Self-Stabilization in Tree-Structured Peer-to-Peer Serice Discovery Systems

Eddy Caron, Ajoy K. Datte?, Franck Petitand Cédric Tedeschi
fUniversity of Lyon. LIP Laboratory. UMR CNRS - ENS Lyon - INRI- UCB Lyon 5668. France
° School of Computer Science. University of Nevada Las Veg&A
¥ MIS Laboratory. University of Picardie Jules Verne. France

Abstract and peer-to-peer together developed new approaches to
design grid middleware over fully decentralized plat-
The efficiency of service discovery is critical in the forms [19], especially dealing with resource discovery.
development of fully decentralized middleware intended The demand for flexibility and ability to handle com-
to manage large scale computational grids. This de- plexity of the service discovery systems led to the de-
mand influenced the design of many peer-to-peer basedvelopment of various overlay structures. One of them is
approaches. The ability to cope with the expressivenessbased orries a.k.a.lexicographic trees or prefix trees.
of the service discovery was behind the design of a newThese architectures usually support range queries, auto-
kind of overlay structures that is basedtoies, or prefix matic completion of partial search strings, and are easy
trees Although these overlays are well designed, one of to extend to multi-attribute queries.
their weaknesses is the lack of any concrete fault tolerant ~ Although fault-tolerance is a mandatory feature of
mechanism, especially in dynamic platforms; the faults systems targeted for large scale platforms (to avoid data
are handled by using preventive and costly mechanismsJoss and to ensure proper routing), tries overlays offer
e.g.,using a high degree of replication. Moreover, those only a poor robustness in dynamic environment. The
systems cannot handle any arbitrary transient failure. crash of one or more nodes may lead to the loss of
Self-stabilization which is an efficient approach to stored objects, and may split the trie into several sub-
design reliable solutions for dynamic systems, was re- tries. These subtries may not be re-grouped correctly,
cently suggested to be a good alternative to inject fault- making the system unable to correctly process queries.
tolerance in peer-to-peer systems. However, most ofin recent trie-based approaches, the fault-tolerance has
the previous research on self-stabilization in tree and/or been either ignored, or handled by preventive mecha-
P2P networks was designed in theoretical models, mak-nisms, usually by replication, which can be very costly
ing these approaches hard to implement in practice. In in terms of computing and storage resources. Moreover,
this paper, we provide a self-stabilizing message pass-replication does not ensure the recovery of the system
ing protocol to maintain prefix trees over practical peer- from arbitrary failures.
to-peer networks. A complete correctness proof is pro- The concept of self-stabilization [11, 12] is a general
vided, as well as simulation results to estimate the prac- technique to design distributed systems that can handle

tical impact of our protocol. arbitrary transient faults. A self-stabilizing system; re
Keywords: fault-tolerance, peer-to-peer systems, gardless of the initial states of the process and initial
service discovery, self-stabilization. messages in the links, is guaranteed to converge to the

intended behavior in finite time.

1 Introduction Related Work. The resource discovery in P2P en-

vironments has been extensively studied. Although

Grids connecting geographically distributed comput- pHTs [22, 23, 27, 28] were designed for very large sys-
ing resources have become a low cost alternative t0tems, they provide only rigid mechanisms of search. A

supercomputers. The communities of grid computing great deal of research went into finding ways to im-
*Partially funded by ANR (Agence Nationale de la Recherche) Prove the retrieval process over structured peer-to-peer
through the LEGO project ANR-05-CIGC-11. networks. Peer-to-peer systems use different technolo-

gies to support multi-attribute range queries [3, 20, 24, tocol that maintains a hypertree is proposed. The proto-
26]. Trie-structured approaches outperform others in the col proposed in [7] deals with prefix tree maintenance. It
sense that logarithmic (or constant if we assume an up-has the nice property of being snap-stabilizing [4],,it

per bound on the depth of the trie) latency is achieved guarantees that it always behaves according to its speci-
by parallelizing the resolution of the query in several fication — it is a self-stabilizing algorithm which is op-
branches of the trie. timal in terms of stabilization time since its stabilizes in

Among trie-based approaches, Prefix Hash Tree 0 steps. However, the algorithms in [7] requires the ini-
(PHT) [21] dynamically builds a trie of the given key- tial topqlogy tobea rooted_ connected tree, and has be_en
space as an upper layer, and maps it over any DHT-like Proven in a coarse theoretical model (the state model in-
network. The architecture of PHT increases the com- reduced in [11]).
plexity of the trie and of the underlying DHT. The prob-
lem of fault-tolerance is then delegated to the DHT layer. Contributions. In this paper, we propose a self-
Skip Graphs, introduced in [1], are similar to tries, but stabilizing protocol to maintain a prefix tree in a mes-
rely on skip lists, using probabilistic fault-tolerancéhdl sage passingeer-to-peer orientednodel. Our algo-
fault-tolerance approach used in P-Grid [9] is based on rithm does not require a fixed root node and works with
probabilistic replication. any arbitrary initial configuration of the tree topology.

d The proposed protocol can be implemented on any plat-
form that supports message passing and basic services
available in most peer-to-peer systems. We give a for-
mal proof of correctness of our protocol and some sim-
ulation results to study the scalability of the protocol as

