
5th Americas International Conference on Production Research

HILES DESIGNER: A MODELING TOOL FOR EMBEDDED SYSTEMS DESIGN
VALIDATION

C.E. Gomez1, J.F. Jimenez2, J.C. Pascal1,3, P. Esteban1,3
1CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France

2Electrical and Electronics Eng. Dep. Universidad de los Andes, Bogota, Colombia
3Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

Abstract
Verification and Validation (V&V) on embedded systems design is a crucial topic today. It is essential in
systems design to create methods to measure the modeled behavior correctness in order to give more
reliability to the design itself. Using formalisms such as Finite State Machine or Petri Nets, it is possible to
verify formally or by simulation the design behavior. In this work, we present HiLeS Designer CAD tool to
model and to verify systems formally and by simulation. This tool uses its own formalism that allows
modeling heterogeneous systems in hierarchical levels, representing the logic behavior by Petri nets and
the continuous behavior using VHDL-AMS. The Petri net part can be formally analyzed. The composed
model can be transformed to a unique executable virtual prototype in VHDL-AMS. A remote keyless system
is presented as an embedded system example.

Keywords:
Embedded system design, heterogeneous systems, Petri nets, validation, virtual prototype, VHDL-AMS.

INTRODUCTION

Tools to design electronic based systems are increasingly
demanded. Users need tools that could help to decrease
time-to-market, to clearly establish economic feasibility, to
early detect risk sources, to build realistic-complete virtual
prototypes and to conduct error free designs. High level
approaches are mainly empiric or non-formal. System
architectures are based on designer background or on
predefined architectures. Tools, which propose
methodological approaches, are focused on particular
segments like digital or/and software design. To decrease
manufacturing delays in a world where most tools are
highly specialized, users need CAD tools oriented to the
highest-level model generation that could assure the
system coherence all over the design flux. Indeed, few
approaches propose validation and verification on the
design flow steps; and most of the time this validation and
verification is done at the lower step [1].

The design begins with the customer's requirements:
Functional and non-functional requirements. Then
designers have to define the functionality through models
and the possible architecture where the system will be
implemented. They map these models to find the best
performance. In this step, designers decide which
functionality will be implemented in hardware and which
will be solved in software, to achieve the wished
performance, before going to the implementation.

In the market, there are tools to model the functionality, the
architecture and the mapping between them. Cofluent
Studio [2], MLDesigner [3] and Visual Sim [4] are
examples. These tools use models of computation to
model the behavior in a specific domain. For instance, a
sensor behavior model can be represented in a model of
computation called Continuous Time. The architectural
description is also represented in a model of computation
where the functionality will be mapped to each component
described in this model in order to evaluate the functional
performance.

For most of the tools, the verification is based on
simulation where test scenarios are necessary to verify the
behavior of the modeled system. However, the simulation
does not guarantee the correct functionality of the system

because the reproduction of every possible case would
have to be necessary and, in many cases, this is
impossible to reproduce [5].

Other type of computation models can be used to verify
mathematically the designed system without needing test
scenarios. These models of computation allow evaluating
every possible test case and they can exactly identify
where the problem is located. For that reason, tools such
as Stateflow are in the market, because using Finite State
Machine inside a Simulink model it is possible to formally
verify the logic behavior of the system. However, this
model of computation has a limitation to represent a true
concurrency [6].

Petri net is a formalism to represent discrete events
systems models where it is possible to represent the
concurrency without using any extension. This formalism is
currently used to model, to verify and to validate designs in
many domains. Nevertheless, in its base it is not possible
to represent hierarchy. There is an extension to represent
hierarchy in Petri nets using the place father-son concept,
where a place can contain a Petri net [7]. However, it is
difficult to distinguish between a normal place and a
hierarchical one using the same place representation. The
continuous conception is also defined in other extensions
such as continuous Petri Nets and Hybrid Petri Nets [8].
However, the graphical representation is conserved.

HiLeS formalism is based on the Petri net model. To this
base model, extensions are created in order to represent
the continuous behavior (functional blocks) and the
hierarchy feature (structural blocks). HiLeS is not only
based on a formal behavioral model, but also on a global
system design methodology. HiLeS integrates formal
models with hardware description languages and with
systems engineering languages, enabling people to build
virtual prototypes for system modeling that should permit
technological independent analysis and operational
verifications with both formal and simulation verification for
production objectives. The HiLeS formalism was created to
support designing processes with a formal behavioral
model and to integrate novel features as a high-level
graphic semantic, a formal representation of functional
states and compatibility with multidisciplinary

5th Americas International Conference on Production Research

representation languages for digital, analog and mixed
signal descriptions.

