
Embedded Systems Requirements Verification Using HiLeS
Designer

C-E. Gómez1,3, J-C. Pascal1,2, P. Esteban1,2, Y. Déléris4, J-R. Devatine5

1: CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France
2: Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

3: Universidad de Los Andes; Carrera 1 N° 18A 10; Bogotá, Colombia
4: Airbus; 316 route Bayonne, F-31300 Toulouse, France

5: Aéreoconseil; 3 rue Dieudonné Costes; F-31700 Blagnac, France

Abstract: One of the issues related to systems
design is the early verification in first design steps:
system specifications verification. Nowadays, it is
common to use text-based specifications to begin a
system design. However, these specifications cannot
be verified until a software model is made. In this
work, we show how can we use HiLeS Designer to
model and verify, formally and by simulation an
embedded system specification. This tool makes
easier to build the model, using graphical concepts
which are familiar to designers. It also helps to verify
formally the structure and some logical behavior, and
by simulation, it is possible to verify the consistence
of the embedded system specification. We model
and verify System Display Selector Requirements
applying HiLeS Designer.

Keywords: Verification, Validation, Virtual Prototype,
VHDL-AMS, Petri-nets.

1. Introduction

 In order to manage the complexity of a system, it is
necessary to increase the abstraction level to
describe in highlights how the system will be
conceived before to take into account details such as
specific time, protocols, and the partition hardware
software. Electronic System Level (ESL) [Martin07]
tries to introduce a new abstraction level called
“System level” in the design flow of a system. This
abstraction level is used to model the general
functionality and architecture of the system without
seeing detailed information and especially which
system part will be developed in software and which
part in hardware.

The tendency in ESL is to create models based in
traditional model language such as Java, C, C++
and more recently SystemC [IEEE05] and SpecC
[Fujita01]. These models are verified by simulation
using an specific test scenario. However this test
does not guarantee the model can have a non-
wished behavior, behavior that was not evaluated in
the different test that the model is evaluated.

There is another tendency to use model language
such as UML [Vanderperren08] and SysML
[Friedenthal08]. These languages are tied to the
MDA [Boulet03] in order to verify and to generate a

virtual prototype base on the specification model
created in these languages.

We propose to use HiLeS Designer to model and
verify embedded systems design representing
textual requirements in block concepts where the
functionality and the constraints are encapsulated
into the block. HiLeS Designer has the feature to use
Petri net as part of the model language. This feature
allows to verify formally the structure and logical
behavior described in this formalism without using a
test scenario. HiLeS Designer also allows to
generate an executable virtual prototype in VHDL-
AMS where the analogical and logical behavior can
be evaluated at the same time.

This paper is organized as follows: Section 2 shows
the related work with HiLeS Designer, Section 3
gives a HiLeS Designer overview. Section 4
describes how HiLeS Designer is used to model and
to verify a System Display Selector. Section 5
provides the conclusions and directions for future
works.

2. Related Work

In the market, there are different tools which use
models of computation (MoC) concept to model
systems in different domains. These MoC is the way
to represent physical behavior of specific domains.
For instance, image processing is modeled in a MoC
called Kahn's Processes Networks, these are
processes which interact by channels that can buffer
messages (e.g. FIFO), or electrical circuits use
Continuous-Time MoC which are functional and
storage components communicating with continuous
signals [Liu01]. Tools such as MLDesigner
[Schorcht03], Ptolemy II [Ptolemy09] and Visual Sim
[MD03] are examples that use MoC.

There are other tools which use an specific language
to describe the functional behavior of the systems.
Matlab [Mathworks09], Modelica [Fritzson98] and
Cofluent Studio [Calvez93] are examples of this
tendency. Matlab uses a C-based language to
describe a system, Modelica use its own oriented-
object language to model and Cofluent Studio is
based on SystemC.

Some of this tools allow the mix of MoC. In
MLDesigner, it is possible to model in the same

Page 1/6

workspace continuous-time and Discrete events
MoC; it also is possible to build in
Matlab/simulink/Statechart mix but its execution is
done in its own execution engine, e.g., there is
communication transformation between the two MoC
in order to execute in its own domain.