In this paper, we focus on the DLPT (Distribute
Lexicographic Placement Table), an architecture re-
cently developed and studied in [8]. This approach, ini-
tially designed for the purpose of service discovery over
dynamic computational grids and aimed at solving some _ > - .) X
drawbacks of these previous approaches, is a two Iayerwe" as its efficiency in keeping the architecture avail-

architecture. The upper layer is a prefix tree maintaining 2°'€ for crl:ents gvle.n unh(jerr]h|gh failure rlgted. In_Secgon 2(;
the information about available services; each node of V& give the modelin which our protocolis designed, an

this tree maintains the information about services shar- the data structures it maintains. The protocol is given in

ing a particular key. This key labels the node. This tree S€ction 3, followed by its proofin Section 4. Simulation

is mapped onto the lower layeire., the physical net- 'eSults are given in Section 5.

works, for example, using a distributed hash table. In its

early design, the fault-tolerance was addressed by repli-2 Preliminaries

cation of nodes and links of the tree. An advantage of

this technology is its ability to take into account the het- The network. A P2P network consists of a set of asyn-
erogeneity of the underlying physical network to builid chronous processors with distinct ids. The processors
a more efficient tree overlay [8]. communicate by exchanging messages. Any processor

In summary, the fault-tolerance in resource discovery F1 can communicate with another processer pro-
Systems was ignored’ de|egated to other |ayerS’ or im_Vided Pl knows theid of PQ. We abstract the details
plemented using replication. In [6], a first alternative to ©Of the actual routing, as it is done in most of the peer-to-
the replication approach is provided; this scheme han- P€er systems. Henceforth, we use the woeerto refer
dles the trie crash by reconnecting and reordering the 10 & processor.
nodes. However, the subtries being reordered are as-
sumed to be valid, restricting the initial configurations The indexing logical tree. Our indexing system is a
being handled and repaired, and making this solution notlogical prefix tree, whose nodes are mapped onto the
self-stabilizing. In the self-stabilizing area, some isve peers of the network. Henceforth, the wardderefers
tigations take interest in distributed search tree overlay to a node of the treei.e., a logical entity. Keep in
e.g, [17] and [18] for 2-3 trees and heap trees, respec- mind thatPhysical nodesor processorsare referred to
tively. A self-stabilizing lexicographic distributed atr- aspeers Each peer maintains a part of our indexing
ture is proposed in [15] as an applicationrebperators. system,i.e., some [ogical) nodes of the prefix tree. It
Some papers considered self-stabilization in a peer-to-is also important to recall that dofical) node is im-
peer setting [7, 10, 13, 16, 25]. In [16], a self-stabilizing plemented as a process, which runs on a peer. In other
spanning tree protocol is proposed. In the same paperwords, a process implements the notion of node. As we
the authors introduce a new model of peer-to-peer sys-said, each node has a label. In a correct configuration
tems for self-stabilization. In [13], a self-stabilizingyp (that we define later in Definition 1), each node label is

unique. (Only one node is responsible for all services (i > 2), denotedGCP(w1,ws,...,w;,...) (resp.
sharing a common key.) However, initially, when the PGCP(wq,ws,...,w;,...)), is the longest prefix
system is not yet stabilized, the structure may contain shared by all of them (resp., such that> 1, u # w;).
multiple nodes sharing the same label. Thus, we can-

not use labels to identify the nodes. We chose to iden- Definition 1 (PGCP Tree) A Proper Greatest Common
tify nodes by the process implementing it. A process is Prefix Treeis a labeled rooted tree such that the follow-
identified by a unique combination of the peer running it ing properties are true for every node of the tree:

and a port number. Our protocol maintaining the prefix
tree is run on every proces®odesand Processesre
basically two different view of the same thing. In the re-

mainder, we use these terms interchangeably. Note that 2. The greatest common prefix of any pair of labels of
the tree topology is susceptible to changes duringitsre- children of a given node are the same and equal to
construction. We assume the presence of a service able the node label.
to return process references. Thiwcess discoverser-

vice is similar to the one used in [16]. Any process of the Self-stabilization.
system can obtain any other process identifier by calling triple S = (C,~,T), whereC is a set of configura-
this service. To prove the correctness of the algorithm, 4onc s 4 bina;y transition relation of, andZ ¢ C
we assume that a finite number of queries to this serviceiS the set of initial configurations. Aonfigurationis
is enough to collect the identifiers of all processes in the a vector withn + 1 components, where the first

system. The service provides the following two primi- components are the state ofprocesses and the last
tives: GETRUNNINGPROCESS) returns the identifier of |\ "ic 4 mutti-set of messages in transitrin links

a randomly chosen Process, an&_tNE,WPROCESEXO We define anexecutionof S as a maximal sequence

creates a new process (without setting its parametersyet)g = (Y0s 71592, s Vi Vit 1), Whereyo € T and for

and returns its identifier. The communication between ; - 7-7»—> ”V'+’1WA |:l)7rezj+|cé\teH onC, the set of system
y It K] . ’

processes is carried out by exchanging messages. A progqfia rations, islosedfor a transition systens if and
cessp is able to communicate with a procegsif and

g i only if every state of an executianthat starts in a state
only if p knows the id ofg. We assume that a copy of

, , satisfyingll also satisfiedl. A transition systent is
every message sent pyto g is eventuglly received by self-stabilizingwith respect to a predicaié if and only
@ unle_SSq_ has crashed or has been killed. The_me_ssageif ITis closed forS and for every executioaof .S, there
delay is finite but not bounded. Messages arrive in the exists a configuration af for which IT is true
order they were sent (FIFO), and as long as a message is '
not processed by the receiving process, we assume thaé

Protocol

it is in transit.

