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Abstract

The Slow Start (SS) phase at the beginning of a TCP
connection affects the performance of short transfers
especially on long delay links such as Satellite Links.
Many works have tried to improve the performance
of this phase either by accelerating the congestion
window increase or by setting the SS threshold at
the beginning of the connection to a more accurate
value in order to avoid losses and a long Timeout.
However, these works don’t account for the size of
buffers in network nodes. In this paper, we present a
general analysis of this first phase as a function of the
network and TCP parameters. Among our results, we
show that as claimed, the previous works improve the
performance on paths with large buffers. However, on
paths with small buffers, completely different results
can be obtained.

1: Introduction

TCP [9, 12] is the transport protocol of the In-
ternet. Using a congestion window (W ), it controls the
flow of application packets as a function of network
congestion. W represents the maximum number of
packets the source can transmit without the receipt of
any acknowledgment (ACK) from the destination.

At the beginning of a TCP connection, a Slow
Start phase (SS) is called to increase W quickly and
smoothly [9]. It is followed by a slower increase phase
called Congestion Avoidance (CA) [9]. The switching
from SS to CA happens at a window called the SS
threshold (Wth) which is the source estimate of the
network capacity. By pipe size or by network capacity
we mean in the sequel the maximum number of packets
that can be fit on the path between the source and the
destination.

The first SS phase is known to hurt the performance
of short TCP transfers especially on long delay links
such as satellite links [1, 2, 3]. This is one of the main
issues discussed in the TCPSAT working group of the

IETF. The first reason is that on long delay links, W
needs a long time to reach large values. During this
time, network resources are underutilized. The solution
proposed to this problem consists in accelerating the
window increase during SS. We find here Byte Count-
ing [1] that considers the number of packets covered
by an ACK while increasing the window rather than
the number of ACKs. The aim is to overcome any de-
lay ACK mechanism at the destination. We find also
the Large Initial Window proposition [2] that consists
in starting the connection with a window larger than
1 packet but smaller than 4 full packets.

The second problem with the first SS phase is that of
losses. If Wth is not set appropriately at the beginning
of this phase, a congestion will occur before switching
to CA. Due to the fast window increase during SS, this
congestion results in many losses from the same win-
dow. A long Timeout is required to recover from these
losses [6]. This Timeout is followed by multiple reduc-
tions in W and Wth and a new SS phase. To avoid the
impact of these undesirable losses on the performance,
a proposition has been made in [8] to estimate a more
accurate value for the SS threshold at the beginning
of the connection. Normally, this threshold is set to
the window advertised by the receiver [12]. The author
in [8] proposes to use the flow of ACKs at the begin-
ning of SS to estimate the Bandwidth-Delay Product
(BDP) of the path and then to set Wth to this value.

However, these works didn’t consider the problem of
TCP when operating on paths with small buffers com-
pared to their BDP. They suppose implicitly that the
congestion in the network occurs during SS when the
pipe size is filled. However, It is known that due to
the fast window increase during SS, network buffers
may overflow early before filling the pipe. With small
buffers, the congestion in the network during SS is no
longer an indication of the source exceeding the net-
work capacity, but rather an indication of the net-
work buffers failing to absorb the bursty TCP traffic
during SS. This problem has been extensively studied
in [4, 5, 10]. The case of a long TCP-Tahoe connection
has been considered. The authors show in these works
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Figure 1: The network model

that small buffers result in an underestimation of net-
work capacity and calculate the required buffer size to
avoid this problem.

In this paper, we study via mathematical analysis
and simulations the performance of the first SS phase
of a TCP connection. We extend the model devel-
oped in [4, 5, 10] to study the first SS phase and to
account for different buffer sizes and for different win-
dow increase rates. We give answers to two main ques-
tions: how to set Wth at the beginning of a connection
and how to increase W during SS in order to avoid an
early buffer overflow. Among our results, we show that
the previous works may deteriorate the performance
instead of improving it on paths with small buffers.

In the next section, we outline our analytical model
for the evaluation of TCP performance. In section 3,
we study the impact of the value given to Wth on
TCP performance. Section 4 studies the case where
Wth is set to a high value in such a way that losses
occur during SS. The work is concluded in section 5.
Our simulations are conducted with ns, the network
simulator developed at LBNL [11].

2: A model for TCP performance

Consider a TCP connection that transfers files of
size S across a path of bottleneck bandwidth µ. The
widely implemented Reno version of TCP [6, 12] is
used throughout the paper. However, the analysis can
be applied to the other versions as well. We model the
network with a single bottleneck node of rate µ and of
Drop Tail buffer of size B (Figure 1). T denotes the
constant component of the Round Trip Time (RTT)
of the connection (the two-way propagation delay plus
the service time of TCP packets in network nodes).
This model has been often used in the literature to
study the performance of TCP [1, 4, 5, 7, 10].

