pattern
space,” in In Proc. ACM Chants Workshop, 2005. (Cited on page 21.)

[75] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently
connected networks,” SIGMOBILE MCCR, July 2003. (Cited on page 21.)

[76] A. Balasubramanian, B. Levine, and A. Venkataramani, “Dtn routing as a
resource allocation problem,” in Proceedings of ACM SIGCOMM, 2007. (Cited
on pages 21, 22, 30, 32, 35, 41, 44, 53, 61 and 113.)

[77] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in intermittently
connected networks,” SIGMOBILE Mobile Computing and Communication
Review, vol. 7, no. 3, 2003. (Cited on pages 21 and 30.)

[78] P. Desnoyers, D. Ganesan, H. Li, M. Li, and P. Shenoy, “Presto: A predictive
storage arch- itecture for sensor networks,” in In Proc. USENIX HotOS, 2005.
(Cited on page 22.)

[79] D. J. L. S. L. Z. Yong L., Mengjiong Q., “Adaptive optimal buffer management
policies for realistic dtn,” in IEEE GLOBECOM, 2009. (Cited on pages 22,
61 and 113.)

[80] T. Spyropoulos, N. B. Rais, T. Turletti, K. Obraczka, and T. Vasilakos, “Rout-
ing for disruption tolerant networks: Taxonomy and design,” in ACM/Kluwer
Wireless Networks (WINET), 2010. (Cited on page 22.)

[81] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: Data for-
warding in disconnected mobile ad hoc networks,” IEEE Commun. Mag.,
vol. 44, no. 11, 2006. (Cited on page 22.)

Bibliography 121

[82] M. May, C. Wacha, V. Lenders, and G. Karlsson, “Wireless opportunistic
podcasting: Implementation and design tradeoffs,” in Proc. of ACM CHANTS,
2007. (Cited on pages 23, 25, 78, 80, 82, 83 and 87.)

[83] V. Lenders, G. Karlsson, and M. May, “Wireless ad hoc podcasting,” in IEEE
SECON, 2007. (Cited on page 23.)

[84] C. Boldrini, M. Conti, and A. Passarella, “Contentplace: social-aware data
dissemination in opportunistic networks,” in Proceedings ACM MSWiM, 2008.
(Cited on page 23.)

[85] ——, “Users mobility models for opportunistic networks: the role of physical
locations,” in Proc. of IEEE WRECOM, 2007. (Cited on pages 23, 44, 79
and 87.)

[86] N. A. Thompson, R. Crepaldi, and R. Kravets, “Locus: A location-based data
overlay for disruption-tolerant networks,” in Proc. of ACM CHANTS, 2010.
(Cited on pages 23 and 78.)

[87] “Mobisim:,” http://www.mobisim.org/fr-home.html. (Cited on page 23.)

[88] C. Boldrini, M. Conti, and A. Passarella, “Modelling data dissemination in
opportunistic networks,” in Proceedings of the third ACM workshop on Chal-
lenged networks, ser. CHANTS, San Francisco, California, USA, 2008. (Cited
on pages 25 and 78.)

[89] V. Lenders, G. Karlsson, and M. May, “Wireless ad hoc podcasting,” in IEEE
SECON, 2007. (Cited on pages 25 and 78.)

[90] C. Boldrini, M. Conti, and A. Passarella, “Exploiting users’ social relations to
forward data in opportunistic networks: the hibop solution,” in Proceedings of
Pervasive Mob. Comput., 2008. (Cited on page 26.)

[91] P. Brémaud, Markov chains : Gibbs fields, Monte Carlo simulation, and
queues. Berlin, Germany: Springer, 2001. (Cited on page 26.)

[92] B. Sonja and J. Y. L. Boudec, “A robust reputation system for peer-to-peer
and mobile ad-hoc networks,” in Proc. of P2PEcon, 2004. (Cited on page 27.)

[93] N. Glance, D. Snowdon, and J.-L. Meunier, “Pollen: using people as a com-
munication medium,” Computer Networks, vol. 35, no. 4, Mar. 2001. (Cited
on page 29.)

