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Abstract:  One  of  the  issues  related  to  systems 
design is the early verification in first design steps: 
system  specifications  verification.  Nowadays,  it  is 
common to use text-based specifications to begin a 
system design. However, these specifications cannot 
be verified until  a software model is  made. In this 
work, we show how can we use HiLeS Designer to 
model  and  verify,  formally  and  by  simulation  an 
embedded  system  specification.  This  tool  makes 
easier to build the model, using graphical concepts 
which are familiar to designers. It also helps to verify 
formally the structure and some logical behavior, and 
by simulation, it is possible to verify the consistence 
of  the  embedded  system specification.  We model 
and  verify  System  Display  Selector  Requirements 
applying HiLeS Designer.  

Keywords: Verification, Validation, Virtual Prototype, 
VHDL-AMS, Petri-nets.

1. Introduction

 In order to manage the complexity of a system, it is 
necessary  to  increase  the  abstraction  level  to 
describe  in  highlights  how  the  system  will  be 
conceived before to take into account details such as 
specific time, protocols,  and the partition hardware 
software. Electronic System Level (ESL) [Martin07] 
tries  to  introduce  a  new  abstraction  level  called 
“System level” in the design flow of a system. This 
abstraction  level  is  used  to  model  the  general 
functionality and architecture of the system without 
seeing  detailed  information  and  especially  which 
system part will be developed in software and which 
part in hardware.

The tendency in ESL is to create models based in 
traditional  model  language  such  as  Java,  C,  C++ 
and  more  recently  SystemC [IEEE05]  and  SpecC 
[Fujita01].  These models are verified by simulation 
using  an  specific  test  scenario.  However  this  test 
does  not  guarantee  the  model  can  have  a  non-
wished behavior, behavior that was not evaluated in 
the different test that the model is evaluated.

There is another tendency to use model language 
such  as  UML  [Vanderperren08]  and  SysML 
[Friedenthal08].  These  languages  are  tied  to  the 
MDA [Boulet03] in order to verify and to generate a 

virtual  prototype  base  on  the  specification  model 
created in these languages.  

We propose to use HiLeS Designer  to model  and 
verify  embedded  systems  design  representing 
textual  requirements  in  block  concepts  where  the 
functionality  and  the  constraints  are  encapsulated 
into the block. HiLeS Designer has the feature to use 
Petri net as part of the model language. This feature 
allows  to  verify  formally  the  structure  and  logical 
behavior described in this formalism without using a 
test  scenario.  HiLeS  Designer  also  allows  to 
generate  an executable  virtual  prototype in  VHDL-
AMS where the analogical and logical behavior can 
be evaluated at the same time.

This paper is organized as follows: Section 2 shows 
the  related  work  with  HiLeS  Designer,  Section  3 
gives  a  HiLeS  Designer  overview.  Section  4 
describes how HiLeS  Designer is used to model and 
to  verify  a  System Display  Selector.  Section  5 
provides  the  conclusions  and  directions  for  future 
works.               

2. Related Work

In  the  market,  there  are  different  tools  which  use 
models  of  computation  (MoC)  concept  to  model 
systems in different domains. These MoC is the way 
to represent physical  behavior of specific domains. 
For instance, image processing is modeled in a MoC 
called  Kahn's  Processes  Networks,  these  are 
processes which interact by channels that can buffer 
messages  (e.g.  FIFO),  or  electrical  circuits  use 
Continuous-Time  MoC  which  are  functional  and 
storage components communicating with continuous 
signals  [Liu01].  Tools  such  as  MLDesigner 
[Schorcht03], Ptolemy II [Ptolemy09] and Visual Sim 
[MD03] are examples that use MoC.

There are other tools which use an specific language 
to describe the functional behavior of the systems. 
Matlab  [Mathworks09],  Modelica  [Fritzson98]  and 
Cofluent  Studio  [Calvez93]  are  examples  of  this 
tendency.  Matlab  uses  a  C-based  language  to 
describe a system, Modelica use its own oriented-
object  language  to  model  and  Cofluent  Studio  is 
based on SystemC.    

Some  of  this  tools  allow  the  mix  of  MoC.  In 
MLDesigner,  it  is  possible  to  model  in  the  same 
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workspace  continuous-time  and  Discrete  events 
MoC;  it  also  is  possible  to  build  in 
Matlab/simulink/Statechart  mix  but  its  execution  is 
done  in  its  own  execution  engine,  e.g.,  there  is 
communication transformation between the two MoC 
in order to execute in its own domain.