The chosen model of computation is Petri nets for its wide
representation possibilities, mainly on the asynchrony
present in electronics embedded systems and for its formal
validation. HiLeS is based on interpreted Petri net to
represent discrete event parts and it is connected to TINA
tool [9] to analyze its formal properties. HiLeS uses VHDL-
AMS to describe continuous time parts, making a formal
hybrid model. This heterogeneous model is automatically
translated to VHDL-AMS to obtain an executable virtual
prototype. This virtual prototype can be simulated for
dynamical analysis; and the code delivered is
synthesizable.

This paper presents our work in three parts: our global
methodological approach is presented in section II, our
CAD tool, HiLeS Designer, is presented in section III and
an illustrative example is presented in section IV.

HILES: A GLOBAL APPROACH TO HETEROGENEOUS
SYSTEMS DESIGN

We propose to build a methodological design platform to
provide to the designers a global approach to integrate a
formal model and to validate it as early as possible at each
design step. The design is based on an abstraction where
any information on the structure hardware/software is
included. This will allow a later implementation of the
system in different software/harware solutions. For that
reason, we have created a data-processing tool oriented to
high-level design that we called HiLeS Designer. A "Top-
Down" design style is our first approach (figure 1). Aided
by HiLeS Designer, the system architect represents the
system specifications on a graphic format applying top-
down methodological design.

Figure 1: Top down design

Our global approach covers the system level design
(without differencing Hardware/Software) to the virtual
prototyping and then to the implementation.

At the high-level design, the goal is to convince the
designer assuring the conformity of the functional
specifications with its own initial textual specifications and
to give to the project leader the elements for structuring the
work flows for every suppliers. To fill these requirements
we propose two principal aspects:

• The construction of a formal representation of
operations sequences. Generated models that
allow a validation of their correct operation
sequence.

• Compatibility with a standardized description
language of multi-field systems. The final system
representation could be simulated and
implemented. Thus, models generated by HiLeS
should be compatible to this standard language.
The open language and standard VHDL-AMS was
chosen to write our virtual prototypes. The
adoption of VHDL-AMS language is not a
restriction to use other languages (SystemC [10],
Verilog [11]).

The HiLeS formalism generates architectures where the
control sequences and the functions carried out at each
state are well differentiated. It comprises a set of structural
and functional (atomic) blocks, a control network and a set
of discrete-event and continuous channels.

1.1 Structural and Functional Blocks

Structural blocks allow the structural and hierarchical
decomposition of the system and they are represented by
rectangles (figure 2b). Structural blocks can contain other
structural or functional blocks. The Functional blocks are
atomic blocks that describe the system's behavior in
differential, algebraic or logic equations. A functional block
transforms or process signals. They are represented by
round corner rectangles (figure 2c). Actually, the adopted
syntax is VHDL-AMS according to the HiLeS
specifications, but we envisage to adopt other syntax
possibilities like SystemC or Verilog.

Figure 2: HiLeS formalism base elements and control
model

1.2 Processing Network

Signal and/or processing and transforming data are
represented by a processing network composed of
exchanging data/signals between functional blocks and the
environment. These signals/data are expressed by
continuous channels connected to blocks at port points.
Continuous channels transport signals/data continuous in
time; such the case of analogical signals. They are
represented by filled continuous arrows.

The ports are the channels input/output points of a block
and they represent block exchanges on a given
environment.

The right side of the figure 3 depicts a continuous flow
between functional blocks. Two continuous signals, EA_0
and ED_0, go from the environment to Functional_1
functional block using continuous channels. Functional_1
transforms the input signals in a continuous signal using an
equation. The resulted continuous signal goes to
Functional_3 block and it is transformed to generate a new
signal which goes out to the environment through SA_0.

1.3 Control Network

The control network of a system described by HiLeS is
based on ordinary Petri nets (figure 2a). Under HiLeS, the
Petri net represents the sequence of data/signals
processing. The Petri net arcs are represented by dashed
arrows.

Petri nets are a graphic and mathematical formalism that
represent and describe systems in which concurrence and
parallelism concepts are present.

5th Americas International Conference on Production Research

Figure 3: Control net and blocks interaction on HiLeS

Processing and Control flows are independent and
concurrent. Petri net arcs are used to represent the
interaction between control and data/signal processing.

At the lower level of description, Petri net is in interaction
with functional blocks. A functional block is viewed as a
place to which a function is associated. The marking of this
place activates the processing of the function (the token is
not available) and at the end of the processing, the token is
released.