[94] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient routing in inter-
mittently connected mobile networks: The multiple-copy case,” IEEE/ACM
Transactions on Networking, vol. 16, no. 1, pp. 77–90, 2008. (Cited on
pages 30, 32 and 51.)

http://www.mobisim.org/fr-home.html

122 Bibliography

[95] T. Spyropoulos, T. Turletti, and K. Obrazcka, “Routing in delay tolerant
networks comprising heterogeneous populations of nodes,” IEEE Transactions
on Mobile Computing, 2009. (Cited on page 32.)

[96] D. Aldous and J. Fill, “Reversible markov chains and random walks on graphs.
(monograph in preparation.),” http:// stat-www.berkeley.edu/ users/ aldous/
RWG/book.html . (Cited on page 32.)

[97] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnović, “Power law and exponential
decay of inter contact times between mobile devices,” in Proceedings of ACM
MobiCom ’07, 2007. (Cited on page 32.)

[98] T. Spyropoulos, A. Jindal, and K. Psounis, “An analytical study of funda-
mental mobility properties for encounter-based protocols,” International Jour-
nal of Autonomous and Adaptive Communications Systems, 2008. (Cited on
page 33.)

[99] A. Chaintreau, J.-Y. Le Boudec, and N. Ristanovic, “The age of gossip: spatial
mean field regime,” in Proceedings of ACM SIGMETRICS ’09, 2009. (Cited
on page 33.)

[100] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press New York, NY, USA, 2004. (Cited on pages 40 and 41.)

[101] S. K. S. B. A. Seth, M. Zaharia, “A policy-oriented architec-
ture for opportunistic communication on multiple wireless networks
(http://blizzard.cs.uwaterloo.ca/keshav/home/papers/data/06/ocmp.pdf),”
University of Waterloo, Tech. Rep., 2006. (Cited on page 41.)

[102] H. Lilliefors, “On the kolmogorov-smirnov test for normality with mean and
variance unknown,” Journal of the American Statistical Association, Vol. 62.
pp. 399-402, 1967. (Cited on page 42.)

[103] A. Guerrieri, A. Montresor, I. Carreras, F. D. Pellegrini, and D. Miorandi,
“Distributed estimation of global parameters in delay-tolerant networks,” in
in Proccedings of Autonomic and Opportunistic Communication (AOC) Work-
shop (colocated with WOWMOM, 2009, pp. 1–7. (Cited on page 43.)

[104] “Dtn architecture for ns-2,” http://www-sop.inria.fr/members/Amir.Krifa/
DTN. (Cited on pages 43 and 44.)

[105] Y. Wang, P. Zhang, T. Liu, C. Sadler, and M. Martonosi, “Movement
data traces from princeton zebranet deployments,” CRAWDAD Database.
http://crawdad.cs.dartmouth.edu/, 2007. (Cited on page 44.)

[106] “Cabspotting project,” http://cabspotting.org/. (Cited on page 44.)

[107] “KAIST mobility traces,” http://research.csc.ncsu.edu/netsrv/?q=node/4.
(Cited on pages 45, 79, 87 and 88.)

http://stat-www.berkeley.edu/users/aldous/RWG/book.html
http://stat-www.berkeley.edu/users/aldous/RWG/book.html
http://www-sop.inria.fr/members/Amir.Krifa/DTN
http://www-sop.inria.fr/members/Amir.Krifa/DTN
http://cabspotting.org/
http://research.csc.ncsu.edu/netsrv/?q=node/4

Bibliography 123

[108] D. Hadaller, S. Keshav, T. Brecht, and S. Agarwal, “Vehicular opportunistic
communication under the microscope,” in Proceedings of ACM MobiSys’07,
New York, NY, USA, 2007. (Cited on page 49.)

[109] “Nyquist shannon sampling theorem,” http://en.wikipedia.org/wiki/Nyquist
(Cited on page 51.)

[110] “DTN2 manual,” http://www.dtnrg.org/docs/code/DTN2/doc/manual.
(Cited on pages 63 and 64.)

[111] M. Demmer, E. Brewer, K. Fall, M. Ho, and R. Patra, “Implementing delay
tolerant networking,” Tech. Rep., 2003. (Cited on pages 63 and 64.)