HiLeS designer contains Continuous-Time, Discrete-
Time and Discrete event MoC, thanks to the use of
VHDL-AMS as base of the HiLeS formalism. VHDL-
AMS allows modeling Continuous and Discrete time
systems, but it is not appropriated to model Discrete
events systems. For that reason, we transform the
discrete-event model to VHDL-AMS in order to
execute in a same environment the three MoC. This
transformation gives HiLeS Designer the advantage
of simulating faster and creating, in one standard
language, Intellectual Properties (IPs).

3. HiLeS Designer

3.1. HiLeS

High Level Specification or HiLeS is a graphic
language developed by Jimenez [Jimenez00]. Its
objective is to help systems designers to model the
architecture and behavior of a system into system
level, e.g., without specifying software and hardware
features.

HiLeS has four main concepts:

• Structural Block

• Functional Block

• Control Net

• Channels

• Ports

The structural block represents the system
architecture. Each structural block can be composed
by other Structural blocks, functional blocks and a
control net. These elements represent a specific
group of behaviors encapsulated in a block. The
system hierarchy is decomposed in structural blocks
and, at the same time, the detail level.

The functional block is the lowest level in a system
functional description. It defines a function
represented by an equation.

The Control Net is an ordinary Petri net which
controls the execution sequence of each block
defined in the model. Each block is represented by a
place in the control net. By arcs, drawn with dashed
arrows, the process defined in the related block is
executed. Once the process finishes, the block fires
the transition after the place which represents the
executed block and the control net sequence
continues.

Channels are routes which transmit the information
from the environment to the system, from one block
to another and from the control net to blocks. There
are defined two channel types: Control and
Continuous. The Control channels manage the

execution of the blocks, and the Continuous
Channels route the signals from blocks to blocks or
environment to system, according to their nature.

Finally, ports are interfaces between the blocks and
its environment. They put the blocks or the
environment information within channels in order to
transmit or receive information (out-port and in-port
respectively) to other blocks or environment. They
have nature and type such as they are defined in
VHDL-AMS.

In Figure 1, we show an example of the HiLeS
graphic representation. The figure illustrates two
flows: signal flow and sequence flow and also two
hierarchical levels.

Figure 1: HiLeS Concepts example

In this example, the first hierarchical level is
represented by the “Structural_1” block. This block is
internally described by two functional blocks
(Functional_0 and Functional_1) and these blocks
define the “Structural_1” block functionality. The
“Structural_1” intern definition is considered as the
second hierarchical level an it is the last level
because there are only functional blocks.

The signal flow is represented by the signal
transformation made in the structural and functional
blocks flow. In the example, there are two signals
continuous that go from the environment to the
system through A_1 and A_3 channels. These
signals are transformed inside “Structural_1”
structural block. The signals go in though P_2 and
P_3 in-ports. Inside the structural block, the signals
are conduced by A_2 and A_4 channels to the
“Functional_0” block where they are processed. The
result is only one signal which goes out though P_4
out-port. The new signal is conduced from the
“Functional_0” block to “Functional_2” block through
A_5 channel. This signal is processed for
“Functional_2” functional block through P_0 in-port.
The final result goes out through the P_1 out-port
and it is transported to the P_4 out-port through A_8
channel. The resulting signal is sent from
“Structural_1” through P_4 out-port to the
environment using P_2 out-port conduced by A_8
channel.

Page 2/6

The sequence flow is represented by the control net.
A token in a place indicates which block is in
execution. In the example, the execution begins in
Pl_0 place. When Tr_0 transition is fired, a token is
sent to Pl_1 and another to execute “Structural_1”.
Then, inside “Structural_1”, Pl_3 is marked. The
sequence continues, executing “Functional_0”. Once
“Functional_0” finishes its process, Tr_3 transition is
fired by a signal from the functional block. The
sequence continues in the same way finishing in
Pl_2.

For each structural block is possible to create
different architectural solutions as it is depicted in
Figure 2. Figure 2a shows the structural block with
its in-ports which process the signals from the
environment and out-ports that are the processing
result. This structural block has a specified
functionality. However, to solve this functionality it is
possible to propose different solutions. Figure 2b
and 2c shows two different architecture examples in
order to compose “Structural_2” block.

Figure 2: Different architectural solutions.

3.2. HiLeS Designer

HiLeS Designer is the tool that supports the HiLeS
language and it was conceived by Hamon
[Hamon05]. In Figure 3, there is a schema of how
HiLeS Designer works. The designer interprets and
represents in HiLeS concepts the specifications
described in natural language. The model is built not
only with the HiLeS concepts, but also with VHDL-
AMS description in the functional blocks.