The characterization of TCP behavior during the
first SS phase requires the calculation of the window
at which losses occur during SS assuming that Wth is
set to a very high value. We call this later window
the overflow window and we denote it WB . The other
works assume implicitly that it is equal to the pipe size
(B + µT ). We will show later that for a small buffer
size, this window can be independent of the bottleneck
bandwidth and only a function of B and the window

increase rate. Note here that throughout the paper, we
assume that the receiver window is set to a high value
so that it doesn’t limit the growth of W .

In addition to µ, T and B, the overflow window
is a function of the rate at which TCP increases its
window during SS. We call this rate the aggressiveness
or the burstiness of SS. We model it with a factor d
defined as follows.

The aggressiveness factor d
Let W (t) denote the congestion window in packets
at time t. We suppose that after one RTT, W is
increased during SS by W (t)/d packets. d can be the
result of the receiver delaying ACKs and sending an
ACK every d packets. d = 1 means that the receiver
is acknowledging all the packets and d = 2 models the
Delay ACK mechanism widely implemented in TCP
receivers [12]. d can also model the loss of ACKs on
the return path. It may also account for any window
increase policy at the source different from that of
standard TCP. An example is Byte Counting [1],
where upon the receipt of an ACK, the window is
increased by the number of acknowledged packets
rather than by one packet as in standard TCP.

The overflow window WB

This window is required to understand the impact
of the different parameters on the performance. As
in [4, 10], we divide a SS phase into mini-cycles (MC)
of duration RTT. Let W (n) be the number of packets
transmitted during MC n. The next MC starts when
the ACK for the first packet of these W (n) packets
reaches the source. According to our definition of the
parameter d, the window size during the next MC is
equal to:

W (n + 1) = W (n) + W (n)/d = αW (n), (1)

with α = (d + 1)/d.
Suppose that the recurrent relation (1) is valid for

every n ≥ 0. Suppose also that SS starts with a window
equal to one packet. Thus,

W (n) = αnW (0) = αn.

During SS, packets leave the bottleneck in long bursts
at rate µ. A burst of length W (n) is served during
MC n and it is followed by an idle period until the
arrival of the burst of the following MC (Figure 2). This
idle period between bursts disappears when the window
size exceeds µT . The source transmits also packets
in long bursts in response to the ACKs of packets of
the previous MC. Given that the number of packets
transmitted during a MC increases by a factor α, we
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Figure 2: Bursts at the output of the bottleneck

can suppose that the long bursts transmitted by the
source have an average rate αµ. Thus, at the beginning
of MC n, the source starts to transmit a burst of length
W (n) at an average rate αµ.

When a source burst reaches the bottleneck, a queue
starts to build up in B at a rate αµ − µ = µ/d. Here,
two cases must be considered. The first case is when B
doesn’t contain any packet from the previous MC when
the first packet of the burst of the current MC reaches
the bottleneck. The second case is when some packets
from the previous MC are still waiting in B. Note here
that in the other works [4, 5, 10], only the first case
has been considered. This is correct when the buffer
size is very small compared to the BDP. However, the
second case we introduce permits us to account for all
the buffer sizes.

In the first case, a burst of size B(d + 1) is required
to fill the buffer and causes an overflow. Let n1

B be
the number of the MC during which B overflows. The
number of packets transmitted during this MC must
be larger than B(d + 1). But, the number of packets
transmitted during the previous MC must be less than
B(d + 1) otherwise the overflow would have occured
during the previous MC. Thus, n1

B satisfies,

αn1
B−1 < B(d + 1) ≤ αn1

B .

According to our definition of d, the transmission of
a burst of B(d + 1) packets requires an increase in W
by B packets since the beginning of MC n1

B . It follows
that,

WB = W (n1
B − 1) = αn1

B−1 + B. (2)

Now, we consider the second case. The window size
is larger than µT . The burst size required to fill the
buffer is less than B(d+1) since there are some packets
waiting from the previous MC. It is simply equal to the
number of empty places at the beginning of the MC
times (d + 1). The increase in the window between the
beginning of the MC and the overflow is equal to the
number of empty places. Suppose that the overflow
happens during MC n2

B . Then, WB becomes equal to:

WB = W (n2
B − 1) + B − (W (n2

B − 1)− µT )
= B + µT. (3)

Two expressions for WB are then available. If the
window size during MC n1

B−1 is less than µT , then WB

Tµ
d

Tµ
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α µT
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Figure 3: The overflow window WB vs. B

will be given by equation (2), otherwise it will be given
by equation (3). We can combine these two expressions
into a single one as mentioned in the following theorem.