[112] A. Krifa, C. Barakat, and T. Spyropoulos, “Message drop and scheduling in
DTNs: Theory and practice,” HAL INRIA, Tech. Rep., 2010. (Cited on
pages 68, 83 and 89.)

[113] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free riding in bittor-
rent is cheap,” in Proc. of ACM HotNets, Irvine, CA, USA, 2006. (Cited on
page 84.)

[114] “The NS-3 network simulator,” http://www.nsnam.org. (Cited on page 87.)

[115] V. Lenders, G. Karlsson, and M. May, “Wireless ad hoc podcasting,” in Proc.
of IEEE SECON, 2007. (Cited on pages 87 and 90.)

[116] J. C. Harsany and R. Selten, A General Theory of Equilibrium Selection in
Games. The MIT Press, 1988. (Cited on page 95.)

[117] “MobiTrade implementation for Android OS,” http://planete.inria.fr/
{M}obi{T}rade. (Cited on pages 97 and 114.)

[118] “SQLite database,” http://www.sqlite.org. (Cited on page 99.)

[119] “Android Bluetooth API,” http://developer.android.com/guide/topics/
wireless/bluetooth.html. (Cited on page 106.)

http://www.dtnrg.org/docs/code/DTN2/doc/manual
http://www.nsnam.org
http://planete.inria.fr/{M}obi{T}rade
http://planete.inria.fr/{M}obi{T}rade
http://www.sqlite.org
http://developer.android.com/guide/topics/wireless/bluetooth.html
http://developer.android.com/guide/topics/wireless/bluetooth.html

	Introduction
	Challenges faced by content routing and sharing in DTN(s)
	Contributions
	Organization

	Background
	Content sharing in MANETs
	MANETs
	MANETs and the P2P paradigm
	BitHoc: A P2P Content Sharing Solution for MANETs

	Content sharing in Disruption Tolerant Networks
	Disruption Tolerant Networks
	Content sharing in Disruption Tolerant Networks

	Conclusions and open issues

	Optimal Buffer Management and Scheduling for Unicast Ruting in DTNs
	Optimal Joint Scheduling and Drop Policy
	Assumptions and Problem Description
	Maximizing the average delivery rate
	Minimizing the average delivery delay
	The Case of Non-Homogeneous Mobility
	Optimality of Gradient Ascent Policy

	Using Network History to Approximate Global Knowledge in Practice
	Estimators for the Delivery Rate Utility
	Estimators for the Delivery Delay Utility

	Performance Evaluation
	Experimental Setup
	Performance evaluation for delivery rate
	Performance evaluation for delivery delay
	Optimality

	Maintaining Network History
	Maintaining Buffer State History
	Collecting Network Statistics
	Performance Tradeoffs of Statistics Collection

	Distribution of HBSD Utilities
	Summary and Open Issues

	HBSD: Implementation on top of the DTN2 reference architecture
	DTN2 Platform Overview
	Bundles/Messages Processing Modules
	Management Modules
	Application Support Module

	DTN2 External Router Interface Operation
	HBSD Implementation Overview
	Main HBSD external router building blocks
	Configuring HBSD
	Summary and Open Issues

	Interest Driven Content Sharing Architecture for Disruption Tolerant Networks
	MobiTrade Architecture
	MobiTrade Data Records
	MobiTrade Protocol
	Proportional Storage and Bandwidth Allocation
	Tit-For-Tat Trading

	Inference of Channel Utility
	Performance Evaluation
	Experimental Setup
	Collaborative Scenarios
	Scenarios with Selfish Users (SU)
	Choosing Strategies in MobiTrade

	Summary and Open Issues

	MobiTrade: Implementation on Android Platform
	MobiTrade Architecture Overview
	MobiTrade Functional Architecture
	MobiTrade Android Device Model
	MobiTrade Session

	MobiTrade Support for Bluetooth
	Bluetooth Overview
	Android Platform Support for Bluetooth

	Functionalities provided by the MobiTrade Android Application
	Summary and Open Issues

	Conclusions and perspectives
	Bibliography