HiLeS designer contains Continuous-Time, Discrete-
Time and Discrete event MoC, thanks to the use of 
VHDL-AMS as base of the HiLeS formalism. VHDL-
AMS allows modeling Continuous and Discrete time 
systems, but it is not appropriated to model Discrete 
events systems. For that reason, we transform the 
discrete-event  model  to  VHDL-AMS  in  order  to 
execute in a same environment the three MoC. This 
transformation gives HiLeS Designer the advantage 
of  simulating  faster  and  creating,  in  one  standard 
language, Intellectual Properties (IPs).       

   

3. HiLeS Designer

3.1. HiLeS

High  Level  Specification  or  HiLeS  is  a  graphic 
language  developed  by  Jimenez  [Jimenez00].  Its 
objective is to help systems designers to model the 
architecture and behavior  of  a system into system 
level, e.g., without specifying software and hardware 
features. 

HiLeS has four main concepts: 

• Structural Block

• Functional Block

• Control Net 

• Channels

• Ports

The  structural  block  represents  the  system 
architecture. Each structural block can be composed 
by other Structural  blocks,  functional  blocks and a 
control  net.  These  elements  represent  a  specific 
group  of  behaviors  encapsulated  in  a  block.  The 
system hierarchy is decomposed in structural blocks 
and, at the same time, the detail level. 

The functional block is the lowest level in a system 
functional  description.  It  defines  a  function 
represented by an equation. 

The  Control  Net  is  an  ordinary  Petri  net  which 
controls  the  execution  sequence  of  each  block 
defined in the model. Each block is represented by a 
place in the control net. By arcs, drawn with dashed 
arrows, the process defined in the related block is 
executed. Once the process finishes, the block fires 
the  transition after  the  place which  represents  the 
executed  block  and  the  control  net  sequence 
continues.  

Channels are routes which transmit the information 
from the environment to the system, from one block 
to another and from the control net to blocks. There 
are  defined  two  channel  types:  Control  and 
Continuous.  The  Control  channels  manage  the 

execution  of  the  blocks,  and  the  Continuous 
Channels route the signals from blocks to blocks or 
environment to system, according to their nature.

Finally, ports are interfaces between the blocks and 
its  environment.  They  put  the  blocks  or  the 
environment information within channels in order to 
transmit or receive information (out-port and in-port 
respectively)  to  other  blocks or  environment.  They 
have nature and type such as they are defined in 
VHDL-AMS. 

In  Figure  1,  we  show  an  example  of  the  HiLeS 
graphic  representation.  The  figure  illustrates  two 
flows: signal flow and sequence flow and also two 
hierarchical levels. 

Figure 1: HiLeS Concepts example

In  this  example,  the  first  hierarchical  level  is 
represented by the “Structural_1” block. This block is 
internally  described  by  two  functional  blocks 
(Functional_0  and  Functional_1)  and  these  blocks 
define  the  “Structural_1”  block  functionality.  The 
“Structural_1” intern definition is considered as the 
second  hierarchical  level  an  it  is  the  last  level 
because there are only functional blocks. 

The  signal  flow  is  represented  by  the  signal 
transformation made in the structural and functional 
blocks flow.  In the example,  there are  two signals 
continuous  that  go  from  the  environment  to  the 
system  through  A_1  and  A_3  channels.  These 
signals  are  transformed  inside  “Structural_1” 
structural block. The signals go in though P_2 and 
P_3 in-ports. Inside the structural block, the signals 
are  conduced  by  A_2  and  A_4  channels   to  the 
“Functional_0” block where they are processed. The 
result is only one signal which goes out though P_4 
out-port.  The  new  signal  is  conduced  from  the 
“Functional_0” block to “Functional_2” block through 
A_5  channel.  This  signal  is  processed  for 
“Functional_2” functional block through P_0 in-port. 
The final  result  goes out  through the P_1 out-port 
and it is transported to  the P_4 out-port through A_8 
channel.  The  resulting  signal  is  sent  from 
“Structural_1”  through  P_4  out-port  to  the 
environment  using  P_2  out-port  conduced  by  A_8 
channel.  
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The sequence flow is represented by the control net. 
A  token  in  a  place  indicates  which  block  is  in 
execution. In the example, the execution begins in 
Pl_0 place. When Tr_0 transition is fired, a token is 
sent to Pl_1 and another to execute “Structural_1”. 
Then,  inside  “Structural_1”,  Pl_3  is  marked.  The 
sequence continues, executing “Functional_0”. Once 
“Functional_0” finishes its process, Tr_3 transition is 
fired  by  a  signal  from  the  functional  block.  The 
sequence  continues  in  the  same  way  finishing  in 
Pl_2.   