Theorem 1 If SS is not terminated before the occur-
rence of losses, the buffer at the entry of the bottleneck
link will overflow at a window:

WB = B + min
(
µT, αnB−1

)
,

with nB given by:

αnB−1 < B(d + 1) ≤ αnB .

The following corollary can be directly derived:

Corollary 1 The bottleneck buffer will not overflow
during SS if Wth is set less than the overflow window
given by Theorem 1.

To simplify the analysis in the sequel, we approxi-
mate αnB by B(d + 1). The same approximation has
been made in [4, 10]. The expression of WB becomes:

WB = B + min (µT, Bd) . (4)

It is clear that this window decreases when the
buffer size does. For a B less than µT/d, it becomes
smaller than the pipe size and only a function of B
and d. It is only for a buffer size larger than µT/d
that the pipe can be filled. For a given B and µT and
while changing d, the problem of early buffer overflow
during SS starts to appear once B becomes less than
µT/d. The variation of WB as a function of B is
plotted in Figure 3.

3: Impact of Wth on the performance

In order to avoid losses and to optimize the per-
formance, the SS threshold at the beginning of a
TCP connection must be set to just less than the
overflow window WB . As we see from the expression
of WB (equation (4)), the correct value for Wth is
a function of all the parameters not only µ and T .
It decreases with the decrease in the buffer size or



D
1.5 Mbps100 Mbps

1 ms 100 ms
S B

Figure 4: The simulation scenario
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Figure 5: TCP congestion window vs. time

the increase in SS aggressiveness. If the buffer size
is less than µT/d, it becomes independent of the
available bandwidth! If we take as an example the
value proposed for Wth in [8] (the Bandwidth-Delay
Product). It requires a WB larger than µT . This is
possible only if B > µT/(d + 1). If ACKs are not
delayed (d = 1), a buffer larger than half the BDP
is required for this proposition to work. If ACKs are
delayed, one third the BDP is required.

Consider the simulation scenario in Figure 4. TCP
packets are of size 512 Bytes (without the TCP/IP
header). Two buffers are considered. One of size
70 packets which is approximately equal to the BDP
and the second of size 20 packets. For a 100KB file
and for a Wth = 50 packets (25.6KB), we plot in
Figure 5, W as function of time. We consider three
cases: B = 70 packets and d = 1, B = 20 packets and
d = 1, B = 20 and d = 2. For these three cases and
by using (4), the overflow window is respectively equal
to 140, 40 and 60 packets. According to our analysis,
losses should only occur in the second case. It is
clear how losses don’t exist in the first case, how they
appear in the second case and how they disappear in
the third case.

4: Case of a high SS threshold

In this section, we study the case where Wth is
set higher than WB and where TCP uses its SS
algorithm to gauge the network capacity. Losses occur
and the performance is a function of W ′

th, the new
network capacity estimate after the recovery from
losses.
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Figure 6: The new capacity estimate vs. B

4.1: Calculation of W ′
th

The buffer overflow is detected one RTT after its
occurrence. During this RTT, W increases by αWB

unless the source gets in CA. This is the case when
WB < Wth < αWB . Congestion is detected at a
window WD equal to:

WD = min (Wth, αWB) . (5)

Here, TCP sets W and Wth to half WD and starts
to recover from losses. Most often, it succeeds to
detect the first two losses via Duplicate ACKs. The
third and the subsequent losses need a Timeout to be
detected [6]. Reno divides its window by two upon
every loss detection. Thus, in most of the cases, the SS
threshold after the Timeout is set to one eighth WD.
It is set to one fourth WD when the second loss cannot
be detected via Duplicate ACKs. In the sequel, we
assume that W ′

th = WD/8. We assume also that Wth

is set even higher than αWB so that the congestion is
always detected at WD = αWB (equation (5).

4.2: Impact of B and d on the performance

Using the line in Figure 3, we plot in Figure 6
the variation of W ′

th as a function of B. We see well
that the estimate provided by SS moves to zero when
the buffer size does. Above µT/d, the decrease in
performance is caused by the decrease in the pipe
size but the aggressiveness of TCP during SS has no
impact on the estimate. However, below µT/d, the
buffer becomes unable to absorb the bursty traffic of
TCP and the congestion appears before reaching the
pipe size. An increase in TCP aggressiveness in this
case reduces the estimate and may deteriorate the
performance instead of improving it.

We study in the following this interaction between
buffer size and TCP aggressiveness. Two cases are
considered: First we suppose that the aggressiveness
is controlled at the receiver which acknowledges every
d data packets. In this case, both SS and CA are
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Figure 7: Throughput vs. file size for B = 20 packets
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Figure 8: Throughput vs. file size for B = 70 packets

affected. Second, we consider the case where the
aggressiveness is controlled at the source. In this case,
the source can distinguish between SS and CA and can
therefore adopt different factors d during each phase.