Once the model of the first executable level is
created, e.g., the first level abstraction, it is possible
to verify before continuing with levels more detailed.
HiLeS Designer has two types of verification, formal
logical verification and verification by simulation.

Formal logical verification is a process related to the
control net described in the model. Since the control
net is a Petri net, it is possible to verify
mathematically the structure and the behavior of the
execution sequence design. Features such as
deadlock (when a marking is not enabled to activate

a transition), liveness (when the Petri net is not
blocking), boundedness (when the tokens in each
Petri net place is limited in every marking) and
reachability (when every place is reachable) are
analyzed. This process is presented in HiLeS
Designer due to the integration with a Petri net
analysis tool call TINA [Berthomieu06]. HiLeS
Designer extracts the control net from the model
which wants to be analyzed, it translates the control
net to the TINA language and create a flat text file.
HiLeS Designer executes TINA with this file and
TINA generates a flat text file with the analysis
results. HiLeS Designer reads the file and prints in a
output text field. With these results, the designer
identifies the logic problems in its design without
need a test bank to find them out.

Figure 3: HiLeS Designer functionalities

When the logic verification is made, the verification
by simulation is executed. HiLeS Designer generate
a virtual prototype from the model in VHDL-AMS.
Each concept from the HiLeS language is connected
to a concept in VHDL-AMS. At the same time, the
test scenario is created according to the designers'
configuration. The VHDL-AMS code is compiled and
executed in VHDL-AMS tools such as SystemVision
[Mentor09]. The designer analyzes the simulation
results and compares if these results are according
to the specification.

Once the first level is verified, the designer can
descend the abstraction level to model in more detail
the system.

4. System Display Selector

In order to show how HiLeS designer works and it is
applied in a real system, we present this example.
The example system is modeled using HiLeS
Formalism starting from the specification document.
The formal verification and the verification by
simulations are applied.

4.1 SD Selector Modeling on HiLeS Designer

The System Display Selector (SD Selector) is a
device which is used in Airbus aircraft. This system
selects the correct page to be displayed in a screen

Page 3/6

according to their input signals. The system
requirements are described in natural language in a
document. The work is to interpret the system
requirements, to build a model and to verify the
model coherence and completeness satisfying the
requirements. This verification is done formally and
by simulation using HiLeS Designer.

Figure 4: Level 0 of the SD Selector model

To model the system in HiLeS Designer, we have to
use different abstraction levels in order to make step
by step the model based on the textual
requirements. The first level, called “Level 0”, serves
to model the system and its environment as a black
box (Figure 4). The environment is used to model
different scenarios that the system can have
following the textual requirements. This scenario
model helps to generate the test scenarios for the
virtual prototype in VHDL-AMS.

Figure 5: System Architecture requirement.

The following levels are made based on the
architecture proposed by the textual requirements. In
Figure 5, there is an architecture example described
in the system requirements, and in Figure 6, the
same architecture expressed on HiLeS.

We also maintain the hierarchy expressed in the
requirements document, using the structural block
concept in HiLeS. Additionally, to make easier the
functional description with more detailed
requirements, we build new hierarchies to specify
each functionality, until we reach to the lower level of
description using functional blocks.

In order to show in more detail how a model can be
built using the HiLeS formalism, we choose the
“Valid key Action” subsystem. The subsystem's
functionality evaluates the user’s action on the
keyboard, when the user selects the information they
want to show on the screen. The “Valid key Action”
subsystem requirements are described in a
requirement document subsection. The textual

requirements are interpreted and the subsystem
model is deduced. In Table 1, there are some
requirement examples extracted from the document.

In Figure 7, the HiLeS model of this subsystem is
depicted. This model follows every requirement
described for the subsystem in the requirements
document. To illustrate how the textual requirements
are interpreted using HiLeS concepts, we will use
the requirements described before. The state
position presented in the Requirement 1 is
represented by the places Pl_170 (Pressed) and
Pl_66 (Released). The state Status is represented
by the places Pl_179 (Valid) and Pl_178 (Invalid).
According to the user's action, the states change.
Following the Requirement 3, when a key is pressed
in a keyboard, the place Pl_64 is filled by a token.
Since the Pl_66 (Unpressed) and Pl_64 (PressKey)
have token, the Tr_61 is fired, then the Pl_68 (Timer)
and Pl_170 (Pressed) is filled with a token. That
means the key status changes from “released” to
“pressed” achieving the textual requirement. The
requirement 2 is identified in the figure by the token
presented in the places Pl_66 and Pl_179. The
timer, which is a functional block, is described in
VHDL-AMS (Figure 8) and its behavior is to wait a
defined time period. In our example, the time is the
period where the pressed key is valid without
releasing it.

