
Self-Stabilization in Tree-Structured Peer-to-Peer Service Discovery Systems∗

Eddy Caron†, Ajoy K. Datta◦, Franck Petit‡ and Cédric Tedeschi†

†University of Lyon. LIP Laboratory. UMR CNRS - ENS Lyon - INRIA - UCB Lyon 5668. France
◦ School of Computer Science. University of Nevada Las Vegas.USA

‡ MIS Laboratory. University of Picardie Jules Verne. France

Abstract

The efficiency of service discovery is critical in the
development of fully decentralized middleware intended
to manage large scale computational grids. This de-
mand influenced the design of many peer-to-peer based
approaches. The ability to cope with the expressiveness
of the service discovery was behind the design of a new
kind of overlay structures that is based ontries, or prefix
trees. Although these overlays are well designed, one of
their weaknesses is the lack of any concrete fault tolerant
mechanism, especially in dynamic platforms; the faults
are handled by using preventive and costly mechanisms,
e.g.,using a high degree of replication. Moreover, those
systems cannot handle any arbitrary transient failure.

Self-stabilization, which is an efficient approach to
design reliable solutions for dynamic systems, was re-
cently suggested to be a good alternative to inject fault-
tolerance in peer-to-peer systems. However, most of
the previous research on self-stabilization in tree and/or
P2P networks was designed in theoretical models, mak-
ing these approaches hard to implement in practice. In
this paper, we provide a self-stabilizing message pass-
ing protocol to maintain prefix trees over practical peer-
to-peer networks. A complete correctness proof is pro-
vided, as well as simulation results to estimate the prac-
tical impact of our protocol.

Keywords: fault-tolerance, peer-to-peer systems,
service discovery, self-stabilization.

1 Introduction

Grids connecting geographically distributed comput-
ing resources have become a low cost alternative to
supercomputers. The communities of grid computing

∗Partially funded by ANR (Agence Nationale de la Recherche)
through the LEGO project ANR-05-CIGC-11.

and peer-to-peer together developed new approaches to
design grid middleware over fully decentralized plat-
forms [19], especially dealing with resource discovery.
The demand for flexibility and ability to handle com-
plexity of the service discovery systems led to the de-
velopment of various overlay structures. One of them is
based ontries a.k.a.lexicographic trees or prefix trees.
These architectures usually support range queries, auto-
matic completion of partial search strings, and are easy
to extend to multi-attribute queries.

Although fault-tolerance is a mandatory feature of
systems targeted for large scale platforms (to avoid data
loss and to ensure proper routing), tries overlays offer
only a poor robustness in dynamic environment. The
crash of one or more nodes may lead to the loss of
stored objects, and may split the trie into several sub-
tries. These subtries may not be re-grouped correctly,
making the system unable to correctly process queries.
In recent trie-based approaches, the fault-tolerance has
been either ignored, or handled by preventive mecha-
nisms, usually by replication, which can be very costly
in terms of computing and storage resources. Moreover,
replication does not ensure the recovery of the system
from arbitrary failures.

The concept of self-stabilization [11, 12] is a general
technique to design distributed systems that can handle
arbitrary transient faults. A self-stabilizing system, re-
gardless of the initial states of the process and initial
messages in the links, is guaranteed to converge to the
intended behavior in finite time.

Related Work. The resource discovery in P2P en-
vironments has been extensively studied. Although
DHTs [22, 23, 27, 28] were designed for very large sys-
tems, they provide only rigid mechanisms of search. A
great deal of research went into finding ways to im-
prove the retrieval process over structured peer-to-peer
networks. Peer-to-peer systems use different technolo-

1

gies to support multi-attribute range queries [3, 20, 24,
26]. Trie-structured approaches outperform others in the
sense that logarithmic (or constant if we assume an up-
per bound on the depth of the trie) latency is achieved
by parallelizing the resolution of the query in several
branches of the trie.

Among trie-based approaches, Prefix Hash Tree
(PHT) [21] dynamically builds a trie of the given key-
space as an upper layer, and maps it over any DHT-like
network. The architecture of PHT increases the com-
plexity of the trie and of the underlying DHT. The prob-
lem of fault-tolerance is then delegated to the DHT layer.
Skip Graphs, introduced in [1], are similar to tries, but
rely on skip lists, using probabilistic fault-tolerance. The
fault-tolerance approach used in P-Grid [9] is based on
probabilistic replication.

In this paper, we focus on the DLPT (Distributed
Lexicographic Placement Table), an architecture re-
cently developed and studied in [8]. This approach, ini-
tially designed for the purpose of service discovery over
dynamic computational grids and aimed at solving some
drawbacks of these previous approaches, is a two layer
architecture. The upper layer is a prefix tree maintaining
the information about available services; each node of
this tree maintains the information about services shar-
ing a particular key. This key labels the node. This tree
is mapped onto the lower layer,i.e., the physical net-
works, for example, using a distributed hash table. In its
early design, the fault-tolerance was addressed by repli-
cation of nodes and links of the tree. An advantage of
this technology is its ability to take into account the het-
erogeneity of the underlying physical network to builid
a more efficient tree overlay [8].