The center of the figure 3 depicts a control network
example. When an event arrives through EC_0 port, the
places Pl_1A and Pl_1B are marked by a token. The Tr_1
transition is fired and the Pl_2 is marked. At the same time,
the associated functional block to Pl_2 (Functional_1) is
activated to start the process execution. Once the
Functional_1 process execution is finished, the Tr_3
transition is fired and the execution flow continues. On the
other side, the Tr_2 is fired because of the marked Pl_1B.
The Pl_3 place is marked and the Process_1 block is
executed. The token from the Pl_18 arrives to the internal
control network of this structural block which executes the
sequence of internal functional blocks or other internal
structural blocks. Once the process execution is finished,
the transition Tr_3 and Tr_4 are fired and the execution
control flow continues.

1.4 Multiples Architectures

HiLeS approaches the structural construction of blocks
using one or multiple architectures. It allows the designer
to define different solutions for a given functionality without
changing the interface. This principle is inherent to the
classic VHDL entity-architecture construction and it has
been already suggested by the "paradigm of reconfigurable
models" [12] for the system conception. To better show the
principle, the block Structural_1 (figure 4a) has 4 inputs
(In_01, In_02, In_03, In_04) and an output (Out_01). The
icon at the top-right corner of the block indicates the
presence of at least one architectural description. The
block's Inputs/Outputs are kept, and we propose two
possible solutions at figure 4b and 4c.

Figure 4: Example of multiples architectures for one
interface

HILES DESIGNER TOOL

1.5 HiLeS platform

HiLeS Designer platform is centered on a knowledge base
data-processing allowing: a simple exchange of
information between various designers of diverse
knowledge disciplines, the integration of languages and the
re-use of the previously validated models. This tool also
supports project management with several designers
working on various sites distant from each other.

Figure 5: Systems design platform

Therefore, we take care to place our work within the
framework of recently emergent technologies such as co-
design and co-simulation and the use of extended mark-up
languages for the management of the Intellectual
properties and data bases. Our platform is resumed on
figure 5. Our method takes the specifications written in
natural language, interprets and translates them in inter-
connected functional models and control nets. This graphic
functional model is validated by formal methods delivered
by TINA tool. Then, the generated VHDL-AMS code is
simulated in simulation tools like Systemvision [13]. It will
be especially interpreted in order to carry out essential
simulations in a behavioral and temporal way.

1.6 HiLeS -TINA software Footbridge

The footbridge data-processing, which was conceived by
Hamon [14], is showed on figure 6. In [15], the footbridge
was tested and developed with procedures and
terminologies to lead the current footbridge. Figure 6
illustrates the coupling strategy of two data-processing
tools: HiLeS and TINA. The files exchange is carried out by

5th Americas International Conference on Production Research

the two tools. In figure 6, it is also possible to find the
functionalities implemented to make the exchange. The
objective was to launch the TINA simulator on background
starting from HiLeS designer, then to recover the results
and to interpret them in order to provide to the designer the
first elements for the project checking. This operation
mode had already been envisaged by the TINA creators,
as well as the possibility of using a textual networks
representations entry [14].

Figure 6: HiLeS-TINA passage procedure

REMOTE KEYLESS ENTRY SYSTEM

We use our tool in the intelligent remote keyless entry
system (IRKES) design. IRKES is a system used in some
cars to lock and unlock the doors replacing the
conventional key system. The particularity of this system is
that the driver does not need to press any button on a
remote control nor to put any key on the car to unlock it.
The driver only needs to approach their hand to the door
handle with a key card in their pocket in order to unlock the
doors. The system detects and identifies the driver reading
the key card remotely. When the driver moves in a certain
distance away from the car, the system locks it. In this
example we only model the embedded system inside the
car so that the key card is considered as an environment
part.

The IRKES model begins in the first abstraction level
called Level 0. This level defines the interaction between
the environment and the system, the services that the
system offers to the environment and the system needs
from the environment. In this case, approaching hand and
pressing button events and the code transmitted by the key
card (Tr_22, Tr_21 and D_2 respectively in the figure 7 -
Level 0). The environment is also modeled using HiLeS
formalism and the test scenario is defined and configured
inside the environment's structural block that will be used
to verify the virtual prototype described on VHDL-AMS.