1. The node label is a proper prefix of any label in its
subtree.

Define atransition systemas a

In this section, we present a protocol to build a

Proper Greatest Common Prefix Tree. We now for-

mally describe the distributed structure we maintain.

Let an ordered alphabet be a finite set of letters.
Denote < an order onA. A non emptyword w
over A is a finite sequence of letters, ..., a;, ..., a;,
Il > 0. The concatenationof two words « and
v, denoted asu o v, or simply wv, is equal to
the worday, ..., a;i,...,ak, b1,...,b;,..., b such that
U = ai,...,0,...,0, andv = by,...,b;,..., 0.
Let ¢ be the empty wordsuch that for every word
w, we = ew = w. Thelengthof a wordw, de-
noted by|w|, is equal to the number of letters af.
el = 0. A word u is a prefix (respectively,proper
prefi) of a word v if there exists a wordw such
thatv = ww (resp.,v = ww andu # v). The
Greatest Common Prefixesp.,Proper Greatest Com-
mon PrefiX of a collection of wordsv,, wo, ..., w;, ...

PGCP tree providing a logical overlay structure of a
peer-to-peer service discovery system. Our protocol is
self-stabilizing and self-organzing, meaning, the logi-
cal structure can start from an arbitrary state, but will
eventually converge to a PGCP tree. The proposed
protocol assumes the existence of an underhsatf-
stabilizing end-to-end communicati(@SEE) protocol.
Both layers communicate usisgndreceiveprimitives
over FIFO message queues. Thefid<m>, q)" prim-
itives sends message to nodeg; it always terminates;
if the recipientq is alive, m is queued ay and will be
processed later; otherwisggcrashed andh is lost. The
implementation of Protocol SSEE is beyond the scope
of this paper. Refer to [2, 14] for such protocols.

Every procesg (we usep to denote theid of p
and the address used by other processes to communi-
cate withp) has a label,,. Denote byp, the pair(p, 1,,).

Recall thatp =]3’ is equivalenttdp = p') A (I, = 1,y).

Algorithm 1 Periodic rule, on process

Nodep also maintains a copy of the identifier and label
of its parent intofp and of its children into the finite set
(/J;. Note thaté\p, D andf; are variables(, is the result
of a macro that extracts the first element of every pairs
in é'\p

To deal with crash failures, to maintain the topologi- 01
cal information, and to maintain the status of processes3oe

2.07

(they terminated or not) in our protocol, we assume the
presence of an underlyinigeartbeatprotocol. We as- 39

2.02

2.10

sume that any node that does not receive news from on€};
child or parent during a bounded time (implemented by 213

2.14
using a TimeOut action in the algorithm), removes the 2!°
node from its neighborhood set. Note that when delet- 217
ing a given childg € C,, all the data associated with 1
is deleted.

The function GTEPSILON() returns the identifier of
a random node labeled by the empty werdlt relies
on theprocess discovergervice previously described.
Basically, it calls GTNEwWPROCESS) and checks if

the process returned is amprocessj.e., a process la-

2.

2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29

1.01 Variables: p = (p, lp), id and label ofp

fp = (fp, pr), id and label of the parent gf

Cp =1{ai = (a1, lqy)>-- > @ = (a» lqy,)}, setof children ofp
Tq,Vq € Cp time before considering q as not its child anymore

Cp ={al(a lq) € C/J;},set of totally ordered ids of children gf

2.01 UponTi neQut do

if fp = pthen fp := L
ifp € CpthenCp := Cp \ {B}
if fp = L then

if lp = ethen
q := GETEPSILON()
if ¢ < pthen
Cp := Cp U {(q,)}
send < UPDATEPARENT, >, q)
else
new := GETNEWPROCESY)
send <HosT, (e, L, {p})>, new)
Tp = (new, ¢)

while3q € Cp |lq = lpdo
send <MERGE, p>, q)
while 3(q1, g2) € Cg s lp € PREFIXES(lql) A lq1 € PREF\XES(lq2)) do
S/e\nc(<UP/D\ATEPARENT‘ q1>.92)
Cp = Cp \ {@}
while 3(q1, g2) € Cg : lp € PREFIXES(lgq)
Alp € PREFIXES(lgy) A |GCP(lgy,lgy)| > |lp|do
lnew i=GCPqy ; lgy)
new := GETNEWPROCESS)
send <HOST, (lnew, P, {91, a2})> new)
send < UPDATEPARENT, mew >, q1)
send < UPDATEPARENT, e >, o)
Cp = Cp \ {a1, @3} U {new)
if fp # L then
send <PARENT?, 5>, fp)

beled bye. Since we assume that a finite number of
calls to theprocess discovergervice is enough to get
all identifiers of alive nodes, th@et Epsi | on() func-
tion also returns every-process in a finite time. The
NEWPROCESS!bI, f, C) function starts a new process
on the local node and initiates the label with, the par-
ent with f, and the set of children witfy.