Figure 6: System Architecture requirement in HiLeS.

4.2 Formal Verification Analysis

Once the model is complete, the model verification
can be started to ensure the requirements are
considered. The first verification step is the formal
verification. Its purpose is to find inconsistencies in
our design (Blocking, deadlocks, behaviors which
are not taking into account in the requirements). In
this paper, we choose the requirements 4 and 5 to
verify partially the model. These requirements are
represented by the actions on the Places Pl_71
(Selected), Pl_170 (Pressed) , Pl_179 (Valid) and
Pl_178 (Unselected or None) in Figure 7.

Page 4/6

Req. 1
Each key shall be associated to two couples of
states: Position: PRESSED-RELEASED and
Status: VALID-INVALID

Req. 2
The initial state of the keys shall be status VALID
and position RELEASED.

Req. 3
While the system receives an action on the
keyboard, the corresponding key position shall be
set to PRESSED.

Req. 4
SELECTED KEY shall be the identifier of the first
PRESSED AND VALID key.

Req. 5
If there is not a (PRESSED AND VALID) key then
SELECTED KEY shall be set to NONE.

Table 1: Part of System Requirements

Figure 7: Valid Key Action Model in HiLeS

Figure 8: “T2_OtherKey” Functional Block
description on VHDL-AMS.

To evaluate the behavior of the model, Table 2 is
built with the cases that are tied to the requirements
4 and 5.

As an example, to verify the requirement 5 it is
necessary to consider: if “Pressed” or “Valid” has a
token, or if neither “Pressed” nor “Valid” has a token,
then the place “None” must have a token. The formal
verification is based on Petri net accessible markings
search. The behavior of this requirement is verified
by lines 0, 1, 4, 5 and 6 of Figure 9.

Finally, we can find others cases that are not taken
into account in Table 2. For example, the lines 2, 9
and 10 show other cases that are summarized in
one: “Pressed”, “Valid” and “None” have tokens. This
case is identified when the transition that changes
the key status from “None” to “Selected” is not fired

yet when there is a token in the places “Pressed”
and “Valid”.

Req Pressed
(P)

Valid
(V)

None
(N)

Selected
(S)

4 1 1 0 1

5

0 0 1 0

0 1 1 0

1 0 1 0

Table 2: Cases to evaluate the requirements 4 and 5.

The formal verification can show that some
requirements are missing; for instance, if some
combinations of states are found but not initially
defined. On the other hand, some requirement
inconsistencies can also be shown during the
modeling process.

Figure 9: Accessible marking in the “Valid Key
action” subsystem.

4.3 Verification by simulation

Following the verification process, the second step is
to simulate the system model in order to verify the
requirements which could not be verified by the
formal analysis (operations sequences, temporal
constraints, ...). HiLeS Designer is used to generate
a virtual prototype in VHDL-AMS, transforming the
system model to VHDL-AMS. This transformation is
made automatically by HiLeS Designer. The tool
generates the prototype and the test scenario source
code in one step. The test scenario is generated
according to the scenario defined in the HiLeS
environment model and then SystemVision is used
to simulate the virtual prototype; the results are
shown in Figure 10. This scenario is related to
specific requirements defined in the requirements
document and the behavior is verified by the
simulation.

The model formal verification helps to identify all the
cases defined by the requirements.

Figure 10 shows the action to press and release a
key in 2 seconds. The initial key state is “Released”
and “Valid”, as the Requirement 2 defined. In the first
signal, the pressing key event is a pulse. At the
same time, the position state changes from
“Released” to “Pressed” (Requirement 3) and the
status state continues being “Valid”, following the

Page 5/6

Requirement 4. Also, the key action state changes
from “None” to “Selected”; this means the key
pressed is selected. When the released event is
done after 2 seconds (second signal), the valid
position changes from “Released” to “Pressed”, and
the key action from “Selected” to “None”.