For  each  structural  block  is  possible  to  create 
different  architectural  solutions  as  it  is  depicted  in 
Figure 2. Figure 2a shows the structural block with 
its  in-ports  which  process  the  signals  from  the 
environment  and out-ports  that  are  the processing 
result.  This  structural  block  has  a  specified 
functionality. However, to solve this functionality it is 
possible  to  propose  different  solutions.  Figure  2b 
and 2c shows two different architecture examples in 
order to compose “Structural_2” block. 

Figure 2: Different architectural solutions. 

3.2. HiLeS Designer

HiLeS Designer is the tool that supports the HiLeS 
language  and  it  was  conceived  by  Hamon 
[Hamon05]. In Figure 3, there is a schema of how 
HiLeS Designer works.  The designer interprets and 
represents  in  HiLeS  concepts  the  specifications 
described in natural language. The model is built not 
only with the HiLeS concepts, but also with VHDL-
AMS description in the functional blocks. 

Once  the  model  of  the  first  executable  level  is 
created, e.g., the first level abstraction, it is possible 
to verify before continuing with levels more detailed. 
HiLeS Designer has two types of verification, formal 
logical verification and verification by simulation. 

Formal logical verification is a process related to the 
control net described in the model. Since the control 
net  is  a  Petri  net,  it  is  possible  to  verify 
mathematically the structure and the behavior of the 
execution  sequence   design.  Features  such  as 
deadlock (when a marking is not enabled to activate 

a  transition),  liveness  (when  the  Petri  net  is  not 
blocking),  boundedness  (when  the  tokens  in  each 
Petri  net  place  is  limited  in  every  marking)  and 
reachability  (when  every  place  is  reachable)  are 
analyzed.  This  process  is  presented  in  HiLeS 
Designer  due  to  the  integration  with  a  Petri  net 
analysis  tool  call  TINA  [Berthomieu06].  HiLeS 
Designer  extracts  the  control  net  from  the  model 
which wants to be analyzed, it translates the control 
net to the TINA language and create a flat text file. 
HiLeS  Designer  executes  TINA  with  this  file  and 
TINA  generates  a  flat  text  file  with  the  analysis 
results. HiLeS Designer reads the file and prints in a 
output  text  field.  With  these  results,  the  designer 
identifies  the  logic  problems  in  its  design  without 
need a test bank to find them out.    

Figure 3: HiLeS Designer functionalities

When the logic verification is made, the verification 
by simulation is executed. HiLeS Designer generate 
a  virtual  prototype  from the  model  in  VHDL-AMS. 
Each concept from the HiLeS language is connected 
to a concept in VHDL-AMS. At the same time, the 
test scenario is created according to the designers' 
configuration. The VHDL-AMS code is compiled and 
executed in VHDL-AMS tools such as SystemVision 
[Mentor09].  The  designer  analyzes  the  simulation 
results and compares if these results are according 
to the specification.

Once  the  first  level  is  verified,  the  designer  can 
descend the abstraction level to model in more detail 
the system. 

4. System Display Selector

In order to show how HiLeS designer works and it is 
applied in a real system, we present this example. 
The  example  system  is  modeled  using  HiLeS 
Formalism starting from the specification document. 
The  formal  verification  and  the  verification  by 
simulations are applied. 

4.1 SD Selector Modeling on HiLeS Designer

The  System  Display  Selector  (SD  Selector)  is  a 
device which is used in Airbus aircraft. This system 
selects the correct page to be displayed in a screen 
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according  to  their  input  signals.  The  system 
requirements are described in natural language in a 
document.  The  work  is  to  interpret  the  system 
requirements,  to  build  a  model  and  to  verify  the 
model  coherence  and  completeness satisfying  the 
requirements. This verification is done  formally and 
by simulation using HiLeS Designer.