The “send<m>, ¢)" procedure returns a Boolean.
If it returnedtrue, the recipieny; is alive and the mes-
sagem is queued omy, and will be processed later. Oth-
erwise, it means thaj is dead. The rules of the pro-
tocol, theperiodicrule, periodically runs on each node
as detailed in Algorithm 1, and thepon receiptrules,
detailed in Algorithm 2, are initiated upon receipt of a
message, are atomic.

Each nodep periodically initiates the action de-
scribed by Algorithm 1. p begins by eliminating the
cases wherg is either a parent or a child of itself (this
may cause cycles) (Lines 2.02-2.03).

Lines 2.04-2.13 deal with parent maintenance. These
lines ensure that eventually, there will be one and only
one root,i.e.,only one node eventually satisfieg, =
1. To achieve this, the possible root nodes merge. Let
us consider a root nogeto explain this part of the algo-
rithm. There are two possible situations:

1. If the label ofp is ¢, p tries to connect to another
nodegq, also labeled. ¢ then becomes a child gf
(Line 2.08).p informsgq that its parent changed us-
ing UPDATEPARENT message. Upon receipt of that

messagey updates its parent variable (Lines 6.01-
6.03 of Algorithm 2). Sincep andg are labeled
identially, they will merge (the merge process is ex-
plained below), thus reducing the number of roots
by one.

. If p is not labeled by, a new node labeled is

artificially created as the parentef This new node
executes the periodic rule satisfying the previous
case.

Lines 2.15-2.27 deal with children maintenance to
make sure that eventually, every set of children satisfies
Definition 1. This phase consists of three parts.

1. We eliminate cases where the set of childrem of

contains a node whose label is the label of by
initiating the merge process ¢@f andq. p sends
a MERGE message t@ (Lines 2.15-2.16). First,
upon receipt of the MRGE messagey informs its
children that their new parent s their current grand-
parent through GANDPARENT messages. Upon
receipt of this message, the children@thange
their parent fromy to p. To ensure a good synchro-
nization,q waits until all its children have been ac-
cepted by as childreni.e.,waits for the GFIDNE
messagey finally informsp that the merging pro-
cess has finished by sending the e message,
and terminates (Lines 8.01-11.03).

Algorithm 2 Upon receiptrules, on process

3.01
3.02
3.03
3.04
3.05
3.06

4.01
4.02
4.03

5.01
5.02
5.03

6.01
6.02
6.03

7.01
7.02

8.01
8.02
8.03

9.01
9.02
9.03
9.04

10.01
10.02
10.03
10.04
10.05
10.06

11.01
11.02
11.03

upon receiptof < PARENT?, g> do
if 1p € PREFIXES(lg) A send <CHILD, p>, q) then
Cp :=Cp U {3}
else
send < ORPHAN, p >, q)
Cp = Cp \ {@}

upon receiptof < CHILD, > do
if fp = qthen

Ly = lg

upon receiptof < ORPHAN, g> do
if fp = qthen
fp =1

upon receiptof < UPDATEPARENT, > do
if (1g_€ PREFIXES(lp)) A send <PARENT?, 5>, g) then

fp =q

upon receiptof <HosT, 1, f, C > do
NewPRrocess(l, f, C)

upon receiptof <MERGE g> do
if (fp = a) A (Iq € PREFIXES(Lp)) then
vq' € Cp, send < GRANDPARENT, fp, g>.q")

upon receiptof < GRANDPARENT, n/e—w\f g>do
if (fp = a) A (g € PREFIXES(lp)) then
Tp = mews
send < GFDONE, p>, q)

upon receiptof < GFDONE, g> do
it (¢ € Cp) A (Ip € PREFIXES(lq)) then
Cp = Tp \ {@}
if Cp = 0then
send <MDONE, 5>, fp)
KiLL (p)

upon receiptof < MDONE, §> do
if (g € Cp) A (Ip € PREFIXES(Lg)) then
Cp :=Cp\{a}

2. We eliminate cases where a pair of children do not

The purpose of Lines 2.28-2.29 is fpito check the
validity of its parent. Upon receipt of theARENT mes-
sage, the parent gf decides whethep is its child de-
pending on their labels, and informsof the result. It
uses a @ILD message to indicate that it considers
as its child. Otherwise, it sends arREHAN message.

4 Proof of Stabilization

Like most of the fault-tolerant system design
schemes, we will assume the following;) The fre-
quency of fault occurrence is not too higlii) The time
between two occurrences of faults is higher than the time
required to recover from a fault.

In the proofs given in this section, we will consider
a suffix of an execution starting after all crashes have
taken placei.e.,in this particular execution segment, no
further crashes will occur. LeP be the set of alive pro-
cesses. Everysend<m>, ¢q)” executed by a process
p € P terminates and when this happens, eitheis
received byy orq ¢ P.

A configurationy satisfies Predicatl; if and only
if, assuming that a procegse P infinitely often sends
a message to a procegs P (¢ # p), the following two
conditions are true in every executienstarting from
~: (1) Safety The sequence of messages received by
is a prefix of the sequence of messages sent.by?2)
Livenessq receives a message infinitely often.

The following lemma follows from the fact that we
assume an underlying self-stabilizing end-to-end com-
munication protocol.