In summary, the fault-tolerance in resource discovery
systems was ignored, delegated to other layers, or im-
plemented using replication. In [6], a first alternative to
the replication approach is provided; this scheme han-
dles the trie crash by reconnecting and reordering the
nodes. However, the subtries being reordered are as-
sumed to be valid, restricting the initial configurations
being handled and repaired, and making this solution not
self-stabilizing. In the self-stabilizing area, some inves-
tigations take interest in distributed search tree overlay,
e.g., [17] and [18] for 2-3 trees and heap trees, respec-
tively. A self-stabilizing lexicographic distributed struc-
ture is proposed in [15] as an application ofr-operators.
Some papers considered self-stabilization in a peer-to-
peer setting [7, 10, 13, 16, 25]. In [16], a self-stabilizing
spanning tree protocol is proposed. In the same paper,
the authors introduce a new model of peer-to-peer sys-
tems for self-stabilization. In [13], a self-stabilizing pro-

tocol that maintains a hypertree is proposed. The proto-
col proposed in [7] deals with prefix tree maintenance. It
has the nice property of being snap-stabilizing [4],i.e., it
guarantees that it always behaves according to its speci-
fication — it is a self-stabilizing algorithm which is op-
timal in terms of stabilization time since its stabilizes in
0 steps. However, the algorithms in [7] requires the ini-
tial topology to be a rooted connected tree, and has been
proven in a coarse theoretical model (the state model in-
troduced in [11]).

Contributions. In this paper, we propose a self-
stabilizing protocol to maintain a prefix tree in a mes-
sage passingpeer-to-peer orientedmodel. Our algo-
rithm does not require a fixed root node and works with
any arbitrary initial configuration of the tree topology.
The proposed protocol can be implemented on any plat-
form that supports message passing and basic services
available in most peer-to-peer systems. We give a for-
mal proof of correctness of our protocol and some sim-
ulation results to study the scalability of the protocol as
well as its efficiency in keeping the architecture avail-
able for clients even under high failure rate. In Section 2,
we give the model in which our protocol is designed, and
the data structures it maintains. The protocol is given in
Section 3, followed by its proof in Section 4. Simulation
results are given in Section 5.

2 Preliminaries

The network. A P2P network consists of a set of asyn-
chronous processors with distinct ids. The processors
communicate by exchanging messages. Any processor
P1 can communicate with another processorP2 pro-
vided P1 knows theid of P2. We abstract the details
of the actual routing, as it is done in most of the peer-to-
peer systems. Henceforth, we use the wordpeerto refer
to a processor.

The indexing logical tree. Our indexing system is a
logical prefix tree, whose nodes are mapped onto the
peers of the network. Henceforth, the wordnoderefers
to a node of the tree,i.e., a logical entity. Keep in
mind thatPhysical nodes, or processorsare referred to
as peers. Each peer maintains a part of our indexing
system,i.e., some (logical) nodes of the prefix tree. It
is also important to recall that a (logical) node is im-
plemented as a process, which runs on a peer. In other
words, a process implements the notion of node. As we
said, each node has a label. In a correct configuration
(that we define later in Definition 1), each node label is

2

unique. (Only one node is responsible for all services
sharing a common key.) However, initially, when the
system is not yet stabilized, the structure may contain
multiple nodes sharing the same label. Thus, we can-
not use labels to identify the nodes. We chose to iden-
tify nodes by the process implementing it. A process is
identified by a unique combination of the peer running it
and a port number. Our protocol maintaining the prefix
tree is run on every process.NodesandProcessesare
basically two different view of the same thing. In the re-
mainder, we use these terms interchangeably. Note that
the tree topology is susceptible to changes during its re-
construction. We assume the presence of a service able
to return process references. Thisprocess discoveryser-
vice is similar to the one used in [16]. Any process of the
system can obtain any other process identifier by calling
this service. To prove the correctness of the algorithm,
we assume that a finite number of queries to this service
is enough to collect the identifiers of all processes in the
system. The service provides the following two primi-
tives: GETRUNNINGPROCESS() returns the identifier of
a randomly chosen process, and GETNEWPROCESS()
creates a new process (without setting its parameters yet)
and returns its identifier. The communication between
processes is carried out by exchanging messages. A pro-
cessp is able to communicate with a processq, if and
only if p knows the id ofq. We assume that a copy of
every message sent byp to q is eventually received by
q, unlessq has crashed or has been killed. The message
delay is finite but not bounded. Messages arrive in the
order they were sent (FIFO), and as long as a message is
not processed by the receiving process, we assume that
it is in transit.

Proper Greatest Common Prefix Tree. We now for-
mally describe the distributed structure we maintain.
Let an ordered alphabetA be a finite set of letters.
Denote≺ an order onA. A non empty word w
overA is a finite sequence of lettersa1, . . . , ai, . . . , al,
l > 0. The concatenationof two words u and
v, denoted asu ◦ v, or simply uv, is equal to
the worda1, . . . , ai, . . . , ak, b1, . . . , bj, . . . , bl such that
u = a1, . . . , ai, . . . , ak and v = b1, . . . , bj , . . . , bl.
Let ǫ be the empty wordsuch that for every word
w, wǫ = ǫw = w. The length of a word w, de-
noted by|w|, is equal to the number of letters ofw.
|ǫ| = 0. A word u is a prefix (respectively,proper
prefix) of a word v if there exists a wordw such
that v = uw (resp., v = uw and u 6= v). The
Greatest Common Prefix(resp.,Proper Greatest Com-
mon Prefix) of a collection of wordsw1, w2, . . . , wi, . . .

(i ≥ 2), denotedGCP (w1, w2, . . . , wi, . . .) (resp.
PGCP (w1, w2, . . . , wi, . . .)), is the longest prefixu
shared by all of them (resp., such that∀i ≥ 1, u 6= wi).

Definition 1 (PGCP Tree) A Proper Greatest Common
Prefix Treeis a labeled rooted tree such that the follow-
ing properties are true for every node of the tree:

1. The node label is a proper prefix of any label in its
subtree.

2. The greatest common prefix of any pair of labels of
children of a given node are the same and equal to
the node label.