Figure 4: Level 0 of the SD Selector model

To model the system in HiLeS Designer, we have to 
use different abstraction levels in order to make step 
by  step  the  model  based  on  the  textual 
requirements. The first level, called “Level 0”, serves 
to model the system and its environment as a black 
box (Figure 4).  The environment is used to model 
different  scenarios  that  the  system  can  have 
following  the  textual  requirements.  This  scenario 
model helps to generate the test scenarios for the 
virtual prototype in VHDL-AMS. 

Figure 5: System Architecture requirement.

The  following  levels  are  made  based  on  the 
architecture proposed by the textual requirements. In 
Figure 5, there is an architecture example described 
in  the system requirements,   and in  Figure 6,  the 
same architecture expressed on HiLeS.

We also  maintain  the  hierarchy  expressed  in  the 
requirements  document,  using  the  structural  block 
concept in HiLeS. Additionally,  to make easier the 
functional  description  with  more  detailed 
requirements,  we  build  new  hierarchies  to  specify 
each functionality, until we reach to the lower level of 
description using functional blocks. 

In order to show in more detail how a model can be 
built  using  the  HiLeS  formalism,  we  choose  the 
“Valid  key  Action”  subsystem.  The  subsystem's 
functionality  evaluates  the  user’s  action  on  the 
keyboard, when the user selects the information they 
want to show on the screen. The “Valid key Action” 
subsystem  requirements  are  described  in  a 
requirement  document  subsection.  The  textual 

requirements  are  interpreted  and  the  subsystem 
model  is  deduced.  In  Table  1,  there  are  some 
requirement examples extracted from the document.

In Figure 7, the HiLeS model of this subsystem is 
depicted.  This  model  follows  every  requirement 
described  for  the  subsystem  in  the  requirements 
document. To illustrate how the textual requirements 
are  interpreted using HiLeS concepts,  we  will  use 
the  requirements  described  before.  The  state 
position  presented  in  the  Requirement  1  is 
represented  by  the  places  Pl_170  (Pressed)  and 
Pl_66 (Released).  The state Status is  represented 
by the places Pl_179 (Valid)  and Pl_178 (Invalid). 
According to  the  user's  action,  the states change. 
Following the Requirement 3, when a key is pressed 
in a keyboard, the place Pl_64 is filled by a token. 
Since the Pl_66 (Unpressed) and Pl_64 (PressKey) 
have token, the Tr_61 is fired, then the Pl_68 (Timer) 
and  Pl_170  (Pressed)  is  filled  with  a  token.  That 
means the  key  status  changes  from “released”  to 
“pressed”  achieving  the  textual  requirement.  The 
requirement 2 is identified in the figure by the token 
presented  in  the  places  Pl_66  and  Pl_179.  The 
timer,  which  is  a  functional  block,  is  described  in 
VHDL-AMS (Figure 8) and its behavior is to wait a 
defined time period. In our example, the time is the 
period  where  the  pressed  key  is  valid  without 
releasing it.

Figure 6: System Architecture requirement in HiLeS.

4.2 Formal Verification Analysis  

Once the model is complete, the model verification 
can  be  started  to  ensure  the  requirements  are 
considered.  The first  verification step is the formal 
verification. Its purpose is to find inconsistencies in 
our  design  (Blocking,  deadlocks,  behaviors  which 
are not taking into account in the requirements). In 
this paper, we choose the requirements 4 and 5 to 
verify  partially  the  model.  These  requirements  are 
represented  by  the  actions  on  the  Places  Pl_71 
(Selected),  Pl_170  (Pressed)  ,  Pl_179  (Valid)  and 
Pl_178 (Unselected or None) in Figure 7.  
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Req. 1
Each key shall  be associated to two couples of 
states:  Position:  PRESSED-RELEASED  and 
Status: VALID-INVALID

Req. 2
The initial state of the keys shall be status VALID 
and position RELEASED.

Req. 3
While  the  system  receives  an action  on  the 
keyboard, the corresponding key position shall be 
set to PRESSED.

Req. 4
SELECTED KEY shall be the identifier of the first 
PRESSED AND VALID key.

Req. 5
If there is not a (PRESSED AND VALID) key then 
SELECTED KEY shall be set to NONE.

Table 1: Part of System Requirements

Figure 7: Valid Key Action Model in HiLeS

Figure 8: “T2_OtherKey” Functional Block 
description on VHDL-AMS.

To evaluate the behavior of the model,  Table 2 is 
built with the cases that are tied to the requirements 
4 and 5. 