Lemma 2 The system is self-stabilizing with respect to

satisfy Definition 1. For example, assume that a Corollary 3 Every message received by a procesgin

child ¢; prefixes another chilg,. So, the proper
greatest common prefix of the labels gfand ¢,
is equal to the label of,. But, the greatest com-
mon prefix, by Definition 1 must be the label of
A contradiction (Line 2.17).g> then becomes the

child of ¢; (Lines 2.17-2.19).

. We check that there is no pdif, g2) in its set of
children such that the greatest common prefixf
their labels is greater than its own label (Lines 2.21-
2.27). In this case, a new node must be created.
This node, labeled by, will be the child ofp and

the common parent af; andgs,.

in a configuration that satisfield;, was sent by another
process inP.

Lemma 4 Starting from a configuration satisfying,
every process inP executes Lines 2.01-2.29 infinitely
often.

Proof. The set@ is finite and the loop is exe-
cuted atomically (no message receipt can interrupt the
execution of the loop). Moreover, each execution of
sendterminates. So, none of the three “while loops”
(Lines 2.15-2.27) can loop forever. O

Corollary 5 Starting from a configuration satisfying
I1;, the system eventually contains no procgessuch
that f, =porp e C.

Proof. Procesw executes Lines 2.02 and 2.03 in-
finitely often. Moreover, the algorithm contains no line
in which f, := porC, := C, U {p}. O

Lines 4.01-5.03 detail the receipt of these messages. We will now show that, starting from a configuration

Upon receipt of GILD, p updates the label of its par-
ent. Upon receipt of @PHAN, it becomes a root and
executes the periodic rule as we discussed before.

satisfyingll;, the child set ;) of each procesg € P
eventually contains no child lgsuch thayy ¢ P, i.e.,q
is alive.

Lemma 6 Letp be a process irP. In every execution
starting from a configurationy satisfyingIl,, if there
existsq € C), suchthaiy ¢ P, then eventually; ¢ C,,.

Proof.
heartbeatprotocol between neighbors.

Follows from the assumption of an underlying
O

Let IT, be the predicate over such thaty € C satis-
fiesIl, iff Vp € P,Vq € C,, q € P.

Lemma 7 The system is self-stabilizing with respect to
1Is.

Proof. From Corollary 3, no process € P can
receive a message from a procesg P. So, in any exe-
cution starting from a configuration satisfyingIl;, no
proces® can add a process tgsuch thai; ¢ P. p can
add a procesgin C,, using Lines 2.08 and 2.27 in which
caseq was returned by a 6r*() function assumed to
return ids inP. It can also add; using Line 3.03, in
which case; was sent by, itself, and is thus alive. By
Lemma 6, if there exists some process P such that
C,, contains ids not irP, then each of these ids is even-
tually removed fromC,. Thus, eventuallyyp € P,
Vqe Cp,q€ P. O

From now on, we do not mentioR because all pro-
cess references are assumed to b&inLet II; be the
predicate ove€ such thaty € C satisfiedl; iff in every
execution starting frony satisfyingll,, for each process
p: (1) p executed Lines 2.01-2.29 at least once, &)d
if p sent a message ARENT?” to ¢, thenp received
the corresponding response (a messa@HILD > or
<ORPHAN>) from ¢. The next lemma follows di-
rectly from Lemma 4 and the fact that every message
receipt action terminates.

Lemma 8 The system is self-stabilizing with respect to
IIs.

Lemma 8 ensures that for every procgseach label
in C,, is correct,i.e.,is equal to the actual label qf p

adds or updates the child labels in three ways. First, us-

ing Line 3.03 in which case the label was senyhiself
and is thus correct. Second, by using Line 2.08 in which
caseg was returned by GTEPSILON() and the label is
set toe. Third, by using Line 2.27 in which case the la-
bel was computed by itself and then sent teew. We
will now show that, starting from a configuration satis-
fying II,, the child set,) of each procesg eventually
contains no child I¢ such that, ¢ PREFIXES((,).

Lemma 9 Letp andg be two processes. If there exists
an execution starting from a configuration satisfyiig

containing a system transitiop. — 741 such thaty ¢
Cp in vy, andq € Cp, in 441, thenl, € PREFIXES(l,).

Proof. To addg to C,,, p executes one of the following
lines:

1. Line 2.08. In this casé, = [, = e.

2. Line 2.27. In this caseq = new andl, =
GCP(l4,,14,), where both,, andl,, are prefixed
by [,.

3. Line 3.03. This line is executed only if, €
PREFIXES(g) (Line 3.02).

O

Lemma 10 Let~ be a configuration satisfyinfjs. Let
p andgq be a pair of processes such that,yng € C,.

If there exists an executionstarting from~ such that
q € C, forever, ther, € PREFIXES((,).

Proof. Assume by contradiction that there ex-
ists e starting from~ such thaty € C, forever, and
l, ¢ PREFIXES(l4). There are two cases to consider:

1. There exists a configuratian € e such thaff, # p
forever (f, # p in every execution starting from
~"). In that case, assuming the presence of an un-
derlying heartbeatprotocol between neighbors,
will not receive heartbeats fromp and eventually
remove it from the set of its children. A contradic-
tion.

2. f, = pinfinitely often. So,q sends RRENT? to
p infinitely often. Upon receipt of this message,

removes; from C), (Line 3.06). A contradiction.
O

Let I, be the predicate over such thaty € C satis-
fiesIly iff given two processes, ¢, if ¢ € C), in v, then
l, € PREFIXES(ly).