Self-stabilization. Define a transition systemas a
triple S = (C, 7→, I), whereC is a set of configura-
tions, 7→ is a binary transition relation onC, andI ⊂ C
is the set of initial configurations. Aconfigurationis
a vector with n + 1 components, where the firstn
components are the state ofn processes and the last
one is a multi-set of messages in transit inm links.
We define anexecutionof S as a maximal sequence
E = (γ0, γ1, γ2, ..., γi, γi+1, ...), whereγ0 ∈ I and for
i ≥ 0, γi 7→ γi+1. A predicateΠ onC, the set of system
configurations, isclosedfor a transition systemS if and
only if every state of an executione that starts in a state
satisfyingΠ also satisfiesΠ. A transition systemS is
self-stabilizingwith respect to a predicateΠ if and only
if Π is closed forS and for every executione of S, there
exists a configuration ofe for whichΠ is true.

3 Protocol

In this section, we present a protocol to build a
PGCP tree providing a logical overlay structure of a
peer-to-peer service discovery system. Our protocol is
self-stabilizing and self-organzing, meaning, the logi-
cal structure can start from an arbitrary state, but will
eventually converge to a PGCP tree. The proposed
protocol assumes the existence of an underlyingself-
stabilizing end-to-end communication(SSEE) protocol.
Both layers communicate usingsend/receiveprimitives
over FIFO message queues. The “send(<m>, q)” prim-
itives sends messagem to nodeq; it always terminates;
if the recipientq is alive,m is queued atq and will be
processed later; otherwise,q crashed andm is lost. The
implementation of Protocol SSEE is beyond the scope
of this paper. Refer to [2, 14] for such protocols.

Every processp (we usep to denote theid of p
and the address used by other processes to communi-
cate withp) has a labellp. Denote bŷp, the pair(p, lp).

3

Recall that,̂p = p̂′ is equivalent to(p = p′)∧ (lp = lp′).
Nodep also maintains a copy of the identifier and label
of its parent intof̂p and of its children into the finite set
Ĉp. Note that̂Cp, p̂ andf̂p are variables,Cp is the result
of a macro that extracts the first element of every pairs
in Ĉp.

To deal with crash failures, to maintain the topologi-
cal information, and to maintain the status of processes
(they terminated or not) in our protocol, we assume the
presence of an underlyingheartbeatprotocol. We as-
sume that any node that does not receive news from one
child or parent during a bounded time (implemented by
using a TimeOut action in the algorithm), removes the
node from its neighborhood set. Note that when delet-
ing a given childq ∈ Cp, all the data associated withq
is deleted.

The function GETEPSILON() returns the identifier of
a random node labeled by the empty wordǫ. It relies
on theprocess discoveryservice previously described.
Basically, it calls GETNEWPROCESS() and checks if
the process returned is anǫ-process,i.e., a process la-
beled byǫ. Since we assume that a finite number of
calls to theprocess discoveryservice is enough to get
all identifiers of alive nodes, theGetEpsilon() func-
tion also returns everyǫ-process in a finite time. The
NEWPROCESS(lbl, f, C) function starts a new process
on the local node and initiates the label withlbl, the par-
ent withf , and the set of children withC.

The “send(<m>, q)” procedure returns a Boolean.
If it returnedtrue, the recipientq is alive and the mes-
sagem is queued onq, and will be processed later. Oth-
erwise, it means thatq is dead. The rules of the pro-
tocol, theperiodic rule, periodically runs on each node
as detailed in Algorithm 1, and theupon receiptrules,
detailed in Algorithm 2, are initiated upon receipt of a
message, are atomic.

Each nodep periodically initiates the action de-
scribed by Algorithm 1. p begins by eliminating the
cases wherep is either a parent or a child of itself (this
may cause cycles) (Lines 2.02-2.03).

Lines 2.04-2.13 deal with parent maintenance. These
lines ensure that eventually, there will be one and only
one root,i.e., only one nodep eventually satisfiesfp =
⊥. To achieve this, the possible root nodes merge. Let
us consider a root nodep to explain this part of the algo-
rithm. There are two possible situations:

1. If the label ofp is ǫ, p tries to connect to another
nodeq, also labeledǫ. q then becomes a child ofp
(Line 2.08).p informsq that its parent changed us-
ing UPDATEPARENT message. Upon receipt of that

Algorithm 1 Periodic rule, on processp

1.01 Variables: bp = (p, lp), id and label ofp
cfp = (fp, lfp

), id and label of the parent ofp

dCp = {cq1 = (q1, lq1), . . . , cqk = (qk, lqk
)}, set of children ofp

Tq, ∀q ∈ Cp time before considering q as not its child anymore

Cp ≡ {q | (q, lq) ∈ dCp}, set of totally ordered ids of children ofp

2.01 Upon TimeOut do
2.02 if fp = p then fp := ⊥

2.03 if p ∈ Cp then dCp := dCp \ {bp}
2.04 if fp = ⊥ then
2.05 if lp = ǫ then
2.06 q := GETEPSILON()
2.07 if q < p then
2.08 dCp := dCp ∪ {(q, ǫ)}
2.09 send(<UPDATEPARENT, bp>, q)
2.10 else
2.11 new := GETNEWPROCESS()
2.12 send(<HOST, (ǫ, ⊥, {bp})>, new)
2.13 cfp := (new, ǫ)
2.14
2.15 while ∃q ∈ Cp | lq = lp do
2.16 send(<MERGE, bp>, q)