Defined the Level 0, we descend in a more detailed
abstraction level called Level 1 (figure 7 -Level 1). In this
level, the system is split in its main subsystems (HiLeS
Structural Blocks) according to the system functionality:
Detector (user approaching detection), Identificator (user's
key card identification), SleepingTimer (system's sleeping
control mode) and LockControl (lock and unlocdoor
control). The Detector structural block has a relationship
with the Identification structural block which is the
beginning of the identification process in order to valid or
not the detected user. The event generated by Detector to
Identificator is represented by the channel which goes out
from the Presence_s port to the transition Tr_4 and it
continues to the Presence_r port that belong to the
Identificator block in the figure 7 - Level 1. In the Detection
block, the logic behavior to generate the event in the
Presence_s port is implemented by Petri nets. Signals

comming from the environment, can be defined in the
same level. The ID code sent by the key card goes from
the environment to the system using a continuous channel
called ID_0. Other external signals, such as approaching
hand event and pressing button event, are represented by
ApproachHand port and PressButton port respectively
transmitting the event through discrete-event channels.
The behavior of this two last events are implemented in a
Petri nets inside the Environment structural block.

Figure 7: Remote Keyless Entry System model using
HiLeS Designer.

In Level 1, we focus on the Identification block in order to
define the first functional description. Inside the
Identification block, we define two functional blocks
Comparator_ID and Detection_Timer, so they receive the
code from the key card, to valid the user and to manage
the time to identify the key card. Comparator_ID block
receives a continuous signal from the environment (key
card ID) and this is internally processed to generate an
event authorizing (Tr_IdOk) or rejecting (Tr_IdFausse) the
received ID. Each functional block is controlled by the
defined Petri net and the functional description written in
VHDL-AMS.

Once the functional and architectural description is created
in HiLeS, the logical behavior is verified formally extracting
and transforming the Petri net from the HiLeS model to be
analyzed in TINA.

In figure 8, the Identify block marking is depicted. This
figure shows every possible marking in the Petri net
defined in Identify block. For instance, on marking 4 (line
4), the places Pl_22 and Pl_24 have a token, this means
that the Comparator_ID functional block finished its task,
the code received from the card is not authorized or the
code was not received and then an event is sent to
SleepingTimer in order to start the time to change to
sleeping mode.

5th Americas International Conference on Production Research

Figure 8: Marking analysis of IRKES model

The figure 9 shows Identify block reachability graph. This
graph depicts the active transitions for each marking and
the marking that each one of them accesses when a
transition is fired. For instance,"0  Tr_15/1" occurs when
an detection event arrives (marking 0), then following the
``Identify'' block Petri net description, there is only one
active transition, Tr_15. If this transition is fired, the next
marking is the marking 1, that means an ID request event
is sent to the key card, the identification waiting timer
(DetectionTimer) is active and the Comparator_ID waits for
the transmitted key card code. The Reachability graph also
shows that the marking 5 is a dead marking (it also is
depicted in the figure 9), because it is not possible to fire
any transition until a new detection event arrives. Finally,
figure 9 depicts that the ``Identify'' block logic behavior is
not alive, because of the block needs of extern events to
execute its functionality. Every event that goes into the
block, it is given to another block, so the block is extern
event dependent.

Figure 9: Reachability graph of IRKES model

Figure 10: Detect scenario simulation

Using HiLeS Designer, it is also possible to verify our
model by simulation. In our example, HiLeS Designer
transforms the IRKES model to VHDL-AMS, this includes
the Petri net and the functional block description. The
scenario is configured in the Environment block showed in
the ``level 0'' which also is modeled using HiLeS formalism
and HiLeS Designer generates the testbench for the
simulation. The figure 10 depicts the Detect scenario
simulation. This scenario shows that the system is in
sleeping mode and the user presses the button twice to
active the system and to open the doors. On the
simulation, the system detects the door handle button
event (third signal (1: pressed, 0: released) in the figure),
thus it waits a second the door handle button event to
active the system. When the user pressed for a second
time, the system is activated (the sleeping mode is
stopped, the second signal (1: active, 0: inactive) in the
figure), the user is identified and it unlocks the doors (first
signal (1: unlock, 0: lock) in the figure).

Figure 11: Identificator Block Physical Solution
Representation.

The generated virtual prototype is used to implement on a
physical solution using the generated code VHDL-AMS.
Comparator_ID block (figure 7) is mapped on a transceiver
and a FPGA solution. The transceiver represents the
capturing and logic conversion of the transmitted card ID
from the key card. This functionality is represented in the
HiLeS model as Comparateur_ID block that receives the
ID_1 continuous signal from the key card, which is the card
ID code. A digital signal goes out from the Transceiver to
IdentificatorCtrl entity (figure 11 - Signal Rx), which
compares the received ID code (ID_1 in HiLes model) and
the registered ID code. The answer of this entity is two
logic signals FoundID and NoID, which represent the
events generated by Comparateur_ID block to fire the
transition Tr_IdOk and Tr_IdFausse. On the other hand,
when the signal Presence is true (when a token arrives to
the Pl_19 in the HiLeS model) IdentificatorCtrl entity sends
a pulse to CounterRx entity in order to start the waiting
time for the card ID (StartCounterRx). If the time is over,
CounterRx entity sends a pulse to IdentificatorCtrl
(EndCounterTx to EndCounterTx) to stop the process
execution. Timer_Detection block is also implemented in a
FPGA solution (counterTX, counterRX). The figure 11
shows the block representation of the physical solution.