Lemma 11 The system is self-stabilizing with respect to
4.

Proof. By Lemma 10, for every process if C,, con-
tainsq such that,, ¢ PREFIXES(],), thenq is eventually
removed fromC,. By Lemma 9, for every, ¢ can be
added taC, only if [, € PREFIXES(l,). So, eventually,
if ¢ € C,, thenl,, € PREFIXES(l,). O

It follows from Lemma 11 that, in every configura-
tion v satisfyingIly, if there exists a procegsand nog
such that,, € PREFIXES(l,), thenC), is an empty set.

In other words, the leaf nodes will not have any chil-
dren. We will now show that the number of trees will
eventually become one.

Lemma 12 In every execution starting from a configu-
ration satisfyingll,, the number of times a procegs
setsf, to L is less than or equal td.

Proof. Assume by contradiction that there exists an
executiore starting fromy and a procesg setting f,, to

1 more than once. In a configuration satisfyirig, by
Corollary 5 and Lemma 7 can setf, to L upon receipt

of a message RPHAN only. So,p receives @RPHAN at
least twice. After the first receipp executes the loop
Lines 2.01-2.29. There are two cases to consider:

1. I, = e. In that casep obtains an existing e-
process’y’ as its parent— refer to Lines 2.05-2.09.
Then,p sends WDATEPARENT to ¢’ that will never

sends @PHANto p sincel, € PREFIXES((,).

2.1, # e. Inthat casep creates and chooses as a
parent a new é-process’q. This case is similar to
the first one.

O

Let o be the number of processgsuch thatf, = L.

Lemma 13 In every configurationy satisfyingIly, if
o = 0in ~, thenp eventually becomes greater than
and remains greater thafthereafter.

Proof. Assume by contradiction that = 0 in v
and there exists an executiemstarting fromy such that

o is equal to0 infinitely often. There are two cases to
consider:

1. ¢ = 0in every configuration o¢, i.e.,Vp, f, # L

O

Lemma 14 In every execution starting from a configu-
ration ~ satisfyingIl,, ¢ eventually becomes equal to
1.

Proof. By Lemmas 12 and 13, in every execution from
~, there exists a configuration such thap is equal to a
maximum valuer € [1,|P]|]. Assume by contradiction
that there exists an executiena valuey € [2, z], and

a configurationy; in e with ¢ > ¢ such thato = y and
remains equal tg thereafter. There are two cases to
consider:

1. Among they nodes, there existg such that, #
e. Then,p eventually executes Lines 2.11-2.13 a
new e-process is created, takinpgas its child. The
number of roots is unchanged but, eventually, every
root is labeled by.

2. Thelabel of thgy nodes is equal te. Letp be thee-
processes having the maximum identifier. By exe-
cuting Line 2.06p eventually chooses anprocess
g such thaty setsf, to p upon receipt of the mes-
sage WDATEPARENT sent byp, and the number of
roots is decremented. A contradiction.

O
Let IT; be the predicate ovér such that = 1.

Lemma 15 The system is self-stabilizing with respect to
5.

Proof. Follows from Lemmas 12, 13, and 14. O

In every configuration satisfyin@ls, there exists a
single process such that,, = eandf, = L. Inthe
next and last step of the proof, we show that if the parent
of a proces® changes, thep moves toward the leaves

in every configuration. So, no process ever receives such that the tree eventually forms a PGCP tree.

ORPHAN. Letp be a process such thédg # p, [, ¢
PREFIXES(l,)—i.e., I, is minimum. (Note that in
every configuration satisfyin@l,, Vg # p, p ¢
C,.) Upon the first receipt of ARENT? sent by
p to its parent, say’, p’ sends @PHAN to p. A
contradiction.

2. o = 0 infinitely often. From Lemma 12yp €
P, p setsf, at most once. Sq increases frond
to a valuex < |P|. Then, since we assume that
o = 0 infinitely often, it means that will then be
equal to0, eventually. And since can not increase
anymore, it will remains equal t6, which is the
first case.

Lemma 16 In every execution starting from a configu-
ration ~ satisfyinglls, if a process setsf, to ¢, then
lq € PREFIXES(l,).

Proof. In every configurationy satisfyinglls, a pro-
cess can changg, by executing the receipt of either a
message GANDPARENT or UPDATEPARENT, in both
cases, sent by its parent. In both casgsis set tog
such thai, € PREFIXES((,). a

Lemma 17 In every execution starting from a configu-
ration v satisfyinglls, the number of pairg, ¢ such that
l, = l, eventually becomes equal@o

Proof. Note that in every configuration satisfying of messages generated by one execution of the periodic
115, one amondp, ¢} is the parent of the other. Without rule is finite. To implement the discrete sampling, pro-
loss of generality, we assume thats the parent of;. cesses arsynchronized But, the discrete time reflects
By the repeated executions of Lines 2.15-2.16 and 8.01-the slowest processor rate. In other words, the scheduler
11.03 on each paip, ¢, all the children ofy eventually simulated is fair.
become the childrep andq eventually disappears. [