2.17 while ∃(q1 , q2) ∈ C2
p : lp ∈ PREFIXES(lq1) ∧ lq1 ∈ PREFIXES(lq2)) do

2.18 send(<UPDATEPARENT, cq1>, q2)
2.19 dCp := dCp \ {cq2}

2.20 while ∃(q1 , q2) ∈ C2
p : lp ∈ PREFIXES(lq1)

2.21 ∧lp ∈ PREFIXES(lq2) ∧ |GCP (lq1 , lq2)| > |lp| do
2.22 lnew := GCP(lq1 , lq2)

2.23 new := GETNEWPROCESS()
2.24 send(<HOST, (lnew, p, {q1, q2})>, new)
2.25 send(<UPDATEPARENT, n̂ew>, q1)
2.26 send(<UPDATEPARENT, n̂ew>, q2)
2.27 dCp := dCp \ {cq1, cq2} ∪ {n̂ew}
2.28 if fp 6= ⊥ then
2.29 send(<PARENT?, bp>, fp)

message,q updates its parent variable (Lines 6.01-
6.03 of Algorithm 2). Sincep and q are labeled
identially, they will merge (the merge process is ex-
plained below), thus reducing the number of roots
by one.

2. If p is not labeled byǫ, a new node labeledǫ is
artificially created as the parent ofp. This new node
executes the periodic rule satisfying the previous
case.

Lines 2.15-2.27 deal with children maintenance to
make sure that eventually, every set of children satisfies
Definition 1. This phase consists of three parts.

1. We eliminate cases where the set of children ofp
contains a nodeq whose label is the label ofp by
initiating the merge process ofp and q. p sends
a MERGE message toq (Lines 2.15-2.16). First,
upon receipt of the MERGEmessage,q informs its
children that their new parent is their current grand-
parent through GRANDPARENT messages. Upon
receipt of this message, the children ofq change
their parent fromq to p. To ensure a good synchro-
nization,q waits until all its children have been ac-
cepted byp as children,i.e.,waits for the GFDONE

message.q finally informsp that the merging pro-
cess has finished by sending the MDONE message,
and terminates (Lines 8.01-11.03).

4

Algorithm 2 Upon receiptrules, on processp

3.01 upon receiptof <PARENT?, bq> do
3.02 if lp ∈ PREFIXES(lq)∧ send(<CHILD , bp>, q) then
3.03 dCp := dCp ∪ {bq}
3.04 else
3.05 send(<ORPHAN, bp>, q)
3.06 dCp := dCp \ {bq}

4.01 upon receiptof <CHILD , bq> do
4.02 if fp = q then
4.03 lfp

:= lq

5.01 upon receiptof <ORPHAN, bq> do
5.02 if fp = q then
5.03 fp := ⊥

6.01 upon receiptof <UPDATEPARENT, bq> do
6.02 if (lq ∈ PREFIXES(lp))∧ send(<PARENT?, bp>, q) then
6.03 cfp := bq

7.01 upon receiptof <HOST, l, f, bC> do
7.02 NEWPROCESS(l, f, bC)

8.01 upon receiptof <MERGE, bq> do
8.02 if (fp = q) ∧ (lq ∈ PREFIXES(lp)) then
8.03 ∀q′ ∈ Cp , send(<GRANDPARENT, cfp , bq>, q′)

9.01 upon receiptof <GRANDPARENT, n̂ewf , bq> do
9.02 if (fp = q) ∧ (lq ∈ PREFIXES(lp)) then

9.03 cfp := n̂ewf

9.04 send(<GFDONE, bp>, q)

10.01 upon receiptof <GFDONE, bq> do
10.02 if (q ∈ Cp) ∧ (lp ∈ PREFIXES(lq)) then
10.03 dCp := dCp \ {bq}

10.04 if dCp = ∅ then
10.05 send(<MDONE, bp>, fp)
10.06 K ILL(p)

11.01 upon receiptof <MDONE, bq> do
11.02 if (q ∈ Cp) ∧ (lp ∈ PREFIXES(lq)) then
11.03 dCp := dCp \ {bq}

2. We eliminate cases where a pair of children do not
satisfy Definition 1. For example, assume that a
child q1 prefixes another childq2. So, the proper
greatest common prefix of the labels ofq1 andq2

is equal to the label ofq1. But, the greatest com-
mon prefix, by Definition 1 must be the label ofp.
A contradiction (Line 2.17).q2 then becomes the
child of q1 (Lines 2.17-2.19).

3. We check that there is no pair(q1, q2) in its set of
children such that the greatest common prefixg of
their labels is greater than its own label (Lines 2.21-
2.27). In this case, a new node must be created.
This node, labeled byg, will be the child ofp and
the common parent ofq1 andq2.

The purpose of Lines 2.28-2.29 is forp to check the
validity of its parent. Upon receipt of the PARENT mes-
sage, the parent ofp decides whetherp is its child de-
pending on their labels, and informsp of the result. It
uses a CHILD message to indicate that it considersp
as its child. Otherwise, it sends an ORPHAN message.
Lines 4.01-5.03 detail the receipt of these messages.
Upon receipt of CHILD , p updates the label of its par-
ent. Upon receipt of ORPHAN, it becomes a root and
executes the periodic rule as we discussed before.

4 Proof of Stabilization

Like most of the fault-tolerant system design
schemes, we will assume the following;(i) The fre-
quency of fault occurrence is not too high.(ii) The time
between two occurrences of faults is higher than the time
required to recover from a fault.