A receiver-controlled d: As we see from Fig-
ure 6, in case of a B smaller than µT/d, an increase
in d improves the network capacity estimate after the
Timeout. This should lead to an improvement in the
performance. But, in the case of a receiver-controlled
d, the increase in d slows also the window growth
during CA. The gain achieved in W ′

th when increasing
d will be compensated later by the slower window
growth during CA. The performance starts then to
deteriorate after a small improvement.

We see this behavior in Figures 7 and 8 where we
plot for two different B, 20 packets and 70 packets, the
throughput as a function of the file size. Three values of
d are considered. For a given d, we notice that at the
beginning, the throughput increases quickly with the
file size. Small files are transfered completely during
the SS phase and the fast increase in the throughput is
due to the fast window increase during SS.

For each d, we see also a downward jump in the per-
formance for some file size. This corresponds to the
appearance of losses during the SS phase. After this
jump, the source gets in CA resulting in a slower in-
crease in the throughput. The farther the source gets
in CA, the smaller is the impact of the first SS phase.
The average throughput should continue increasing in
an asymptotic manner until the average throughput in
the steady is reached. Normally, the maximum aver-
age throughput or the maximum utilization of network
resources is a function of B, µ and T and not the ag-
gressiveness. The aggressiveness determines the rate at
which we converge to the steady state.

A small d is better than a large one whenever the file
is transfered without losses. Once these losses occur for
the small d (the more aggressive version), the large d
starts to give better performance because it avoids the
Timeout. This continues until losses occur for the large
d as well. In case of small buffers, even if losses appear
for the large d, it continues to give better performance
than the small d for certain files sizes due to the higher
network capacity estimate it provides. But, its CA
phase is too slow so that it loses this privilege later.
In case of large buffers however, the reduction of the
aggressiveness doesn’t improve the estimate. Thus, the
performance of a large d becomes worse than a small d
as soon as losses occur.

Thus, a receiver-controlled d affects both SS and
CA. The lowest possible d must be used during CA
to guarantee a fast convergence to the steady state.
The most widely used factor is d = 2 (Delay ACK
mechanism [12]). During SS, d must be chosen in such
a way to increase the window as quick as possible to
the fill the pipe. The best performance is obtained
when we start by a small d then we switch to a
larger one just before the overflow of buffer and we
continue like this until we reach the pipe size. This
consists in reducing SS burstiness with the increase in
the congestion window. Such mechanism is difficult
to implement given that TCP is not aware of the
buffer size in network nodes. However, this gives us a
guideline on how to change the factor d on paths with
small buffers.

A sender-controlled d: We study in this sec-
tion the impact of a change in the window increase
rate during SS on the performance. The window
increase rate during CA is kept unchanged. This
permits an elimination of the impact of d on the CA
phase we saw in the previous section. Such behavior
requires a change at the source because it is the
only element able to distinguish between the two
phases. We assume in the following that the receiver
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Figure 9: Standard TCP and B = 20 packets
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Figure 10: Byte Counting and B = 70 packets

is acknowledging every other data packet and that the
source implements standard TCP during CA.

Changing the factor d at the source can be accom-
plished by changing the amount of the window increase
upon the receipt of an ACK. Given that ACKs are de-
layed at the destination, standard TCP corresponds
to d = 2. Byte Counting [1] corresponds to d = 1.
Changing d from 2 to 1 has been shown to improve the
performance [1, 3]. Our analysis shows that this can
be the case on paths with large buffers. However, on
paths with small buffers, increasing the aggressiveness
reduces the network capacity estimate and deteriorates
the performance.

Figures 9 and 10 explain this issue. These figures
show the throughput as a function of the file size for
the two buffers 20 packet and 70 packets. In each
figure, one of the two lines represents standard TCP
and the other line represents Byte Counting. For a
large buffer, Byte Counting works perfectly and gives
better performance. However, for a small buffer, Byte
Counting is so aggressive that it fills the buffer before
filling the pipe. This gives lower estimate and thus
lower performance for most of the file sizes.

5: Conclusions

In this paper, we studied the behavior of TCP
during the first SS phase. This permitted us to
evaluate the performance of shorts transfers and the
effectiveness of the propositions made to improve this
performance. We found that, on paths with small
buffers compared to their BDP, the congestion during
SS may appear early before filling the pipe size. Thus,
the value to give to Wth at the beginning of the
connection in order to avoid losses must account for
the buffer size otherwise losses may not be avoided.
Also, in this case, we found that any increase in TCP
aggressiveness deteriorates the performance instead
of improving it. We presented a guideline for how to
increase the window on these paths.
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