100

Let ITs be the predicate ovet such thaty € C sat- [average] ——
isfies Ilg iff the distributed data structure maintained
by the variables of Algorithm 1 and 2 forms a Proper & 8| 1
Greatest Common Prefix Tree. We wafit Vg1, g2 € g
Cp, 1, =GCRg,,l4,). Considering the results of Lem- s
mas 2,7, 8,11, 15, 16, and 17, there remains to eliminate £
problematic cases expressed by conditions of Line 2.17 2
and Line 2.21. By the repeated executions of Lines 2.17- g
2.27, we can claim the final result of our algorithm: §
Theorem 18 The system is self-stabilizing with respect
to HG' ° 0 560 1600 15‘00 2600 25‘00 3(;00
Network size

5 Simulation results , _ _
Figure 1. Simulation of the protocol: con-

The main goal of this section or running the simula- vergence time

tion is to test and demonstrate the scalability of the pro-
posed protocol. In particular, we investigated the con-
vergence time and the number of messages exchanged
both w.r.t. the number of nodes.

The simulator is written as a Python script. The script
arbitrarily creates an initial faulty configuration of the
network. Byarbitrarily, we mean that each node is cre-
ated independently from the others. To create one node, £
it picks a randomly created label (on the latin alphabet) <
of size between 1 and 20. It also chooses some nodes2 ;|
randomly from the set of already created nodes, to be-
come the parent and the children of the node currently
created. Thus, the initial graph is inconsistent — pre-
fix relationship may be wronge(g.,a node label may
be prefixed by the label of its child), or the information
about the neighbors may be incorrect. For example,
may consider its parent label isalthoughg is labeled
" # 1, orp may assume as its parent while does not Figure 2. Simulation of the protocol:
considerg is its child. We created the tree randomly to amount of messages
test the power of the proposed self-stabilizing protocol.

The protocol is launched at each node of the graph.

We assume a discrete time, and each periogi®eess- Figure 1 shows the number of periods required on an
ing sample In other words, one period begins when the average to converge as a function of the number of the
first node starts the execution of the periodic rule, and final number of nodes in the tree. Note that this num-
the period ends when every node has triggered the peri-ber is equal to the initial number of distinct labels in the

odic rule once and only once, and the set of actions re-graph plus the number of labels created for the validity
sulting from it (sending messages, processing messagesf the tree (in order to satisfy Definition 1). The plot

updating variables, etc.) have been executed. As we de-in Figure 1 shows that the number of periods required
tailed in the proof, this set is finite, since the maximal set to converge increases very slowly when the size of the

de)

ne no

100 T T
[average] —+—

80 f 1

ring one period by o

60 1

0 500 1000 1500 2000 2500 3000
Network size

Number of messages exchange

100

. i ‘
self-stabilizing tree —+—
basic tree ----x---

80

60

40

Satisfaction rate

20

4
Percentage of failing nodes at each unit

Figure 3. Simulation of the protocol: satis-
faction rate of clients’ requests

tree ranges from a couple of nodes to more than 3000.
This suggests that the convergence time grows linearly
in the worst case, and with a very low slope (approxi-
mately 1/50). Figure 2 gives an average estimation of

self-stabilizing algorithm is used — approximately from
5% to 40% and in spite of very bad conditions,, 10%

of nodes failing at each period. Tlbasictree includes
no other fault-tolerance mechanism, like replication.

6 Conclusion

We presented a practical self-stabilizing protocol for
the maintenance of a tree-structured P2P indexing sys-
tem. While previous work in this area mainly relied
on theoretical coarse grain models, this protocol used
the message passing model, thus is implementable on
P2P platforms. We provided a comprehensive and for-
mal correctness proof of the proposed protocol. Sim-
ulations demonstrate that the convergence time and the
communication of the protocol increases slowly when
the tree grows, indicating a good scalability. Moreover,
we showed the fault-tolerant features of the protocol in-
dicating the improvement of the availability of service
discovery systems.

We plan to implement the protocol inside a prototype
of a peer-to-peer indexing system we are currently de-
veloping, based on the JXTA toolbox. Our initial exper-

the number of messages each node exchanges durinﬂnents, conducted on the Grid’5000 platform [5], look

one period as a function of the final number of nodes.
Again, the plot suggests a linear behavior in the worst
case. These two results show that, when the tree grows
both the amount of processing and the number of mes-

promising.

References

sages exchanged by the nodes (and thus the utilization

of CPU and network resources) grow slowly, indicating
the scalability of the protocol.

Finally, we simulated clients’ request.,discovery
requests looking up for a service. Discovery requests on

a given service (or label) are encapsulated in a message
sent to a randomly picked node. Then the message is
routed until it reaches the node labeled by the requested

service.

We investigated if a prefix tree overlay enhanced with
our self-stabilizing protocol, regardless of the conver-
gence time, allows the system to guarantee a certain
level of availability. To this end, we simulated a pre-
fix tree continuously undergoing failures, in a faster rate

than the convergence time, under the same discrete-time

conditions as the previous experiments. In Figure 3, the
X-axis shows the number of nodes undergoing failures
in percentage (0-10) of the total number nodes of the
tree (about 500 in this experiment) at each period. The
Y-axis gives the percentage of clients’ requests satisfied.
A request is said to be satisfied if it reached its destina-
tion in the tree starting from a random node. The curve
shows that this number significantly improves when the

[1] J. Aspnes and G. Shah. Skip GraphsFturteenth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 384—-393, January 2003.