In the proofs given in this section, we will consider
a suffix of an execution starting after all crashes have
taken place,i.e., in this particular execution segment, no
further crashes will occur. LetP be the set of alive pro-
cesses. Every “send(<m>, q)” executed by a process
p ∈ P terminates and when this happens, eitherm is
received byq or q /∈ P .

A configurationγ satisfies PredicateΠ1 if and only
if, assuming that a processp ∈ P infinitely often sends
a message to a processq ∈ P (q 6= p), the following two
conditions are true in every executione starting from
γ: (1) Safety: The sequence of messages received byq
is a prefix of the sequence of messages sent byp. (2)
Liveness: q receives a message infinitely often.

The following lemma follows from the fact that we
assume an underlying self-stabilizing end-to-end com-
munication protocol.

Lemma 2 The system is self-stabilizing with respect to
Π1.

Corollary 3 Every message received by a process inP
in a configuration that satisfiesΠ1, was sent by another
process inP .

Lemma 4 Starting from a configuration satisfyingΠ1,
every process inP executes Lines 2.01-2.29 infinitely
often.

Proof. The setĈp is finite and the loop is exe-
cuted atomically (no message receipt can interrupt the
execution of the loop). Moreover, each execution of
send terminates. So, none of the three “while loops”
(Lines 2.15-2.27) can loop forever. �

Corollary 5 Starting from a configuration satisfying
Π1, the system eventually contains no processp such
thatfp = p or p ∈ Cp.

Proof. Processp executes Lines 2.02 and 2.03 in-
finitely often. Moreover, the algorithm contains no line
in whichfp := p or Ĉp := Ĉp ∪ {p̂}. �

We will now show that, starting from a configuration
satisfyingΠ1, the child set (Cp) of each processp ∈ P
eventually contains no child Idq such thatq /∈ P , i.e.,q
is alive.

5

Lemma 6 Let p be a process inP . In every execution
starting from a configurationγ satisfyingΠ1, if there
existsq ∈ Cp such thatq /∈ P , then eventually,q /∈ Cp.

Proof. Follows from the assumption of an underlying
heartbeatprotocol between neighbors. �

Let Π2 be the predicate overC such thatγ ∈ C satis-
fiesΠ2 iff ∀p ∈ P , ∀q ∈ Cp, q ∈ P .

Lemma 7 The system is self-stabilizing with respect to
Π2.

Proof. From Corollary 3, no processp ∈ P can
receive a message from a processq /∈ P . So, in any exe-
cution starting from a configurationγ satisfyingΠ1, no
processp can add a process Idq such thatq /∈ P . p can
add a processq in Cp using Lines 2.08 and 2.27 in which
caseq was returned by a GET* () function assumed to
return ids inP . It can also addq using Line 3.03, in
which caseq was sent byq itself, and is thus alive. By
Lemma 6, if there exists some processp ∈ P such that
Cp contains ids not inP , then each of these ids is even-
tually removed fromCp. Thus, eventually,∀p ∈ P ,
∀q ∈ Cp, q ∈ P . �

From now on, we do not mentionP because all pro-
cess references are assumed to be inP . Let Π3 be the
predicate overC such thatγ ∈ C satisfiesΠ3 iff in every
execution starting fromγ satisfyingΠ2, for each process
p: (1) p executed Lines 2.01-2.29 at least once, and(2)
if p sent a message “PARENT?” to q, thenp received
the corresponding response (a message<CHILD> or
<ORPHAN>) from q. The next lemma follows di-
rectly from Lemma 4 and the fact that every message
receipt action terminates.

Lemma 8 The system is self-stabilizing with respect to
Π3.

Lemma 8 ensures that for every processp, each label
in Ĉp is correct,i.e., is equal to the actual label ofq. p
adds or updates the child labels in three ways. First, us-
ing Line 3.03 in which case the label was sent byq itself
and is thus correct. Second, by using Line 2.08 in which
caseq was returned by GETEPSILON() and the label is
set toǫ. Third, by using Line 2.27 in which case the la-
bel was computed byp itself and then sent tonew. We
will now show that, starting from a configuration satis-
fying Π2, the child set (Cp) of each processp eventually
contains no child Idq such thatlp /∈ PREFIXES(lq).

Lemma 9 Let p andq be two processes. If there exists
an execution starting from a configuration satisfyingΠ3

containing a system transitionγt 7→ γt+1 such thatq /∈
Cp in γt andq ∈ Cp in γt+1, thenlp ∈ PREFIXES(lq).

Proof. To addq to Cp, p executes one of the following
lines:

1. Line 2.08. In this case,lp = lq = ǫ.

2. Line 2.27. In this case,q = new and lq =
GCP (lq1 , lq2), where bothlq1 andlq2 are prefixed
by lp.

3. Line 3.03. This line is executed only iflp ∈
PREFIXES(q) (Line 3.02).

�

Lemma 10 Let γ be a configuration satisfyingΠ3. Let
p andq be a pair of processes such that, inγ, q ∈ Cp.
If there exists an executione starting fromγ such that
q ∈ Cp forever, thenlp ∈ PREFIXES(lq).

Proof. Assume by contradiction that there ex-
ists e starting fromγ such thatq ∈ Cp forever, and
lp /∈ PREFIXES(lq). There are two cases to consider:

1. There exists a configurationγ′ ∈ e such thatfq 6= p
forever (fq 6= p in every execution starting from
γ′). In that case, assuming the presence of an un-
derlying heartbeatprotocol between neighbors,p
will not receive heartbeats fromq and eventually
remove it from the set of its children. A contradic-
tion.