As  an  example,  to  verify  the  requirement  5  it  is 
necessary to consider: if “Pressed” or “Valid” has a 
token, or if neither “Pressed” nor “Valid” has a token, 
then the place “None” must have a token. The formal 
verification is based on Petri net accessible markings 
search. The behavior of this requirement is verified 
by lines 0, 1, 4, 5 and 6 of Figure 9.

Finally, we can find others cases that are not taken 
into account in Table 2. For example, the lines 2, 9 
and  10 show other  cases  that  are  summarized  in 
one: “Pressed”, “Valid” and “None” have tokens. This 
case is identified when the transition that  changes 
the key status from “None” to “Selected” is not fired 

yet  when there is a token in the places “Pressed” 
and “Valid”. 

Req Pressed
(P)

Valid
(V)

None
(N)

Selected
(S)

4 1 1 0 1

5

0 0 1 0

0 1 1 0

1 0 1 0

Table 2: Cases to evaluate the requirements 4 and 5.

The  formal  verification  can  show  that  some 
requirements  are  missing;  for  instance,  if  some 
combinations  of  states  are  found  but  not  initially 
defined.  On  the  other  hand,  some  requirement 
inconsistencies  can  also  be  shown  during  the 
modeling process.

Figure  9:  Accessible  marking  in  the  “Valid  Key 
action” subsystem.

4.3 Verification by simulation

Following the verification process, the second step is 
to simulate the system model in order to verify the 
requirements  which  could  not  be  verified  by  the 
formal  analysis  (operations  sequences,  temporal 
constraints, ...). HiLeS Designer is used to generate 
a virtual  prototype in VHDL-AMS, transforming the 
system model to VHDL-AMS. This transformation is 
made  automatically  by  HiLeS  Designer.  The  tool 
generates the prototype and the test scenario source 
code  in  one  step.  The  test  scenario  is  generated 
according  to  the  scenario  defined  in  the  HiLeS 
environment model and then SystemVision is used 
to  simulate  the  virtual  prototype;  the  results  are 
shown  in  Figure  10.  This  scenario  is  related  to 
specific  requirements  defined  in  the  requirements 
document  and  the  behavior  is  verified  by  the 
simulation. 

The model formal verification helps to identify all the 
cases defined by the requirements.

Figure 10 shows the action to press and release a 
key in 2 seconds. The initial key state is “Released” 
and “Valid”, as the Requirement 2 defined. In the first 
signal,  the  pressing  key  event  is  a  pulse.  At  the 
same  time,  the  position  state  changes  from 
“Released”  to  “Pressed”  (Requirement  3)  and  the 
status  state  continues  being  “Valid”,  following  the 
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Requirement 4. Also, the key action state changes 
from  “None”  to  “Selected”;  this  means  the  key 
pressed  is  selected.  When  the  released  event  is 
done  after  2  seconds  (second  signal),  the  valid 
position changes from “Released” to “Pressed”, and 
the key action from “Selected” to “None”.

The  result  of  this  simulation  satisfies  the  system 
requirements. Finishing the verification process, we 
can  conclude  our  model  agrees  to  the  textual 
requirements  because  all  of  them  are  correctly 
considered.

Figure 10: “Valid Key Action” Subsystem simulation 
based on a scenario.

5. Conclusions and future work

HiLeS Designer is a tool that follows the conception 
of  new  methodologies  in  ESL.  We explained  the 
formalism  that  this  tool  uses,  its  features  and  an 
Airbus  system  study  case  developed  on  HiLeS 
Designer.  We  developed  an  executable  and 
verifiable  model  starting  from  the  Airbus'  textual 
requirements until we arrived to an executable virtual 
prototype in  VHDL-AMS. We showed the practical 
HiLeS Designer use on verifying formally the logical 
structure  and  verifying  by  simulation  the  temporal 
constraints,  behavior  and logical  sequence against 
each  textual  requirements  of  the  SD  Selector 
System.  We  also  presented  the  possible  risks 
(deadlock,  non-liveness,  non-boundedness)  that  a 
logical  structure  model  can  have  if  a  formal 
verification is not applied.

In the future, we will work in the transformation from 
standard  language  such  as  UML  and  SysML  to 
HiLeS  in  order  to  verify  and  to  execute  models 
described in these languages. We will use the MDA 
transformation concepts to achieve this objective. 
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