CONCLUSIONS

We present a platform and formalism for high level
systems design for electronic embedded systems. The
hierarchical structure and the multiple architectures
principle make HiLeS formalism a powerful tool for
systems modeling. Additionally, the formal sequence
verification of the model enables the designer to conduce
an "error free" design. HiLeS allows taking into account
discrete and continuous aspects inherent in electronics
embedded systems.

The use of Petri net and its association with VHDL-AMS for
continuous time modeling allows to validate and to verify
the design by formal analysis and also by virtual prototype
simulation. Virtual prototype is automatically generated and
additionally the logic part of the VHDL-AMS code
generated is synthetizable allowing going into physical
implementation, that makes a seamless design. HiLeS is
based on a block hierarchical structure that permits to
evaluate multiple architectures making easier partitioning
tasks.

5th Americas International Conference on Production Research

Our current work integrates HiLeS design tool into a
system engineering framework which follows the EIA-632
Standard requirements [16]. We develop a methodology
[17] based on SysML standard language. In this work,
SysML is used for system design and HiLeS is used for
validation purposes and virtual prototyping. Different
system use cases described by SysML sequence
diagrams are automatically translated into HiLeS formalism
by transformation models techniques.

REFERENCES

[1] Gajski, D., 2007 New strategies for system-level design,
DDECS, 15.

[2] Calvez, J., 1993, Real-Time Systems a Specification
and Design Methodology, John Wiley & Sons.

[3] Schorcht, G., Troxel, I., Farhangian, K., Unger, P., Zinn,
D., Mick C.,George, A., Salzwedel, H., 2003, System-level
simulation modeling with MLDesigner, MASCOTS, pp.
207–212.

[4] M. D. Inc., 2003, VisualSim datasheet,
http://www.mirabilisdesign.com/Pages/Product/mdiproduct
s.htm.

[5] Gajski, D., Abdi, S., Gerstlauer, A., Schirner, G., 2009,
Embedded System Design. Springer.

[6] Hamon, G., Rushby, J., 2007, An operational semantics
for stateflow, STTT, 447–456.

[7] Farwer, B., Misra, K., 2003, Modelling with hierarchical
object Petri nets, Fundamenta Informaticae, vol. 2, 129–
147.

[8] David, R., Alla, H., 2005, Discrete, Continuous and
Hybrid Petri Nets, Springer.

[9] Berthomieu, B., Ribet, P., Vernadat, F., 2004, The tool
TINA: Construction of abstract state spaces for Petri nets
and time petri nets, International journal of production
research, vol. 42, no. 14, 2741–2756.

[10] IEEE, 2005, IEEE-1666 IEEE Standard SystemC
Language Reference Manual, IEEE.

[11] IEEE, 2001, “IEEE-1364 IEEE Standard for Verilog
Hardware Description Language, IEEE.

[12] Y. Herve, 2003, Virtual prototyping with VHDL-AMS,
in, IEEE International Conference on Industrial
Technology, 2, 761–765.

[13] Mentor Graphics, 2009, Systemvision,
www.mentor.com/SystemVision.

[14] Hamon, J., 2005, Méthodes et outils de la conception
amont pour les systèmes et les microsystèmes,” PhD
Dissertation, Institut National Polytechnique, Ecole
doctorale de Génie Electrique, Electronique,
Télécommunications.

[15] Chamseddine, N., 2005, Application de quelques
méthodes de vérification formelles sur un exemple de
système industrielle,” internship report, Ecole des mines de
Nancy.

[16] EIA, 1999, EIA-632 processes for engineering a
system, Electronic Industries Alliance.

[17] Gomez C.E., Esteban, P., Pascal, J.C. Jimenez, J.,
2009, Modeling complex system using sysml, Report LAAS
No. 09636.

	1.1 Structural and Functional Blocks
	1.2 Processing Network
	1.3 Control Network
	1.4 Multiples Architectures
	1.5 HiLeS platform
	1.6 HiLeS -TINA software Footbridge