2. fq = p infinitely often. So,q sends PARENT? to
p infinitely often. Upon receipt of this message,p
removesq from Cp (Line 3.06). A contradiction.

�

Let Π4 be the predicate overC such thatγ ∈ C satis-
fiesΠ4 iff given two processesp, q, if q ∈ Cp in γ, then
lp ∈ PREFIXES(lq).

Lemma 11 The system is self-stabilizing with respect to
Π4.

Proof. By Lemma 10, for every processp, if Cp con-
tainsq such thatlp /∈ PREFIXES(lq), thenq is eventually
removed fromCp. By Lemma 9, for everyp, q can be
added toCp only if lp ∈ PREFIXES(lq). So, eventually,
if q ∈ Cp, thenlp ∈ PREFIXES(lq). �

It follows from Lemma 11 that, in every configura-
tion γ satisfyingΠ4, if there exists a processp and noq
such thatlp ∈ PREFIXES(lq), thenCp is an empty set.

6

In other words, the leaf nodes will not have any chil-
dren. We will now show that the number of trees will
eventually become one.

Lemma 12 In every execution starting from a configu-
ration γ satisfyingΠ4, the number of times a processp
setsfp to⊥ is less than or equal to1.

Proof. Assume by contradiction that there exists an
executione starting fromγ and a processp settingfp to
⊥ more than once. In a configuration satisfyingΠ4, by
Corollary 5 and Lemma 7,p can setfp to⊥ upon receipt
of a message ORPHAN only. So,p receives ORPHAN at
least twice. After the first receipt,p executes the loop
Lines 2.01-2.29. There are two cases to consider:

1. lp = ǫ. In that case,p obtains an existing “ǫ-
process”q′ as its parent — refer to Lines 2.05-2.09.
Then,p sends UPDATEPARENT to q′ that will never
sends ORPHAN to p sincelq ∈ PREFIXES(lp).

2. lp 6= ǫ. In that case,p creates and chooses as a
parent a new “ǫ-process”q. This case is similar to
the first one.

�

Let ̺ be the number of processesp such thatfp = ⊥.

Lemma 13 In every configurationγ satisfyingΠ4, if
̺ = 0 in γ, then̺ eventually becomes greater than0
and remains greater than0 thereafter.

Proof. Assume by contradiction that̺ = 0 in γ
and there exists an executione starting fromγ such that
̺ is equal to0 infinitely often. There are two cases to
consider:

1. ̺ = 0 in every configuration ofe, i.e.,∀p, fp 6= ⊥
in every configuration. So, no process ever receives
ORPHAN. Letp be a process such that∀q 6= p, lq /∈
PREFIXES(lp)—i.e., lp is minimum. (Note that in
every configuration satisfyingΠ4, ∀q 6= p, p /∈
Cq.) Upon the first receipt of PARENT? sent by
p to its parent, sayp′, p′ sends ORPHAN to p. A
contradiction.

2. ̺ = 0 infinitely often. From Lemma 12,∀p ∈
P , p setsfp at most once. So,̺ increases from0
to a valuex ≤ |P |. Then, since we assume that
̺ = 0 infinitely often, it means that̺ will then be
equal to0, eventually. And since̺ can not increase
anymore, it will remains equal to0, which is the
first case.

�

Lemma 14 In every execution starting from a configu-
ration γ satisfyingΠ4, ̺ eventually becomes equal to
1.

Proof. By Lemmas 12 and 13, in every execution from
γ, there exists a configurationγt such that̺ is equal to a
maximum valuex ∈ [1, |P |]. Assume by contradiction
that there exists an executione, a valuey ∈ [2, x], and
a configurationγ′

t in e with t′ ≥ t such that̺ = y and
remains equal toy thereafter. There are two cases to
consider:

1. Among they nodes, there existsp such thatlp 6=
ǫ. Then,p eventually executes Lines 2.11-2.13 a
newǫ-process is created, takingp as its child. The
number of roots is unchanged but, eventually, every
root is labeled byǫ.

2. The label of they nodes is equal toǫ. Letp be theǫ-
processes having the maximum identifier. By exe-
cuting Line 2.06,p eventually chooses anǫ-process
q such thatq setsfq to p upon receipt of the mes-
sage UPDATEPARENT sent byp, and the number of
roots is decremented. A contradiction.

�

Let Π5 be the predicate overC such that̺ = 1.

Lemma 15 The system is self-stabilizing with respect to
Π5.

Proof. Follows from Lemmas 12, 13, and 14. �

In every configuration satisfyingΠ5, there exists a
single processr such thatlr = ǫ andfr = ⊥. In the
next and last step of the proof, we show that if the parent
of a processp changes, thenp moves toward the leaves
such that the tree eventually forms a PGCP tree.

Lemma 16 In every execution starting from a configu-
ration γ satisfyingΠ5, if a processp setsfp to q, then
lq ∈ PREFIXES(lp).

Proof. In every configurationγ satisfyingΠ5, a pro-
cess can changefp by executing the receipt of either a
message GRANDPARENT or UPDATEPARENT, in both
cases, sent by its parent. In both cases,fp is set toq
such thatlq ∈ PREFIXES(lp). �

Lemma 17 In every execution starting from a configu-
rationγ satisfyingΠ5, the number of pairsp, q such that
lp = lq eventually becomes equal to0.