] B. Awerbuch, B. Patt-Shamir, and G. Varghese.
Self-stabilizing end-to-end communicatiodour-
nal of High Speed Network§(4):365—-381, 1996.

[3] A. Bharambe, M. Agrawal, and S. Seshan. Mer-
cury: Supporting Scalable Multi-Attribute Range
Queries. InProceedings of the SIGCOMM Sympo-
sium August 2004.

[4] A Bui, A K Datta, F Petit, and V Villain. Snap-
stabilization and pif in tree network®Distributed
Computing20(1):3-19, 2007.

[5] F. Cappello et al. Grid’'5000: a Large

Scale, Reconfigurable, Controlable and Moni-

torable Grid Platform. InSC’05: Proc. The 6th

IEEE/ACM International Workshop on Grid Com-

puting Grid’2005 pages 99-106, Seattle, USA,

November 13-14 2005. IEEE/ACM.

[6] E. Caron, F. Desprez, C. Fourdrignier, F. Petit, [18] T. Herman and Masuzawa T. Available Stabilizing

[7]

(8]

and C. Tedeschi. A Repair Mechanism for Tree-
structured Peer-to-peer Systems. In Springer Ver-
lag, editorHiPC 2006 2006.

E. Caron, F. Desprez, F. Petit, and C. Tedeschi.
Snap-stabilizing Prefix Tree for Peer-to-peer Sys-
tems. InSSS 2007pages 82-96. Springer Verlag
Berlin Heidelberg, 2007.

E. Caron, F. Desprez, and C. Tedeschi. A Dynamic
Prefix Tree for the Service Discovery Within Large
Scale Grids. IlP2P2006 IEEE.

[9] A. Datta, M. Hauswirth, R. John, R. Schmidt, and

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Aberer. Range Queries in Trie-Structured Over-
lays. InThe Fifth IEEE International Conference
on Peer-to-Peer Computing005.

A K. Datta, M Gradinariu, M Raynal, and G Si-
mon. Anonymous publish/subscribe in P2P net-
works. InIPDPS’03. The 17th International Par-
allel and Distributed Processing Symposiyrmage
74a, 2003.

E. W. Dijkstra. Self-stabilizing Systems in Spite of
Distributed Control.Commun. ACM17(11):643—
644, 1974.

S. Dolev.Self-StabilizationThe MIT Press, 2000.

S Dolev and R |. Kat. Hypertree for self-stabilizing
peer-to-peer systems.to appear in Distributed
Computing 2007.

S. Dolev and J. L. Welch. Crash resilient commu-
nication in dynamic networkdEEE Transactions
on Computers46(1):14-26, 1997.

B. Ducourthial and S. Tixeuil. Self-stabilization
with path algebra.Theoritical Computer Science
293(1):219-236, 2003.

T. Herault, P. Lemarinier, O. Peres, L. Pilard, and
J. Beauquier. A Model for Large Scale Self-
Stabilization. In IEEE, editor21th International
Parallel and Distributed Processing Symposium,
IPDPS 20072007.

T. Herman and Masuzawa T. A Stabilizing Search
Tree with Availability Properties. In IEEE, ed-
itor, Proceedings of the 5th International Sym-
posium on Autonomous Decentralized Systems
(ISADS’01) pages 398—405, 2001.

10

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Heaps. Information Processing Letters7:115—
121, 2001.

A. lamnitchi and |. Foster. On Death, Taxes, and
the Convergence of Peer-to-Peer and Grid Com-
puting. InIPTPS pages 118-128, 2003.

M. Cai and M. Frank and J. Chen and P. Szekely.
MAAN: A multi-attribute addressable network for
Grid information services. 2(1):3—14, March 2004.

S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein,
and S. Shenker. Prefix Hash Tree An indexing
Data Structure over Distributed Hash Tables. In
Proceedings of the 23rd ACM Symposium on Prin-
ciples of Distributed Computingt. John’s, New-
foundland, Canada, July 2004.

S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A Scalable Content-Adressable
Network. INnACM SIGCOMM 2001.

A. Rowstron and P. Druschel. Pastry: Scal-
able, Distributed Object Location and Routing for
Large-Scale Peer-To-Peer Systems. Initerna-
tional Conference on Distributed Systems Plat-
forms (Middleware)November 2001.

C. Schmidt and M. Parashar. Enabling Flexible
Queries with Guarantees in P2P SysteniEEE
Internet Computing8(3):19-26, 2004.

A Shaker and D S. Reeves. Self-stabilizing struc-
tured ring topology P2P systems. In IEEE, edi-
tor, Fifth IEEE International Conference on Peer-
to-Peer Computing, P2P 200pages 39-46, 2005.

Y. Shu, B. C. Ooi, K. Tan, and Aoying Zhou.
Supporting Multi-Dimensional Range Queries in
Peer-to-Peer Systems. Reer-to-Peer Computing
pages 173-180, 2005.

I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup service for Internet Applications. lCM
SIGCOMM pages 149-160, 2001.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea,
A. D. Joseph, and J. D. Kubiatowicz. Tapestry:
A Resilient Global-scale Overlay for Service De-
ployment. IEEE Journal on Selected Areas in
Communication®22(1):41-53, January 2004.