The result of this simulation satisfies the system
requirements. Finishing the verification process, we
can conclude our model agrees to the textual
requirements because all of them are correctly
considered.

Figure 10: “Valid Key Action” Subsystem simulation
based on a scenario.

5. Conclusions and future work

HiLeS Designer is a tool that follows the conception
of new methodologies in ESL. We explained the
formalism that this tool uses, its features and an
Airbus system study case developed on HiLeS
Designer. We developed an executable and
verifiable model starting from the Airbus' textual
requirements until we arrived to an executable virtual
prototype in VHDL-AMS. We showed the practical
HiLeS Designer use on verifying formally the logical
structure and verifying by simulation the temporal
constraints, behavior and logical sequence against
each textual requirements of the SD Selector
System. We also presented the possible risks
(deadlock, non-liveness, non-boundedness) that a
logical structure model can have if a formal
verification is not applied.

In the future, we will work in the transformation from
standard language such as UML and SysML to
HiLeS in order to verify and to execute models
described in these languages. We will use the MDA
transformation concepts to achieve this objective.

6. References

[Martin07] G. Martin, B. Bailey, A. Piziali: “ESL
Design and Verification: A Prescription for Electronic
System Level Methodology”, Morgan Kaufmann,
2007.

[IEEE05] IEEE Computer Society: “IEEE Standard
SystemC Language Reference Manual”, IEEE
Computer Society, 2006.

[Fujita01] M. Fujita, H. Nakamura: "The standard
SpecC language", System Synthesis. Proceedings.
The 14th International Symposium on, pp. 81-86,
2001.

[Vanderperren08] Y. Vanderperren, W. Mueller, W.
Dehaene: “UML for electronic systems design: a
comprehensive overview”, Design Automation for
Embedded Systems, Springer, Vol. 12, Num. 4,
pages 261-292.

[Friedenthal08] S. Friedenthal, A. Moore, R. Steiner:
“A Practical Guide to SysML”, Morgan Kaufmann
Publishers, 2008.

[Boulet03] P. Boulet, J-L Dekeyser, C. Dumoulin,
and P. Marquet: “MDA for SoC embedded systems
design, intensive signal processing experiment”,
SIVOES-MDA workshop at UML (San Francisco,
USA), 2003.

[Liu01] J. Liu, ”Responsible Frameworks for
Heterogeneous Modeling and Design of Embedded
Systems”, Ph.D. thesis, University of California,
Berkeley, 2001.

[Schorcht03] G. Schorcht, I. Troxel, K. Farhangian,
P. Unger, D. Zinn, C. Mick, A. George, and H.
Salzwedel, “System-level simulation modeling with
MLDesigner,” MASCOTS, pp. 207–212, Oct. 2003.

[Ptolemy09] Ptolemy Group: “Ptolemy II”,
http://ptolemy.berkeley.edu/ptolemyII/, 2009.

[Calvez93] J. Calvez “Real-Time Systems a
Specification and Design Methodology”, John Wiley
& Sons, 1993.

[MD03] M. D. Inc., “VisualSim datasheet”,
http://www.mirabilisdesign.com/Pages/Product/mdi
products.htm, 2003.

[Jimenez00] F. Jimenez: “Spécification et conception
de microsystèmes basés sur des circuits
asynchrones”, INSA and Universidad de los Andes
PhD thesis, Toulouse, 2000.

[Hamon05] JC. Hamon: “Méthodes et outils de la
conception amont pour les systèmes et les
microsystèmes”, INP PhD thesis, Toulouse, 2005.

[Berthomieu06] B. Berthomieu, F. Vernadat “Time
Petri Nets Analysis with TINA”, QEST 2006,
(Riverside, USA), 2006.

[Mentor09] Mentor Graphics: “SystemVision”,
http://www.mentor.com, 2009.

[Mathworks09] Mathworks: “Matlab”,
http://www.mathworks.com/, 2009.

[Fritzson98] P. Fritzson, V. Engelson: “Modelica - A
unified object-oriented language for system modeling
and simulation”, ECOOP'98, (Brussels, Belgium),
1998.

Page 6/6

file:///content/?Author=Peter+Fritzson
http://www.mathworks.com/
http://www.mentor.com/products/sm/system_integration_simulation_analysis/systemvision/
http://ptolemy.berkeley.edu/ptolemyII/