7

Proof. Note that in every configurationγ satisfying
Π5, one among{p, q} is the parent of the other. Without
loss of generality, we assume thatp is the parent ofq.
By the repeated executions of Lines 2.15-2.16 and 8.01-
11.03 on each pairp, q, all the children ofq eventually
become the childrenp andq eventually disappears. �

Let Π6 be the predicate overC such thatγ ∈ C sat-
isfies Π6 iff the distributed data structure maintained
by the variables of Algorithm 1 and 2 forms a Proper
Greatest Common Prefix Tree. We want∀p, ∀q1, q2 ∈
Cp, lp =GCP(lq1 , lq2). Considering the results of Lem-
mas 2, 7, 8, 11, 15, 16, and 17, there remains to eliminate
problematic cases expressed by conditions of Line 2.17
and Line 2.21. By the repeated executions of Lines 2.17-
2.27, we can claim the final result of our algorithm:

Theorem 18 The system is self-stabilizing with respect
to Π6.

5 Simulation results

The main goal of this section or running the simula-
tion is to test and demonstrate the scalability of the pro-
posed protocol. In particular, we investigated the con-
vergence time and the number of messages exchanged
both w.r.t. the number of nodes.

The simulator is written as a Python script. The script
arbitrarily creates an initial faulty configuration of the
network. Byarbitrarily , we mean that each node is cre-
ated independently from the others. To create one node,
it picks a randomly created label (on the latin alphabet)
of size between 1 and 20. It also chooses some nodes
randomly from the set of already created nodes, to be-
come the parent and the children of the node currently
created. Thus, the initial graph is inconsistent — pre-
fix relationship may be wrong (e.g.,a node label may
be prefixed by the label of its child), or the information
about the neighbors may be incorrect. For example,p
may consider its parent label isl althoughq is labeled
l′ 6= l, or p may assumeq as its parent whilep does not
considerq is its child. We created the tree randomly to
test the power of the proposed self-stabilizing protocol.

The protocol is launched at each node of the graph.
We assume a discrete time, and each period is aprocess-
ing sample. In other words, one period begins when the
first node starts the execution of the periodic rule, and
the period ends when every node has triggered the peri-
odic rule once and only once, and the set of actions re-
sulting from it (sending messages, processing messages,
updating variables, etc.) have been executed. As we de-
tailed in the proof, this set is finite, since the maximal set

of messages generated by one execution of the periodic
rule is finite. To implement the discrete sampling, pro-
cesses aresynchronized. But, the discrete time reflects
the slowest processor rate. In other words, the scheduler
simulated is fair.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 p

er
io

ds
 to

 c
on

ve
rg

e

Network size

[average]

Figure 1. Simulation of the protocol: con-
vergence time

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 m

es
sa

ge
s

ex
ch

an
ge

d
(d

ur
in

g
on

e
pe

rio
d

by
 o

ne
 n

od
e)

Network size

[average]

Figure 2. Simulation of the protocol:
amount of messages

Figure 1 shows the number of periods required on an
average to converge as a function of the number of the
final number of nodes in the tree. Note that this num-
ber is equal to the initial number of distinct labels in the
graph plus the number of labels created for the validity
of the tree (in order to satisfy Definition 1). The plot
in Figure 1 shows that the number of periods required
to converge increases very slowly when the size of the

8

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

S
at

is
fa

ct
io

n
ra

te

Percentage of failing nodes at each unit

self−stabilizing tree
basic tree

Figure 3. Simulation of the protocol: satis-
faction rate of clients’ requests

tree ranges from a couple of nodes to more than 3000.
This suggests that the convergence time grows linearly
in the worst case, and with a very low slope (approxi-
mately1/50). Figure 2 gives an average estimation of
the number of messages each node exchanges during
one period as a function of the final number of nodes.
Again, the plot suggests a linear behavior in the worst
case. These two results show that, when the tree grows,
both the amount of processing and the number of mes-
sages exchanged by the nodes (and thus the utilization
of CPU and network resources) grow slowly, indicating
the scalability of the protocol.

Finally, we simulated clients’ requests,i.e.,discovery
requests looking up for a service. Discovery requests on
a given service (or label) are encapsulated in a message
sent to a randomly picked node. Then the message is
routed until it reaches the node labeled by the requested
service.

We investigated if a prefix tree overlay enhanced with
our self-stabilizing protocol, regardless of the conver-
gence time, allows the system to guarantee a certain
level of availability. To this end, we simulated a pre-
fix tree continuously undergoing failures, in a faster rate
than the convergence time, under the same discrete-time
conditions as the previous experiments. In Figure 3, the
X-axis shows the number of nodes undergoing failures
in percentage (0-10) of the total number nodes of the
tree (about 500 in this experiment) at each period. The
Y-axis gives the percentage of clients’ requests satisfied.
A request is said to be satisfied if it reached its destina-
tion in the tree starting from a random node. The curve
shows that this number significantly improves when the

self-stabilizing algorithm is used — approximately from
5% to 40% and in spite of very bad conditions,i.e.,10%
of nodes failing at each period. Thebasictree includes
no other fault-tolerance mechanism, like replication.

6 Conclusion

We presented a practical self-stabilizing protocol for
the maintenance of a tree-structured P2P indexing sys-
tem. While previous work in this area mainly relied
on theoretical coarse grain models, this protocol used
the message passing model, thus is implementable on
P2P platforms. We provided a comprehensive and for-
mal correctness proof of the proposed protocol. Sim-
ulations demonstrate that the convergence time and the
communication of the protocol increases slowly when
the tree grows, indicating a good scalability. Moreover,
we showed the fault-tolerant features of the protocol in-
dicating the improvement of the availability of service
discovery systems.

We plan to implement the protocol inside a prototype
of a peer-to-peer indexing system we are currently de-
veloping, based on the JXTA toolbox. Our initial exper-
iments, conducted on the Grid’5000 platform [5], look
promising.

References

[1] J. Aspnes and G. Shah. Skip Graphs. InFourteenth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 384–393, January 2003.

[2] B. Awerbuch, B. Patt-Shamir, and G. Varghese.
Self-stabilizing end-to-end communication.Jour-
nal of High Speed Networks, 5(4):365–381, 1996.

[3] A. Bharambe, M. Agrawal, and S. Seshan. Mer-
cury: Supporting Scalable Multi-Attribute Range
Queries. InProceedings of the SIGCOMM Sympo-
sium, August 2004.

[4] A Bui, A K Datta, F Petit, and V Villain. Snap-
stabilization and pif in tree networks.Distributed
Computing, 20(1):3–19, 2007.

[5] F. Cappello et al. Grid’5000: a Large
Scale, Reconfigurable, Controlable and Moni-
torable Grid Platform. InSC’05: Proc. The 6th
IEEE/ACM International Workshop on Grid Com-
puting Grid’2005, pages 99–106, Seattle, USA,
November 13-14 2005. IEEE/ACM.

9

[6] E. Caron, F. Desprez, C. Fourdrignier, F. Petit,
and C. Tedeschi. A Repair Mechanism for Tree-
structured Peer-to-peer Systems. In Springer Ver-
lag, editor,HiPC 2006, 2006.

[7] E. Caron, F. Desprez, F. Petit, and C. Tedeschi.
Snap-stabilizing Prefix Tree for Peer-to-peer Sys-
tems. InSSS 2007, pages 82–96. Springer Verlag
Berlin Heidelberg, 2007.

[8] E. Caron, F. Desprez, and C. Tedeschi. A Dynamic
Prefix Tree for the Service Discovery Within Large
Scale Grids. InP2P2006. IEEE.

[9] A. Datta, M. Hauswirth, R. John, R. Schmidt, and
K. Aberer. Range Queries in Trie-Structured Over-
lays. InThe Fifth IEEE International Conference
on Peer-to-Peer Computing, 2005.

[10] A K. Datta, M Gradinariu, M Raynal, and G Si-
mon. Anonymous publish/subscribe in P2P net-
works. In IPDPS’03. The 17th International Par-
allel and Distributed Processing Symposium, page
74a, 2003.

[11] E. W. Dijkstra. Self-stabilizing Systems in Spite of
Distributed Control.Commun. ACM, 17(11):643–
644, 1974.

[12] S. Dolev.Self-Stabilization. The MIT Press, 2000.

[13] S Dolev and R I. Kat. Hypertree for self-stabilizing
peer-to-peer systems.to appear in Distributed
Computing, 2007.

[14] S. Dolev and J. L. Welch. Crash resilient commu-
nication in dynamic networks.IEEE Transactions
on Computers, 46(1):14–26, 1997.

[15] B. Ducourthial and S. Tixeuil. Self-stabilization
with path algebra.Theoritical Computer Science,
293(1):219–236, 2003.

[16] T. Herault, P. Lemarinier, O. Peres, L. Pilard, and
J. Beauquier. A Model for Large Scale Self-
Stabilization. In IEEE, editor,21th International
Parallel and Distributed Processing Symposium,
IPDPS 2007, 2007.

[17] T. Herman and Masuzawa T. A Stabilizing Search
Tree with Availability Properties. In IEEE, ed-
itor, Proceedings of the 5th International Sym-
posium on Autonomous Decentralized Systems
(ISADS’01), pages 398–405, 2001.

[18] T. Herman and Masuzawa T. Available Stabilizing
Heaps. Information Processing Letters, 77:115–
121, 2001.

[19] A. Iamnitchi and I. Foster. On Death, Taxes, and
the Convergence of Peer-to-Peer and Grid Com-
puting. InIPTPS, pages 118–128, 2003.

[20] M. Cai and M. Frank and J. Chen and P. Szekely.
MAAN: A multi-attribute addressable network for
Grid information services. 2(1):3–14, March 2004.

[21] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein,
and S. Shenker. Prefix Hash Tree An indexing
Data Structure over Distributed Hash Tables. In
Proceedings of the 23rd ACM Symposium on Prin-
ciples of Distributed Computing, St. John’s, New-
foundland, Canada, July 2004.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A Scalable Content-Adressable
Network. InACM SIGCOMM, 2001.

[23] A. Rowstron and P. Druschel. Pastry: Scal-
able, Distributed Object Location and Routing for
Large-Scale Peer-To-Peer Systems. InInterna-
tional Conference on Distributed Systems Plat-
forms (Middleware), November 2001.

[24] C. Schmidt and M. Parashar. Enabling Flexible
Queries with Guarantees in P2P Systems.IEEE
Internet Computing, 8(3):19–26, 2004.

[25] A Shaker and D S. Reeves. Self-stabilizing struc-
tured ring topology P2P systems. In IEEE, edi-
tor, Fifth IEEE International Conference on Peer-
to-Peer Computing, P2P 2005, pages 39–46, 2005.

[26] Y. Shu, B. C. Ooi, K. Tan, and Aoying Zhou.
Supporting Multi-Dimensional Range Queries in
Peer-to-Peer Systems. InPeer-to-Peer Computing,
pages 173–180, 2005.

[27] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup service for Internet Applications. InACM
SIGCOMM, pages 149–160, 2001.

[28] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea,
A. D. Joseph, and J. D. Kubiatowicz. Tapestry:
A Resilient Global-scale Overlay for Service De-
ployment. IEEE Journal on Selected Areas in
Communications, 22(1):41–53, January 2004.

10

